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Abstract 

With the improvements in computational power and advances in chip and sensor technology, the applications of machine learning 
(ML) technologies in structural health monitoring (SHM) are increasing rapidly. Compared with traditional methods, deep learning 
based SHM (Deep SHM) methods are more efficient and have a higher accuracy. However, due to the black box nature of deep 
learning, the trained models are usually difficult to interpret, which blocks their practical application. Therefore, it is of great 
importance to develop explainable artificial intelligence (XAI) methods to understand the internal decision-making mechanisms of 
damage classification in Deep SHM. In this paper, a novel XAI algorithm named Deep Gradient-weighted Class Activation 
Mapping (Deep Grad CAM) is proposed by combining the existing method Grad CAM with the convolutional neural network 
(CNN) deconvolution mechanism. In this paper, Deep Grad CAM is used to interpret a one-dimensional convolutional neural 
network trained to detect bolt loosening based on guided wave propagation. The interpretation performance of Deep Grad CAM is 
compared with Grad CAM, and their performances are quantified using Infidelity. The results show that the Infidelity of Deep 
Grad CAM is much smaller than that of Grad CAM, indicating significant improvements in explanation accuracy and reliability. 
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1. Introduction 

Bolted connections are widely used due to their low cost, convenient installation and disassembly (Wang et al. 
2022). However, during their service life, bolts often undergo fatigue loads or corrosion, which can lead to the 
reduction of preload force and separation of the bolt connections. If bolt loosening cannot be detected in a timely 
manner, it may affect the structural integrity, reduce the load-bearing capacity and could ultimately lead to catastrophic 
accidents (Thoppul et al. 2009, Qin et al. 2022). Therefore, detecting the looseness of bolted joints is crucial for 
ensuring the safe operation of structures or components. 

In recent decades, numerous new SHM methods for detecting bolt looseness have emerged, such as the 
electromechanical impedance method (Zhuang et al. 2018, Wang et al. 2021), fiber Bragg grating sensors (Ren et al. 
2018, Yeager et al. 2018), guided wave-based methods (Fierro et al. 2018, Tola et al. 2020), and so on. However, 
these methods typically necessitate specialized high-precision instruments and dedicated post-processing software, 
which rely on manual operation by professionals. Large-scale bolt looseness detection relying on manual methods can 
be costly and time-consuming, particularly for extreme working conditions such as high temperature, high pressure, 
icing or strong winds. Therefore, there is a pressing need for efficient, accurate, and cost-effective automated SHM 
methods that are less reliant on human intervention. 

As a breakthrough in artificial intelligence, deep learning (DL) can overcome the aforementioned problems. In 
recent years, many Deep SHM methods have been proposed (Yue et al. 2016, Abdeljaber et al. 2017, Azimi et al. 
2020, Ma et al. 2021, Nokhbatolfoghahai et al. 2022, Cristiani et al. 2022, Hamishebahar et al. 2022, Pan et al. 2023, 
Zhang et al. 2023, Dang et al. 2023). Among them, CNN has received special attention due to its stronger 
generalization performance as the result of its deeper network structure. It can automatically process and learn the 
optimal features in raw data, achieving highly accurate classification without requiring data preprocessing (Tang et al. 
2023). However, the complexity of CNN structures, and advanced AI algorithms in general, often makes their results 
challenging to explain and prove to humans. Clearly, an AI model's prediction accuracy on a finite data set does not 
guarantee its performance on  (Ewald et al. 2022). This raises a critical question: in what way can human decision-
makers trust the results of AI algorithms and prove their rationality? 

This is why explainable artificial intelligence (XAI) is gaining popularity as a new field in machine learning 
(Bhakte et al. 2022, Al-Bashiti et al. 2022). XAI methods focus on interpreting the data processing operations 
performed by neural networks, enabling us to comprehend the underlying principles behind accurate model 
predictions(Meister et al. 2021). For a deep CNN, the convolutional layers often contain the most abundant spatial 
and semantic information, which is easier to interpret than the highly abstract information contained in fully connected 
layers. Therefore, Grad CAM (Selvaraju et al. 2019), which focuses on convolutional layer feature interpretation and 
has high generalization ability, is popular for explaining two-dimensional CNN (2D CNN).  

