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A B S T R A C T   

The lateral-torsional resistance of prismatic double-symmetric I-section beams is accurately predicted using a 
mechanically consistent Ayrton-Perry approach, combined with a calibrated generalized imperfection. The 
corresponding design formulation was recently adopted in the revised version of Eurocode 3. However, for 
prismatic mono-symmetric I-section beams, the General Case shall be used while for non-prismatic beams only 
the General Method is available. Both methods present a very large scatter and highly underestimate the lateral- 
torsional buckling resistance. This paper proposes an extension to the General Formulation for non-prismatic 
beams with arbitrary boundary conditions, partial lateral restraints, and arbitrary loading for mono-symmetric 
I-sections. Using an advanced numerical model calibrated with experimental test results, a large parametric 
study is undertaken, and its results are used to assess the available design methodologies and the proposed 
method. It is concluded that the General Formulation provides excellent safe-sided estimates of the LTB resis-
tance, and it is confirmed the very poor performance of the General Case and the General Method.   

1. Introduction 

Thin-walled welded steel mono-symmetric I-sections provide a cost- 
efficient solution due to their efficiency in bending and ease of fabri-
cation [1]. When used in non-prismatic members, mono-symmetric 
sections allow to adjust the resistance of the section to a variable 
bending moment along the member, thereby potentially maximizing the 
efficiency of the design. Tapered steel beams with mono-symmetric 
I-sections are widely used in crane girders, pitched-roof portal frames 
and in twin or multiple girder bridge decks, often as part of composite 
girders. 

The lateral-torsional buckling resistance of prismatic mono- 
symmetric steel beams is tackled in part 1–1 of Eurocode 3 [2], hence-
forth denoted to as EC3–1-1, using the General Case (GC), that is based 
on the analogy between Ncr and Mcr and the assumption that the 
lateral-torsional buckling behavior of a beam in bending is similar to a 
compressed column [3]. This contrasts with the new method for doubly 
symmetric I- and H-sections (newLTB) that is now included in FprEN 
1993–1-1 [4], which is based on a mechanically consistent Ayrton-Perry 
derivation ([5,6]). It was shown [7] that the GC is too conservative and 

presents a large scatter of results, while the newLTB presents a good 
agreement with a large set of experimental and validated numerical 
results and a low scatter. 

Concerning non-prismatic beams, EC3–1-1 proposes the General 
Method (GM), which is a Merchant-Rankine semi-empirical method that 
leads to a very wide scatter of results that may even be unsafe [7]. In the 
case of prismatic beams, it was demonstrated that the GM leads to the 
same results as the GC [7]. 

Recently, Tankova et al. [8] proposed a design-oriented method, 
General Formulation (GF) that can verify the buckling resistance of an 
arbitrary non-prismatic member, with arbitrary boundary conditions, 
variable loading and partial lateral restraints for double symmetric I- or 
H-sections. This paper presents an extension of the General Formulation 
[8] to generic non-prismatic mono-symmetric cross-section beams. 
Firstly, a brief state-of-the-art on mono-symmetric members and tapered 
members is presented, followed by the analytical derivation of the 
extended formulation that specifically accounts for the mono-symmetric 
features. Subsequently, an advanced finite element model is validated 
with experimental results on mono-symmetric beams and some bench-
marks obtained from the literature, followed by an extensive parametric 
study for class 1 and class 2 cross-sections with prismatic and 
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non-prismatic beams. Finally, the results are compared to the various 
available design methodologies and the proposed extended GF, showing 
the good performance of the method. 

2. Literature review 

2.1. Theoretical background 

Fig. 1 shows a typical mono-symmetric I-section studied in this work. 
This section is symmetric with respect to the minor axis, z, and 

asymmetric around the major axis, y. The members are subjected to 
bending moment around y-axis. In this figure, b1 and t1 are the di-
mensions of the flange with the smallest value of Iz (moment of inertia 
about the z-axis), and b2 and t2 are the dimensions of the largest flange; 
G and D are the centroid and the torsion center, respectively. 

According to Vlasov’s Theory [9], for a uniform mono-symmetric 
I-sections subjected to constant bending moment around the major 
axis (My), the equilibrium of the deformed shape of a perfect (with no 
imperfections) member is ruled by the following equations: 

Nomenclature 

Lowercase Latin letters 
b1, b2 Flange width 
e0 Maximum amplitude of a member imperfection 
fy Yield stress 
h Cross section depth 
n Number of cases 
r0 Polar radius of gyration about the shear center 
re Ratio between the numerical lateral-torsional buckling 

resistance and the plastic bending moment resistance of 
the cross section 

rN Ratio between the numerical lateral-torsional buckling 
resistance and the analytical lateral-torsional buckling 
resistance 

rt Ratio between the analytical buckling resistance and the 
cross-sectional plastic bending moment resistance 

t1, t2 Flange thickness 
tw Web thickness 
v(x) Transverse displacement along the y-axis 
v0(x) Initial transverse displacement along the y-axis 
vcr(x) Transverse displacement component of the mode shape 

along the y-axis 
vtot(x) Total transverse displacement [v(x) + v0(x)] along the y- 

axis 
x-x Axis along the member 
xm Critical location 
y-y Cross section axis parallel to the flanges 
z-z Cross section axis perpendicular to the flanges 
zG Position of the cross-section centroid measured from the 

top face of the largest flange 
z0 Distance between the centroid and the torsion center of the 

cross section 

Uppercase Latin letters 
A Cross section area 
Ci Equivalent moment factor 
Cw Warping constant 
E Modulus of elasticity 
G Shear Modulus 
Iy Moment of inertia about the y-axis 
Iz Moment of inertia about the z-axis 
J Torsional constant 
L Member length 
M Bending moment 
Mcr Elastic critical moment 
MEd Design bending moment 
Mpl Plastic bending moment resistance about the y-y axis 
My Bending moment, y-y axis 
MII

y Second order bending moment, y-y axis 
Mz Bending moments, z-z axis 
MII

w Second order warping moment 

MII
z Second order bending moment, z-z axis 

N Normal force 
Ncr Elastic critical force 
Ncr,TF Elastic critical force for torsional-flexural buckling 
Ncr,x Elastic critical force for torsional buckling 
Ncr,z Elastic critical force for out-of-plane buckling 
Ww Elastic warping modulus 
Wy Section modulus about the y-y axis 
Wy,el Elastic section modulus about the y-y axis 
Wz Section modulus about the z-z axis 
Wz,el Elastic section modulus about the z-z axis 

Lowercase Greek letters 
α Imperfection factor according to EC3–1-1 
αcr Load multiplier which leads to the elastic critical resistance 
αcr,op Minimum amplifier for the in-plane design loads to reach 

the elastic critical resistance with regard to lateral or 
lateral-torsional buckling 

αLT Imperfection factor for lateral-torsional buckling 
αult,k Minimum load amplifier of the design loads to reach the 

characteristic resistance of the most critical cross section 
βz Wagner factor 
δ0 General displacement of the imperfect shape 
δcr General displacement of the critical mode 
εM Utilization ratio regarding the bending moment 
εM

I Utilization ratio regarding the first-order bending moment 
εM

II Utilization ratio regarding the second-order bending 
moment 

η Generalized imperfection 
λop Global non-dimensional slenderness of a structural 

component for out-of-plane buckling according to the 
General Method (of clause 6.3.4) 

λ Non-dimensional slenderness 
λ(x) Non-dimensional slenderness at a given position 
λz Non-dimensional slenderness for flexural buckling, z-z axis 
λLT Non-dimensional slenderness for lateral-torsional buckling 
θ(x) Twist rotation 
θ0(x) Initial twist rotation 
θcr(x) Twist rotation component of the mode shape 
θtot(x) Total twist rotation [θ(x) + θ0(x)] 
χ Reduction factor. 
χLT Reduction factor due to lateral-torsional buckling 
χop Reduction factor corresponding to the non-dimensional 

slenderness λop 
ψ Ratio between the maximum and minimum bending 

moments, for a linear bending moment distribution 

Uppercase Greek letters 
ΦLT Value to determine the reduction factor χLT for lateral- 

torsional buckling  
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EIzvIV
D ± Myθ′′ = 0 (1)  

ECwθIV −
(
±2Myβz +GJ

)
θ′′ −

(
±My − Nz0

)
v′′

D = 0 (2)  

where vD is the lateral displacement of the torsion center and θ is the 
twist rotation. By convention, My is positive when the part of the cross- 
section located at z > 0 is in tension. Considering fork boundary con-
ditions and sinusoidal solutions for vD and θ, Eqs. (1) and (2) become: 

Ncr,z
(
Ncr,xr2

0 ± 2Myβz
)
− My

2 = 0→  

My
2 ± 2MyNcr,zβz − Ncr,xNcr,zr2

0 = 0 (3)  

where Ncr,z is the elastic flexural buckling load about the z-axis and Ncr,x 

is the elastic torsional buckling load. Finally, the solution for the system 
of Eq. (3), My = Mcr, is given by: 

Mcr =
π2EIz

L2

⎧
⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Cw

Iz
+

L2GJ
π2EIz

+ βz
2

√

± βz

⎫
⎬

⎭
(4)  

where βz is a factor that incorporates the Wagner effect [10] due to the 
mono-symmetry, given by: 

βz = z0 −
1

2Iy

∫

A

[
z
(
y2 + z2) ]dA (5) 

Conventionally, βz is positive when the flange with the larger value 
of Iz is in compression at the point of largest bending moment. 

