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A B S T R A C T

Ride-hailing companies will face the emergence and gradual expansion of AVs-only zones in urban areas
where only automated vehicles (AVs) are allowed to circulate. When owning a mixed fleet (automated and
conventional taxis), a ride-hailing company has to determine the optimal fleet size as a function of the gradually
expanding coverage of AVs-only zones while taking into account interactions with privately-owned human-
driven vehicles. To model this problem, we propose a bi-level framework in which the lower level captures the
mixed routing behaviour of the vehicles and the endogenous traffic congestion, and the upper level determines
fleet sizes to maximise profit. A parallel genetic algorithm is introduced to solve this bi-level framework, which
is embedded with a tailored algorithm for solving the lower-level model. Numerical experiments are conducted
on instances based on a small network and the network of the city of Delft, The Netherlands, to demonstrate
the performance of the proposed solution method and investigate the impacts of AVs-only zones on traffic and
ride-hailing operations. Results indicate that the fleet size of automated taxis increases nonlinearly with the
expansion of the AVs-only zone while that of conventional taxis decreases as demand shifts from human-driven
vehicles to automated taxis. The fleet size decision depends heavily on the fleet’s cost structure, the location
and the distribution of parking depots. Furthermore, the existence of an AVs-only zone leads to detours for
human-driven vehicles in the early stages, but it will bring major benefits by reducing congestion as its size
increases.
1. Introduction

Uber’s establishment in 2009 marked the beginning of the ride-
hailing industry. Since then, an increasing number of ride-hailing ser-
vices by the so-called Transportation Network Companies (TNCs), such
as Uber, Lyft and Didi, have emerged globally, revolutionising ur-
ban mobility patterns and passenger travel behaviour (Vega-Gonzalo
et al., 2023). To maximise profit, a TNC must make a series of de-
cisions, both at the planning level (fleet sizing, pricing strategy, ser-
vice quality level) and the operational level (ride-matching and vehi-
cle routing). Since transport demand and transportation infrastructure
evolve through time, planning and operations must be adaptable to
the existing situation at each point in time to obtain the highest
performance.

Nowadays, ride-hailing services are anticipating an upcoming rev-
olution in urban mobility and road infrastructure that will result from
the emergence of automated vehicles (AVs). AVs, which can be cen-
trally controlled as ‘‘moving robots’’, are likely to be deployed by TNCs,
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promising to benefit service providers by eliminating both drivers’ costs
and their driving preferences (Ashkrof et al., 2022), and offering contin-
uous, high-quality door-to-door trip services (Liang et al., 2020; Yang
et al., 2020). Despite the great potential benefits, it is still impossible
to convert all vehicles to AVs at once because of the high costs of fleet
renewal and infrastructure adaptation. It is more realistic to expect
in the near future that a small number of AVs are being used and
that human-driven vehicles (HVs) gradually phase out. Throughout this
transition period, AVs and conventional vehicles (CVs) will inevitably
coexist in mixed traffic on the urban network (Chen et al., 2017).
However, numerous studies have demonstrated that mixed traffic is
less efficient than a fully automated traffic system (Olia et al., 2018;
Yang et al., 2016). To improve traffic efficiency, many researchers
envisioned that city planners and government agencies may have to
dedicate specific traffic lanes (Chen et al., 2016; Liu & Song, 2019),
or areas (Chen et al., 2017; Conceição et al., 2021; Madadi et al.,
vailable online 18 January 2024
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2020) to AVs. These areas, which we will designate in this paper as
AVs-only zones, will gradually expand until the entire road network
is fully transformed into an automated and connected shared mobility
system. For a TNC, or a taxi company that wishes to modernise its
services, decisions need to be taken adaptively and dynamically with
the expansion of such areas.

Among all decisions, fleet sizing is one of the most critical de-
terminants for a TNC as it determines the number of trips that can
be satisfied and therefore the company’s market share and associated
profit. The literature on the fleet sizing problem is extensive. Recently,
great interest has been rising in the heterogeneous fleet sizing problem
under a mixed driving environment (Mo et al., 2022; Scherr et al.,
2019; Yang et al., 2020). Some consider this problem in a mixed driving
environment with the emergence of AVs-only zones (Scherr et al., 2019)
or mixed operation zones (Guo, Hao, et al., 2021). But less attention
has been devoted to dynamic interactions between road users and the
infrastructure, resulting in endogenous traffic congestion.

The fleet sizing decision is dependent on the operational decisions of
trip assignment and taxi routing. In a mixed driving environment, taxis’
route choices are heavily influenced by privately owned human-driven
vehicles (PVs). However, very few studies on fleet sizing problems
have considered the impact of PVs’ routing behaviour. Unlike taxis
coordinated by a TNC to maximise system-wide profits, PVs behave
selfishly, with drivers choosing routes that minimise their individual
costs. These distinct routing behaviours align with the concepts of
system optimum (SO) and user equilibrium (UE), respectively, in the
traffic assignment theory (Sheffi, 1985). It is important to note that the
‘‘system’’ under examination in this paper specifically pertains to the
taxi system operated by the TNC, rather than the entire transportation
system. To ensure realistic fleet sizing decisions, it is essential not
to overlook the routing of PVs; this requires their explicit modelling.
The key challenge of this paper is to integrate the different routing
behaviours and the complex operational decisions of taxis in one model
to determine a realistic optimal fleet size.

We propose a fleet sizing model for a TNC that deploys a hetero-
geneous fleet of both automated taxis (ATs) and conventional taxis
(CTs) during a transition period while taking into account the dynamic
interactions of this fleet with PVs and the road infrastructure. Along
with the expansion of the AVs-only zone, the TNC needs to determine
the optimal fleet size for ATs and adjust the current fleet size of CTs to
better meet passengers’ demand who can have a preference for using
either ATs or CTs. Therefore, three types of traffic participants are
considered in the model: ATs at level 5 automation (On-Road Auto-
mated Driving (ORAD) committee, 2021), CTs driven by taxi drivers
and PVs driven by their owners. ATs at level 5 are capable of driving
freely on the entire network, while HVs (CTs and PVs) are only allowed
to drive outside the AVs-only zone. The exclusion of privately-owned
AVs is motivated by two primary factors. Firstly, numerous researchers
envision a future where AVs are mainly used through sharing and
pooling options integrated into public transport, rather than being
privately owned (Liang et al., 2020; Stoiber et al., 2019); secondly, we
anticipate that the overall number of privately-owned AVs will likely
be relatively small compared to the number of ATs. This projection is
attributed to the expected high cost of AVs and the prevailing trend
of favouring public transport and active modes of transport in cities,
thereby limiting private vehicle ownership (Nieuwenhuijsen & Khreis,
2016; UITP, 2017).

To address the aforementioned problem and fill the gap in the
current literature, we propose a bi-level framework to give managerial
insights with regards to heterogeneous fleet sizing decisions (CTs and
ATs) for a TNC along with the expansion of the AVs-only zone, also
investigating the impacts of the AVs-only zone on traffic. At the upper
level, the optimal fleet size of CTs and ATs is determined with the
aim of maximising the profit of a TNC on the premise of fulfilling
the travel demand. At the lower level, the dynamic routing interaction
880

among travellers with UE (PVs) and SO (CTs, ATs) routing behaviours
is captured. This behaviour will in turn have an impact on the decision-
making process at the upper level. The traffic congestion effect is
expressed through the dynamic travel times at the lower level.

The contributions of this paper are summarised as follows:

• The studied problem enriches the well-investigated fleet sizing
problem for on-demand mobility services by incorporating the
following new elements: (1) infrastructure evolution: the emer-
gence and expansion of AVs-only zones; (2) multiple players with
different routing behaviour: PVs (following the UE) and centrally
dispatched taxis (following the SO); (3) endogenous congestion
caused by the routing of both the ride-hailing taxis and PVs.

• We introduce a novel methodology that approximates the dy-
namic mixed equilibrium and integrates the comprehensive plan-
ning and operational decisions for taxis (fleet sizing, matching,
routing, relocation, and parking) within a bi-level mixed-integer
linear programming (MILP) model.

• We develop a tailored genetic algorithm framework to tackle the
bi-level model. To solve the lower-level model, a two-stage solu-
tion framework is proposed. The first stage introduces a method
for generating a path pool by determining the maximum allow-
able travel distances for all OD pairs, effectively constraining the
path pool to a manageable size. In the second stage, using the path
pool as input, we employ an iterative procedure embedded with
a weight determination algorithm to compute the approximated
mixed equilibrium model.

• This study provides TNCs as well as city planners and the govern-
ment with managerial insights regarding the potential impact of
AV-related infrastructure.

Given the nature of the proposed model as a MILP, a perfect mixed
equilibrium cannot be guaranteed. We fully acknowledge that this is
not a perfect model to capture the dynamic mix equilibrium, and we
can only approximate the dynamic mixed equilibrium at a macro-
scopic level and ignore microscopic traffic dynamics. However, this
research may provide insights into fleet management challenges, espe-
cially when considering the route choices made by PVs in a congested
environment.

The remaining sections of this paper are structured as follows. The
literature on fleet sizing problems, vehicle routing problems (VRP) and
traffic assignment (TA) are reviewed in Section 2. Section 3 presents
the mathematical model of the proposed bi-level framework. Then, in
Section 4, a detailed description of solution methods for the lower
level and the entire problem is provided. In Section 5, a small toy
network case study and a quasi-real case study of the city of Delft in
the Netherlands are carried out to demonstrate the effectiveness of the
proposed framework and to evaluate the impact of AVs-only zones on
all the traffic participants. Conclusions and future outlook are given in
Section 6.

2. Literature review

2.1. Fleet sizing problem for ride-hailing services

The problem we study is the extension of the well-known fleet
sizing and mix vehicle routing problem (FSMVRP). Different from the
typical fleet sizing problem, FSMVRP relaxes the assumption that all
vehicles need to be homogeneous, which is more realistic in real-world
applications. Heterogeneous fleet composition is considered but not
limited to the following cases: vehicles with different capacities (Balac
et al., 2020; Hiermann et al., 2016), vehicles with different cost struc-
tures (Hiermann et al., 2016), and vehicles with different functional
types such as cars and buses (Santos & Correia, 2021). Including AVs
in on-demand mobility brings non-negligible benefits which distinguish
AV’s cost structure from that of HVs, and may result in potential cost
savings. This boosts the need to investigate the fleet sizing problem

once AVs enter the market.
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Research has demonstrated the need to investigate the heteroge-
neous fleet sizing problem on shared mobility deploying both AVs and
HVs in a mixed driving environment. Mo et al. (2022) stated that
managerial decisions such as fleet size and pricing for AVs and HVs
need to be determined properly and attention needs to be paid to
the trade-off between these two types of services. To this end, they
proposed an aggregated market model to examine how fleet sizing and
pricing decisions for both types of services affect the demand rates,
riders’ utility, and riders’ waiting time with congestion effects. Based
on the numerical analysis, they suggested that more AVs should be
arranged than HVs even under the scenario where AVs had a higher
depreciation cost.

However, few studies consider this problem together with the emer-
gence of specific intelligent infrastructure. Guo, Hao, et al. (2021)
foresaw the emergence of the mixed operation zone (MOZ), an ur-
ban zone in which AVs and HVs can operate together. Based on the
emergence of MOZ, they conducted research to determine the robust
minimum fleet size of AVs and HVs deployed by on-demand rides
services, taking demand uncertainty into account, and investigating
the impacts of this zone on the performance of the service. A two-
stage robust optimisation model is proposed and solved optimally. The
objective function of this model is to minimise the total number of
vehicles required to fulfil the travel demand. However, the minimum
fleet size to serve all the demand is not necessarily the optimal fleet
size for the on-demand mobility system as the minimum fleet may not
lead to the greatest profit. For instance, a small fleet is likely to result
in a longer detour distance (Militão & Tirachini, 2021), which might
cause high operational costs. As a profit-oriented company, a TNC
would rather systematically make the fleet sizing decision by analysing
various factors, such as the total operational cost, the depreciation cost,
the salaries paid to drivers, and the congestion effect caused by the
fleets, etc. Thus, it is worthwhile to investigate the relationship between
the minimum and optimal fleet size, as well as the trade-off between
fleet sizes of different vehicle types. Fan et al. (2022) examined how
the gradual expansion of the AVs-only zone affects fleet size decisions
during the transition period from a conventional to a fully intelligent
road network. They envisioned two business models for on-demand
mobility services and included endogenous traffic congestion in the
model. However, they did not take into account the distinct routing
behaviours of AVs and HVs, which will be the focus of this paper.

Mainly three types of modelling techniques have been used to
tackle fleet sizing problems: simulation-based techniques (Fagnant &
Kockelman, 2018; Wang et al., 2022; Yi & Smart, 2021), optimisation-
based techniques (Allahviranloo & Chow, 2019; Balac et al., 2020; Guo,
Hao, et al., 2021), and hybrid methods combining the two (Militão &
Tirachini, 2021). Simulation-based techniques can reproduce complex
scenarios by considering the diverse behaviours of road users and
monitoring their dynamic interactions. However, they are usually time-
consuming because a large number of simulations with varying fleet
sizes are required to evaluate the system’s performance. When various
fleet types are considered, the number of possible combinations could
be very high. Moreover, reproducing realistic route choices of a mixed
fleet of vehicles also takes time in a simulation-based methodology.

Among the optimisation-based techniques, fleet sizing problems are
typically modelled as a single-level MILP model (Balac et al., 2020; Koç
et al., 2016; Santos & Correia, 2021), or a bi-level model (Allahviranloo
& Chow, 2019), solved by exact methods (Balac et al., 2020; Fan et al.,
2022; Santos & Correia, 2021), or heuristic methods (Brandão, 2009;
Koç et al., 2016; Renaud & Boctor, 2002), or hybrid methods (Wang
et al., 2019). For some simple scenarios, a single-level model is suffi-
cient when minimising the fleet size is the only goal. Another typical
scenario is when all vehicles are under the control of a central agent
(eg. TNC, or government). In this case, the fleet size decisions together
with the route choice of vehicles are taken over by the operator.