However, Grad CAM may not acclimatize in a one-dimensional CNN (1D CNN) which is powerful in automatic 
feature extraction for processing long-length time series signals (Ince et al. 2016, Kiranyaz et al. 2021). In general, 
the important score vector obtained by Grad CAM needs to be mapped into the input space by linear interpolation. 
However, in 1D CNN, the dimensions of convolutional layers rapidly decrease. The linear mapping of Grad CAM 
result tends to assign high importance score over an extensive length of time series signal input, which might not be 
the accurate interpretation of 1D CNN.  

Therefore, this paper proposes a new XAI method named Deep Grad CAM that takes into account the hierarchical 
structure of the CNN and utilizes a deconvolution mechanism for the backpropagation of explanation results. 
Specifically, a 1D CNN is trained using the monitored Lamb wave signals to detect bolt connections in a double-layer 
aluminum plate. Then, the model is interpreted using Grad CAM and Deep Grad CAM to investigate the reference 
basis for the model's decision-making process. The interpretability accuracy and reliability of the two algorithms are 
evaluated using the Infidelity. 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2023.12.023&domain=pdf
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2. Explainable artificial intelligence 

2.1. Gradient-weighted Class Activation Mapping (Grad CAM) 

Previous work has proven that convolutional layers naturally preserve spatial information lost in fully connected 
layers, making the features captured by them more easily understood from a physical perspective. Therefore, Selvaraju 
et al. (Selvaraju et al. 2019). proposed the Grad CAM algorithm for 2D CNN, which uses the gradient information 
flowing into the last convolutional layer of the CNN to assign importance values to each neuron in order to obtain 
specific interest decisions. Grad CAM can be used to evaluate the importance of each input signal in this work. The 
importance score vector of the l-th activation layer calculated from Grad CAM algorithm can be represented as: 

k

l c k
kI ReLU A 

=  
 
  (1) 

where ReLU is the activation function of rectified linear unit, k is the k-th channel, c represents the classes, kA  respects 
to the activation of the corresponding convolutional layer in channel k, and c

k  is the weight of  kA  which can be 
expressed as:  

1 c
c

n
k

n
kN A

y 
=

  (2) 

where cy represents the class score predicted by the model, k
nA  represents the n-th data of kA , and N is the length of 

the activation layer.  
In general, the important score vector obtained by Grad CAM needs to be mapped into the input space by linear 

interpolation, so the result of which is a coarse localization that represents where the model has to look to make the 
particular decision (Selvaraju et al. 2019). But in the application of 1D CNN in this paper, to avoid overfitting and 
high training costs due to excessive parameters, large kernel sizes and strides are set in the convolutional layers. As a 
result, the input vector undergoes rapid dimension reduction after each convolutional layer. In this case, the linearly 
mapping importance score vector back to the input space would require a significant dimensionality increase, which 
may result in an excessive area in the input vector being marked as important, thus affecting the accuracy of the 
explanation. Therefore, based on Grad CAM, the novel Deep Grad CAM algorithm proposed in this paper incorporates 
the hierarchical structure of 1D CNN convolutional layers to propagate the importance vector using its 
backpropagation mechanism instead of linear mapping. 

2.2. Deep Gradient-weighted Class Activation Mapping (Deep Grad CAM) 

To account for the limitation of the Grad CAM algorithm for 1D CNN, the backpropagation mechanism of the 1D 
CNN is used to propagate the importance score vector in the form of deconvolution to the input vector space in the 
Deep Grad CAM. Specifically, the α-β rule (Bach et al. 2015) is applied to propagate lI  layer by layer: 

1

j

l lj
i i j

i

i
j i i j

w
a w

I I
b

a
+

+ +
− =

+
 (3) 

where 1l
iI −  represents importance score of the i-th activation in (l−1)-th layer, l

jI  represents importance score of the 
j-th activation in l-th layer. ia  represents the activation value at the i-th point in the (l−1)-th layer. ijw+  and jb+  are the 
positive parts of the network weights and biases, respectively. By propagating lI  forward layer by layer, the 
importance score for the input vector can eventually be obtained. 