For uniform members with variable boundary conditions and arbi-
trary loading, Eq. (6) gives a general expression for the elastic critical 
moment: 

Mcr = C1
π2EIz

(KzL)2

⎧
⎨

⎩

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

Kz

Kx

)2Cw

Iz
+
(KzL)2GJ

π2EIz
+
(
±C2zg ± C3βz

)2

√

−
(
±C2zg

± C3βz
)

⎫
⎬

⎭

(6)  

where Kz and Kx are the effective length factors concerning flexural 
buckling about z-axis and torsional buckling, respectively; C1, C2 and C3 
are factors depending on the loading and end restraint conditions; and zg 

is the distance between the point of load application and the torsion 

center, being positive for loads acting towards the torsion center from 
their point of application. 

Table 1 summarizes some equations for determining the geometric 
properties of a mono-symmetric I-section: the centroid position (zG – see 
Fig. 1), the torsion center coordinate (z0 – see Fig. 1), the Wagner factor 
(βz) and the warping constant (Cw). 

. 

2.2. A brief review of research on mono-symmetric I-sections and non- 
prismatic beams 

The effect of mono-symmetry on the critical buckling moment of 
singly symmetric I-section beams was investigated by Kitpornchai and 
Trahair [11] in the beginning of the 1980 s. The authors derived ap-
proximations for the relevant cross-section properties to calculate the 
elastic critical moment, proposed new rules for design and compared 
them to results from different codes. In 1985, Roberts and Burt [12] 
studied the lateral-torsional buckling of mono-symmetric I-beams and 
cantilevers under uniform moment, distributed and concentrated loads 
using a general energy method derived by Roberts and Azizian [13]. The 
method is based on vanishing the second variation of the total potential 
energy and it guarantees that the influence of pre-buckling displace-
ments is included in the analysis by incorporating strains, which stem-
med from nonlinear expressions developed by Roberts [14]. The authors 
derived closed-form solutions for defining elastic critical loads of simply 
supported beams, which were proven valid for a wide range of 
cross-sections but overestimating certain cases. Wang and Kitpornchai 
[15] continued the work by extending the formulation for different load 
scenarios. Furthermore, the influence of intermediate restraints was 
studied by Wang et al. [16]. 

Earlier, Vlasov [9] and Goodier [17] obtained solutions for 
simply-supported I-beams with mono-symmetric cross-sections, but only 
subjected to uniform moment, and Anderson and Trahair [18] discussed 
the shortage of information available in the literature until the 1960 s, 
including previous solutions and differences of opinion on the effects of 
the mono-symmetry. They developed numerical solutions for 
mono-symmetric I-beams and cantilevers using differential equations, 
considering central concentrated loads for beams, end concentrated 
loads for cantilevers, and uniformly distributed loads, which were 
applied at several distances from the shear center. In the end, the au-
thors concluded that the influence of the mono-symmetry and the dis-
tance from the point of application of the load to the shear center are 
beneficial for the critical loads of simply supported beams, and detri-
mental for cantilevers. 

Several tables, charts and approximate expressions concerning the 
critical buckling of mono- symmetric I-section members were proposed 
by the aforementioned studies ([9–18]), until the beginning of 2000 s. 
The 3-factor formula developed by Clark and Hill [19], which was one of 

Fig. 1. Typical mono-symmetric I-section beam.  

Table 1 
Geometric properties for a mono-symmetric I-section.  

zG =

b2
t22
2
+ hwtw

[
hw

3
+ t2

]

+ b1t1
(

h −
t1
2

)

(b1t1 − b2t2) + hwtw  

(7) 

z0 =

(
zG −

t2
2

)
t2b3

2 −
(

h − zG −
t1
2

)
t1b3

1

t1b3
1 + t2b3

2  

(8) 

βz = z0 −

1
2Iy

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tw
4

b2
t2
4
(2zG − t2)

(
b2

2
6
+ 2z2

G − 2zGt2 + t22

)

+

hw(2zG + t2 − h − t1)
[
t2w
6
+ (t1 − zG)

2
+ (h − zG − t2)2

]

+

b1
t1
4
[t1 − 2(h − zG) ]

[
b2

1
6
+ (h − zG − t1)2

+ (h − zG)
2

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9) 

Cw =
h2

0
12

(
t1b3

1t2b3
2

t1b3
1 + t2b3

2

)
(10)  
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the most common general formulations to predict the elastic critical 
moment hitherto, was included in the ENV version of Eurocode 3 [20]. 
However, two aspects were missing: the influence of the warping re-
straint condition on the elastic lateral torsional buckling of 
mono-symmetric I-section members and the extension of the domain of 
application of the 3-factor formula to cantilever members. In 2007, 
Andrade et al. [21] proposed expressions for each factor of Eq. (6) for 
cantilevers with equal or unequal flanges, fully built-in or free to warp at 
the ends and submitted to uniformly distributed or concentrated loads. 
In 2012, Camotim et al. [22] explained the interesting fact of the lowest 
critical bending moment is not necessarily related to the case of uniform 
bending for mono-symmetric I-section beams. From numerous numeri-
cal examples performed using the software LTBeam [23], it was proven 
that beams submitted to bending moment diagrams from transverse 
loads benefit the least from the cross-section asymmetry, which may 
lead to critical moments below to the ones associated to the uniform 
bending. 

Non-linear phenomena associated with the stability of beams with 
mono-symmetric I-section were investigated ([24–27]). Mohri et al. 
[25] extended the available solutions developed for non-linear stability, 
studying the lateral buckling of beams in case of moment gradient 
applied at the extremities of the beam, considering large displacements 
and pre-buckling deflections. Trahair [26] investigated uniform and 
non-uniform bending and compared with available design recommen-
dations, observing divergences between the numerical and analytical 
results. By these investigations, it was proven that the lateral buckling 
resistance depends not only on pre-buckling deformation, but also on 
section shape, load distribution, and if the largest flange is under 
compression or tension. 

Recently, experimental tests and numerical simulations ([28–31]) 
have also been dedicated to study the ultimate resistance of 
mono-symmetric I-section beams made with high strength steels, eval-
uating the influence of initial geometric imperfections and residual 
stresses, in order to improve the current design rules. 

Tapered beams with thin-walled I-sections are commonly applied 
due to their efficiency under bending and easy fabrication, and the use of 
mono-symmetric cross-sections can be advantageous for the resistance, 
mainly when the area of the flange under compression is increased. 
Bradford and Kuk [32] and Andrade and Camotim [33] addressed the 
elastic critical buckling moment of tapered mono-symmetric I-beams. 
Andrade et al. [34] discussed the use of beam or shell elements in the 
modeling of tapered mono-symmetric beams and Cockalingam et al. 
[35] proposed an improved Timoshenko beam formulation for the 
in-plane behavior of tapered mono-symmetric beams. 

As tapered beams are used to be assumed with similar behavior as 
uniform beams, which can lead to inaccurate shear stress distributions, 
Trahair and Ansourian [36] studied the distributions of normal and 
shear stresses to mono-symmetric tapered I-beams considering inclined 
stress trajectories along the member instead of the methods commonly 
applied so far, in which plane sections are supposed to continue plane, 
shear strains are not considered when analyzing the bending deflections 
and stress concentrations are neglected. Comparing to finite element 
analysis, the authors concluded that their method could predict more 
accurate solutions to the transverse shear stresses. Trahair [37],[38] 
proposed a method to analyze tapered mono-symmetric I-section beams 
related to the elastic in-plane bending and out-of-plane flexural-tor-
sional buckling based on numerical integration [37] and the elastic 
lateral buckling using the energy method [38] instead of closed forms 
commonly applied for uniform elements. An arbitrary axis system 
associated to the web mid-line was considered to avoid problems related 
to the variations of the centroid and shear center axes along the mem-
bers. A computer program was written and validated to investigate the 
behavior of uniform beams, tapered doubly and mono-symmetric 
beams, beam-columns, and tapered cantilevers under different load 
and boundary conditions. The method developed showed to be efficient 
with rapid convergence and good approximated solutions since there is 

no need to consider many elements to obtain an accurate solution, as it is 
required when replacing tapered elements by many uniform elements. 

Recently, Abdelrahman et al. [39] proposed generalized 
line-element formulations for geometrically nonlinear analysis of 
nonsymmetric tapered steel members. The element stiffness matrix was 
derived through the total potential energy, where elastic strains, as well 
as the warping deformations and the Wagner effects, were considered. 
Consequently, appropriate equations for the geometric parameters 
reflecting the variable geometry along the member were developed. In 
summary, average values of area, torsional rigidity, shear center co-
ordinates, and Wagner coefficients are utilized in the element formula-
tion, considering certain number of interval points along the length of 
the member. Although the method is validated for various cases, the 
validation included only tapered members. Furthermore, the element 
formulation involves incremental-iterative procedures, which may not 
be currently applicable by designers when confronted to more simplified 
methods that already exist. 

Marques et al. [40] highlighted that the stability verification of 
tapered beams presents several inconsistencies and difficulties. Based on 
the new method for double-symmetric prismatic I-sections developed by 
Taras and Greiner [5], Marques et al. [40] derived a second-order 
analytical model using an Airton-Perry approach for web-tapered 
doubly symmetric beams and a generalized imperfection, which pro-
vided excellent agreement with experimental tests and was further 
validated by a large parametric study. Finally, Tankova et al. [8] 
developed a General Formulation for the stability design of steel col-
umns, beams, and beam-columns with variable geometry, loads and 
different support conditions. However, the proposed approach was not 
extended for mono-symmetric I-section members, but it serves as the 
basis for the proposed methodology in this paper. 

2.3. Design procedures for mono-symmetric I-beams 

2.3.1. Eurocode 3 
In EC3–1-1, the General Case (Clause 6.3.2.2) must be applied for 

uniform mono-symmetric beams. For non-prismatic, including tapered 
mono-symmetric beams, the General Method (Clause 6.3.4) must be 
applied. 

