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A B S T R A C T   

Developing comprehensive health indicators (HIs) for composite structures encompassing various damage types 
is challenging due to the stochastic nature of damage accumulation and uncertain events (like impact) during 
operation. This complexity is amplified when striving for HIs independent of historical data. This paper in-
troduces an AI-driven approach, the Hilbert transform-convolutional neural network under a semi-supervised 
learning paradigm, to designing reliable HIs (fulfilling requirements, referred to as ’fitness’). It exclusively uti-
lizes current guided wave data, eliminating the need for historical information. Ensemble learning techniques 
were also used to enhance HI quality while reducing deep learning randomness. The fitness equation is refined 
for dependable comparisons and practicality. The methodology is validated through investigations on T-single 
stiffener CFRP panels under compression-fatigue and dogbone CFRP specimens under tension-fatigue loadings, 
showing high performance of up to 93% and 81%, respectively, in prognostic criteria.   

1. Introduction 

Composite structures, valued for their lightweight and high-strength 
attributes, are increasingly utilized in industries like aerospace. Accu-
rately predicting the health state and remaining useful life (RUL) [1,2] 
of these structures is crucial for safety-critical applications. However, 
this task is challenging due to stress redistribution from their 
non-homogeneous and multi-interface structure, along with potential 
manufacturing imperfections [3,4]. In that sense, structural health 
monitoring (SHM) [5] becomes essential to reveal complex 
historical-dependent patterns, such as progressive damage scenarios in 
composite structures, and unexpected occurrences, such as a bird strike 
on an aircraft in operation [6]. While SHM is crucial for diagnostics, 
prognostics and health management (PHM) [7,8] is an emerging tech-
nology as an extension of SHM that is more thorough and includes RUL 
prediction. 

A health indicator (HI) is a valuable index that is required to first 
indicate the structure’s health status (diagnostics) and then to predict its 
RUL (prognostics) [9,10]. However, measuring or estimating the health 
status of composite structures in a comprehensive way, where all types 
of damage and degradation are taken into account, is not feasible yet, 
especially during operation and cyclic fatigue loading. Thus, designing a 

HI that meets the requirements for both diagnostics and prognostics is 
challenging. The requirements for a HI from the prognostics’ standpoint 
are: If no maintenance and self-healing take place, a structure’s HI 
should decrease throughout operational conditions due to damage 
accumulation. This fact should be incorporated into the design of a HI 
and examined using a metric known as monotonicity (Mo) [11]. The 
comprehensive HIs of an ensemble of associated units that have reached 
their end-of-life (EoL) should ideally arrive at the same value, signifying 
the failure threshold. However, HIs at the EoL change and do not always 
end up with an identical value; this discrepancy can be quantified using 
a metric called prognosability (Pr) [12]. HIs are more predictable if they 
have comparable trends and a similar correlation in terms of usage time 
for similar units. By using the trendability (Tr) criterion [9,12], it is 
possible to quantify the resemblance between HIs. A HI must satisfy the 
three evaluation criteria of Mo, Pr, and Tr from the viewpoint of prog-
nostics, which is the primary focus of the current work. 

The fact that RUL prediction and HI construction models are 
historical-dependent is a common drawback. It means that to enhance 
the performance of the HI and RUL prediction models, the temporal 
relationship between historical data from the starting point until the 
present moment should be considered [1,13,14]. As a result, prognostic 
and HI construction models function less efficiently when prior infor-
mation, either entirely or partially from the beginning, is missing. This 
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might occur for various reasons during operation due to unavailable 
monitoring systems, misfunctioned sensors, etc. This paper addresses 
the aforementioned challenge by developing a new data-driven 
approach designed with signal processing and artificial intelligence 
(AI) elements. 