4 Muping Hu, Nan Yue, Roger M. Groves 

2.3. Infidelity 

Infidelity is defined as the expected difference between the two terms: (a) the dot product of the input perturbation 
to the explanation function and (b) the output perturbation. Therefore, it actually measures the consistency between 
model predictions and model explanations, and can be used to evaluate the reliability of XAI algorithms. Given a 
neural network function f , explanation function  , the Gaussian perturbations R  with probability measure R , 
Infidelity can be expressed as: 

( )2
~INFD( , , ) ( , ) ( ( ) ( ))R

T
R R R

  =  − − −  
f x f x f x f xE  (4) 

3. Numerical Simulation 

3.1. Simulation model and Guided wave propagation 

The propagation of Lamb waves in a double-layer aluminum plate was simulated using ABAQUS software. The 
Young's modulus of the aluminum plate is 71 GPa, density is 2700 kg / m3, and Poisson's ratio is 0.33. Both layers of 
the aluminum plate are 2 mm thick and are in contact by using Tie. A schematic of the aluminum plate and transducer 
array is shown in Fig. 1. (a), with four 8 mm diameter piezoelectric sensors (PZT) placed on the aluminum plate. PZT1 
was used as the excitation source, while the other three sensors acted as receivers. A steel bolt with a diameter of 6 
mm was placed between PZT2 and PZT4, and the bolt hole on the plate is 6.6 mm. The Young's modulus of the bolt 
is 206 GPa, density is 7800 kg / m3, and Poisson's ratio is 0.3. The propagation of Lamb waves in the plate was studied 
under both tightly connected and loosened conditions of the bolt. In the tightly connected case (Connected plate), the 
bolt and the aluminum plate were in contact by using Tie. In the loosened case (Damaged plate), the interactions 
between them are removed. 

The numerical simulation model of the aluminums plate is shown in Fig. 1. (b). A concentrated force is applied at 
PZT1 to excite the Lamb wave, and the excitation signal is a tone burst of 3 cycles with a Hanning- window centered 
at 200 kHz, which is symmetrically loaded along the thickness direction of the plate. The Lamb waves excited by this 
signal only contain the S0 mode. As the shortest wavelength of the S0 mode Lamb wave at 200 kHz is 15.55 mm, the 
mesh size was set to 1 mm. The element type is the eight-node brick element with reduced integration (C3D8R), with 
a total of 641,528 elements. The time increment step was set to 0.01 μs, the sampling frequency is 10 MHz, and the 
recorded time length was 0.12 ms. The explicit dynamics solver was used. 

 

Fig. 1. (a) Schematic of the aluminum plate and transducer array; (b) Simulation model of the bolted plate  
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PZT1 to excite the Lamb wave, and the excitation signal is a tone burst of 3 cycles with a Hanning- window centered 
at 200 kHz, which is symmetrically loaded along the thickness direction of the plate. The Lamb waves excited by this 
signal only contain the S0 mode. As the shortest wavelength of the S0 mode Lamb wave at 200 kHz is 15.55 mm, the 
mesh size was set to 1 mm. The element type is the eight-node brick element with reduced integration (C3D8R), with 
a total of 641,528 elements. The time increment step was set to 0.01 μs, the sampling frequency is 10 MHz, and the 
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Fig. 1. (a) Schematic of the aluminum plate and transducer array; (b) Simulation model of the bolted plate  
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The propagation of Lamb waves in the Connected plate and Damaged plate are shown in Fig. 2 and Fig. 3, 
respectively. It can be seen that when the aluminum plate and bolt are tightly connected, there are clear reflection 
when the Lamb waves reach the bolt, and some of the Lamb waves become trapped in the bolt and continue to reflect 
inside it before spreading outwards. Therefore, the bolt becomes a weak secondary excitation source where a sustained 
excitation phenomena can be observed. In the case of the Damaged plate, there is no connection between the bolt and 
the aluminum plate, an obvious reflection of Lamb waves can be observed at the periphery of bolt hole, but the Lamb 
waves cannot propagate inside the bolt, so the phenomenon of sustained secondary excitation disappears. It can be 
seen from the comparison that the reflection phenomenon is more complex in the case of the tightly connected plate, 
because in addition to the reflection at the bolt hole, there are also reflection waves from inside the bolt. 