According to the General Case, the reduction factor for lateral- 
torsional buckling (χLT), is given by: 

χLT =
1

ΦLT +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ΦLT
2 − λLT

2
√ (11)  

where ΦLT is obtained by: 

ΦLT = 0.5
[
1+ αLT(λLT − 0.2)+ λLT

2 ] (12)  

and the relative slenderness for lateral torsional buckling, λLT, should be 
determined from: 

λLT =

̅̅̅̅̅̅̅̅̅
Wyfy

Mcr

√

(13)  

in which Wy is the appropriate section modulus obtained according to 
the classification of the cross section, and Mcr is the elastic critical 
moment for lateral-torsional buckling. For welded I-sections, EC3–1-1 
recommends curve c (imperfection factor - αLT = 0.49) for sections with 
h/min(b1; b2) ≤ 2, and curve d (αLT = 0.76) in the cases where 
h/min(b1; b2) > 2. 

According to the General Method, the reduction factor for lateral and 
lateral-torsional buckling (χop) can be obtained by Eq. (11), by adopting 
curve c for αLT and replacing λLT in Eqs. (11) and (12) by: 

λop =

̅̅̅̅̅̅̅̅̅̅αult,k

αcr,op

√

(14) 
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where αult,k is the minimum amplifier of the design load reaching the 
characteristic resistance of the most critical cross section of the beam, 
without taking lateral or lateral torsional buckling into account, and 
αcr,op is the minimum amplifier of the design loads to reach the elastic 
lateral-torsional buckling of the beam. 

2.3.2. AISC 360 
The bending moment resistance of mono-symmetric I-section beams 

is given in Chapter F of AISC 360 [41], where the buckling curve is 
divided into three ranges: plastic, elastoplastic and purely elastic. Thus, 
the lateral-torsional buckling resistance is given (without partial fac-
tors), MR,anal., by: 

MR,anal. =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Mpl, forλ ≤ λp

Cb

[

Mpl −
(
Mpl − 0.7fyWel,y,c

) λ − λp

λr − λp

]

≤ Mpl, for λp < λ ≤ λr

Mcr ≤ Mpl, forλ > λr

(15)  

where λ is the ratio between the unbraced length and radius of gyration 
of the “T” section formed by the compressed flange and the compressed 
part of the adjacent web, in the elastic range, about the z-axis; λp is the 
limiting parameter for the limit state of yielding; λr is the limiting 
parameter for the limit state of inelastic lateral-torsional buckling; Cb is a 
factor depending on the bending moment diagram and cross-section 
geometry; and Wel,y,c is the elastic modulus about the y-axis of the 
compressed part of the section. 

For determining the buckling resistance of tapered members, the 
American code recommends the guide Frame Design Using Web-Tapered 
Members, Steel Design Guide 25 [42]. Basically, the method consists of 
determining an equivalent uniform beam with the same first-order 
resistance and the same elastic critical load as the tapered beam, and 
then, following the guidance for uniform beams (Eq. (15)) applied to the 
equivalent beam. 

2.3.3. Marques et al. [40] proposal for web tapered beams 
Marques et al. [40] proposal for web-tapered beams is based on a 

linear interaction between the first- and second-order bending moment 
utilizations, leading to a maximum utilization at a certain location, 
denoted as the second-order failure location (xII

c ). This method was built 
with an Ayrton-Perry analytical model as reference, and can be given by: 

where Ncr,z,Tap and Mcr,Tap are the elastic critical force of the tapered 
column about the weak axis and the elastic critical bending moment of 
the tapered beam, respectively; hmin is the minimum cross section height; 
ξ is the weighing factor for the imperfection; and δ″

cr,hmin 
is the second 

derivative of the lateral displacement of the critical mode at h = hmin. 
The imperfection factor (αLT) is given by: 

αLT = 0.21

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Wy,el

(
xII

c

)

Wz,el
(
xII

c

)

√

≤ 0.64 (17)  

in which Wz,el and Wy,el are the values of the elastic section moduli about 
the minor and the major axes, respectively, at xII

c - location. 

3. General formulation for mono-symmetric beams 

The utilization ratio of a generic single member may be expressed by 
equating the total longitudinal stress, σ, due to first- and second-order 
forces, to the yield stress, fy: 

σ(x)
fy

=
N(x)

A(x)fy
+

My(x)
Wy(x)fy

+
Mz(x)

Wz(x)fy
+

MII
y (x)

Wy(x)fy
+

MII
z (x)

Wz(x)fy
+

MII
w(x)

Ww(x)fy
(18)  

where A(x) is the cross-section area, Wy(x) and Wz(x) are the section 
moduli relative to the y- and z-axes, respectively, and Ww(x) = Cw(x)/
wmax(x) is the warping modulus at location x along the member. Wz(x)
and Ww(x) is calculated for the compressed part of the section. For 
mono-symmetric sections, wmax is given by: 

wmax = (h(x) − zG(x) ± z0(x) )
bcomp(x)

2
(19)  

where zG(x) is the position of the cross-section centroid measured from 
the top face of the largest flange (see Fig. 1); z0(x) is the distance be-
tween the centroid and the torsion center of the cross section (see Fig. 1); 
and bcomp is the width of the compressed flange. It is noted that for 
section classes 1 and 2 the plastic section moduli should be used. Then, 
provided the second order contributions can be determined, the buck-
ling resistance may be verified for an appropriate number of locations 
along the member, as follows: 

N(x)
A(x)fy

+
My(x)

Wy(x)fy
+

Mz(x)
Wz(x)fy

+
MII

y (x)
Wy(x)fy

+
MII

z (x)
Wz(x)fy

+
MII

w(x)
Ww(x)fy

≤ 1.0 (20) 

The verification of a single member with variable geometry, 
boundary conditions, subject to arbitrary loading is done by verifying 
Eq. (20) at enough locations (n) along the member, akin to the verifi-
cation of the cross-section resistance. At each position, the respective 
values of the first order axial force, N(x), bending moments My(x), 
Mz(x), second order contributions obtained from the relevant buckling 
mode, and cross-section properties, A(x), Iz(x), etc. are to be used. 

For prismatic members, all these buckling cases are covered by the 
Eurocode 3 design rules. The only condition is that the designer needs to 
choose the relevant buckling mode and the corresponding verification 
format (see Table 2). 

For lateral-torsional buckling of mono-symmetric beams, consid-
ering Table 2, the general interaction (Eq. (18)) becomes: 

σ(x)
fy

=
My(x)

Wy(x)fy
+

MII
z (x)

Wz(x)fy
+

MII
w(x)

Ww(x)fy
(21)  

where there are two second-order contributions, the out-of-plane 
bending moment depending on the lateral displacement: 

MII
z (x) = − EIz(x)v″(x) (22) 

Table 2 
Buckling mode for beams.  

Buckling mode Applied loads Critical loads Critical mode shape 
component 

LTB My Mcr,N + Ncr,NM vcr(x) + θcr(x)

χLT
(
xII

c

)
+

χLT
(
xII

c

)

1 − λ2
LT

(
xII

c

)
χLT

(
xII

c

)
[
αLT
(
λz
(
xII

c

)
− 0.2

) ]
(

λ2
LT

(
xII

c

)

λ2
z

(
xII

c

)

)
ξ
(
− δ″

cr,hmin

(
xII

c

) )
EIz
(
xII

c

)

Ncr,z,Tap

⎡

⎢
⎢
⎢
⎣

1 +
Ncr,z,Tap
Mcr,Tap

h(xII
c )

2

1 +
Ncr,z,Tap
Mcr,Tap

hmin
2

⎤

⎥
⎥
⎥
⎦
= 1.0 (16)   
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and the bi-moment depending on the twist rotation: 

MII
w(x) = − ECw(x)

[

θ″(x)+Ww(x)
Wz(x)

Iz(x)
Cw(x)

θ′(x)h′
]

(23) 

Hence, when considering the amplitude of the initial imperfection, 
both components (lateral displacement and twist rotation) must be 
considered. For simply supported beams it is possible to obtain the 
amplitude by the coupling of the lateral displacement and twist rotation 
[43]. In a more general configuration (variation of the geometry along 
the member, different boundary and loading conditions, etc.), this 
relationship may not hold. For that reason, it was chosen to use both 
components of the mode shape as initial imperfection, assuming that 
they are multiplied by the same amplitude: 

v0(x) = vcr(x)δ0,LTB (24)  

and 

θ0(x) = θcr(x)δ0,LTB (25)  

where vcr is the out-of-plane component and θcr is the twist rotation. 
The resulting amplification relationship for the displacement and 

rotation is given by: 

v(x) =
1

αcr − 1
v0(x) (26)  

and 

θ(x) =
1

αcr − 1
θ0(x) (27)  

in which αcr is the critical load multiplier. 
It is assumed that the real beam should have the same resistance as 

an equivalent beam with fork supports and constant bending moment. 
This equivalent beam has the same geometry as the real beam at the 
critical cross-section and the same elastic critical moment. Hence, it is 
possible to obtain the required generalized imperfection by setting equal 

the second-order utilization for the equivalent and real beams. The 
second-order moments for a simply supported beam at mid-span are 
given by: 

MII
z (xm) = My,Edθtot = My,Edθ0

1
1 − 1/αcr

=
αcrMy,Ed(xm)e0θcr(xm)

αcr − 1
(28)  

MII
w(xm) = My,Edvtot − GJθ− 2My,Edβzθtot =

My,Edv0
1

1 − 1/αcr
− GJ

(

θ0
1

1 − 1/αcr
− θ0

)

− 2My,Edβzθ0
1

1 − 1/αcr
=

αcrMy,Ed(xm)e0θcr(xm)

αcr − 1

(
v0(xm)

θ0(xm)
−

GJ(xm)

Mcr
− 2βz(xm)

)

(29) 

The second order utilization ratio for the equivalent member is given 
by: 

εII
M(xm) =

MII
z (xm)

Wz(xm)fy
+

MII
w(xm)

Ww(xm)fy

=
αcrMy,Ed(xm)e0θcr(xm)

Wz(xm)fy(αcr − 1)

(

1+
vcr(xm)

θcr(xm)

Wz(xm)

Ww(xm)
+

GJ(xm)

Mcr

Wz(xm)

Ww(xm)

+ 2βz(xm)
Wz(xm)

Ww(xm)

)

=
Ncr,TFe0

Wz(xm)fy(αcr − 1)
(30)  

with 

Ncr,TF = αcrMy,Ed(xm)θcr(xm)
Wz(xm)

Ww(xm)

(
Ww(xm)

Wz(xm)
+

vcr(xm)

θcr(xm)
+

GJ(xm)

Mcr

+ 2βz(xm)

)

(31) 

The second order utilization of the real beam at the location xm is 
given by: 

Fig. 2. General displacement of the critical mode.  