For a more complex problem involving interactions between the
881

supply strategies of the fleet operators and the route choices or activity
schedule of all travellers (not just the deployed fleets) in the road
network, a bi-level model is required. This type of problem is known
as the network design problem. At the upper level, operators make
profit-maximising decisions. Travellers respond to those decisions at
the lower level. Allahviranloo and Chow (2019) studied the fleet sizing
problem in a future scenario in which users of autonomous transport
services may share ownership of AVs and pay for the time slots for daily
activities. A bi-level model was formulated. At the lower level, demand
was determined by the activity scheduling decisions. This decision
was in turn influenced by the fleet capacity and the time slot prices
determined at the upper level. Li and Liao (2020) proposed a bi-level
framework for the network design problem to investigate the optimal
deployment of shared AVs (SAVs). The optimal SAV hub locations,
fleet size and the initial distribution of SAVs were determined at the
upper level. Based on these decisions, the activity-travel scheduling was
modelled at the lower level. When modelling the interactions between
AVs and CVs, some researchers use a leader-follower game structure,
in which AVs are the leaders and HVs are the followers. In this system,
AVs are centrally controlled by the operators and CVs respond to the
coordination of AVs (Yang et al., 2020).

As a complement to the existing literature, this paper aims to inves-
tigate the interactions between the operator’s strategy and travellers’
behaviour in the context of the emergence of AVs-only zones. This type
of problem is best characterised by a bi-level framework. At the lower
level, the route choices of taxis and PVs are modelled, which follow
the SO and UE principles, respectively. At the upper level, fleet sizing
decisions are made to maximise profit. If we disregard the flow of PVs,
all decisions (fleet size, number of served trips, route choices of taxis)
can be made at the same level, according to the SO principle.

2.2. Vehicle routing problem (VRP) and traffic assignment (TA)

As stated previously, the problem we study is an extension of the
FSMVRP, which is further integrated with important TA concepts.
These two fields share non-negligible similarities but also have distinct
features. In a traditional VRP, the optimal routes of a fleet of vehicles
are determined to traverse the road network from one depot to another
to deliver and/or pick up a set of goods/customers (Laporte, 2009).
In the context of on-demand mobility transport, a few decisions must
be made, including trip assignment, passenger pick-up and delivery
process, vacant vehicles’ relocation and parking decisions, under the
restrictions of time windows and vehicle capacity. Based on these deci-
sions, more managerial strategies/decisions of the fleet operator could
be included in the model, such as fleet size, pricing, service quality,
etc. The dynamic traffic assignment (DTA) models traffic flow between
a specific origin and destination pair without considering the planning
and operational decision-making process (order dispatching, vehicle
parking, vehicle relocation, etc.) in the context of on-demand mobility
services. Nevertheless, TA can capture the congestion effect incurred
by the interactions between vehicles and infrastructures, as well as
modelling the different routing behaviours of travellers. The method-
ology proposed in this paper will bridge these two research fields by
modelling the congestion effects and different routing behaviours of
travellers within an FSMVRP.

A few researchers have attempted to bridge the VRP with the
TA. Correia and Van Arem (2016) proposed a successive average frame-
work to solve the dynamic user optimum privately-owned AV assign-
ment. However, rather than directly assigning the flow to the minimum
cost path on the network, the routing and parking decisions of a
household’s AV are determined by solving a proposed MILP model to
minimise the total generalised cost of transporting a single household.
The congestion effect is captured by the flow-dependent link travel
time, which will be updated outside the MILP model using a non-
linear Bureau of Public Roads (BPR) function. Van Essen and Correia
(2019) proposed a novel exact formulation to approximate the dynamic

user optimum by incorporating it into a MILP model. The objective
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of the model is to minimise the maximum relative deviation from
the minimum cost for each household. By doing so, households will
have similar relative deviations. The traffic congestion effect described
by the non-linear BPR function is involved in the model in a lin-
ear form. Liang et al. (2018) introduced an optimisation model for
trip assignment and dynamic routing of ATs to maximise the total
profit of the operator. To describe the congestion level of each link,
they used breakpoints on a BPR function while embedding it in the
proposed MILP model. Chen and Levin (2019) claimed that dynamic
UE assignment is more promising for on-demand mobility services,
because of the competition among mobility service providers. They
firstly developed a static UE TA model for the route choice of AVs
between urban origins and destinations. Based on the solution, a linear
programming model is solved to specify the optimal rebalancing flow.
This static model is converted into a dynamic one by adding the time
dimension. Liu et al. (2020) considered an ideal scenario where all the
vehicles operate with the SO principle. They firstly proposed a vehicle-
based arc-based integer programming model in the space–time-state
network which is similar to the VRP problem. Then, based on the gen-
erated mapping information of vehicle-passenger and vehicle-arc, they
further developed a flow-based path-based linear programming model
from the perspective of DTA and solved it by a column-pool-based
approximation method.

A challenge for our problem is to model the dynamic mixed equi-
librium considering both SO and UE principles in an FSMVRP which is
usually a MILP model. Related works on modelling the mixed equilib-
rium in TA are mostly focused on static scenarios (Bagloee et al., 2017;
Chen et al., 2017; Kashmiri & Lo, 2022; Ke & Qian, 2023; Zhang et al.,
2022; Zhang & Nie, 2018), day-to-day dynamic systems (Li et al., 2018;
Liang et al., 2023), and dynamic scenarios (Guo, Ban, & Aziz, 2021;
Hoang et al., 2023; Mansourianfar et al., 2022, 2021), but ignore the
detailed vehicle operations (relocation and parking), trip assignment
and vehicle dispatching, and the managerial decisions from the per-
spective of a TNC. To overcome these shortcomings, in this paper, we
consider the feedback of operational strategies of taxis on the network
traffic conditions and propose a bi-level framework to determine the
planning and operational decisions while approximating the dynamic
mixed equilibrium in a typical working day. Our work shares a few
similarities with the study by Ge et al. (2021), which proposed an
SAV matching and routing problem in a traffic assignment context,
considering the endogenous traffic congestion from both CVs and SAVs.
In their approach, a bi-level programming model is developed with
SAVs as leaders and CVs as followers. Although this problem is inves-
tigated under a static setting, they suggest the possibility of extending
the model to dynamic traffic conditions. Compared with the referred
work, our study aims to determine the optimal planning decisions while
also providing more detailed operational decision chains, including
detailed parking choices, relocation decisions from trip to trip, and
endogenous congestion caused by all the road users under dynamic
traffic settings. To the best of our knowledge, the FSMVRP considering
traffic congestion and the approximated mixed equilibrium has rarely
been studied in the context of on-demand mobility services.

3. Problem formulation

The proposed bi-level framework is presented in this section as a
bi-level MILP model. In Section 3.1, we first introduce the problem.
Then, we propose the mathematical formulation of the upper level and
the lower level in Sections 3.2 and 3.3, respectively.

3.1. Problem description and modelling framework

The demand of travellers heading from origins to destinations trig-
gers the need to plan the operation of ride-hailing services and vehicle
movements on the road network. The model structure that is supposed
to solve the problem is presented in Fig. 1 depicting the decisions,
882
elements (e.g. demand, game players, and infrastructure) and their
relations.

In terms of planning, we assume that the demand for the optimisa-
tion period is known in advance and the overall travel demand in an
urban area is fixed for a given optimisation period. This assumption
makes sense for a planning problem that this study addresses. The
overall travel demand is divided into two groups: those who drive their
own vehicles, and those who choose to ride in taxis. For the first group
of travellers, driving their PVs will always be the preferred mode of
transportation, unless the destination is inaccessible to HVs due to the
restrictions imposed by the AVs-only zone. These travellers will then
have to switch to ATs. No choice modelling is involved because it is
not the focus of our problem. In a future study, when analysing the
effect of AVs-only zones on travellers’ behaviour, choice modelling can
be incorporated.

The demand for different types of taxis is determined by customers’
preferences, which are known in advance. This means that travellers
can choose the vehicle type by themselves in case the trip can be
served by either type of taxi. Considering travellers’ preferences will
significantly increase users’ satisfaction with the ride-hailing service.
Assuming that travellers who use ride-hailing taxi services are fully
aware of the services provided by the TNC and the available options
of the vehicle types, they will adapt their behaviour to the on-demand
mobility system and make feasible trips through the app-based service
provider platform. Above a minimum service rate to guarantee service
quality, the company will serve those trips that generate the most
profit. Once the trip is rejected by the system, the traveller will opt for
public transit, such as bus, subway, or train, which are not included
in our model as they barely contribute to the congestion on the road
network.

The movement of passengers and vehicles is aggregated into flows in
the model if their trips have the same origin, destination and departure
time. This avoids tracking each vehicle independently, thereby reduc-
ing the number of decision variables. On the roads, PVs, CTs and ATs
make route choices and then contribute to congestion. Congestion is
quantified by the dynamic link travel time as a function of traffic flow.
The varying link travel time will, in turn, affect the route choices of
the vehicles. The interplay between the route choice of the vehicles and
dynamic travel time considering traffic congestion is also considered in
this model. Despite treating the vehicle movements as flows, vehicles in
the same group are allowed to take different routes and have different
arrival times at the destination to balance the network usage.

A time-space network is used to capture the dynamic interactions
among road users. This network is defined by duplicating the directed
physical network (𝑁,𝐿) at each time instant 𝑡 ∈ 𝑇 , where 𝑁 and 𝐿
denote the set of nodes and road links. On the time-space network,
vehicles move on links (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, indicating the flow movement
from node 𝑖 ∈ 𝑁 to node 𝑗 ∈ 𝑁 from time instant 𝑡1 ∈ 𝑇 to time
instant 𝑡2 ∈ 𝑇 . To specify the driving area of different types of vehicles
𝑚 ∈ 𝑀 , extra sets are introduced as 𝑁𝑚 and 𝐺𝑚 to denote the nodes
and links in the time-space network that can be used by the vehicles of
type 𝑚 ∈ 𝑀 . By doing so, the driving restrictions for different types of
vehicles are easily included. In our problem, each type of vehicle has a
corresponding driving area: CTs and PVs are not permitted to use the
links inside the AVs-only zone; ATs of level 5 automation, on the other
hand, can drive everywhere on the urban network. The proposed model
can easily be extended to a more general situation involving additional
vehicle types such as level 4 AVs that can only circulate in certain areas.
We assume that taxis are only permitted to park at designated nodes
that are identified as TNC’s parking depots. The parking depots that
are accessible to taxis of type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } are designated as 𝑁𝑚

𝑝 .
Given the driving restrictions imposed on HVs, the TNC will assign

the appropriate type of vehicle to fulfil the incoming trip requests.
There are three types of trips regarding the location of the origin and

destination (shown in Table 1).
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Fig. 1. Decisions, elements and their relations in the bi-level optimisation problem.
Table 1
Type of trips and serving vehicles.

Demand Origin Destination CT AT

Type 1 AVs-only zone AVs-only zone ✓

Type 2 Outside the AVs-only zone Outside the AVs-only zone ✓ ✓

Type 3 AVs-only zone
Outside the AVs-only zone

Outside the AVs-only zone
AVs-only zone

✓

✓

Moreover, several assumptions are made underlying the proposed
modelling framework: (1) No vehicles are allowed to go back to a
previously visited arc in the road network when heading from the origin
to the destination of a trip; (2) The origin and destination node of a
group of trips will be visited only once while delivering the clients; (3)
No ride-pooling is considered in this study. Each vehicle is limited to
carrying a single passenger at a time. (4) The capacity of links within
the AVs-only zone is larger than the capacity of the links outside the
AVs-only zone which is to represent the added traffic efficiency of these
vehicles (Chen et al., 2017; Madadi et al., 2020).

The following sections introduce the mathematical formulation of
the bi-level MILP model. The notation used in this model is presented
in Table 2.

3.2. Upper level: Planning for the TNC

The upper-level optimisation model denoted as [ULM] has the
following mathematical formulation. The objective function is:

[𝐔𝐋𝐌] max𝑍 =
∑

𝑚∈{𝐶𝑇 ,𝐴𝑇 }

∑

𝑟∈𝑅𝑚

(

𝑝0𝑃 𝑟 + 𝑝𝑚𝑃 𝑟𝑠𝑑𝑟
)

− 𝑠 ⋅ 𝑐𝑝 ⋅ 𝑉 𝐶𝑇

−
∑

𝑚∈{𝐶𝑇 ,𝐴𝑇 }
𝑐𝑓𝑚𝑉 𝑚

−
∑

𝑚∈{𝐶𝑇 ,𝐴𝑇 }
𝑐𝑜𝑚

⎛

⎜

⎜

⎜

⎝

∑

(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺𝑚

𝑙𝑖𝑗𝐹
𝑚
𝑖𝑡1 𝑗𝑡2

⎞

⎟

⎟

⎟

⎠

− 𝑐𝑑
∑

𝑚∈{𝐶𝑇 ,𝐴𝑇 }

∑

𝑟∈𝑅𝑚

(

∑

𝑡∈𝑇
𝑡𝐸𝑟𝑡 − 𝑎𝑟𝑛𝑟 − 𝑠𝑡𝑟𝑛𝑟

)

(1)

Subject to:

𝐸𝑟𝑡, 𝐹𝑚
𝑖𝑡1 𝑗𝑡2

∈ argmin{Objective function (5)–(7) ∶ Constraints (8)–(28)}
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(2)
𝑙𝑏𝑚 ≤ 𝑉 𝑚 ≤ 𝑢𝑏𝑚,∀𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } (3)

𝛼𝑛𝑟 ≤ 𝑃 𝑟 ≤ 𝑛𝑟,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } (4)

The upper-level objective function denoted as 𝑍 is to maximise the
total profit of the TNC. The first term represents the taxi fares paid by
the passengers. Two types of fares are included: an initial fixed base
fare 𝑝0 once the order is accepted, and an additional price 𝑝𝑚 based on
the shortest travel distance 𝑠𝑑𝑟 of the trip 𝑟 ∈ 𝑅𝑚 where 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
Here, the shortest travel distance is used rather than the taxis’ actual
travel distance in order to avoid taxis detouring and charging pas-
sengers more money. The second term represents the salaries paid to
human drivers of the CT fleet. The third term defines the depreciation
cost of the different types of taxis in the system. The depreciation cost
of a vehicle of type 𝑚 represented by 𝑐𝑓𝑚, is calculated as the vehicle’s
purchase price divided by its service life span. Both the second and the
third terms describe the cost associated with the fleet size. The fourth
term is the operation cost of vehicles on the entire network including
fuels, maintenance and assurance costs. This is calculated by the total
travel distance for all the taxis multiplied by the operational cost per
unit denoted by 𝑐𝑜𝑚. The final term is the penalty for the drop-off
delay of the client which is calculated by multiplying the delay cost 𝑐𝑑
by the delay time. The delay time is calculated as the time difference
between the passengers’ actual riding time and the shortest travel time
in free-flow speed.