Firstly, a robust SHM method is needed to extract informative, 
historical-independent patterns. The guided wave-based SHM 
(GWSHM) technique can be a potential candidate that can generate such 
historical-independent patterns [15]. This active SHM technique ex-
hibits the capability to estimate the size and location of damage that has 
progressed from the initial stages up to the current time [16,17]. It can 
also be used to estimate the stiffness reduction in the structure resulting 
from progressive damage and material degradation, based on only the 
most recent recorded data [18]. GWs are among the most widely utilized 
SHM methods for thin-walled structures in the aviation industry owing 
to its capability of interrogating the whole structure with a low atten-
uation ratio and detecting small-sized damages with high accuracy [19, 
20]. However, GWs pose a challenge as they not only convey informa-
tion about damage but also carry signals that are susceptible to inter-
ference from reflection and scattering phenomena at structural 
boundaries. Environmental conditions can further affect the reliability 
of GW signals [21,22]. Moreover, GWs are dispersive and have a 
multimodal nature, meaning that many wave modes may exist in a 
recorded signal, and their characterization depends on the frequency, 
material stiffness, density, and thickness of the structure [23]. Different 
structural geometries under diverse loading conditions necessitate 
varying numbers and positioning of sensors, often requiring distinct data 
processing algorithms. Therefore, the diagnosis and prognosis of 

composite structures via GWs is a hard task when it comes to correlating 
the GW signals with the health state of the entire structure. This paper 
introduces an adaptive approach designed to flexibly accommodate 
different GW sensor numbers, networks, and setups to address variations 
in the geometry, layups, and loading conditions of composite structures. 

GW signals have been investigated to discriminate specific damage 
modes, such as delamination and matrix cracks [24], or to predict 
damage severity under fatigue loading [25,26]. However, since the 
degradation of composite structures is a combined process of multiple 
damage mechanisms evolving stochastically, the quantification of a 
specific damage type and location may create limited information for 
the health state projection of the structure. A HI may be seen as adopting 
engineers’ perspectives and attempting to determine how all the distinct 
(microcrack, crack, delamination, fiber breakage, etc.) and spatially 
dispersed fatigue damage contributes to overall structural deterioration, 
which will be useful from a PHM and structural design standpoint. 

In addition to the previously discussed aspects, it is important to note 
that translating GW data to the appropriate HI value at each time step 
when GW inspections are conducted is a challenging task. In fact, a 
model is needed to map thousands of data points (as can be seen in 
experimental campaigns that generated extensive datasets—cite NASA 
and ReMAP) to a single HI value at the current time, regardless of the 
prior HIs. To address this challenge, data-driven approaches, especially 
AI, have drawn attention in diagnostic [27–30] and prognostic [13,31] 
applications thanks to their ability to discover complex and nonlinear 
relationships between data. Nevertheless, several constraints exist to 
extract proper HIs from GW data: 

Abbreviations 

AI Artificial Intelligence 
BiLSTM Bidirectional LSTM 
C–C Compression-Compression 
CFRP Carbon Fiber Reinforced Polymer 
CNN Convolutional Neural Network 
D Dropout 
DL Deep Learning 
EL Ensemble Learning 
EoL End-of-Life 
FC Fully Connected 
FIR Finite Impulse Response 
GW Guided Wave 
GWSHM Guided Wave-based Structural Health Monitoring 
HI Health Indicator 
HT Hilbert Transform 
HT-FIR Hilbert Transform FIR 
HT-SSCNN Hilbert Transform - Semi-Supervised CNN 
Leaky ReLU Leaky Rectified Linear Unit 
LOOCV Leave-One-Out Cross-Validation 
LSTM Long Short-Term Memory 
MMK Modified Mann-Kendall 
Mo Monotonicity 
MSE Mean Squared Error 
PHM Prognostics and Health Management 
Pr Prognosability 
RMSE Root-Mean-Square Error 
RUL Remaining Useful Life 
SAE Simple Averaging Ensemble 
SHM Structural Health Monitoring 
SSCNN Semi-Supervised CNN 
SSL Semi-Supervised Learning 
SSP Single-Stiffened Composite Panel 