εII
M(xm) =

MII
z (xm)

Wz,comp(xm)fy
+

MII
w(xm)

Ww,comp(xm)fy
=

EIz(xm)

Wz,comp(xm)fy(αcr − 1)

[

v′′
cr(xm)+

Wz,comp(xm)

Ww,comp(xm)

Cw(xm)

Iz(xm)

(

θ″cr(xm)+
Ww,comp(xm)

Wz,comp(xm)

Iz(xm)

Cw(xm)
θ′cr(xm)h′

)]

δ0 (32)   
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Equaling the second order utilization ratio for the equivalent beam 
and the real beam at the location xm leads to the following expression for 
the amplitude of the imperfection: 

δ0,LTB =
Ncr,TFe0

EIz(xm)

[

v′′
cr(xm) +

Wz(xm)
Ww(xm)

Cw(xm)
Iz(xm)

(

θ″cr(xm) +
Ww(xm)
Wz(xm)

Iz(xm)
Cw(xm)

θ′cr(xm)h′
)]

= fηe0

(33) 

This amplitude is used with the proposed generalization. It contains 
the equivalent geometrical imperfection e0 but also additional terms 
ensuring consistency with the Eurocode 3 design rules. Ideally, xm 

should be chosen as the correct critical location. To avoid an iterative 
procedure, the location xm is adopted where |v′′

cr(x)| reaches a maximum. 
The amplitude of the generalized imperfection is given by: 

η∗(x) = αLT(x)(λ(x) − 0.2 )fη
⃒
⃒δfl(x)

⃒
⃒Wz(x)

A(x)
(34)  

where αLT(x) is calculated according to FprEN 1993–1-1 prescriptions 
for lateral-torsional buckling of welded prismatic members, and 

fη =
Ncr,TF

EIz(xm)

[

v′′cr(xm) +
Wz(xm)
Ww(xm)

Cw(xm)
Iz(xm)

(

θ″cr(xm) +
Ww(xm)
Wz(xm)

Iz(xm)
Cw(xm)

θ′cr(xm)h′
)]

(35) 

For mono-symmetric I-sections, the general displacement of the 
critical mode, δfl(x), is given by a geometric relationship between the 
lateral displacement and the section rotation, as defined by Eq. (36) and  
Fig. 2: 

δfl(x) = vcr(x)+ (h(x) − zG(x) ± z0(x) )θcr(x) (36) 

Thus, the final verification equation is given by: 

εM(x) =
My,Ed(x)
Wy(x)fy

+

EIz(x)
[

v′′cr(x) + Wz(x)
Ww(x)

Cw(x)
Iz(x)

(

θ″cr(x) + Ww(x)
Wz(x)

Iz(x)
Cw(x)

θ′cr(x)h′
)]

A(x)fy(αcr − 1)
η(x)

≤ 1.0
(37)  

with 

η(x) = αLT (x)(λ(x) − 0.2 )fη
⃒
⃒δfl(x)

⃒
⃒ (38) 

An equivalent elastic critical force Ncr,TF,eq. is “retrieved” from the 
buckling mode using the differential equation for flexural buckling: 

EIz(x)v′′
cr(x) − Ncr,TFvcr(x) − z0Ncr,TFθcr(x) = 0. (39) 

Then, the equivalent force becomes: 

Ncr,TF,eq =
EIz(xm)|v′′cr(xm) |

|vcr(xm) + z0θcr(xm) |
(40) 

It is this force that is used for the calculation of the normalized 
slenderness: 

λ(x) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
A(x)fy

Ncr,TF,eq
.

√

(41) 

Fig. 3. Representation of the mesh for an I-section member.  

Fig. 4. Pattern of residual stresses for (a) hot-rolled and (b) welded I-sections, recommended by ECCS [46].  
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4. Numerical modeling 

4.1. Description of the numerical model 

The numerical analyses were performed using the finite element 
software ANSYS (version 22.0) [44]. The geometry of the models was 
defined using the nominal dimensions of the cross-sections. The 
SHELL181 element, which is composed by 4 nodes with 6 degrees of 
freedom per node, was chosen to discretize the mesh. After a mesh 
sensitive study, 16 elements were defined across the flangés width and 
16 across the web́s depth (see Fig. 3), in agreement with previous studies 
[45]. The same size of the elements across the width and depth was used 
along the length of the member, generating only quadratic elements (see 
Fig. 3). 

Geometrically and materially nonlinear analyses with imperfections 
(GMNIA) were executed to obtain the ultimate resistance of the nu-
merical models by using the arc-length method and the von Mises failure 
criterion. Initial geometric imperfections were introduced with a shape 
corresponding to the first buckling mode obtained from previous linear 
buckling analyses (LBA). The validation models were run considering 
the measured material stress-strains curves, residual stress diagrams and 
amplitude of the initial geometrical imperfections obtained from 
experimental works found in the literature. In the parametric study, 
following ECCS [46] recommendations, an amplitude of imperfection 
equal to L/1000 and the ECCS pattern of residual stresses for welded 
I-sections (see Fig. 4-a) were implemented in the numerical models. The 
constitutive law was adopted according to Yun and Gardner [47] as true 
stress-strain curve for the parametric study, which is representative of 
hot-rolled steels with a yield plateau and strain hardening and was 
recently included in prEN 1993–1-14 [48]. 

To simulate fork boundary conditions, the validated boundary con-
ditions adopted by Snijder et al. [49] (see Fig. 5) are utilized. On both 
end extremities of the beam, all nodes of top flanges (namely slave nodes 
- see Fig. 5) are coupled for all their displacements (Ux, Uy, and Uz) and 
rotation (ROTx, ROTy, and ROTz) to the node located at the middle of 
this flange (indicated node – namely master node) by using kinematic 
coupling constraints, and the same is applied to the bottom flange. This 
makes the flange infinitely rigid. For the web, all nodes (namely slave 
nodes - see Fig. 5) are coupled for all their displacements (Ux, Uy, and 
Uz) and rotations about x and y (ROTx and ROTy – see Fig. 5) to the node 
located in the middle of the web (indicated node – namely master node). 
As result of these constraints, the sections at extremities are infinitely 
rigid and can warp. Secondly, for fixing the numerical model, boundary 
conditions are applied at the node located in the middle of the web. In 
one of the ends of extremities, the displacements Ux, Uy, Uz and the 
rotation ROTx of this node are restricted, and in the other one, only Uy, 
Uz, and ROTx are zero. The end bending moments are applied at the 
same node where the boundary conditions are implemented. 

4.2. Numerical model validation 

4.2.1. Introduction 
The numerical model was validated using the experimental test re-

sults from Tankova et al. [28] and Lebastard [50]. Additionally, avail-
able numerical benchmarks by Tankova et al. [28] for uniformly 
distributed loads (DL) and linearly varying bending moments (LBM) 
were used to cover loading cases that were not covered by the experi-
mental tests that were both implemented with concentrated loads. 

4.2.2. Experimental results by Tankova et al. [28] 
The experimental model of Tankova et al. [28] is a four-point 

Fig. 5. Kinematic coupling constraints for the cross-sections of the end extremities of the numerical beam model.  

Fig. 6. Numerical Models based on experimental tests by Tankova et al. [28].  
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bending model where the vertical forces are applied at two locations, as 
shown in Fig. 6. 16 mm-thickness stiffeners are considered at extremities 
and at the locations where the vertical forces were applied. Fork-support 
conditions are considered at the extremities, with additional lateral re-
straints at the location of the vertical forces (see Fig. 6). All prototypes 

are 6 m long, with an unbraced distance between the vertical forces 
equal to 4 m. The main parameters of the mono-symmetric I-section 
beams are shown in Table 3. All prototypes have identical cross-section, 
but fabricated from different steel grades: S460, S690 and hybrid. The 
geometrical imperfections exhibited in Table 3 were measured using an 

Table 3 
Experimental parameters from Tankova et al. [28] used in the numerical model validation.  

Prototype Member λLT Fab. Steel grade Section classification Amplitudes of Geometrical 
Imperfections (mm)* 

Flanges Web In-plane Out-of-plane 

B11 700 ×200(400) X 8 × 16 1.01 Welded S690 S690 4  0.96  0.34 
B12 1.00 S690 S355  0.07  4.48 
B13 0.84 S460 S460  1.31  0.90 
B14 0.83 S460 S355  1.93  1.29 

* Measurements at mid-span. 

Table 4 
Material properties measured by Tankova et al. [28] and used in the numerical 
model validation.  

Plate/ 
Thickness 

Steel 
grade 

E 
(GPa) 

f y 

(MPa) 
fu 
(MPa) 

Ultimate strain 
(%) 

8 mm S355  202.6  425.5  634.7 12.2 
8 mm S690  200.4  755.3  813.0 6.2 
16 mm S690  204.0  798.4  854.8 5.9 
8 mm S460  212.5  528.8  639.2 11.0 
16 mm S460  201.1  498.9  656.2 9.4  

Fig. 7. Constitutive material law adopted in the numerical model validation.  