In this upper-level model, the values of variables 𝐹𝑚
𝑖𝑡1 𝑗𝑡2

and 𝐸𝑟𝑡

are determined in the lower-level problem, as indicated in Eq. (2).
Constraints (3) impose an upper bound and lower bound on the total
fleet size of CTs and ATs which is explained in Section 4.2. Constraints
(4) guarantee that the number of trips served in the group of trips
𝑟 ∈ 𝑅𝑚 should be less than the group’s demand, but greater than the

minimum number required to ensure service quality.
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Table 2
Notation.

Notation Description

Set
𝑀 = {𝐶𝑇 ,𝐴𝑇 , 𝑃𝑉 }, set of vehicle types.
𝑇 = {0,… , 𝑡,… , 𝑠}, set of time instants in the operation period.
𝑁 = {1,… , 𝑖,…}, set of nodes.
𝐿 = {… , (𝑖, 𝑗),…}, set of road links between nodes in set 𝑁 .
𝐺 = {… , (𝑖𝑡1 , 𝑗𝑡2 ),…}, set of links in the time-space network.
𝑅𝑚 = {1,… , 𝑟,…}, set of groups of trips served by vehicles of type 𝑚 ∈ 𝑀 , where each group of requests 𝑟 ∈ 𝑅𝑚 has the same origin, destination,

departure time, and latest arrival time at the destination.
𝑁𝑚 ⊆ 𝑁 , set of nodes that can be used by vehicles of type 𝑚 ∈ 𝑀 . CTs and PVs can use the nodes outside the AVs-only zone and the nodes located at the

border of the AVs-only zone; ATs can use all the nodes.
𝑁𝑚

𝑃 ⊆ 𝑁𝑚, set of nodes allowing parking for taxis of type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
𝐺𝑚 ⊆ 𝐺, set of links that can be used by vehicles of type 𝑚 ∈ 𝑀 in the time-space network.
Π𝑟 = {1,… , 𝜋,…}, set of paths of group of trips 𝑟 ∈ 𝑅𝑃𝑉 .

Parameters
𝑝0 Base fare in euros for using the taxis.
𝑝𝑚 Price per kilometre in euros/km for using a taxi of type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
𝑐𝑜𝑚 Unit driving operational cost in euros/km for vehicle type 𝑚 ∈ 𝑀 .
𝑐𝑝 Salary of a driver in euros/time step.
𝑐𝑑 Penalty for drop-off delay of passengers in euros/time step.
𝑐𝑓𝑚 Depreciation cost in euros/vehicle in one hour for using vehicle type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
𝑐𝑡 Perceived value of time cost for passengers driving PVs in euros/time step.
𝑠 Total number of time instants in the operation period.
𝛼 Minimum service rate for orders.
𝑙𝑏𝑚, 𝑢𝑏𝑚 Lower bound and upper bound of taxi’s fleet size of type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
𝜔 Calibrated weighting coefficient to combine two objective functions into one.
𝜆 Predefined weighting coefficient to give priority to a certain term in the objective function.
𝑙𝑖𝑗 Length of road link (𝑖, 𝑗) ∈ 𝐿.
𝑄𝑖𝑗 Capacity of road link (𝑖, 𝑗) ∈ 𝐿 in vehicles per time step.
𝐶𝑖𝑡1 𝑗𝑡2

Spatial capacity of road link (𝑖, 𝑗) ∈ 𝐿 in vehicles that fit on the road link from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺.
𝑡max
𝑖𝑗 Maximum travel time on road link (𝑖, 𝑗) ∈ 𝐿.
𝑡min
𝑖𝑗 Minimum travel time on road link (𝑖, 𝑗) ∈ 𝐿.
𝑜𝑟 Origin node for group of trips 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝑑𝑟 Destination node for group of trips 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝑎𝑟 Desired departure time for group of trips 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝑏𝑟 Latest arrival time for group of trips 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝑠𝑑𝑟 Shortest travel distance for group of trips 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝑠𝑡𝑟 Shortest travel time assuming free-flow speed for group of trips 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝑛𝑟 Total number of trips for group 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ 𝑀 .
𝐷𝑟𝜋 The length of the path 𝜋 ∈ Π𝑟 used by trips in group 𝑟 ∈ 𝑅𝑃𝑉 .
𝑀 𝑟 Minimum travel cost for trips in group 𝑟 ∈ 𝑅𝑃𝑉 .
𝛿𝑟𝜋𝑖𝑗 Incidence between road link (𝑖, 𝑗) ∈ 𝐿𝑃𝑉 and path 𝜋 ∈ Π𝑟 in group of trips 𝑟 ∈ 𝑅𝑃𝑉 , 1 if the link is part of the path; 0 otherwise.

Variables
𝑃 𝑟 Integer variable representing the total number of served trips from group 𝑟, where 𝑟 ∈ 𝑅𝑚 , 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
Integer variable representing the passenger flow in the group of trips 𝑟 ∈ 𝑅𝑚 served by vehicle type 𝑚 ∈ 𝑀 in road link (𝑖, 𝑗), from time instant 𝑡1 to
𝑡2. Only defined for (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺𝑚 , 𝑎𝑟 ≤ 𝑡1 < 𝑡2 ≤ 𝑏𝑟. If 𝑡1 = 𝑎𝑟, then 𝑖 = 𝑜𝑟.

𝑃𝐹 𝑟𝜋
𝑖𝑡1 𝑗𝑡2

Continuous variable representing the passenger flow of the group of trips 𝑟 ∈ 𝑅𝑃𝑉 using path 𝜋 ∈ Π𝑟 that travels in road link (𝑖, 𝑗) from time instant 𝑡1
to 𝑡2. Only defined for (𝑖𝑡1 , 𝑗𝑡2 ) where 𝛿𝑟𝜋𝑖𝑗 = 1, 𝑎𝑟 ≤ 𝑡1 < 𝑡2 ≤ 𝑏𝑟.

𝑉 𝑚 Integer variable representing the taxi fleet size of type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }.
𝐸𝑟𝑡 Integer variable representing the total number of passengers in group of trips 𝑟 ∈ 𝑅𝑚 for vehicle type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } arriving at time 𝑡 ∈ 𝑇 .
𝐹𝑚
𝑖𝑡1 𝑗𝑡2

Continuous variable representing the vehicle flow of type 𝑚 ∈ 𝑀 in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺𝑚.
𝑊 𝑚

𝑖𝑡
Continuous variable representing the total number of taxis of type 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } parking at node 𝑖 ∈ 𝑁𝑚

𝑃 from time instant 𝑡 to 𝑡 + 1, with 𝑡 ∈ 𝑇 .
𝐾𝑟𝜋 Continuous variable representing the generalised cost of trips in group 𝑟 ∈ 𝑅𝑃𝑉 using path 𝜋 ∈ Π𝑟.
𝐾𝑟 Continuous variable representing the maximum general cost of trips in group 𝑟 ∈ 𝑅𝑃𝑉 .
𝐹 𝑟𝜋 Integer variable representing the vehicle flow using path 𝜋 ∈ Π𝑟 of group of trips 𝑟 ∈ 𝑅𝑃𝑉 .
𝐴𝑟𝜋

𝑡 Binary variable which is 1 when at least one trip in group 𝑟 ∈ 𝑅𝑃𝑉 using path 𝜋 ∈ Π𝑟 arrives at time 𝑡 ∈ 𝑇 , and 0 otherwise.
𝑋𝑖𝑡1 𝑗𝑡2

Binary variable which is 1 when any vehicle travels in road link (𝑖, 𝑗) from time instant 𝑡1 to 𝑡2, where (𝑖𝑡1 , 𝑗𝑡2 ) ∈ 𝐺, and 0 otherwise.
3.3. Lower-level model (LLM): Mixed routing model for taxis and PVs

For the lower-level problem, we describe the routing behaviour of
heterogeneous traffic participants within a MILP model. Unlike the
traditional TA problem, our methodology tackles a discrete optimi-
sation problem within a time-space network framework rather than
a continuous optimisation problem. This allows us to model both
planning and operational decisions, whilst still capturing the impact
of varying congestion resulting from the routing of the vehicles. In
our problem formulation, integer variables are used to represent link
travel times and passenger flows. However, due to the inherent nature
of the integrality of time and flow, it becomes infeasible to achieve
the traditional UE where travellers in all paths for a given OD pair
experience equal travel costs. This integrality aspect poses a challenge
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when trying to directly impose UE constraints in the MILP framework.
Alternatively, brought from Van Essen and Correia (2019) the concept
of approximated DUE in mathematical programming, we propose a new
method to approximate the mixed equilibrium (both UE and SO) in a
MILP model.

The approximated mixed equilibrium used in this paper is realised
by the following steps. Firstly, in a dynamic setting we approximate
the UE by minimising the difference between the cost of all routes
for the same OD pairs. This is accomplished by initially minimising
the maximum relative deviation from the minimum cost and then
minimising the total costs of PVs so that the costs of all the used paths
have similar relative deviations. Secondly, when modelling the SO, the
‘‘system’’ we target is the TNC rather than the entire transportation
system. The objective is to minimise the overall cost of taxi routing by
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optimally assigning clients to taxis and determining taxis’ route choices.
Subsequently, we approximate the mixed equilibrium by formulating
a bi-objective optimisation model that considers the two independent
objectives of taxis and PVs. We further propose an approach to balance
the contribution of these two objectives.

In terms of modelling bi-objective optimisation problems, one of the
most extensively used classic techniques is the weighted-sum method,
which can convert the two objective functions into one by using a
weighting coefficient. The weighting coefficient indicates the decision
maker’s preference or the relative importance of the two objectives.
Thus, it is critical to properly assign it a value. In the mixed routing
problem, when the network is congested and the objectives of all road
users cannot be satisfied simultaneously, vehicles with different routing
objectives are usually competing for the best routes. Nonetheless, the
objective functions of taxis and PVs should be given the same priority.
Thus, the weighting coefficient should balance the contribution of
the two objective function values. An iterative weight determination
method is proposed to produce the desired traffic patterns on the net-
work. A detailed description of this method can be found in Appendix
A.1.

The route choices of the taxis and PVs are modelled differently.
Assume that the PVs consider generalised costs as the routing criteria,
which contain a travel time-related cost and a distance-related cost.
When modelling the routing behaviour of PVs, it is necessary to com-
pare the generalised travel costs of different paths for the same OD
pair. To specify the travel time and distance associated with a particular
path, path-based variables will be required to describe the movement
of the passengers. For taxis, no paths will be compared when modelling
their route choices because one is aiming for the system optimal flow
distribution. As a result, arc-based variables are enough to describe the
taxi flow.

Path sets containing alternatives for a given OD pair will be gener-
ated before the optimisation. Some restrictions are taken into account
when generating paths: first, the shortest travel time of using a path
should be within the time window indicated by passengers which is
the latest arrival time minus the departure time; paths with repeated
arcs are not included as we assume that vehicles will not detour back
to a previously visited arc in a directed network when heading from
the origin to the destination due to the significantly increased travel
distance cost. Even so, enumerating all the paths with the proposed
restrictions in an urban scale network is still unrealistic as the huge
number of paths could significantly increase the scale of decision
variables, leading to a computational burden. Section 4.1 describes how
to find small-scale path sets that include paths that PVs will take.

We formulate the described LLM as follows:
Objective function

[𝐋𝐋𝐌] min 𝐽 = 𝜔𝐽𝑇 + (1 − 𝜔)𝐽𝑃 (5)

here

𝑇 =
∑

𝑚∈{𝐶𝑇 ,𝐴𝑇 }
𝑐𝑜𝑚

⎛

⎜

⎜

⎜

⎝

∑

(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺𝑚

𝑙𝑖𝑗𝐹
𝑚
𝑖𝑡1 𝑗𝑡2

⎞

⎟

⎟

⎟

⎠

+ 𝑐𝑑
∑

𝑟∈𝑅𝑚

∑

𝑚∈{𝐶𝑇 ,𝐴𝑇 }

(

∑

𝑡∈𝑇
𝑡𝐸𝑟𝑡 − 𝑎𝑟𝑃 𝑟 − 𝑠𝑡𝑟𝑃 𝑟

)

(6)

𝑃 = 𝜆
∑

𝑟∈𝑅𝑃𝑉

𝐾𝑟

𝑀 𝑟 +
∑

𝜋∈𝛱𝑟 ,𝑟∈𝑅𝑃𝑉

∑

(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺𝑃𝑉

𝑃𝐹 𝑟𝜋
𝑖𝑡1 𝑑

𝑟
𝑡

(

𝑐𝑜𝑃𝑉 𝐷𝑟𝜋 + 𝑐𝑡(𝑡 − 𝑎𝑟)
)

(7)

Taxis have an objective function denoted by 𝐽𝑇 that seeks to min-
imise the total operational costs and the drop-off delay penalty of the
clients. PVs have an objective function denoted as 𝐽𝑃 that minimises
first the maximum generalised travel cost 𝐾𝑟 relative to the lowest
possible generalised travel cost 𝑀𝑟 for all groups of trips 𝑟 ∈ 𝑅𝑃𝑉 .
Additionally, it seeks to minimise the total generalised cost across all
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trips, taking into account that costs with a lower relative deviation than
the maximum relative deviation can also be minimised. To prioritise
the first term of the objective function, which aims to minimise the
cost difference between routes for the same OD pair, we introduce
a weighting coefficient 𝜆 that gives absolute priority to this term. A
detailed description of how to determine the value of 𝜆 can be found in
Appendix A.2. As previously stated, we use the weighted-sum method
to combine 𝐽𝑇 and 𝐽𝑃 into one single objective function (weight 𝜔).
The objective function is constrained by the following:

Constraints for taxis:

𝑃 𝑟 =
∑

𝑗𝑡|
(

𝑜𝑟𝑎𝑟 ,𝑗𝑡
)

∈𝐺𝑚

𝑃𝐹 𝑟
𝑜𝑟𝑎𝑟 𝑗𝑡

,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } (8)

𝑃 𝑟 =
∑

𝑡∈𝑇 |𝑎𝑟+𝑠𝑡𝑟≤𝑡≤𝑏𝑟
𝐸𝑟𝑡,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } (9)

𝐸𝑟𝑡 =
∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺𝑚

𝑃𝐹 𝑟
𝑖𝑡1 𝑑

𝑟
𝑡
,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }, 𝑡 ∈ 𝑇 (10)

∑

𝑗𝑡2 |
(

𝑑𝑟
𝑡1
,𝑗𝑡2

)

∈𝐺𝑚

𝑃𝐹 𝑟
𝑑𝑟
𝑡1
𝑗𝑡2

= 0,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }, 𝑡1 ∈ 𝑇 , 𝑎𝑟 + 𝑠𝑡𝑟 ≤ 𝑡1 ≤ 𝑏𝑟

(11)

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑜
𝑟
𝑡2

)

∈𝐺𝑚

𝑃𝐹 𝑟
𝑖𝑡1 𝑜

𝑟
𝑡2
= 0,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }, 𝑡2 ∈ 𝑇 , 𝑎𝑟 ≤ 𝑡2 ≤ 𝑏𝑟

(12)

∑

𝑡0 |
(

𝑗𝑡0 ,𝑖𝑡1

)

∈𝐺𝑚

𝑃𝐹 𝑟
𝑗𝑡0 𝑖𝑡1

=
∑

𝑗𝑡2 |
(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺𝑚

𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

,∀𝑟 ∈ 𝑅𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }, 𝑡1 ∈ 𝑇 ,

𝑎𝑟 < 𝑡1 < 𝑏𝑟, 𝑖 ∈ 𝑁𝑚, 𝑖 ≠ 𝑜𝑟, 𝑖 ≠ 𝑑𝑟

(13)

∑

𝑟∈𝑅𝑚
𝑃𝐹 𝑟

𝑖𝑡1 𝑗𝑡2
≤ 𝐹𝑚

𝑖𝑡1 𝑗𝑡2
,∀

(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺𝑚, 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } (14)

∑

(𝑖0 ,𝑗𝑡)∈𝐺𝑚

𝐹𝑚
𝑖0𝑗𝑡

+
∑

𝑖∈𝑁𝑚
𝑃

𝑊 𝑚
𝑖0

= 𝑉 𝑚,∀𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } (15)

∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺𝑚 ,𝑡1<𝑡

𝐹𝑚
𝑗𝑡1 𝑖𝑡

+𝑊 𝑚
𝑖𝑡−1

=
∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺𝑚 ,𝑡<𝑡2

𝐹𝑚
𝑖𝑡𝑗𝑡2

+𝑊 𝑚
𝑖𝑡
,

∀𝑡 ∈ 𝑇 , 0 < 𝑡 < 𝑠, 𝑖 ∈ 𝑁𝑚
𝑃 , 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }

(16)

∑

𝑗𝑡1 |
(

𝑗𝑡1 ,𝑖𝑡
)

∈𝐺𝑚 ,𝑡1<𝑡

𝐹𝑚
𝑗𝑡1 𝑖𝑡

=
∑

𝑗𝑡2 |
(

𝑖𝑡 ,𝑗𝑡2

)

∈𝐺𝑚 ,𝑡<𝑡2

𝐹𝑚
𝑖𝑡𝑗𝑡2

,

∀𝑡 ∈ 𝑇 , 0 < 𝑡 < 𝑠, 𝑖 ∈ 𝑁𝑚 ⧵𝑁𝑚
𝑃 , 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 }

(17)

Taxis serving the trips in the same group 𝑟 ∈ 𝑅𝑚 depart from the
origin 𝑜𝑟 at the same time, but are permitted to take different routes
and arrive at the destination at different times. Constraints (8)–(10)
ensure that passenger flows departing from node 𝑜𝑟 at time 𝑎𝑟 and
arriving at the destination node 𝑑𝑟 are equal to the total number of trips
served in group 𝑟 ∈ 𝑅𝑚. Constraints (11) and (12) guarantee that the
passenger flows start at the origin node and end at the destination node.
Constraints (13) define the conservation of passenger flow through
intermediate nodes of the network. Then, the passenger flows and the

vehicle flows are linked via constraints (14), which make sure that
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the total number of passengers travelling on road link (𝑖, 𝑗) from time
instant 𝑡1 to time instant 𝑡2 will never exceed the total number of
taxis on the same link. Given the fleet size of CTs and ATs, constraints
(15) guarantee that the total number of taxis circulating on road link
(𝑖, 𝑗) or parking at depot 𝑖 ∈ 𝑁𝑚

𝑝 at the start of the service period is
consistent with the fleet size specified. In this case, the fleet sizes 𝑉 𝑚

of taxis of type 𝑚 are exogenous variables, whose values are determined
at the upper level. The vehicle flow equilibrium for nodes that allow
or not allow vehicle parking is defined by constraints (16) and (17)
respectively.

Constraints for PVs:
∑

𝜋∈𝛱𝑟
𝐹 𝑟𝜋 = 𝑛𝑟,∀𝑟 ∈ 𝑅𝑃𝑉 (18)

𝐹 𝑟𝜋 =
∑

𝑗𝑡2 |
(

𝑜𝑟𝑎𝑟 ,𝑗𝑡2

)

∈𝐺𝑃𝑉 ,𝛿𝑟𝜋𝑜𝑟𝑗=1

𝑃𝐹 𝑟𝜋
𝑜𝑟𝑎𝑟 ,𝑗𝑡2

,∀𝜋 ∈ 𝛱𝑟, 𝑟 ∈ 𝑅𝑃𝑉 (19)

𝐹 𝑟𝜋 =
∑

(

𝑖𝑡1 ,𝑑
𝑟𝑡2

)

∈𝐺𝑃𝑉 ,𝛿𝑟𝜋𝑖𝑑𝑟=1

𝑃𝐹 𝑟𝜋
𝑖𝑡1 ,𝑑

𝑟𝑡2
,∀𝜋 ∈ 𝛱𝑟, 𝑟 ∈ 𝑅𝑃𝑉 (20)

∑

𝑗𝑡0 |
(

𝑗𝑡0 ,𝑖𝑡1
)

∈𝐺𝑃𝑉 ,𝛿𝑟𝜋𝑗𝑖 =1

𝑃𝐹 𝑟𝜋
𝑗𝑡0 𝑖𝑡1

=
∑

𝑗𝑡2 |(𝑖𝑡1 ,𝑗𝑡2 )∈𝐺
𝑃𝑉 ,𝛿𝑟𝜋𝑖𝑗 =1

𝑃𝐹 𝑟𝜋
𝑖𝑡1 ,𝑗𝑡2

,∀𝜋 ∈ 𝛱 𝑟, 𝑟 ∈ 𝑅𝑃𝑉 , 𝑡1 ∈ 𝑇 ,

𝑎𝑟 < 𝑡1 < 𝑏𝑟, 𝑖 ∈ 𝑁𝑃𝑉 , 𝑖 ≠ 𝑜𝑟, 𝑖 ≠ 𝑑𝑟

(21)

𝐹 𝑃𝑉
𝑖𝑡1 𝑗𝑡2

=
∑

𝜋∈𝛱𝑟 ,𝑟∈𝑅𝑃𝑉

𝑃𝐹 𝑟𝜋
𝑖𝑡1 𝑗𝑡2

,∀
(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺𝑃𝑉 (22)

𝐴𝑟𝜋
𝑡 ≥

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺𝑃𝑉 𝑃𝐹 𝑟𝜋
𝑖𝑡1 ,𝑑

𝑟
𝑡

𝑛𝑟
,∀𝜋 ∈ 𝛱𝑟, 𝑟 ∈ 𝑅𝑃𝑉 , 𝑡 ∈ 𝑇 (23)

𝐾𝑟𝜋 =
∑

𝑡∈𝑇
𝐴𝑟𝜋
𝑡
(

𝑐𝑜𝑃𝑉 𝐷𝑟𝜋 + 𝑐𝑡(𝑡 − 𝑎𝑟)
)

,∀𝜋 ∈ 𝛱𝑟, 𝑟 ∈ 𝑅𝑃𝑉 (24)

𝐾𝑟 ≥ 𝐾𝑟𝜋 ,∀𝜋 ∈ 𝛱𝑟, 𝑟 ∈ 𝑅𝑃𝑉 (25)

Constraints (18) ensure that the total number of trips using different
aths 𝜋 ∈ 𝛱𝑟 in group 𝑟 ∈ 𝑅𝑃𝑉 equals the total number of trips in
roup 𝑟 ∈ 𝑅𝑃𝑉 . If link (𝑖, 𝑗) ∈ 𝐿𝑃𝑉 belongs to path 𝜋 ∈ 𝛱𝑟 of group of

trips 𝑟 ∈ 𝑅𝑃𝑉 , the link flow for this path should equal the path flow,
as indicated in constraints (19) and (20). Constraints (21) describe the
passenger flow conservation for trips in group 𝑟 ∈ 𝑅𝑃𝑉 using different
paths 𝜋 ∈ 𝛱𝑟 at all nodes excluding their origin and destination node.
Constraints (22) link the passenger flow to the vehicle flow. To compare
the generalised cost of all the used paths, we have to calculate the
path lengths and their corresponding travel times. The length of the
path 𝜋 ∈ 𝛱𝑟 in group of trips 𝑟 ∈ 𝑅𝑃𝑉 is calculated as the sum of
length of link (𝑖, 𝑗) ∈ 𝐿𝑃𝑉 if link (𝑖, 𝑗) is part of the path, which is
𝐷𝑟𝜋 =

∑

(𝑖,𝑗)∈𝐿𝑃𝑉 𝑙𝑖𝑗𝛿𝑟𝜋𝑖𝑗 . Constraints (23) determine whether PVs in the
group of trips 𝑟 using the path 𝜋 ∈ 𝛱𝑟 arrive at the destination at time
instant 𝑡 ∈ 𝑇 . Then, the generalised cost of using path 𝜋 ∈ 𝛱𝑟 for
group of trips 𝑟 ∈ 𝑅𝑃𝑉 is calculated as expressed by constraints (24).
Knowing the costs of all the used paths from group of trips 𝑟 ∈ 𝑅𝑃𝑉 ,
the maximum cost over all the trips is determined by constraints (25).

Constraints for traffic congestion:
∑

𝑚∈𝑀
𝐹𝑚
𝑖𝑡1 𝑗𝑡2

≤
⌊

𝐶𝑖𝑡1 𝑗𝑡2

⌋

𝑋𝑖𝑡1 𝑗𝑡2
,∀

(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺 (26)

∑

2|
(

𝑖𝑡1 ,𝑗𝑡2

)

∈𝐺

𝑋𝑖𝑡1 𝑗𝑡2
≤ 1,∀(𝑖, 𝑗) ∈ 𝐿, 𝑡1 ∈ 𝑇 (27)

1 +
∑

𝑡∈𝑇
𝑋𝑖𝑡1 𝑗𝑡

(𝑡 − 𝑡1) ≤ 𝑡2 +
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

(𝑡 − 𝑡2) +𝑀

(

1 −
∑

𝑡∈𝑇
𝑋𝑖𝑡2 𝑗𝑡

)

,

max min
886

∀𝑡1, 𝑡2 ∈ 𝑇 , 𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡𝑖𝑗 − 𝑡𝑖𝑗 , (𝑖, 𝑗) ∈ 𝐿 (28) p
Traffic congestion is expressed through the travel time required to
traverse a road link of the network. In the traditional TA problem,
travel time is considered a function of traffic flow, and their relation-
ship is described by the BPR function (Dafermos & Sparrow, 1969):
𝑡 = 𝑡0(1 + 𝑎( 𝐹𝑄 )𝑏) where 𝐹 is the flow variable, 𝑄 denotes the link
apacity within an hour, 𝑡0 denotes the free-flow travel time, and 𝑎
nd 𝑏 denotes estimation parameters. However, including this non-
inear equation increases the difficulty of solving the MILP model. Thus,
e replace the BPR function by imposing several linear constraints
hich select one from multiple link-traveltime choices at each time
oint. To realise that, a spatial link capacity 𝐶𝑖𝑡1 𝑗𝑡2

that represents
he maximum possible flow traversing a certain link (𝑖, 𝑗) ∈ 𝐿 within

travel time slot between 𝑡1 ∈ 𝑇 to 𝑡2 ∈ 𝑇 is calculated before
he optimisation (Van Essen & Correia, 2019). Firstly, we rewrite the

PR function as 𝐹 = 𝑄
(

1
𝑎

(

𝑡
𝑡0
− 1

))
1
𝑏 . Then, the spatial link capacity

𝑖𝑡1 𝑗𝑡2
can be calculated beforehand, and thus can be used as an input

arameter, by replacing travel time 𝑡 by 𝑡2 − 𝑡1, 𝑄 by (𝑡2 − 𝑡1)𝑄𝑖𝑗 , and 𝑡0
by 𝑡min

𝑖𝑗 , which is

𝐶𝑖𝑡1 𝑗𝑡2
= (𝑡2 − 𝑡1)𝑄𝑖𝑗

(

1
𝑎

(

𝑡2 − 𝑡1
𝑡min
𝑖𝑗

− 1

))
1
𝑏

. (29)

When 𝑡2 − 𝑡1 equals the minimum travel time, we add 0.5 to 𝑡2 to
ensure that the value of 𝐶𝑖𝑡1 𝑗𝑡2

is not zero. The spatial link capacity
is calculated in advance, providing multiple choices of the link travel
time and the corresponding link capacity to the model. Only one link
travel time and the corresponding capacity can be selected, as specified
by constraints (26) and (27). Constraints (26) impose an additional re-
quirement that the total flow on road link (𝑖, 𝑗) never exceeds its spatial
link capacity. Constraints (28) describe the first-in-first-out (FIFO) rule
meaning that the vehicle entering the road link first will leave the road
link first. These constraints only apply to time instant 𝑡1 and 𝑡2 when
𝑡1 < 𝑡2 ≤ 𝑡1 + 𝑡max

𝑖𝑗 − 𝑡min
𝑖𝑗 . Otherwise, if 𝑡2 > 𝑡1 + 𝑡max

𝑖𝑗 − 𝑡min
𝑖𝑗 , rewritten as

2+ 𝑡min
𝑖𝑗 > 𝑡1+ 𝑡max

𝑖𝑗 , it indicates that the arrival time of vehicles entering
he road link (𝑖, 𝑗) first at time instant 𝑡1 with the longest travel time is
ven earlier than that of vehicles entering the road link (𝑖, 𝑗) at a later
ime instant 𝑡2 with the shortest travel time. In this case, there is no
eed to impose FIFO rule.