T-T Tension-Tension 
Tr Trendability 
WAE Weighted Averaging Ensemble 

Symbols 
x(tp) HI at the time of tp 

x(ti) HI at the time of ti 
M number of units (specimens) 
xj HI for the jth unit out of M units 
xk HI for the kth unit out of M units 
Nj Number of measurements for the jth unit 
Nk Number of measurements for the kth unit 
cov(xj,xk) Covariance where xj and xk are HIs 
sgn(•) Signum function 
σxj Standard deviation of xj 

σxk Standard deviation of xk 
τ Test unit 
τ′ All units (except for the test unit) 
Mτ Number of test units 
Mτ′ Number of all units 
Ti Simulated HI as target value at time step i 
HIi Network output for time step i 
H { • } Hilbert transform 
j Imaginary part 
β Shape parameter 
t Operating time 
Na Number of actuators 
Ns Number of sensors 
fk kth base learner model 
ωk weight for kth base learner model 
ωk normalized weight for kth base learner model 
Lregress Loss function of regression model  
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1. Composite structures lack comprehensive HI labels, limiting the 
applicability of supervised models for this regression task. 

2. The data used for modeling is only available at individual GW in-
spection time steps, without access to prior or posterior data. How-
ever, the HI model requires optimization considering the entire 
historical trajectory, posing challenges in efficiently updating model 
parameters; e.g., an error value is needed to tune the weights of an 
artificial neural network (ANN) for each backward followed by the 
feedforward, which in this case is not doable directly based on 
evaluation criteria.  

3. Although the set of evaluation criteria (i.e., Mo, Pr, and Tr) can be 
implemented into an objective function termed the “fitness” func-
tion, it is not differentiable [31]. Thus, fitness cannot be imple-
mented in the loss function of back-propagation-based algorithms 
like ANN. While derivative-free models like Bayesian optimization 
and reinforcement learning exist, they face constraints in handling a 
high number of inputs, require feedback from the objective function 
for each iteration, and are comparatively slower than 
back-propagation-based models. 

To tackle the above-mentioned challenges as well as previous limi-
tations, an approach called Hilbert transform - semi-supervised con-
volutional neural network (HT-SSCNN) is introduced to construct HIs 
fulfilling evaluation criteria based on historical-independent GW data. 
First, the GW signals recorded from the network of sensors and their 
envelopes are extracted using the Hilbert transform (HT). Then, these 
envelopes are integrated to reshape a 3D form input to feed the subse-
quent deep learning (DL) model. Convolutional neural network (CNN) 
architectures are designed to fuse the 3D inputs trained by a semi- 
supervised learning (SSL) paradigm, and their inherent randomness 
and uncertainty are mitigated by ensemble learning (EL). All GW data 
generated from different triggering frequencies is also fused during the 
EL step. Six methods, including four average-based and two DL net-
works, are considered for EL. 

Two main datasets are investigated to validate and discuss the pro-
posed methodology.  

1. ReMAP1: compression-compression (C–C) fatigue tests on T-single 
stiffener composite panels, which include impacts and disbond 
damage [32].  

2. NASA: tension-tension (T-T) fatigue tests on composite dogbone 
specimens with different layups [33]. 

The fitness function is redefined for evaluating the test phase of the 
DL model to provide a more trustworthy foundation for comparison and 
enhance the practical reliability of the standard. Ablation experiments 
are conducted, including variations in dataset division and leave-one- 
out cross-validation (LOOCV), confirming the generalizability of the 
approach. The contribution of this work lies in the development of a 
robust and reliable HI construction model, generating historical- 
independent HIs suitable for RUL estimation of composite structures 
with different layups, geometry, and loading conditions. 

2. Background 

Two confirmed evaluation metrics of HIs in the field of PHM are 
employed to evaluate the proposed methodology. The first metric is the 
Fitness function, compounding prognostic criteria as described in Section 
"HIs’ criteria.” The root-mean-square error (RMSE) is another metric to 
measure deviation from the ideal HIs. 

2.1. HIs’ criteria 

This subsection begins by introducing the prognostic metrics, which 
will be modified in the present work for consideration of only test units 
rather than both training and test units.  