Fig. 8. Residual stress measured by Tankova et al. [28] for prototype B11 and adopted in the numerical model validation.  

Table 5 
Experimental and numerical results for Pult , considering experimental results 
from Tankova et al. [28].  

Prototype Pult(kN) Num./Exp. 

Experimental Numerical 

B11  1731.8  1732.0  1.00 
B12  1601.0  1610.9  1.01 
B13  1307.2  1301.1  1.00 
B14  1133.3  1210.0  1.07  

Fig. 9. Load-vertical displacement curves – displacements measured at point 
load application. 
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optical 3D scan system. 
Table 4 presents the measured material properties from the plates 

that make up each section shown in Table 3 that were included in the 
numerical models according to the constitutive law shown in the Fig. 7, 
which was also adopted in the numerical analyses of Tankova et al. [28]. 

Fig. 8 shows the measured residual stresses obtained from prototype 
B11 (see Table 3) and implemented in the numerical models. The dia-
grams shown in this figure was applied in all the numerical model 
validation. 

Table 5 and Figs. 9–11 compare the experimental and numerical 
results. There is excellent agreement between numerical and experi-
mental results, both in terms of stiffness and ultimate resistance. It is 
noted that the larger differences for B14 test may be attributed to the 
fact that there was no measurement of residual stresses for this cross- 
section. All numerical models failed by lateral-torsional buckling, in 

line with the experimental results, as depicted in Fig. 12. 

4.2.3. Experimental results by Lebastard [50] 
The experimental work by Lebastard [50] included lateral-torsional 

buckling tests on two uniform and two tapered members, one having a 
mono-symmetric cross-section while the other is doubly symmetrical 
within each of the groups. The test set up of the four 8.43 m long beams 
was similar. The load was applied at the top flange of a laterally 
restrained cross-section located at 2.18 m from one of the extremities of 
the member (see Fig. 13). Fork support conditions were imposed at both 
end extremities. On both sides of the web, 30 mm-thick transverse 
stiffeners were placed at the three laterally restrained cross-section. 
Besides, a 20 mm-thick longitudinal stiffener was positioned on both 
sides of the web along the 2.18 m-long segment (see Fig. 13), and thus, 
the unbraced length was 6.25 m. The nominal dimensions and material 
of the tested members, as well as the measured amplitudes of the 
geometrical imperfections, are given in Table 6. Note that, unlike the 
prototypes from Tankova et al. [28], where the sections have flanges 
with different widths and equal thicknesses (see Table 3), the 
mono-symmetry of the sections shown in Table 6 is due only to the 
difference in thickness of the flanges, which have the same width. 
Furthermore, it is noteworthy that the bending moment diagrams of 
these two experimental works are different: constant bending moment in 
Tankova et al. [28] and triangular-diagram in Lebastard [50] within the 
unbraced lengths. 

Fig. 14 presents the material laws for each plate thickness and 
implemented in the numerical model. Each material law corresponds to 
the true stress-strain behavior relative to results of coupon tests per-
formed by Lebastard [50]. Fig. 15 presents the residual stress diagram 
measured by Lebastard [50] for each prototype shown in Table 6 and 
adopted in the numerical simulations. 

Table 7 and Figs. 16–18 compare the experimental and the numerical 
results. These comparisons show that the stiffness of the numerical 
models as well as their ultimate resistance are in good agreement with 
the experimental results. Similarly to the experimental prototypes, all 
numerical models failed by lateral-torsional buckling, as can be seen in  
Fig. 19, further evidencing the validity of the numerical model of this 
work. 

4.2.4. Numerical benchmarks 
The calibrated numerical models conducted by Tankova et al. [8] 

present the following features:  

(i) hot-rolled double symmetric sections, steel grade S235 and Class 
1;  

(ii) fork boundary conditions at the end extremities;  
(iii) uniformly distributed loads in the z-direction or linearly varying 

end bending moments;  
(iv) no transverse or longitudinal stiffeners;  
(v) initial geometric imperfections with an amplitude equal to L/

1000 and with the hot-rolled residual stress pattern shown in 
Fig. 4-a, as recommended by ECCS [46]. 

Table 8 shows that both numerical models are practically coincident, 
presenting excellent agreement. 

5. Validation of general formulation for mono-symmetric beams 

5.1. Parametric study 

Using the validated numerical model, a large parametric study on 
mono-symmetric welded I-beams is defined and performed. The results 
of this parametric study will be used to validate the proposed General 
Formulation for mono-symmetric I-sections (Section 3) and compare its 
results with the available design proposals. The parametric study is 
divided into two subsets as follows: 

Fig. 10. Vertical displacements at maximum load – displacements measured at 
bottom flange. 

Fig. 11. Horizontal displacements at maximum load – displacements measured 
at the middle of the web. 

Fig. 12. von Mises stress distribution (in MPa) relative to the ultimate load 
capacity of the numerical model B11 – (a) longitudinal view; (b) perspec-
tive view. 
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i. prismatic beams, subjected to linear bending moment, uniformly 
distributed loading and concentrated loads, with fork boundary 
conditions - see Table 9 –, totaling 1296 numerical models. 

. 
Table 10 summarizes the range of some parameters covered by the 

parametric study shown in Table 9. For the mono-symmetric beams, 
sections with flanges with the larger value of Iz in tension or in 
compression are analyzed separately. In this table, the ratios zG/(h/2)
and Wy,el,min/Wy,el,max show the level of asymmetry of the cross-section 
with respect to the y-axis, where Wy,el,min and Wy,el,max are respectively 
the minimum and maximum values of the elastic section moduli about 
the major axis. When the values of both ratios are equal to 1.0, the cross- 
section is doubly symmetric. 

* See Fig. 1.  

i. Tapered and non-prismatic S235 grade steel beams, with the largest 
flange in tension, and λz = 1.30, comprising: 

Fig. 13. Numerical Models based on experimental prototypes geometry of (a) uniform and (b) tapered members from Lebastard [50].  

Table 6 
Experimental parameters from Lebastard [50] used in the numerical model validation.  

Prototype Member λLT Fab. Steel grade Section classification Out–of-plane imperfections (mm)* 

U-DS 804 × 200×8 × 20  0.74 Welded S355 3  3.4 
U-MS 804 × 200×8 × 20(15)  4.0 
T-DS (836 to 286) X 200 × 8×20  3.3 
T-MS (836 to 286) X 200 × 8×20(15)  5.0 

* Amplitude of imperfection measured at the flange in compression. 

Fig. 14. Material law obtained by Lebastard [50] and implemented in the 
numerical model validation. 

Fig. 15. Residual stress measured by Lebastard [50] and adopted in the numerical model validation – (a) flanges and (b) web.  
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(ii.a) mono- and doubly symmetric web-tapered members with only 
the largest flange inclined (for mono-symmetric sections); subjected to 
distributed load (TF, BF, G and D point loading application – point 
loading D only for mono-symmetric sections - Fig. 20) and constant 
bending moment (Fig. 21); three additional cases were studied: member 
with restraint at the flange in tension, located at mid-span; and at 1/3 
and 2/3 of the length; and member with restraint at the flange in 
compression, located at mid-span (see Fig. 20 and Fig. 21). The 
following cross-sections are studied: h x 200(200) x 8 × 16(16), h x 300 
(200) x 8 × 16(16), and h x 410(410) x 31 × 70(55), with maximum 
depth equal to 500, 500, and 1138, respectively. The ratio between the 
maximum and minimum depth of the tapered members is equal to 2.0 
for all cases studied. Number of numerical models: 56. 

(ii.b) parabolic and anti-parabolic members with mono-symmetric 
cross-sections (Fig. 22 and Fig. 23, respectively), subjected to distrib-
uted load (TF point loading application – Fig. 22 and Fig. 23). Addi-
tionally, the lateral restraints cases of (ii.a) subset were studied in this 

subset (see Fig. 22 and Fig. 23). The considered cross-sections at the end 
of the members are: 500 × 200(150) x 12 × 50(30), 750 × 180(250) x 
15 × 35(25), 800 × 300(200) x 18 × 35(50), and 1138 × 410(410) x 
31 × 70(55), and the cross-section at mid-span has the depth incre-
mented or subtracted by a (Fig. 22 and Fig. 23), considering a/L equal to 
0.05. The boundary conditions at the ends of the members of this subset 
are equal to those of subset (i), except for the in-plane rotation (rotation 
about the y-axis), where a rotation spring equivalent to about 50% of the 
clamped elastic critical bending moment is applied (see Fig. 22 and 
Fig. 23). Number of numerical models: 32. 

The two subsets (ii.a) web-tapered and (ii.b) parabolic and anti- 
parabolic variation of the beam depth were chosen because they 
represent the two common practical cases. The specific choice of the 
cases followed a similar parametric study carried out by Tankova et al. 
[8] for doubly symmetric non-prismatic beams, thereby allowing for 
direct comparison. 

The cross-sections of the end extremities of all numerical models 
(subsets (i) and (ii)) of the parametric study are modeled as shown in 
Fig. 5, adjusted to the appropriate loading and boundary conditions. 

5.2. Comparison between LBA and GMNIA deformed shapes 

First, as the General Formulation relies on the second derivatives of 
the elastic critical buckling mode shape (v′′cr and θ″cr), it is important to 
verify if the deformed shape of the first eigenvalue of LBA analysis are 
similar to the GMNIA results for the ultimate compressive load substep, 
for the correct application of the method. Fig. 24 compares the 

Fig. 16. Load-vertical displacement curves – displacements measured at top 
flange at 1.042 m from point load application (within buckling length). 

Fig. 17. Load-horizontal displacement curves – displacements measured at 
middle of the web at 1.042 m from point load application (within buck-
ling length). 