. Solution method

In this section, we first propose a two-stage solution method to
olve the LLM in Section 4.1. Then, in Section 4.2, based on the
nalysis of the relationship between the main decision variables, we
dopt a metaheuristic, Parallel Genetic Algorithm (PGA), to obtain a
ear-optimal solution to the bi-level problem. This method includes
n iterative process of solving the lower-level and the upper-level
roblems.

.1. Solution method for the LLM

One question remains to be tackled before we can solve the pro-
osed LLM in Section 3.3: how to generate the set of paths 𝛱𝑟 for each
roup of trips 𝑟 ∈ 𝑅𝑃𝑉 . The set of paths 𝛱𝑟 is referred to as a path pool
n the following. After getting the path pool, the proposed LLM can be
olved.

Generating all possible paths for a given OD pair is a hard problem,
s its number could be huge, especially in a large-scale network. Solving
he proposed model with a large number of alternative paths is not only
omputationally expensive but also unnecessary. Theoretically, vehicles
an drive freely and use any path possible to reach their destination.
owever, in practice, PVs that drive according to the UE principle will
ehave selfishly to minimise their travel costs. With this aim, path
hoices may be limited, as vehicles will always compete for the shortest
aths until the shortest one becomes congested and is no longer the
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Fig. 2. Framework of the lower-level solution method.
optimal one. Then, detouring from the shortest path is needed to avoid
traffic congestion and alternative paths will be used. Regarding travel
time and travel distance-related costs, long detours are also less likely
to occur, which further restricts the available options.

To solve the LLM, we propose the two-stage solution method de-
picted in Fig. 2. At Stage 1, we propose a method for generating a
path pool for each OD pair with a reasonable size. The key idea is to
identify the longest feasible path in terms of distance that PVs might
potentially use, and then generate paths whose length falls beneath
the length limit. The longest path for each OD pair is identified via
iteratively solving an additional MILP model which is adjusted from
the proposed LLM in Section 3.3. The mathematical formulation of
this model is presented in Section 4.1.1. The procedure is embedded
with the weight determination algorithm described in Appendix A.1.
The path enumeration with length limits is presented in Section 4.1.2.
By doing so, the unnecessarily long and redundant paths which are
unlikely to be used will be eliminated.

At Stage 2, given the path pool for each group of trips, the proposed
LLM is solved using the same iterative procedure embedded with the
weight determination algorithm. When the algorithm terminates, it is
possible to obtain the values of the decision variables and the objective
function. These values will be passed to the upper level.

4.1.1. Adjusted lower-level model (ALLM)
A new MILP is adjusted from the proposed LLM to produce the

longest possible path in terms of distance for PVs in each group of trips.
Different from the LLM, the adjusted lower-level model (ALLM) as-
sumes that PVs make route choices based solely on travel times instead
of the generalised costs, representing an extreme case where travellers
minimise travel time without considering travel distance. While this
scenario may not directly correspond to actual travel patterns, the
ALLM serves as a crucial step in our solution method to facilitate the
solution of the LLM.

The objective function of PVs in ALLM is to minimise the difference
between the travel times using different routes for the same OD pair.
By doing so, PVs are likely to detour longer to avoid congestion when
a network is super crowded. Later on, when the distance-related cost
887
is included in the objective function of LLM, travellers in PVs will not
use paths that are longer than the solution found in the ALLM. Taxis
make route choices with the same objective as in LLM.

Changing the behaviours requires modifying the modelling. As we
do not need to track the travel distance using different paths, the path-
based variables are no longer necessary in the ALLM. The notations
of the newly introduced arc-based variables are presented in Table 3.
Following is the formulation of the ALLM.

Objective function

[𝐀𝐋𝐋𝐌] min 𝐽 = 𝜔𝐽𝑇 + (1 − 𝜔)𝐽𝑃 (30)

where

𝐽𝑃 = 𝜆
∑

𝑟∈𝑅𝑃𝑉

𝑚𝑟

𝑠𝑡𝑟
+

∑

𝑟∈𝑅𝑃𝑉

⎛

⎜

⎜

⎜

⎝

∑

(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺𝑃𝑉

𝑡𝑃𝐹 𝑟
𝑖𝑡1 ,𝑑

𝑟
𝑡
− 𝑎𝑟𝑛𝑟

⎞

⎟

⎟

⎟

⎠

(31)

The objective function is updated to Eq. (30), with 𝐽𝑇 remaining
unchanged from Eq. (6) and 𝐽𝑃 represented by Eq. (31). The aim of
routing PVs is to minimise firstly the maximum travel time relative to
the shortest possible travel time for all groups of trips and then the total
travel time over all the trips. The objective function (30) is subject to
Constraints (8)–(17), (26)–(28), and (32)–(37).

∑

𝑗𝑡|
(

𝑜𝑟𝑎𝑟 ,𝑗𝑡
)

∈𝐺𝑃𝑉

𝑃𝐹 𝑟
𝑜𝑟𝑎𝑟 𝑗𝑡

= 𝑛𝑟,∀𝑟 ∈ 𝑅𝑃𝑉 (32)

∑

(

𝑖𝑡1 ,𝑑
𝑟
𝑡2

)

∈𝐺𝑃𝑉

𝑃𝐹 𝑟
𝑖𝑡1 𝑑

𝑟
𝑡2
= 𝑛𝑟,∀𝑟 ∈ 𝑅𝑃𝑉 (33)

∑

𝑗𝑡0 |
(

𝑗𝑡0 ,𝑖𝑡1
)

∈𝐺𝑃𝑉

𝑃𝐹 𝑟
𝑗𝑡0 𝑖𝑡1

=
∑

𝑗𝑡2 |
(

𝑖𝑡1 ,𝑗𝑡2
)

∈𝐺𝑃𝑉

𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

,

∀𝑟 ∈ 𝑅𝑃𝑉 , 𝑡1 ∈ 𝑇 , 𝑡0 < 𝑡1 < 𝑡2, 𝑖 ∈ 𝑁𝑃𝑉 , 𝑖 ≠ 𝑜𝑟, 𝑖 ≠ 𝑑𝑟

(34)

𝐴𝑟 ≥

∑

𝑖𝑡1 |
(

𝑖𝑡1 ,𝑑
𝑟
𝑡

)

∈𝐺𝑃𝑉 𝑃𝐹 𝑟
𝑖𝑡1 ,𝑑

𝑟
𝑡
,∀𝑟 ∈ 𝑅𝑃𝑉 , 𝑡 ∈ 𝑇 , 𝑎𝑟 ≤ 𝑡 ≤ 𝑏𝑟 (35)
𝑡 𝑛𝑟
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Table 3
Notation.

Variables Description

𝐴𝑟
𝑡 Binary variable which is 1 when at least one trip in group 𝑟 ∈ 𝑅𝑃𝑉 arrives at time 𝑡 ∈ 𝑇 , and 0 otherwise.

𝑚𝑟 Continuous variable representing the maximum travel time of trips in group 𝑟 ∈ 𝑅𝑃𝑉 .
O

𝑚𝑟 ≥ 𝑡𝐴𝑟
𝑡 − 𝑎𝑟,∀𝑟 ∈ 𝑅𝑃𝑉 , 𝑡 ∈ 𝑇 (36)

𝐹 𝑃𝑉
𝑖𝑡1 𝑗𝑡2

=
∑

𝑟∈𝑅𝑃𝑉

𝑃𝐹 𝑟
𝑖𝑡1 𝑗𝑡2

,∀
(

𝑖𝑡1 , 𝑗𝑡2
)

∈ 𝐺𝑃𝑉 (37)

Constraints (32) and (33) ensure that the passenger flows in group
of trips 𝑟 ∈ 𝑅𝑃𝑉 depart from the origin node 𝑜𝑟 at the scheduled
departure time 𝑎𝑟 and arrive at the destination node 𝑑𝑟 at time 𝑡 ∈ 𝑇 .
The flow conservation of passengers driving their PVs is guaranteed
by constraints (34). The arrival times of trips in group 𝑟 ∈ 𝑅𝑃𝑉 are
specified in constraints (35) using a binary variable 𝐴𝑟

𝑡 . Among them,
we determine the maximum travel time over the trips in group 𝑟 ∈ 𝑅𝑃𝑉 ,
as indicated in constraints (36). The movement of PVs is identical to the
movement of travellers within the cars. Constraints (37) determine the
total vehicle flow on each link in the time-space network.

After solving the ALLM to optimality, the route choices of PVs can
be retrieved from the optimal solution, based on which the longest
feasible paths in terms of distance for each OD pair can be identified.

4.1.2. Path enumeration with length limits
Given the length limitations, the path enumeration method is needed

to generate all the paths with lengths shorter than or equal to these
limitations. One frequently used path enumeration method is the 𝑘-
shortest path algorithm. Assuming that travellers driving PVs will have
perfect information on traffic, going back to a previously visited node
is unrealistic. Thus, we adopt a loopless 𝑘-shortest path algorithm (Yen,
1970) with a predefined sufficiently large value of 𝑘 (𝑘 represents
the number of shortest paths to find). The algorithm terminates once
the length of a newly generated path exceeds the longest distance
threshold. Otherwise, if the total number of generated paths reaches
𝑘 and the length of the longest path currently found is less than the
threshold, we increase the value of 𝑘 until all paths with lengths less
than or equal to the maximum length limits are found.

Using the 𝑘-shortest path algorithm with a length limit determined
by solving model ALLM can effectively restrict the size of the path
pool. However, there may be an exception in a particular circumstance.
Assuming that vehicles could travel at the maximum permitted speed
on the road network without experiencing any congestion, a longer
path in terms of distance with a higher maximum speed limit may result
in a shorter travel time. It typically occurs outside of built-up areas
or on expressways. With a longer length as the threshold value, the 𝑘-
shortest path algorithm is likely to produce a large path pool containing
paths that are very similar to one another. Some are deviations from the
shortest path, consequently, they are highly overlapped and only differ
by a small number of links. These paths are likely to be perceived as the
same paths from the driver’s perspective as they provide no additional
utility. A variety of methods have been proposed for generating a path
set considering the overlapping issues. Interested readers can refer to
papers written by Chen et al. (2012) and Chondrogiannis et al. (2020).

To shrink the size of the path pool while preserving its heterogene-
ity, we employ a similarity-based reduction method (Chondrogiannis
et al., 2020; Liu et al., 2017). This method consists of removing
paths whose similarity to any selected paths exceeds a predetermined
threshold 𝜃. Schnabel and Löhse (1997) proposed that the paths are not
considered separate if they overlap more than 50%. In this paper, we
use a less restrictive value of 80% to guarantee the solution quality.
The similarity between two paths is calculated by dividing the total
length of overlapping links by the length of the shorter path between
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them. In this way, the unnecessarily lengthy paths could be excluded.
The pseudo-code of the similarity-based path pool reduction procedure
can be found in Algorithm 1. By reducing the number of possible paths
in the path pools, the number of variables and constraints in the LLM
are reduced.

Algorithm 1 Similarity-based path pool size reduction procedure
Input: similarity threshold 𝜃, longest distance thresholds 𝑙𝑑𝑟 for 𝑟 ∈ 𝑅𝑃𝑉 .
utput: 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑 (a list).
Initialise empty lists 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙 := [[ ] for 𝑟 ∈ 𝑅𝑃𝑉 ], 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑 := [[
] for 𝑟 ∈ 𝑅𝑃𝑉 ].
for 𝑟 in 𝑅𝑃𝑉 do

Generate paths within the longest distance thresholds 𝑙𝑑𝑟 and sort them
by path length from shortest to longest.

Save the sorted paths to list 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙[𝑟].
Add the shortest path to list 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑[𝑟].
for 𝑝𝑎𝑡ℎ1 in 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙[𝑟] do

flag := true
for 𝑝𝑎𝑡ℎ2 in 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑[𝑟] do

Compute the similarity 𝜃′ between 𝑝𝑎𝑡ℎ1 and 𝑝𝑎𝑡ℎ2.
if 𝜃′ > 𝜃 then

flag := false
break

end if
end for
if flag is true then

Add 𝑝𝑎𝑡ℎ1 to list 𝑃𝑎𝑡ℎ𝑃𝑜𝑜𝑙𝑈𝑝𝑑𝑎𝑡𝑒𝑑[𝑟].
end if

end for
end for

4.2. Parallel genetic algorithm (PGA)

To solve the proposed bi-level programming model, an overall algo-
rithm is required after solving the lower-level model. In our problem,
the upper level is relatively straightforward compared to the lower level
due to the limited number of decision variables (fleet size variables for
CTs and ATs) and constraints. While a simple enumeration scheme-
based method, such as a binary search algorithm, appears to be a
possibility, this is not suitable for solving a heterogeneous FSMVRP con-
sidering endogenous traffic congestion and the interaction of different
types of vehicles. We explain the reasons below.