I. HIs’ criteria on all units 

Due to the high importance of HIs’ evaluation metrics amongst 
different stages of the methodology, they are introduced at the outset. 
The evaluation criteria of HIs is based upon three established criteria, 
namely Mo, Pr, and Tr [31,34]. These metrics are defined as follows: 

Mo=
1
M

∑M

j=1

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

1
Nj − 1

∑Nj

i=1

∑Nj

p=1,p>i

(
tp − ti

)
.sgn

(
x
(
tp
)
− x(ti)

)

∑Nj

p=1,p>i

(
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)

⃒
⃒
⃒
⃒
⃒
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⃒
⃒
⃒

.100% (1)  

Pr = exp

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

j=1

⃒
⃒
⃒
⃒
⃒
xj
(
Nj
)
−

[

1
M

∑M

i=1
xi(Ni)

]⃒
⃒
⃒
⃒
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2
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√
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1
M
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j=1
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Nj
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⃒
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(2)  

Tr = min
j,k

⃒
⃒
⃒
⃒
cov

(
xj, xk

)

σxj σxk

⃒
⃒
⃒
⃒ ; j, k = 1, 2,…,M (3)  

where x(tp) and x(ti) indicate HI at the times of tp and ti, respectively. 
The sgn(•) is the signum function and the cov(xj, xk) is the covariance, 
where xj and xk are HIs for the jth and kth unit (out of M units – composite 
specimens) with Nj and Nk measurements (time steps), respectively. σxj 

and σxk denote standard deviations of xj and xk, respectively. Modified 
Mann-Kendall (MMK) is the evaluation metric chosen for Mo in Eq. (1). 
MMK is more noise-resistant than the Sign and Mann-Kendall versions 
and takes into account the correlation between data points with time 
gaps greater than one time unit [31,35]. Ratings for the three HIs metrics 
(Mo, Pr, and Tr) range from 0 to 1, with a score of 1 denoting ideal HI 
performance. In light of these criteria, the following formulation for the 
fitness metric is used: 

Fitness= a.MoHI + b.PrHI + c.TrHI (4) 

The fitness metric for HIs ranges from 0 (indicating minimal quality) 
to 3 (indicating maximal quality), assuming that the control constants a, 
b, and c are each equal to 1. The subscript HI refers to “health indicator”.  

II. HIs’ criteria on test units 

The aforementioned HIs criteria have been formulated to apply to all 
units (composite coupons) under monitoring, specifically from their 
initial to final failure status. With this in mind, the evaluation of HIs’ 
quality lacks implication without access to complete trajectories of HIs 
across all units. Therefore, the inclusion of all units becomes crucial to 
accurately rating fitness, whether during the training or testing phase of 
data-driven models. However, a potential issue arises due to the possi-
bility of highly matched HIs during the training phase, which could 
result in a misleadingly high fitness score when confronted with an 
unmatched HI from a specific unit during the testing phase. Thus, HI 
metrics must also be assessed in relation to only the test unit. The sin-
gular noun "test unit" was chosen over the plural "test units" to better 
reflect the unique context of this work, while it could be easily expanded 
to accommodate multiple test units. 

The HIs criteria, in particular Pr, are redefined in this study to 
concentrate more on the test units than the entire set of units (train/ 
validation/test). These updated metrics aim to assess whether the test 
unit significantly deviates from the training units and, if so, to what 