Fig. 18. Horizontal displacements at maximum load – displacements measured 
at middle of the web along the member. 

Fig. 19. von Mises stress distribution (in MPa) relative to the ultimate load 
capacity of the numerical model U-MS – (a) longitudinal view; (b) perspec-
tive view. 

Table 7 
Experimental and numerical results for Pult , considering experimental results 
from Lebastard [50].  

Prototype Pult(kN) Num./Exp. 

Experimental Numerical 

U-DS  747.6  733.6  0.98 
U-MS  903.6  887.3  0.98 
T-DS  720.6  684.6  0.95 
T-MS  775.8  726.3  0.94  
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corresponding deformed shape of LBA and GMNIA for uniform mono- 
symmetric members subjected to linear bending moments. 

Fig. 25 compares the typical deformed shape of LBA and GMNIA for 
mono-symmetric tapered members subjected to distributed load. 

Additional comparisons are available in Annex A. In summary, the 
GMNIA deformed shape are equivalent to the modal displacements and 
rotations (and their derivatives) obtained through the LBA analysis. 

5.3. Prismatic mono-symmetric cross section 

Firstly, for the analysed mono-symmetric beams, it is interesting to 
note that the numerically calculated elastic critical moments (Mcr) are 
very similar to those obtained using the analytical 3-factor formula for 
the elastic critical moment [20] as shown in Table 11. 

Fig. 26 presents the scatter plot of rt x re for the different loading 
types for the prismatic mono- and doubly symmetric cross sections 
subsets, where re is the ratio between the numerical lateral-torsional 
buckling resistance and the plastic bending moment resistance of the 
cross section, and rt is the ratio between the analytical buckling resis-
tance (AISC, EC3-General Case or General Formulation) and the cross- 
sectional plastic bending moment resistance. In general, AISC exhibits 
a large scatter and unsafe results, while GC and GF lead to safe-sided 
values. However, GC rules are too conservative for all cases studied, 
while GF yields more accurate estimates of the lateral-torsional buckling 
resistance. 

The statistical evaluation of AISC, GC and GF (see also Table A.1 to 
A.3) is carried out based on the ratio (rN) between the numerical lateral- 
torsional buckling resistance and the analytical lateral-torsional buck-
ling resistance. Globally, the followings values were obtained (see  
Table 12): an average rN = 1.42 and a c.o.v of 8.33% for GC, an average 
rN = 1.16 and a c.o.v of 7.61% for GF and an average rN = 0.90 and a c. 
o.v of 7.34% for AISC. 

Comparing GC and GF, the poor performance of GC is a direct result 
of the lack of mechanical consistency of the derivation of this method 
[51]. In contrast, GF adopts the generalized imperfection factors of the 
mechanically consistent method developed by Taras and Greiner [5] for 
prismatic double symmetric cross-section beams and leads to similar 
results as this new method for doubly symmetric cross sections. 

Comparison of the results for double- and mono-symmetric cross- 
sections shows that the results are approximately 2% to 3% worse for 
mono-symmetric beams for GF, while for GC this difference increases to 
4% to 6% (see Tables A.1 to A.3). GC only takes into account the in-
fluence of mono-symmetry in the elastic critical bending moment Mcr 
(Eq. (13)), while GF considers this effect both in the Mcr determination 
and in the computation of the imperfection factor (see Eqs. (38) and 
(40)). 

Table 8 
Numerical parameters from Tankova et al. [8] used in the numerical model validation and comparison between both numerical results.  

# Section L (m) λz λLT Load χTankova et al.[8]∗ χNum.Mod.∗ χNum.Mod.
χTankova et al.[8]

1 HBE200 9.68 2  0.77 LBM (ψ = 0)  0.999  1.000  1.00 
2 14.52 3  0.96 LBM (ψ = 0)  0.945  0.926  0.98 
3 7.26 1.5  0.82 DL  0.874  0.864  0.99 
4 IPE300 6.40 2  0.84 LBM (ψ = − 1)  0.936  0.943  1.01 
5 9.60 3  1.08 LBM (ψ = − 1)  0.724  0.709  0.98 
6 4.80 1.5  1.05 DL  0.640  0.633  0.99 

* Ratio between ultimate numerical bending moment and plastic bending moment. 

Table 9 
Parametric study for prismatic mono- and doubly symmetric cross-sections.  

Section 
h xb2(b1)xtwxt2(t1)

λz Steel 
grade 

Bending Moment 
diagram 

Stress on the 
largest 
flange** 

300 × 150(150) x 
8 × 20(15) 
300 × 150(150) x 
8 × 30(20) 
400 × 180(180) x 
10 × 30(20) 
400 × 180(180) x 
10 × 40(25) 
500 × 200(150) x 
12 × 50(30) 
400 × 180(180) x 
10 × 30(30)* 

0.50 
to 
5.0 

S235 
S355 
S460 

Linear (ψ = 1.0, 0.0 
and − 1.0) 

Tension 
Compression 

400 × 180(180) x 
10 × 40(25) 
500 × 200(150) x 
12 × 50(30) 
430 × 350(200) x 
8 × 40(20) 
400 × 180(180) x 
10 × 30(30) * 

Distributed load 
(applied at the top 
face -TF, the centroid 
- G, the torsion center 
- D*** and the bottom 
face - BF) 

Tension 

Point load (applied at 
the top face -TF, the 
centroid - G, the 
torsion center - D*** 

and the bottom face - 
BF) 

600 × 476(476) x 
100 × 140(140) * 
1138 × 410(410) 
x 31 × 55(55) * 
600 × 476(350) x 
100 × 140(140) 
1138 × 410(410) 
x 31 × 70(55) 

Linear (ψ = 1.0) 
Distributed load 
(applied at the top 
face -TF, the centroid 
- G, the torsion center 
- D*** and the bottom 
face - BF) 
Point load (applied at 
the top face -TF, the 
centroid - G, the 
torsion center - D*** 

and the bottom face - 
BF) 

2320 × 900(950) x 
35 × 130(80) 
2440 × 800(950) 
x 40 × 80(60) 

Linear (ψ = 1.0) 
Distributed load 
(applied at the top 
face -TF, the centroid 
- G, the torsion center 
- D and the bottom 
face - BF) 
Point load (applied at 
the top face -TF, the 
centroid - G, the 
torsion center - D and 
the bottom face - BF) 

* Doubly symmetric cross-sections. 
* * Only applicable to mono-symmetric cross-sections / Not applicable to cases 
where ψ = − 1.0. 
* ** Only applicable to mono-symmetric cross-sections.  

Table 10 
Parameters range covered by the parametric study for prismatic beams.  

h/bmin b2/b1 t2/t1 zG
∗/(h/2) Wy,el,min/Wy,el,max Class 

1.26 to 
3.33 

0.84 to 
1.75 

1.00 to 
2.00 

0.58 to 
1.00 

0.41 to 1.00 1 and 
2  
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5.4. Non-prismatic and tapered mono-symmetric cross-sections 

Fig. 27 show the scatter plot rt x re for the mono-symmetric non- 
prismatic and tapered beams and Table 13 and Table 14 exhibit the 
comparison between the numerical lateral-torsional buckling resistance 
and the corresponding analytical results according to the AISC Guide 
[42], the General Method (GM), the method proposed by Marques et al. 
[40] and the proposed extension of the General Formulation (GF), in 
terms of rN ratio, for tapered and non-prismatic beams, respectively. 

For the tapered beams (see Table 13), AISC and GM show poor results 
with high scatter that are unacceptably conservative, with an average rN 
= 2.14 and a c.o.v of 29.85%, and an average rN = 1.97 and a c.o.v of 

16.73%, respectively, with AISC being insecure for a few slender beams. 
AISC and GM methods are time-consuming procedures, where the crit-
ical location is obtained through an iterative operation. Furthermore, 
the definition of the imperfection factors for GM is not clearly defined 
and may lead to inaccurate results. In contrast, the results of Marques 
et al. [40] proposal and GF are considerably closer to the numerical 
values, leading to an average rN = 1.20 and a c.o.v of 11.83%, and an 
average rN = 1.15 and a c.o.v of 7.52%, respectively, with GF exhibiting 
a similar performance when compared to the prismatic cases. The design 
approach of Marques et al. [40] proposal and GF present much higher 
accuracy than the methods proposed by AISC and GM, because: (i) they 
use generalized imperfection factors based on mechanically consistent 

Fig. 20. Cases for tapered members with mono-symmetric I-sections subjected to distributed load.  

Fig. 21. Cases for tapered members with mono-symmetric I-sections subjected constant bending moment.  

Fig. 22. Cases for parabolic members with mono-symmetric I-section subjected to distributed load.  
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Fig. 23. Cases for anti-parabolic members with mono-symmetric I-section subjected to distributed load.  

Fig. 24. Mode shape for uniform mono-symmetric beams subjected to linear bending moment (ψ = 1.0) - λz = 2.40.  

Fig. 25. Mode shape for tapered mono-symmetric beams subjected to distributed load (without restraints along the member) - λz = 1.30.  
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derivations; and (ii) take into account the effect of the taper. For the 
cases without intermediate bracings, the method proposed by Marques 
et al. [40] leads to better results because the generalized imperfection 
factors and the second-order critical location were specifically cali-
brated for web-tapered beams, by using an extensive numerical pro-
gram. However, the method is not applicable to partial lateral bracings 
(bracing to the tension flange), as shown in Table 13, leading to worse 
results for these cases. 

For the non-prismatic beams, only GM and GF are applicable (see 
Table 14). GM exhibits unsafe results for the parabolic beams and 
reasonable results for the anti-parabolic ones, leading to an average rN 
= 0.92 and a c.o.v of 28.96%, and an average rN = 1.30 and a c.o.v of 
8.92%, respectively for both cases. AISC prescriptions do not cover non- 
prismatic beams. GF gives accurate results (an average rN = 1.23 and a c. 
o.v of 7.37%, respectively, for the parabolic beams; and an average rN =

1.25 and a c.o.v of 7.48%, respectively, for the anti-parabolic beams). 