First, the interdependence of the fleet size variables increases com-
plexity. Modifying one variable can potentially lead to changes in
the other variable since the fleet sizes directly impact road traffic
and congestion. Additionally, this relationship is non-linear and non-
monotonic, which means that multiple local minima may exist. For
instance, one local minimum could occur when both fleet sizes are
small, while another local minimum could be found when the AT fleet
size is large, and the CT fleet size is even smaller. In the latter case, with
more ATs, relocation needs can be reduced, thus alleviating congestion
effects on the road network. Consequently, a smaller fleet of CTs would
suffice to serve more requests, leading to cost savings for TNCs as they
employ fewer drivers for CTs. A binary search algorithm cannot be
used in our case, as it discards half of the feasible region once the
searching direction is determined. Consequently, it may only find one
local minimum while another local minimum may exist in the discarded
feasible region. Therefore, relying on a binary search algorithm to find
all possible local minima is not possible.

Enumerating all feasible solutions is a possible, but computationally
expensive approach, particularly when the fleet size bounds are large
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Fig. 3. Structure of the parallel genetic algorithm (PGA).

and there are multiple types of fleets. Given these considerations, em-
ploying heuristic/meta-heuristic methods to solve the proposed bi-level
problem is more suitable. These methods can effectively handle the
complexities of the problem and are better equipped to identify mul-
tiple local minima, considering the nonlinearity and non-monotonicity
of the relationship between fleet sizes and congestion. Several heuristic
and meta-heuristic techniques have been employed to address bi-level
leader-follower problems, such as genetic algorithm (Madadi et al.,
2020), simulated annealing (Chen et al., 2017), tabu search (Camacho-
Vallejo et al., 2021), etc. Among them, the genetic algorithm is one
of the most commonly used methods (Farahani et al., 2013) and has
been shown to have a competitive performance compared with other
methods (Liu et al., 2009).

The primal disadvantage of adopting GA in our problem is the com-
putationally expensive fitness evaluation process for each individual in
the population along with the evolution process. However, since GA
is a population-based meta-heuristic working on improving the quality
of the whole population instead of a single solution, every individual
can be evaluated independently at each generation. The independent
parts of GA can be distributed to different processes and executed in
parallel to reduce computational time. Interested readers may refer to
the literature for more details (Eklund, 2004; Katoch et al., 2021). In
this paper, we adopt a method called Global single-population master–
slave GA which parallelises the fitness evaluation process (solving the
lower-level problem) because it is the most time-consuming part of the
problem.

GA is firstly applied at the upper level to generate individuals, which
are then distributed to independent processors to solve the lower-level
problem. No tasks associated with the GA process such as crossover and
mutation operators are parallelled as its execution takes a very short
time. Parallelism enables the use of a multi-core CPU’s computational
capacity, resulting in a significant reduction in computational time.
Fig. 3 shows the structure of the parallel genetic algorithm (PGA). A
brief overview of the PGA is presented in the following section.

Initialisation. The first step of the PGA is to initialise the population.
The population consists of a certain number of chromosomes, each of
whom represents a potential solution to our problem. In this paper, we
simplify the problem by assuming that no trips will be rejected. Thus,
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each chromosome is composed of two integer variables [𝑉 𝐶𝑇 , 𝑉 𝐴𝑇 ],
representing the fleet size of CTs and ATs.

Before randomly generating the population’s first generation, the
bounds for these two variables need to be specified. One upper bound
for the fleet size of CTs and ATs is the total number of trips for CTs
and ATs, which means one vehicle per trip, while a lower bound is
not that easy to find. We search for respective lower bounds of CTs
and ATs that ensure the feasibility of the model. In other words, these
values are the minimum number of vehicles below which it would not
be possible to satisfy the demand. Thus, these lower bounds correspond
to the minimum fleet sizes for the problem. A binary search algorithm
is proposed to find that lower bound. Notice that the binary search
will be conducted on only one type of fleet at a time, with the value
of the other type being its upper bound, to make sure that the latter
type never introduces infeasibility. Given the fleet size value of CTs
and ATs, the feasibility of the model can be identified by solving the
LLM (not necessarily to the optimum). This feasibility can then act as
the indicator to repeatedly divide the fleet size bound of CTs or ATs
that contain the minimum feasible solution in half until there is only
one value remaining. This value is the lower bound of one fleet.

An initial lower bound needs to be given before implementing the
binary search algorithm. We assume all the passengers will be delivered
in the shortest possible travel time and no relocation time of taxis
is considered. Once the passenger is dropped off at the destination,
the taxi can immediately begin serving the next trip. Thus, this initial
lower bound value can be obtained by finding the maximum number of
overlapping travel time intervals for all trips at any point in time. Here,
the travel time interval for each trip is defined as the time difference
between the departure time and the earliest possible arrival time when
heading from the origin to the destination. Fig. 4 illustrates how to
determine the minimum number of taxis required to serve four trips.
In this case, the maximum number of overlapped travel time intervals
is three, implying that three vehicles are needed as a minimum to serve
all trips. The pseudo-code of the detailed process for finding the lower
bound of fleet sizes can be found in Appendix B. Knowing the bound
of the fleet size of CTs and ATs, the population in the first generation
can be randomly generated from a uniform distribution.

Parents selection. The parents who will have offspring are selected from
the population using a fitness proportionate selection method. Knowing
the fitness value of each individual, we rank the individuals and then
introduce a new fitness function based on the rank. Individuals with a
higher rank are more likely to be selected as parents.

Crossover operator. The crossover operator exchanges the chromo-
somes of the selected parents to produce two offspring. In our case,
the crossover operator is applied with a probability 𝑃𝑐 . We randomly
generate a number between zero and one for each pair of parents
to determine whether we should apply this operator. If this random
number is less than 𝑃𝑐 , we perform the crossover operator. Otherwise,
we keep the parents’ chromosomes unchanged. In this paper, we cross
the fleet size values to change the chromosome of the parents as only
two values are included in each chromosome.

Mutation operator. After the crossover operator is applied, the mutation
operator is executed for every offspring with a given probability. Two
types of mutation operators are used in our algorithm: the creep
mutation operator and the random mutation operator. In our case, a
simplified creep mutation operator is used by simply performing +1 or
−1 to each value in a chromosome with an equal probability. By doing
so, the algorithm could exploit more solutions in a concentrated area in
the solution space. The random mutation operator is used to explore a
large region for a better solution and avoid the local optima. It replaces
the value in the chromosome with a random integer between the upper
bound and lower bound of the fleet size with a given probability.

The mutation operator is applied to fleet size values from each

chromosome randomly. For the newly produced offspring, we perform
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Fig. 4. Illustration of finding the minimum number of taxis to serve four trips.
the creep mutation operator. If the chromosome of an offspring has al-
ready existed in the current population, the creep mutation operator is
applied with a high probability 𝑃𝑐𝑚1. Else, the creep mutation operator
is applied with a low probability 𝑃𝑐𝑚2. For the parents whose chro-
mosomes stay unchanged after performing the crossover, the random
mutation operator is applied with a probability 𝑃𝑟𝑚 to explore the feasi-
ble region. After performing the mutation operator, the chromosomes
will be added to the list of offspring if no individual in the current
population has the same chromosomes as them.

Fitness evaluation. Once we obtain new offspring, a fitness evaluation
will be conducted. To avoid performing repetitive calculations, the
check is made to see if the fitness of the current offspring has been
calculated previously. For those who have been computed, we can
obtain their fitness value directly from memory. For those offspring
who have never been evaluated, individual fitness evaluations will
be distributed to different processors and performed in parallel to
maximise the computational capacity of multiple cores.

Multiple criteria are defined to terminate the LLM and ALLM solu-
tion process in case the computational time is extremely long. Firstly,
the model is solved as close to optimality as possible within a small time
limit (denoted as a soft time limit). After reaching this time limit, the
model is terminated either because the MIP gap reaches a predefined
gap limit or the computational time reaches a predefined large time
limit (denoted as a hard time limit).

Survivor selection. The elitism replacement approach is used for the
survivor selection. After getting the fitness value of the offspring, the
previous generation and the offspring are put in a pool. The first 𝑞%
best individuals in terms of fitness value are firstly selected. Then, we
randomly select from the rest individuals until the number of selected
individuals equals the predefined population size.

Termination criteria. We terminate the algorithm based on three cri-
teria. First, if there is no improvement of the best individual in the
population for a certain number of successive iterations. Second, if
the average population quality of the top 5 fittest individuals has no
improvement after a certain number of successive iterations. Here, we
measure the average population quality using the mean and standard
deviation values of the individual fitness. Third, if the predefined
maximum number of generations has been reached.

5. Computational experiments

To test the performance of the proposed model and algorithm,
we present two case studies in this section. Firstly, a small toy net-
work case study is presented to demonstrate that solving the proposed
lower-level problem can achieve an approximated mixed-equilibrium
in Section 5.1. Then, in Section 5.2, we apply the proposed bi-level
model to a quasi-real case study representing the city of Delft, in the
Netherlands.

5.1. Demonstration of the lower-level problem on a small toy network

The small toy network we use contains 16 nodes and 48 directed
links (each road segment has two directions), as shown in Fig. 5. Among
all nodes, nodes 4, 6, 9 and 11 are parking nodes that can be regarded
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Fig. 5. Illustration of the small toy network.

as free parking depots, while the rest of the nodes do not allow parking.
For the links in this small toy network, each of them has an equal
length of 2 kilometres and the same capacity of 1800 vehicles/h. The
minimum and the maximum travel time for traversing a link are set to
1 time step (2.5 min) and 4 time steps (10 min), respectively. In the
current experiment, no AVs-only zone is included as we would like to
leave out the impact of the AVs zone on the route choices and only
focus on the equilibrium achieved by solving the model.

Six groups of trips are considered, with the trip information shown
in Table 4. Here, for simplicity, only CTs and PVs are considered
options for travellers because the routing behaviours of CTs and ATs
are the same. By doing so, we focus on comparing the route choices of
road users with different routing behaviours (SO and UE). The lower
bound for the CTs’ fleet size can be easily derived from the given data,
390, as all the trips depart at the same time. Given a great number of
trips in each group, traffic congestion occurs in the network.

The parameters related to the CTs and PVs are as follows. 𝑐𝑜𝑚 with
𝑚 ∈ {𝐶𝑇 , 𝑃𝑉 } is set to 0.25 euros/km and 0.27 euros/km, respectively,
representing the unit operational costs for using CTs and PVs. These
values are calculated according to the methodology proposed by Bösch
et al. (2018). 𝑐𝑑 represents the drop-off delay penalty, which is 0.2
euros/min based on (Liang et al., 2020). 𝑐𝑡 is the travel time related
cost for PVs which is set to 9 euros/h based on (Kouwenhoven et al.,
2014). The estimation parameters 𝑎 and 𝑏 of the BPR function are set
to 2 and 4, respectively, based on (Van Essen & Correia, 2019). The
optimisation period is 10 time instants.

Using the minimum fleet size of CTs as the input, the LLM is solved
to demonstrate the approximated mixed equilibrium. A base scenario
(S0) is tested first, followed by two different scenarios to see how the
value of the delay penalty affects the route choice of different road
users when reaching an approximated mixed equilibrium. In the first
scenario (S1), we assume there is no penalty for delivery delay, so 𝑐𝑑
is set to 0 euros/min. In the second scenario (S2), a high penalty for
delivery delay is set to 0.4 euros/min. Here, only the parameters that
could be controlled by TNCs are tested. The operational costs of CTs
and PVs, and the value of travel time using PVs are not varied for
sensitivity analysis as these parameters could be well estimated (Bösch
et al., 2018; Kouwenhoven et al., 2014).

The lower-level framework was implemented in Python and solved
using Gurobi 9.0.2 on an Intel(R) Xeon(R) W-2123 CPU @3.60 GHz,
and 32.00 GB RAM computer. The base scenario was tested firstly with
a given initial weight 𝜔 as 0.5. The algorithm terminates when the
relative difference between the contributed values is smaller than 5%.
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Table 4
Demand for CTs and PVs.

Index of group
of trips

Origin Destination Departure time
(time instant)

Latest arrival time
(time instant)

Number of
trips

Type of
vehicle

1 1 10 0 10 140 PV
2 1 10 0 10 140 CT
3 11 6 0 10 130 PV
4 11 6 0 10 130 CT
5 5 7 0 10 120 PV
6 5 7 0 10 120 CT
Table 5
Results of the base scenario in the small toy network.

Number of iterations Value of 𝜔, 𝜆 Objective function
values

Contributed values

Stage 1 3 0.99987
1251600

𝐽 𝑇 = 1030,
𝐽𝑃 = 7928780

𝜔 ⋅ 𝐽 𝑇 = 1029.87,
(1 − 𝜔) ⋅ 𝐽𝑃 = 1029.87
Table 6
Route choices at Stage 1.

O-D Model Paths Flow Path length
(km)

Travel time
(timestep)

1-10 ALLM Taxi (SO): [1-2-6-10], [1-5-6-10], [1-5-9-10]
PV (UE): [1-2-3-7-11-10], [1-2-6-10]

34, 53, 53
48, 92

6, 6, 6
10, 6

7, 4, 4
7, 7

11-6 ALLM Taxi (SO): [11-10-6], [11-7-6]
PV (UE): [11-12-8-7-6], [11-15-14-10-6], [11-7-6]

53, 77
53, 53, 24

4, 4
8, 8, 4

2, 4
4, 4, 4

5-7 ALLM Taxi (SO): [5-6-7], [5-1-2-6-7], [5-1-2-3-7]
PV (UE): [5-6-7], [5-9-10-11-7]

59, 8, 53
67, 53

4, 8, 8
4, 8

4, 6, 6
4, 4
5.1.1. Computational results at stage 1: Path pool generation
The computational results are shown in Table 5, demonstrating

that three iterations are needed to satisfy the convergence criterion
and accurately determine the value of 𝜔 in stage 1. After solving the
ALLM, we retrieve the route choices of CTs and PVs from the optimal
solution and then display the results in Table 6. From the table, we
observe that PVs choose different paths with the same travel times.
An equilibrium state is reached in which no driver is able to deviate
from his/her current route otherwise travel time will increase. Hence,
this scenario exemplifies a UE. In the case of the taxis, the travel times
and distances differ from each other. Some taxis take the shortest path
regarding length and travel time, while others are sacrificed to reach a
SO. Compared with the PVs, taxis would prefer shorter paths in terms
of distance as they consider generalised costs when routing. But PVs
choose longer paths to have shorter travel times.