 

Fig. 2.  Propagation of Lamb waves in the Connected plate: (a) 2.4 × 10-5 s; (b) 3.6 × 10-5 s; (c) 4.8 × 10-5 s; (d) 6.0 × 10-5 s 

 

Fig. 3. Propagation of Lamb waves in the Damaged plate: (a) 2.4 × 10-5 s; (b) 3.6 × 10-5 s; (c) 4.8 × 10-5 s; (d) 6.0 × 10-5 s 

3.2. Signal analysis and CNN architecture 

Excitation was applied at PZT1 on the Connected and Damaged plates, and signals were received at PZT2, PZT3, 
and PZT4, with a signal length of 1200 samples. Then, 200 sets of Gaussian white noise are added to each signal to 
simulate experimental noise. The signal-to-noise ratio (SNR) after adding white noise is 20 dB. The definition of SNR 
is: 

( )10( ) 10log /signal noise SNR dB P P=  (5) 
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The noisy signals are utilized to build the training and testing sets for 1D CNN. As shown in Fig. 4, the signals 

received by PZT2, PZT3, and PZT4 are concatenated end-to-end to form a new one-dimensional vector of length 3600, 
which serves as the input of 1D CNN. The residual signal is the difference between the signals received from the 
Connected plate and the Damaged plate. As can be seen from the figure, each individual signal consists of three parts: 
direct wave, bolt reflection wave (Bolt R) or hole reflection wave (Hole R), and boundary reflection wave. The law 
reflected in the signals is consistent with that in the wave propagation diagram in section 3.1: the bolt reflection wave 
is more complex than the hole reflection wave, with a larger amplitude and more wave packets. And it can be inferred 
from the residual signal that besides the differences caused by the bolt and hole reflection, there are also significant 
differences in the boundary reflection wave between the two signal groups. 

The signals were used for binary classification by the 1D CNN, with a label of 0 representing a securely connected 
bolt and plate, and a label of 1 representing a loosened bolt. The size of the training set is 200 × 3600, with 200 
samples in total, 100 sets of samples from the Connected plate and 100 sets of samples from the Damaged plate, and 
each input vector has a length of 3600. The size of the testing set is 200 × 3600. The CNN model has eight layers, 
including one input layer, three convolutional layers, three fully connected layers, and one output layer. The input 
layer has a size of 3600. The output channels of the convolutional layers are set to 64, 128, and 256, with kernel sizes 
of 40, 20, and 10, a stride of 2, and a pooling layer size of 2. The three fully connected layers have 2048, 512, and 128 
neurons, respectively, and use Rectified Linear Unit (ReLU) as the activation function. The length of the output layer 
is 2. 