6. Worked example 

The following example aims to demonstrate the step-by-step the 
application of the General Formulation to mono-symmetric beams. 
Consider the beam shown in Fig. 28 in steel grade S235. The depth of the 
beam exhibits a parabolic variation with a mono-symmetric cross-sec-
tion, subjected to a distributed load (135 kN/m) applied at top face of 
the cross-section. The cross-section at the member ends is 500 × 200 
(150) x 12 × 50(30), with maximum section depth at mid-span equal to 
800 mm. The member ends exhibit simply supported conditions 
boundary conditions except for the in-plane rotation (rotation about the 

Table 11 
Comparison between numerical and analytical [20] values for the elastic critical 
bending moment for lateral-torsional buckling.  

Subset n Mcr,num/Mcr,anal 

Average COV (%) 

All 1296 0.97 6.91 
Linear Bending Moment 408 0.96 6.71 
Distributed Load 444 0.97 8.22 
Point Load 444 0.99 5.07  

Fig. 26. Scatter plot: (a) linear bending moment, (b) distributed load, (c) point load.  

Table 12 
Statistical parameters for prismatic members.  

Subset n rN,AISC rN,GC rN,GF 

Average Cov (%) Min Max Average Cov (%) Min Max Average Cov (%) Min Max 

All 1296 0.90 7.34 0.78 1.08 1.42 8.33 1.18 1.65 1.16 7.61 1.03 1.31 
Linear bending moment 408 0.93 7.34 0.81 1.08 1.41 8.33 1.20 1.58 1.13 7.61 1.03 1.31 
Distributed load 444 0.87 9.23 0.78 1.00 1.42 8.55 1.20 1.59 1.19 6.41 1.06 1.30 
Concentrated load 444 0.90 7.89 0.82 1.01 1.44 10.3 1.18 1.65 1.18 5.83 1.05 1.26  

Fig. 27. Scatter plot for the tapered and non-prismatic members.  
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y-axis) for the left end, which is restrained by a rotational spring with a 
stiffness equal to 3.5 × 105 kN.m/rad. Additionally, the tensioned flange 
is braced at mid-span. 

The application of the General Formulation is summarized in the 
flowchart shown in Fig. 29 for the design of a beam potentially failing by 
lateral-torsional buckling. Firstly, the user must determine the eigen-
mode and its corresponding load multiplier, αcr, by using a Linear 
Buckling Analysis. For the example shown in Fig. 28, the following can 
be retrieved: αcr = 1.35183; Fig. 30 presents separately the mode shape, 
in terms of lateral displacement (vcr) and twist rotation (θcr), and their 
first and second derivatives. 

Table 13 
Statistical parameters for the tapered beams.  

Subset n rN,AISC rN,GM rN,Marques et al.[40] rN,GF 

Average Cov (%) Average Cov (%) Average Cov (%) Average Cov (%) 

All 56 2.14 29.85 1.97 16.73 1.20 11.83 1.15 7.52 
Distributed load 44 2.39 20.08 2.09 10.13 1.17 10.14 1.15 4.60 
Liner bending moment 12 1.25 17.66 1.53 21.28 1.31 12.52 1.19 13.36 
No Restraints 14 2.01 27.95 1.98 16.06 1.17 13.65 1.21 10.89 
1 restraint at flange in tension 14 2.08 29.49 1.97 17.03 1.24 8.72 1.17 4.77 
2 restraints at flange in tension 14 2.12 31.79 1.86 17.66 1.28 11.77 1.12 6.17 
1 restraint at flange in compression 14 2.36 30.22 2.06 16.59 1.09 4.80 1.12 2.21 
Mono-symmetric cross-sections 40 2.04 28.39 1.99 17.92 1.18 10.98 1.15 6.66 
Doubly symmetric cross-sections 16 2.40 30.32 1.91 13.04 1.23 13.52 1.17 9.46  

Table 14 
Statistical parameters for the non-prismatic beams.  

Subset n rN,GM rN,GF 

Average Cov (%) Average Cov (%) 

Parabolic member 16 0.92 28.96 1.23 7.37 
Anti-parabolic member 16 1.30 8.92 1.25 7.48 

Note: AISC prescriptions do not cover non-prismatic beams. 

Fig. 28. Worked example: geometry and internal first-order bending moment diagram.  

Fig. 29. Application of the method for the lateral-torsional buckling mode.  
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Secondly, it is necessary to calculate the cross-section that corre-
sponds to the critical location, xm. This is taken as the location where v′′

cr 
is maximum. This position occurs in this case at 3.27 m from the left end 
of the beam. Hence, using Eq. (40), the equivalent elastic critical force is: 

Ncr,TF,eq =
EIz(xm)|v′′cr(xm) |

|vcr(xm) + z0θcr(xm) |
=

21000x104x4187.42x10− 8x| − 0.0484|
|0.0812 + 0.13749x1.4760|

= 1497.19kN
(42)  

and, using Eq. (35) the factor fη becomes: 

fη =
Ncr,TF

EIz(xm)

[

v′′cr(xm) +
Wz(xm)
Ww(xm)

Cw(xm)
Iz(xm)

(

θ″cr(xm) +
Ww(xm)
Wz(xm)

Iz(xm)
Cw(xm)

θ′cr(xm)h′
)]

= 0.5749
(43) 

Following the flowchart shown in Fig. 29, the utilization ratio is 
verified at multiple locations along the member. Thus, the member was 

Fig. 30. Mode shape for the parabolic member in terms of vcr(x) and θcr(x), and their derivatives.  

Fig. 31. Member discretization.  

Table 15 
Geometric properties and internal first order bending moment.  

n x 
(m) 

A (cm2) Wy (cm3) Wz (cm3) Iz (cm4) Cw 

(cm6) 
Ww (cm4) My,Ed (kN.m) 

1 0 195.40 3265.64 683.87 4183.13 1,424,738.15 4971.84 -285.86 
2 0.6 208.39 4354.23 687.77 4184.69 2,174,179.63 6188.10 -154.50 
3 1.2 218.50 5253.25 690.80 4185.90 2,866,576.03 7134.94 -45.81 
4 1.8 225.68 5917.93 692.95 4186.77 3,416,639.08 7807.84 40.00 
5 2.4 229.97 6325.02 694.24 4187.28 3,768,053.38 8209.63 102.89 
6 3.0 231.40 6462.49 694.67 4187.45 3,889,077.31 8343.64 142.93 
xm 3.27 231.11 6434.84 694.58 4187.42 3,864,640.42 8316.75 153.44 
7 3.6 229.97 6325.02 694.24 4187.28 3,768,053.38 8209.63 160.08 
8 4.2 225.68 5917.93 692.95 4186.77 3,416,639.08 7807.84 154.37 
9 4.8 218.50 5253.25 690.80 4185.90 2,866,576.03 7134.94 125.78 
10 5.4 208.39 4354.23 687.77 4184.69 2,174,179.63 6188.10 74.32 
11 6.0 195.40 3265.64 683.87 4183.13 1,424,738.15 4971.84 0  

Table 16 
Mode shape and its derivatives for lateral-torsional buckling, considering each cross-section discretized along the member.  

n x (m) h (mm) h′ ( − ) vcr ( − ) v′′
cr (m− 2) θcr ( − ) θ′

cr (m− 2) θ′′
cr (m− 2) δfl(x) ( − ) 

1 0 500 0 0 0 0 0 0 0 
2 0.6 608.25 0.1607 -0.0032 0.0268 0.5554 0.7287 -0.3721 0.2570 
3 1.2 692.49 0.1204 0.0140 0.0166 0.9366 0.5527 -0.2569 0.5157 
4 1.8 752.34 0.0796 0.0379 0.0009 1.2201 0.3917 -0.2734 0.7498 
5 2.4 788.08 0.0399 0.0629 -0.0251 1.4038 0.2195 -0.3011 0.9220 
6 3.0 800 0.0002 0.0788 -0.0435 1.4793 0.0320 -0.3229 0.9982 
xm 3.27 797.61 -0.0176 0.0812 -0.0484 1.4760 -0.0553 -0.3190 0.9956 
7 3.6 788.08 -0.0395 0.0795 -0.0422 1.4392 -0.1647 -0.3348 0.9603 
8 4.2 752.34 -0.0792 0.0653 -0.0253 1.2799 -0.3646 -0.3330 0.8121 
9 4.8 692.49 -0.1200 0.0422 -0.0043 1.0011 -0.5629 -0.3432 0.5785 
10 5.4 608.25 -0.1603 0.0169 0.0062 0.5967 -0.7921 -0.4559 0.2964 
11 6.0 500 0 0 0 0 0 0 0  
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discretized in 10 elements, 0.6 m long, as shown in Fig. 31. 
Table 15 summarizes the geometric properties of each cross-section 

in Fig. 31, as well as the associated internal first order bending moments. 
Table 16 summarizes the mode shape for the lateral torsional 

buckling mode, its derivatives and the general displacement given by Eq. 
(36), for each discretized cross-section. 

Finally, the global utilization ratio (εM(x)) for the lateral-torsional 
buckling mode is calculated using Eq. (37). The utilization ratio due to 
first order forces is determined for each cross-section by using the 
bending moment diagram shown in Fig. 28. The generalized imperfec-
tion (η) is calculated using Eq. (38): 

η(x) = αLT(x)(λ(x) − 0.2 )fη
⃒
⃒δfl(x)

⃒
⃒ = 0.5749αLT(x)(λ(x) − 0.2 )

⃒
⃒δfl(x)

⃒
⃒

(44)  

with the imperfection factor, αLT(x), calculated according to the FprEN 
1993–1-1 rules for the lateral-torsional buckling of doubly symmetric I- 
section welded prismatic members. 