The longest travel distance of PVs for group 1, 3 and 5 can be
determined from the optimal solution of ALLM, which are 10 km, 8 km,
and 8 km, respectively. These values are then used as the length limits
to generate a path pool for each group of trips using the k-shortest path
algorithm. In this small case, 9 paths, 6 paths and 7 paths are obtained
for group 1, 3 and 5, respectively, which are used for Stage 2.

5.1.2. Computational results at stage 2: Approximation of mixed equilib-
rium

Knowing the path pool for each group of trips, the LLM is solved.
The final results, displayed in Table 7, reveal that three iterations are
required to achieve a balanced contribution of the objective function
between taxis and PVs, signifying the convergence of the algorithm.
From the results, we see that the total operational cost of taxis in the
LLM, denoted by 𝐽𝑇 is higher than that in the ALLM, because of the
greater travel time and longer travel distance of CTs resulting from the
intense competition for the lowest cost paths with PVs.

Table 8 shows the final route choices of taxis and PVs. In the LLM,
PVs consider the general cost when making route choices. From the
table, we can see that PVs choose paths with similar or the same
generalised costs. Taxis take paths with diverse generalised costs. Some
taxis are sacrificed and take a path with a large cost to reach a SO.
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By analysing the flow patterns and the route choices of CTs and PVs,
we can demonstrate that an approximated mixed equilibrium has been
reached.

5.1.3. Sensitivity analysis
A sensitivity analysis regarding the delay penalty parameter 𝑐𝑑 is

carried out. For illustration purposes, only the route choices of CTs
and PVs departing from node 11 and heading to node 6 are shown in
Table 9. Similar patterns happen for the other OD pairs. When there is
no delay penalty in scenario 1, taxis no longer care about the travel
time and only consider the travel distance. Therefore, in the ALLM,
taxis choose the shortest distance path with a long travel time, while in
the LLM, PVs would also like to join in the competition for the shortest
travel distance. To cope with the needs of PVs, the travel time of the
shortest paths can no longer be very long. Consequently, some taxis
have to divert to longer paths to avoid extreme congestion. In scenario
2, where the delay penalty is twice as high, we found that there is no
change to the route choices of PVs and taxis in the ALLM, while in the
LLM, taxis prefer to use longer paths but lower travel time to reduce
the delay penalty.

5.2. Quasi-real case study of the city of Delft, in the Netherlands

5.2.1. Application setting
The next set of experiments is based on the network of the city of

Delft, which is located in the South Holland province of the Nether-
lands. We call this case study a quasi-real one, because of the following
reasons: (1) A simplified road network of Delft is used instead of the
real one; (2) The expansion process and the transformed links of the
AVs-only zone are experimental; (3) Despite using as source real travel
data, the mobility data tested in the case study was generated from
the Dutch mobility dataset (MON 2007/2008) which does not have a
large sample for this city (Correia & Van Arem, 2016). The purpose of
carrying out this case study is to test the effectiveness of the proposed
method and get first insights into the impacts on travellers imposed by
AVs-only zones.

The road network used for this study is simplified to 35 nodes

and 104 directed links (each road segment has two directions). In the
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Table 7
Final results of the base scenario in the small toy network.

Stage 2 Number of iterations Value of 𝜔, 𝜆 Objective function
values

Contributed values

LLM 3 0.99953
591322.41

𝐽 𝑇 = 1192,
𝐽𝑃 = 2583009.41

𝜔 ⋅ 𝐽 𝑇 = 1191.44
(1 − 𝜔) ⋅ 𝐽𝑃 = 1207.93
Table 8
Final route choices.

O-D Model Paths Flow Path length
(km)

Travel time
(timestep)

1-10 LLM Taxi (SO): [1-2-6-10], [1-5-9-10] 87, 53 6, 6 6, 5
PV (UE): [1-2-6-10], [1-5-6-10] 39, 101 6, 6 6, 7

11-6 LLM Taxi (SO): [11-12-8-7-6], [11-7-6] 8, 122 8, 4 4, 4
PV (UE): [11-7-6], [11-10-6] 4, 126 4, 4 4, 4

5-7 LLM Taxi (SO): [5-1-2-3-7], [5-6-7], [5-9-13-14-10-6-7], [5-9-10-6-7] 53, 6, 8, 53 8, 4, 12, 8 4, 4, 7, 5
PV (UE): [5-6-7] 120 4 4
Table 9
Computational results for the referred scenarios.

Scenario Model Paths Flow Path length
(km)

Travel time
(timestep)

S0
(Base)

ALLM Taxi (SO): [11-10-6], [11-7-6]
PV (UE): [11-12-8-7-6], [11-15-14-10-6], [11-7-6]

53, 77
53, 53, 24

4, 4
8, 8, 4

2, 4
4, 4, 4

LLM Taxi (SO): [11-7-6], [11-12-8-7-6]
PV (UE): [11-7-6], [11-10-6]

122, 8
4, 126

4, 8
4, 4

4, 4
4, 4

S1
(No delay penalty)

ALLM Taxi (SO): [11-10-6]
PV (UE): [11-12-8-7-6], [11-7-6], [11-15-14-10-6]

130
24, 53, 53

4
8, 4, 8

7
4, 2, 4

LLM Taxi (SO): [11-10-6], [11-12-8-7-6]
PV (UE): [11-7-6], [11-10-6]

122, 8
126, 4

4, 8
4, 4

4, 8
4, 4

S2
(High delay penalty)

ALLM Taxi (SO): [11-10-6], [11-7-6]
PV (UE): [11-12-8-7-6], [11-15-14-10-6], [11-10-6]

77, 53
53, 53, 24

4, 4
8, 8, 4

4, 2
4, 4, 4

LLM Taxi (SO): [11-12-8-7-6], [11-7-6], [11-15-14-10-6]
PV (UE): [11-10-6], [11-7-6]

53, 49, 28
126, 4

8, 4, 8
4, 4

4, 2, 4
4, 2
network, nodes 19, 3, 10, 22, 27 and 15 are designated as free parking
depots for taxis. Both the CTs and ATs are permitted to utilise the nodes
located at the border of the AVs-only zone. Moreover, two types of links
with one or two lanes per direction and a capacity of 1600 or 3200
are considered. The maximum travel speed for the lower and higher
capacity links was assumed to be 50 km/h and 70 km/h, respectively.
The road capacity triples after the road links are transformed to AV
links. The minimum travel time and maximum travel time on each link
are calculated based on the free-flow speed and a speed of 5 km/h.

Fig. 6 initially depicts the conventional road network, where there
is no AVs-only zone. The AVs-only zone is then gradually expanded,
covering 25%, 50%, 75%, and 100% of the links. To expand the AVs-
only zone, we initially define it in areas characterised by frequent
traffic congestion, such as the city centre, train station, and university
campus. Subsequently, we employ a randomised approach to gradually
expand the zone until it encompasses the entire city. However, it is
important to note that the optimal design of the AVs-only zone is
beyond the scope of this paper. At that point, no HVs are permitted
to operate on the network. For this particular exceptional scenario, the
fleet sizing problem can be easily solved by a single-level MILP model
with the objective function (1) subject to constraints (3), (4), (8)–(17)
and (26)–(28).

The Dutch mobility dataset (MON 2007/2008) is used in this study
to generate mobility data for the morning peak hour. This data includes
trip information, such as origin, destination, departure time, arrival
time, and travel mode for OD pairs on a typical working day. A total of
one hour is studied during the morning peak when demand is high and
traffic congestion has a significant impact on vehicles’ route choices.
The data set we used includes 1163 trips in total, with 23 groups for
taxis and 23 groups for PVs. The departure time of each group of trips is
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distributed within one hour. Once generated, the departure time does
not change with the expansion of the AVs-only zone. Regarding the
preference of CTs and ATs, in a base scenario with 0% AVs-only zone,
more than 80% of the trips with a preference for CTs are generated
assuming that the trust of users towards AVs in level 5 is relatively low
at the early stage (Correia et al., 2019). Besides, a time step of 2.5 mins
is used.

The parameter values used in the solution method are shown in
Table 10. For simplification purposes, the minimum service rate 𝛼 in
Constraint (4) is set to 1 in this case study, meaning that all demand
will be served by taxis. The influence of the value of 𝛼 will be studied
in future research. The appendix contains the parameter tuning for the
similarity threshold and population size.

5.2.2. Performance of the solution method
We applied the proposed solution method to the bi-level problem in

several scenarios where the coverage rate of the AVs-only zone is 0%,
25%, 50% and 75%. Fig. 7 shows the computational performance in
each scenario. Three main indicators are shown along with the iteration
until the algorithm terminates: the best fitness value, the mean and
the standard deviation value of the fitness value of the top five fittest
individuals.

According to the charts, convergence has been reached for all
four scenarios. In addition, the solution method ended because the
maximum number of iterations where the mean value and the standard
deviation of the top five fittest individuals do not change has been
reached. In the first few iterations, PGA explored the feasible solution
space and selected the best few individuals to produce the next gen-
eration. As the iterations progressed, the mean fitness of the top five

fittest individuals approached the best fitness value, and their standard
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Fig. 6. Road networks of Delft with different AVs-only zone size: 0%, 25%, 50%, 75%, and 100%.
Table 10
Parameter values.

Parameters Values Parameters Values

𝑐𝑜𝑚 , 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 , 𝑃𝑉 } 0.25, 0.32, 0.27 euros/km Population size 8
𝑐𝑝 10 euros/hour Crossover rate 0.8
𝑐𝑓𝑚 , 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } 1, 1.2 euro/vehicle/h Mutation rate (𝑃𝑐𝑚1, 𝑃𝑐𝑚2, 𝑃𝑟𝑚) 0.5, 0.03, 0.5
𝑐𝑑 0.2 euros/min Percentage of elitism individuals 0.8
𝑐𝑡 0.15 euros/min Maximum number of generations 100
𝑝0 3 euros/trip Maximum number of iterations with

no change for the best solution
20

𝑝𝑚 , 𝑚 ∈ {𝐶𝑇 ,𝐴𝑇 } 2.55, 2.3 euros/km
Minimum service rate (𝛼) 1 Maximum number of iterations with

no change for the quality of the top
five fittest individuals

10
Similarity threshold (𝜃) 80%
Relative difference threshold (𝜖) 5%

Maximum number of iterations with
no change for the quality of the top
five fittest individuals

10
Soft time limit 30 mins
Hard time limit 60 mins
MILP gap limit 2%
deviation approached zero. This means that the quality of the popula-
tion has reached a stable and favourable state in a limited number of
iterations. The computational times for these four scenarios are 23.7 h,
13.6 h, 4 h, and 6.7 h, respectively, demonstrating a decreasing trend
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as the coverage of the AVs-only zone increases. Besides, to mitigate the
risk of the algorithm converging to a local optimum, we executed the
PGA algorithm multiple times using identical experimental settings for
each scenario. All yielded consistent results.
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Fig. 7. Performance of the solution method with different coverage rates of the AVs-only zone: best fitness value, mean and standard deviation of the fitness value of the top five
fittest individuals.
5.2.3. Comparison between the best fleet size and the lower bound
The optimisation results for the base scenario are shown in Table 11.

Note that the fleet size obtained by applying PGA is a near-optimal
solution as the optimality cannot be guaranteed since PGA is a meta-
heuristic. We call it ‘best’ hereinafter to distinguish it from its lower
bound. The lower bound which is the minimum feasible fleet size to sat-
isfy all the demand in different AVs-only zone settings can be obtained
by applying the binary search algorithm presented in Section 4.2.

Looking at the fleet size in each scenario, we notice that the mini-
mum fleet size is the best one when the coverage rate of the AVs-only
zone is 25%, whereas, in the remaining scenarios, the best fleet size
differs from the minimum one. To be more specific, only the best
fleet size of the ATs differs. From Table 11, it is quite clear that
this difference comes from the cost-saving deriving from the shorter
relocation distance of ATs, despite the larger fleet size. In all the
scenarios, the best fleet size of CTs equals their minimum feasible fleet
size, as deploying a larger CT fleet is more costly because more human
drivers have to be hired. That is why a TNC will try to deploy the least
number of CTs. Therefore, deploying ATs may create a cheaper form of
on-demand mobility.

The relocation distance consists of three possible parts: the distance
from the drop-off location to the parking depot, the distance from the
parking depot to the next pick-up location and the distance from the
drop-off location to the next pick-up location, which therefore highly
depends on the location of the parking depots and the demand pattern.
Theoretically, locating a parking depot in an area frequently visited by
travellers or densely populated could reduce the relocation distance.
However, such locations typically lack sufficient space for constructing
large parking facilities. In this case study, three parking depots are
located in densely populated areas (corresponding to nodes 3, 10 and
22), and four parking depots are located on the outskirts or outside the
city (corresponding to nodes 11, 15, 19, 27). Less densely distributed
parking depots also result in large relocation costs. Nevertheless, the
optimal location and distribution of parking depots are not the focus of
this paper.

5.2.4. Demonstration of the approximated user equilibrium
To demonstrate that the approximated user equilibrium for PVs has

been achieved, we calculate the ratios of the maximum cost to the
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minimum cost among all the utilised paths for each group of trips. A
ratio approaching 1 indicates superior results, as it signifies that the
costs of all utilised paths are similar. Then, in Fig. 8, we show the
mean and standard deviation (SD) of the calculated cost ratios across
all groups of trips for scenarios with different coverage rates of the
AVs-only zone (0%, 25%, 50%, and 75%) and the best fleet sizes.

As illustrated in Fig. 8, the mean values range between 1 and 1.047
for all the scenarios. This indicates that, on average, the costs of the
utilised paths are very similar across each group. For scenarios with
a 0% and 25% coverage rate of the AVs-only zone, the SD values
are 0.077 and 0.034, respectively, as represented by the error bars
in the figure. These values are reasonable, considering a perfect UE
can hardly be achieved because of the discrete time setting in the
time-space network. Notably, when the AVs-only zone coverage rate
exceeds 50%, all scenarios exhibit a mean value of 1 and an SD of 0.
This suggests that UE has been achieved without any deviation in the
groups. Additionally, the mean and SD values show a decreased trend
in the figure with the increased coverage rate of the AVs-only zone. This
is due to the decreased number of trips using PVs with the expanded
AVs-only zone, resulting in fewer vehicles competing selfishly for the
shortest paths in the network.