 

Fig. 4. Received signals by PZT2, PZT3 and PZT4 (a) from Connected Plate (b) from Damage Plate and (c) Residual signal between the 
Connected and Damage Plate 
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4. Explanation of CNN 

4.1. X AI result 

The 1D CNN achieves a testing accuracy of 100%. Then, Grad CAM and Deep Grad CAM are used for explainable 
analysis of the well-trained model. Fig. 5 displays the result of importance scores of these two algorithms in the form 
of saliency map, where the regions closer to red indicate higher importance to the 1D CNN's decision, while closer to 
blue indicate lower importance. For the results of Grad CAM, almost all information in the signal is considered 
important as the signal is colored from start to end. Specifically, for Class 0, Grad CAM considers the boundary 
reflection wave in PZT2 and PZT4 and the direct wave in PZT4 to be the most important for CNN decision-making. 
The pattern of Class 1 is very similar to that of Class 0, the red regions appear in the direct wave and boundary 
reflection wave of PZT2 and PZT4. But it can also be observed that for both classes, a large portion of the high-score 
regions are distributed in the flat sections of the signal that are considered to not carry useful information. 

The results of Deep Grad CAM are more concentrated than those of Gram CAM. For Class 0, the high-score regions 
identified by Deep Grad CAM coincide very well with the regions of large absolute residual signal values, and the 
algorithm considers the bolt and boundary reflection wave received by PZT2 and PZT4 to be very important, which 
is consistent with the logic of signal analysis because signals received by PZT2 and PZT4 have greater differences on 
the Connected and Damaged plates. But the direct wave of PZT3 and PZT4 is also considered important. For Class 1, 
Deep Grad CAM suggests that 1D CNN relies more on the signals from PZT3 and PZT4 for classification and 
considers direct waves more important, which is very different from Class 0. From the above comparison, it can be 
seen that the results of Deep Grad CAM are easier to understand because its colored regions are concentrated on the 
location of wave packets, and the high-score regions identified by it have a higher degree of coincidence with the 
residual signal, which is more consistent with human expert knowledge of SHM. 

 

Fig. 5. Example of the importance score for the signals from class 0 and 1 (a) Analyzed by Grad CAM (b) Analyzed by Deep Grad CAM and (c) 
Absolute value of residual signal between class 0 and class 1. 

Fig. 6 compares the Infidelity of Grad CAM and Deep Grad CAM for two classes. A smaller Infidelity value 
indicates a closer model prediction and model explanations, and the higher the reliability of the XAI. As shown in the 
figure, both XAI algorithms exhibit lower Infidelity on Class 1, which means both them have a better performance on 
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the explanation for the classification of the signals from Class 1. The signals from class 0 are more complex, carrying 
more bolt reflection information. Therefore, it can be inferred that when the data to be explained is more complex, the 
uncertainty of the model explanation also increases. Furthermore, on both classes, the Infidelity of Deep Grad CAM 
is much lower than that of Grad CAM, indicating that the former provides more accurate explanations of the CNN 
model and its reliability is significantly higher. 

 

Fig. 6. The Infidelity results of Grad CAM and Deep Grad CAM on testing database 

5. Conclusions 

This paper numerically analyses the propagation of guided waves in bolted connection plates, classifies bolt 
connections using 1D CNN, and then uses Deep Grad CAM and Grad CAM to analyze the main reference features of 
CNN during classification in the form of saliency maps. The performance of the two XAI algorithms was evaluated 
using Infidelity, and the following conclusions are drawn: 

1. Bolt reflection is more complex than hole reflection. The wave propagation and signal analysis diagrams show 
that a bolt, when tightly connected to a plate, becomes a secondary excitation source during the propagation of Lamb 
waves. The Lamb waves continue to reflect inside the bolt and spread outward, resulting in received bolt reflection 
waves having more wave packets and complex modes. 

2. Deep Grad CAM's importance score results are more consistent with the analysis logic of SHM. The saliency 
map shows that the high-score region of Deep Grad CAM matches the peak region of the residual signal better. Such 
a high degree of agreement indicates that Deep Grad CAM considers that 1D CNN, like humans, pays more attention 
to the parts with greater differences between two contrasting signals. 

3. Deep Grad CAM is more reliable. Infidelity comparison results reveal that the Infidelity of both damage classes 
of Deep Grad CAM is far smaller than that of Grad CAM. Which means that the explanation of Deep Grad CAM is 
closer to the prediction of the CNN model, and therefore its accuracy is higher. 
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