Table 17 summarizes the application of Eq. (37), showing a 
maximum utilization ratio of 0.96, and Fig. 32 illustrates the variation of 
the utilization ratio along the beam. 

7. Conclusions 

The General Formulation proposed by Tankova et al. [8] was 
extended for mono-symmetric beams with variable geometry, and 
boundary conditions, subject to arbitrary loading. A calibrated 
advanced FEM numerical model was used to carry out a large parametric 
study on uniform, tapered, and non-prismatic beams. The parametric 
study contains mono- and doubly symmetric welded I-sections – steel 

grade S235, S355, and S460 (Class 1 and 2) - subjected to various 
bending moment diagrams and boundary condition types. It can be 
concluded that:  

• the AISC approach overestimates the buckling resistance of uniform 
mono-symmetric beams; however, considering the design value with 
the application of ϕ = 0.9, the average ration becomes close to 1.0. 
For tapered double-symmetric and mono-symmetric beams, AISC 
yields very conservative results (> 2.0);  

• the application of the General Case and the General Method as 
specified in EC3-1-1 lead to very conservative results for the most 
cases, the latter exhibiting unsafe results for some cases of the non- 
prismatic beams subset, as was already concluded in [7]; 

• the proposal of Marques et al. [40] leads to accurate and secure re-
sults for web-tapered beams. 

• The extended General Formulation leads to good and consistent re-
sults for all cases studied. For tapered beams, the accuracy is like 
Marques et al. [40]; for non-prismatic beams with complex bracing 
conditions and supports, the General Formulation maintains the 
good consistency with the prismatic cases. The results of the General 
Method are very poor. 

The General Formulation is easily incorporated in structural design 
software because its practical implementation consists of a sequence of 
cross-sectional checks. Finally, it is noted that in practice many beams 
will present class 4 cross sections. The authors are currently extending 
the General Formulation to cope with local buckling. 
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Table 17 
Lateral-torsional buckling verification.  

n x (m) λ αLT My,Ed (kN.m) εI
M(x) εII

M(x) εM(x)

1 0 1.70 0.51 -285.86 0.38 0.00 0.38 
2 0.6 1.76 0.58 -154.50 0.16 0.17 0.33 
3 1.2 1.81 0.64 -45.81 0.04 0.29 0.33 
4 1.8 1.84 0.64 40.00 0.03 0.44 0.47 
5 2.4 1.86 0.64 102.89 0.07 0.69 0.76 
6 3.0 1.86 0.64 142.93 0.10 0.86 0.95 
xm 3.27 1.86 0.64 153.44 0.11 0.86 0.96 
7 3.6 1.86 0.64 160.08 0.11 0.84 0.95 
8 4.2 1.84 0.64 154.37 0.12 0.64 0.75 
9 4.8 1.81 0.64 125.78 0.11 0.40 0.51 
10 5.4 1.76 0.58 74.32 0.08 0.22 0.30 
11 6.0 1.70 0.51 0 0.00 0.00 0.00  

Fig. 32. Utilization ratio for lateral-torsional buckling.  

J.O. Gomes Jr. et al.                                                                                                                                                                                                                           



Engineering Structures 305 (2024) 117758

20

ANNEX A. – Comparison between LBA and GMNIA Deformed shapes

Fig. A1. Mode shape for uniform doubly symmetric beams subjected to linear bending moment (ψ = 1.0) - λz = 1.90. 

Figure A.2. Mode shape for uniform doubly symmetric beams subjected to linear bending moment (ψ = 0.0) - λz = 2.40.  
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Figure A.3. Mode shape for uniform doubly symmetric beams subjected to linear bending moment (ψ = − 1.0) - λz = 2.40. 

Figure A.4. Mode shape for uniform mono-symmetric beams subjected to linear bending moment (ψ = 0.0) - λz = 2.40.  
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Figure A.5. Mode shape for uniform mono-symmetric beams subjected to linear bending moment (ψ = − 1.0) - λz = 2.40. 

Figure A.6. Mode shape for tapered mono-symmetric beams subjected to distributed load (with lateral restraint at compression flange) - λz = 1.30.  

ANNEX B. –Detailed statistical assessment for prismatic mono-symmetric cross sections  

Table B1 
Statistical parameters for linear bending moment distribution.   

Linear Bending Moment 

Subset n rN,AISC rN,GC rN,GF 

Average Cov (%) Min Max Average Cov (%) Min Max Average Cov (%) Min Max 

All 408 0.93 7.34 0.81 1.08 1.41 8.33 1.20 1.58 1.13 7.61 1.03 1.31 
S235 136 0.89 10.09 0.73 1.05 1.32 7.93 1.13 1.47 1.07 6.30 1.01 1.20 
S355 136 0.93 7.41 0.82 1.08 1.43 8.42 1.21 1.59 1.14 8.30 1.04 1.34 
S460 136 0.96 7.21 0.88 1.11 1.48 8.73 1.27 1.67 1.19 8.49 1.04 1.39 
ψ = 1.0 204 0.90 8.83 0.81 1.08 1.39 8.03 1.20 1.58 1.17 6.47 1.03 1.31 
ψ = 0.0 132 0.93 1.08 0.92 0.94 1.54 5.55 1.43 1.60 1.06 1.92 1.04 1.09 

(continued on next page) 
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Table B1 (continued )  

Linear Bending Moment 

Subset n rN,AISC rN,GC rN,GF 

Average Cov (%) Min Max Average Cov (%) Min Max Average Cov (%) Min Max 

ψ = − 1.0 72 0.99 2.17 0.96 1.02 1.46 5.20 1.34 1.52 1.02 1.80 1.00 1.05 
Stress on Fl. > Iz = Ten., ψ = 0; ψ = 1 192 0.89 8.23 0.81 1.08 1.43 8.37 1.20 1.62 1.14 7.08 1.06 1.31 
Stress on Fl. > Iz = Comp., ψ = 0; ψ = 1 120 0.93 1.36 0.91 0.95 1.50 6.05 1.38 1.57 1.12 1.07 1.11 1.14 
Mono-symmetric cross-section 348 0.92 7.81 0.81 1.08 1.42 7.88 1.20 1.58 1.14 7.45 1.06 1.31 
Doubly symmetric cross section 60 0.94 6.91 0.90 1.02 1.38 11.17 1.21 1.51 1.12 9.68 1.03 1.24   

Table B2 
Statistical parameters for distributed load.   

Distributed Load 

Subset n rN,AISC rN,GC rN,GF 

Average Cov (%) Min Max Average Cov (%) Min Max Average Cov (%) Min Max 

All 444 0.87 9.23 0.78 1.00 1.42 8.55 1.20 1.59 1.19 6.41 1.06 1.30 
S235 148 0.84 11.52 0.70 1.00 1.34 9.32 1.13 1.56 1.13 5.66 1.04 1.23 
S355 148 0.87 9.76 0.77 1.00 1.44 8.71 1.21 1.60 1.20 6.87 1.07 1.32 
S460 148 0.89 10.08 0.77 1.01 1.48 8.43 1.26 1.69 1.24 7.35 1.08 1.37 
Point load application = TF 120 0.78 16.25 0.78 1.00 1.44 10.67 1.21 1.75 1.23 7.78 1.07 1.35 
Point load application = BF 120 0.94 8.41 0.85 1.09 1.41 8.26 1.19 1.58 1.17 5.80 1.06 1.26 
Point load application = G 120 0.88 8.23 0.80 1.00 1.41 8.19 1.20 1.59 1.18 6.82 1.06 1.31 
Point load application = D 84 0.87 7.82 0.80 1.00 1.30 25.81 0.59 1.59 1.18 6.92 1.06 1.29 
Mono-symmetric cross-section 336 0.86 9.02 0.78 1.00 1.43 8.90 1.20 1.59 1.20 6.48 1.06 1.30 
Doubly symmetric cross section 108 0.90 10.80 0.81 1.00 1.38 8.59 1.24 1.47 1.17 7.22 1.08 1.25   

Table B3 
Statistical parameters for point load.   

Point Load 

Subset n rN,AISC rN,GC rN,GF 

Average Cov (%) Min Max Average Cov (%) Min Max Average Cov (%) Min Max 

All 444 0.90 7.89 0.82 1.01 1.44 10.03 1.18 1.65 1.18 5.83 1.05 1.26 
S235 148 0.88 11.43 0.75 1.00 1.36 10.93 1.11 1.60 1.14 5.43 1.03 1.24 
S355 148 0.91 8.21 0.83 1.02 1.45 10.15 1.19 1.67 1.18 6.05 1.05 1.27 
S460 148 0.93 7.38 0.84 1.01 1.49 9.54 1.23 1.67 1.21 6.45 1.06 1.33 
Point load application = TF 120 0.80 17.46 0.64 1.00 1.44 10.75 1.19 1.65 1.19 6.01 1.04 1.28 
Point load application = BF 120 0.99 6.29 0.93 1.14 1.43 10.49 1.16 1.64 1.16 6.19 1.04 1.24 
Point load application = G 120 0.92 7.15 0.83 1.01 1.44 10.24 1.18 1.66 1.18 6.23 1.04 1.29 
Point load application = D 84 0.91 8.05 0.83 1.01 1.45 10.18 1.19 1.67 1.18 6.28 1.05 1.25 
Mono-symmetric cross-section 336 0.90 8.07 0.82 1.01 1.45 9.86 1.18 1.65 1.18 6.24 1.05 1.26 
Doubly symmetric cross section 108 0.91 9.22 0.84 1.00 1.39 11.90 1.20 1.51 1.16 5.75 1.09 1.22  
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