5.2.5. Validation of model performance regarding data with uncertainty
In the synthetic demand data created for the case study, two sets of

information are generated randomly: departure times and preferences
towards CTs or ATs for each group of trips. In reality, trip departure
times may fluctuate within a time interval instead of being static. The
preference towards CTs or ATs is based on travellers’ perceptions and
their personal habits, which may change as well. However, travellers’
preferences have a great impact on a city’s demand pattern. When
the demand pattern changes, it is worthwhile to evaluate the model
performance.

Besides the original dataset (denoted as dataset 0), we implemented
the proposed solution method using ten different data sets, five of
which had departure times that fluctuated by ± 3 time steps (a total
time range of 15 min) based on dataset 0 (denoted as datasets 1–
5), another five with randomly generated vehicle type preferences

(denoted as datasets 6–10). The performance of the solution method
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Table 11
Optimisation results with different coverage rate of AVs-only zones (‘‘M‘‘ represents the minimum feasible fleet size; ‘‘B’’ represents the best fleet size).

Coverage rate 0% 25% 50% 75% 100%

M B M B M B M B M B

Fleet size of CTs 95 95 89 27 27 7 7 0 0
Fleet size of ATs 32 43 253 550 659 608 714 662 711
Total profit (euros) 2581.52 2588.67 6591.36 15 539.92 15 601.70 16 803.63 16 861.36 17 643.82 17 674.55
Total cost (euros) 1562.62 1555.46 2445.59 3811.08 3749.30 3734.22 3676.50 3682.47 3651.74
Number of trips for CTs 166 106 34 14 0
Number of trips for ATs 47 424 920 1072 1163
Utilisation rate of CTs 1.75 1.75 1.19 1.26 1.26 2 2 – –
Utilisation rate of ATs 1.47 1.09 1.68 1.67 1.39 1.76 1.50 1.76 1.63
Total travel distance of CTs (km) 1201.41 1201.41 1380.05 205.39 205.39 72.28 72.28 – –
Total travel distance of ATs (km) 516.20 452.60 2349.88 8300.75 7698.94 8838.89 8261 9025.22 8745.45
Total travel distance of PVs (km) 6414.72 6414.72 7091.97 975.91 975.91 247.25 247.25 – –
Percentage of deliver distance of CTs (%) 86.52 86.52 89.84 74.16 74.16 62.19 62.19 – –
Percentage of deliver distance of ATs (%) 76.79 87.58 82.08 86.32 93.06 85.37 91.35 85.93 88.68
Percentage of relocate distance of CTs (%) 13.48 13.48 10.16 25.84 25.84 37.81 37.81 – –
Percentage of relocate distance of ATs (%) 23.21 12.42 17.92 13.68 6.94 14.63 8.65 14.07 11.32
Percentage of detour distance of CTs (%) 1.86 1.86 33.62 26.99 26.99 0 0 – –
Percentage of detour distance of ATs (%) 0 0 0.29 1.27 1.37 0.94 1 0 0
Percentage of detour distance of PVs (%) 1.27 1.27 28.77 39.22 39.22 0 0 – –
Total delayed time of CTs (time step) 38 38 78 44 44 0 0 – –
Total delayed time of ATs (time step) 0 0 64 252 252 163 163 0 0
Total delayed time of PVs (time step) 418 418 549 0 0 0 0 – –
Average delayed time per trip of CTs (time step) 0.23 0.23 0.74 1.29 1.29 0 0 – –
Average delayed time per trip of ATs (time step) 0 0 0.15 0.27 0.27 0.15 0.15 0 0
Average delayed time per trip of PVs (time step) 0.44 0.44 0.87 0 0 0 0 – –
MILP gap value (%) 4.63 2.8 0 0 0 0 0 0 0
Fig. 8. Mean and standard deviation of the cost ratios across all groups of trips for
scenarios with different coverage rates of AVs-only zone (0%, 25%, 50%, and 75%)
and the best fleet sizes.

with different datasets is displayed in Fig. 9, in which (a) shows the
computational times and (b) shows the maximum number of iterations
needed to terminate the algorithm. The computational times are de-
pendent on the required number of iterations and the solution time
of the proposed MILP models. When the coverage rate of the AVs-
only zone is relatively low (0% and 25%), the algorithm takes fewer
iterations but more time to converge compared to other scenarios. This
is due to the high demand for PVs at the early stage of the AVs-only
zone’s expansion. To solve the proposed LLM, a large number of paths
are generated resulting in a long solution time of the model in each
iteration. On the other hand, the demand for CTs and ATs is relatively
small at these stages, leading to a small solution space for PGA. So the
algorithm converged easily. When more demand shifts from PVs and
CTs to ATs with the expansion of AVs-only zone, the computational
time decreases accordingly and more iterations are needed for some
datasets because the solution space of PGA is larger even though the
solution time for the model is short. When the coverage rate of the AVs-
only zone is 100%, no iteration is needed as the fleet sizing problem
can be solved by a single-level MILP model.
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The computational results are shown in Table 12. Analysing the
optimisation results for the first five datasets, we can see a reasonable
fluctuation range regarding the best fleets, demonstrating the effective-
ness of the proposed solution method. These results provide a TNC with
a preliminary insight into choosing the proper fleet sizes considering
the randomness of daily trips. A more intuitive suggestion is to take
the mean value of all the results. Future research could include a
comprehensive stochastic analysis in order to obtain a robust solution.
Regarding the results of datasets 6–10, the fleet size fluctuates during
the early expansion of the AVs-only zone. This is due to the demand
structure change caused by the randomly generated preference towards
vehicles. With the increasing coverage rate of the AVs-only zone, more
demand will have to be served by ATs (no other option), thereby
smoothing the effects of people’s preference uncertainty on fleet size
decisions.

Looking at the fleet size of CTs in all the tested datasets, we observe
again that their minimum feasible fleet size is always the best one.
This is because of one significant difference in the cost structure of
CTs compared with ATs, which is the drivers’ salaries. This observation
further corroborates the conclusion drawn in Section 5.2.3 that the
smallest possible fleet size of CTs is always preferable for a TNC in this
study.

5.2.6. Impacts of AVs-only zones
The upgrade of the conventional road networks to AVs-only zones

brings inevitable effects on the demand patterns, ride-hailing opera-
tions, behaviours of travellers, and traffic conditions on road networks.
Table 11 reveals a clear increase in demand for ATs and a decrease
in demand for CTs as HVs (CTs and PVs) are not allowed in most of
the network anymore. As a result, the fleet size of ATs increases with
the expansion of the AVs-only zone while that of CTs decreases. When
most of the road network is covered by the AVs-only zone, the fleet size
of ATs remains stable with the expansion of the AVs-only zone as the
usage rate of ATs rises. The total profit of the TNC increases gradually
with the expansion of the AVs-only zone.

HVs including both CTs and PVs have to drive outside the AVs-only
zone, which results in a longer detour distance and relocation distance
in the transition period. Results in Table 11 show a significant increase

in the relocation distance share of CTs’ total travel distance when the
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Fig. 9. Performance of the solution method with different datasets: (a) Computational time, (b) Maximum number of iterations.
Table 12
Fleet sizing results for CTs and ATs of different data sets.

Coverage rate 0% 25% 50% 75% 100%

Fleet size Min Best Min Best Min Best Min Best Min Best
Dataset 0 95, 32 95, 43 89, 253 89, 253 27, 550 27, 659 7, 608 7, 714 0, 662 0, 711

Random departure time
Dataset 1 95, 32 95, 43 86, 257 86, 263 22, 625 22, 639 7, 680 7, 718 0, 666 0, 716
Dataset 2 92, 28 92, 36 81, 249 81, 251 23, 549 23, 653 7, 578 7, 696 0, 606 0, 693
Dataset 3 102, 33 102, 41 84, 249 84, 249 23, 625 23, 695 7, 680 7, 782 0, 735 0, 767
Dataset 4 115, 32 115, 46 85, 274 85, 314 27, 673 27, 673 7, 748 7, 748 0, 784 0, 784
Dataset 5 100, 32 100, 38 77, 249 77, 249 23, 621 23, 651 7, 676 7, 742 0, 676 0, 723
STD 8.8, 2.7 8.9, 4.0 3.7,10.9 3.7, 27.9 2, 44.4 2, 22.0 0, 60.7 0, 32.5 0, 68.3 0, 37.7

Random preference towards CTs and ATs
Dataset 6 94, 42 94, 42 89, 250 89, 250 33, 550 33, 653 7, 608 7, 714 0, 662 0, 711
Dataset 7 79, 57 79, 57 70, 249 70, 249 25, 550 25, 659 11, 608 11, 714 0, 662 0, 711
Dataset 8 105, 29 105, 40 100, 226 100, 226 30, 555 30, 658 11, 608 11, 714 0, 662 0, 711
Dataset 9 79, 41 79, 41 77, 260 77, 260 31, 560 31, 663 11, 608 11, 714 0, 662 0, 711
Dataset 10 80, 42 80, 53 74, 243 74, 243 37, 550 37, 653 11, 608 11, 714 0, 662 0, 711
STD 11.7, 11.5 11.7, 7.8 12.3, 12.5 12.3, 12.5 4.4, 4.5 4.4, 4.3 1.8, 0 1.8, 0 0, 0 0, 0
coverage rate rises from 0% to 75%. The detour distance share of both
CTs and PVs also obviously increases when the coverage rate increases
from 0% to 50%. However, with 75% coverage rate of the AVs-only
zone, CTs and PVs did not detour. In this case, most of the road links
have been converted to AVs-only links. CTs only need to serve a small
fraction of the demand in a limited area. Accordingly, the percentage of
delivering distance of CTs in total travel distance decreases along with
the increase of the percentage of the relocation distance. When ATs are
deployed with the best fleet size, there is no significant variation in the
percentage of relocation distance and the detour distance. Additionally,
the detour only happens to ATs to avoid traffic congestion incurred by
competing for the shortest paths. Looking at the results in Table 11,
there is a slight variation in the percentage of detour distance of ATs
which exhibits the same variation tendency as the average delay time
per trip of ATs.

In this case study, the AVs-only zone has not necessarily contributed
to the reduction of traffic congestion when there is low coverage, even
with larger road link capacities. Looking at the total delay time and the
average delay time per trip in Table 11, these values increase in most
cases when the coverage rate goes from 0% to 50%. At the early stage,
the benefits of AVs-only zones are not obvious as the demand for ATs
is low. However, even at an early stage, the specific delay time of the
ATs is lower than those of all HVs because part of the trips are served
within the AVs-only zone. In contrast, the congestion effect outside the
AVs-only zone increases as the non-automated urban area is further
shrunk and vehicles need to compete for the shortest paths. With the
expansion of the AVs-only zone, more demand is served by the ATs,
and the benefits of the AVs-only zone on decreasing congestion effects
begin to unfold. The delay time is largely reduced when most of the
urban area is covered by the AVs-only zone. What is more, the total
cost for the TNC increases along with the coverage rate of the AVs-only
zone up to 50%, as more demand from both CTs and PVs shifts to ATs.
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Then, it decreases when the coverage rate is 75% and 100% due to the
reduced delay penalty and the smaller CT fleet size.

6. Main conclusions and future work

Envisioning the emergence and expansion of AVs-only zones in
urban areas, a bi-level framework has been proposed in this paper to
determine the (near) optimal fleet size of CTs and ATs which leads
to the maximum profit of a TNC at each stage of a mixed automated
and non-automated driving network. At the upper level, the fleet sizing
decision of CTs and ATs is made with the aim to maximise the profit
of a TNC while satisfying the travel demand. To capture the mixed
driving behaviour, an approximated dynamic mixed equilibrium model
is proposed at the lower level, in which the respective objective func-
tions of taxis and PVs are combined into one function using a weighted
sum approach and the vehicle movements in a morning peak hour of
a typical working day are determined. A metaheuristic algorithm PGA
is then adopted to solve the bi-level model, which is embedded with a
tailored algorithm for solving the LLM.

Computational experiments with the case-study city of Delft show
that the (near) optimal solution obtained through the solution method
and the minimum fleet sizes of CTs and ATs (minimum feasible fleet
to satisfy all the demand) with the expansion of the AVs-only zone can
be effectively determined for different datasets with random departure
time and random preference towards CTs and ATs. However, the pro-
posed solution approach is hard to apply to a real-size urban network
of a metropolis as the computational time can be long and the solution
quality cannot be guaranteed. What is more, if a high number of
decisions have to be determined in the upper-level model, the solution
process can be time-consuming as more iterations are needed until
the algorithm converges. Several conclusions can be drawn from the

experiments.
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Firstly, the minimum fleet size for satisfying the demand is not
necessarily the best fleet size for the company’s profits. It depends
greatly on the cost of the fleet and the drivers. The drivers’ salaries,
which are one of the highest fleet size-related costs of CTs, have a
significant impact on the decision-making process, resulting in that the
minimum feasible fleet size of CTs is always their best fleet size for all
the tested datasets. Besides, the location and distribution of the parking
depots can also influence the fleet size of taxis. TNCs should carefully
determine the number of parking depots and locate those depots in
areas with high demand to reduce relocation-related costs. Secondly,
the existence of AVs-only zones improves transportation efficiency by
reducing the congestion effects. But this effect is not obvious at an
early stage. To get the best out of using the AVs-only area, governments
should consider ways to encourage people to use more AVs at the early
stage. Thirdly, the introduction of an AVs-only zone will result in long
detours and relocation distances for HVs. Therefore, a proper network
design strategy for an AVs-only zone can reduce the negative effects
on HVs, thereby increasing public acceptance of AV-related mobility
renovation and the new intelligent infrastructure.

For future research, we recommend studying the following: mod-
elling the fleet sizing problem considering stochastic factors (such as
the uncertainty in demand, the fluctuation of traveller’s departure time
as well as travel times) to make a more robust decision for TNCs; adding
travellers’ mode choice to describe their preference towards the type of
the vehicle; investigating the optimal design strategy of AVs-only zones
in a multi-period perspective; and studying the optimal location and
distribution of parking depots.
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