1 ReMAP: Real-time Condition-based Maintenance for Adaptive Aircraft 
Maintenance Planning. https://h2020-remap.eu/. 

M. Moradi et al.                                                                                                                                                                                                                                 

https://h2020-remap.eu/


Composites Part B 275 (2024) 111328

4

extent. It is important to note that the methodology may not work if the 
metrics produce higher values only for the test unit while remaining 
lower for the training units. On the other hand, attaining high scores for 
the test unit becomes significant if the metrics are consistently high for 
the training units. For instance, consider the Mo metric, which may 
exhibit a high value only for test units, not across all units, due to non- 
monotonic HIs in the training units. In this situation, the prognostic 
model may struggle to predict RUL given such HIs because it fails to 
learn the proper monotonic pattern from the training units, even if the 
test unit displays a monotonic behavior. Another example is illustrated 
by the Pr metric, where the Pr score for a test unit might be high due to 
its low deviation from the average of the training HIs at EoL (deviation 
basis). Simultaneously, the standard deviation of HIs at EoL for training 
units could be high, resulting in a lower Pr score when considering all 
units. Once again, a prognostic model may face challenges in predicting 
RUL when trained with non-prognostable HIs of training units exhibiting 
high variance at EoL. 

The internal summation of Eq. (1) yields the same definition of Mo 
for a single unit: 

Moτ =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

1
Nτ − 1

∑Nτ

i=1

∑Nτ

p=1,p>i

(
tp − ti

)
.sgn

(
x
(
tp
)
− x(ti)

)

∑Nτ

p=1,p>i

(
tp − ti

)

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

.100% (5)  

where the symbol τ denotes the test unit. When more than one unit is 
being considered for testing, Eq. (5) will be similar to Eq. (1), with the 
averaging over only the test units. However, Pr needs to be redefined. In 
this adjustment, the numerator is computed using the deviation of the HI 
at EoL for the test unit from the deviation basis (i.e., its corresponding 
value averaged over the training units), rather than the standard devi-
ation of HIs at EoL across all units:  

where τ′ denotes all units set except for the test ones and Mτ′ denotes the 
number of those units (including the training units and even validation 
units). It should be noted that xj(1) and xj(Nj) denote the HI values of the 
jth unit at the initiation and EoL, respectively. As a scaling factor, the 
denominator in this case represents the mean value of the difference 
between HIs at the outset and the EoL across all units (τ ∪ τ′) or the 
training units (τ′). After examining both options, the mean value over all 
units is adopted (as symbolized in Eq. (6)). When dealing with multiple 

Fig. 1. Composite dogbone specimens under T-T fatigue (left) and single T-stiffener CFRP panel under C–C fatigue (right) being monitored by PZT sensors (red 
circles) (dimensions in [mm]). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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units (Mτ) for testing, the EoL deviation basis can be established from the 
training set (τ′), the test set (τ), or a combination of both (τ∪ τ′), with the 
latter being advisable for M units. 

Regarding Tr, the minimum correlation of HIs should be calculated 
between distinct units, which is challenging when assessing only one test 
unit while excluding training ones. If the correlation between the HIs of 
the test and training units is computed pairwise and the minimum value 
is selected as Tr, it might exceed the correlation calculated given all 
units’ HIs pairwise. To ensure a more strict evaluation, the same formula 
as Eq. (3) is applied to the test units. With these updated metrics, the 
fitness metric for the test unit is: 

Fitnessτ = a.Moτ
HI + b.Prτ

HI + c.TrHI (7)  

where τ indicates “HIs’ criteria on test units”. 

2.2. Deviation from the simulated ideal HIs 

The second evaluation criterion is RMSE, calculated as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Nj

∑Nj

i=1
(Ti − HIi)

2

√
√
√
√ ; j ∈ M (8)  

In this formula, Nj is the length of the sequence (HI), representing the 
number of data points (time steps of GW inspection). Ti represents the 
target value (simulated HI under SSL paradigm) and HIi is the network’s 
output for time step i. The RMSE provides a single score for each unit’s 
constructed HI, with a primary focus on reporting the test unit’s HI 
score, excluding training or validation data. 

3. Experimental campaigns 

In this study, two different datasets have been investigated and 
analyzed separately. The first dataset, ReMAP, contains five composite 
skin-stiffener panels that were subjected to C–C fatigue loading using an 
MTS machine with a frequency of 2 Hz and an R-ratio of 10. These panels 
consisted of a skin panel and a T-stiffener based on an Embraer design. 
Both the skin and stiffener were constructed using IM7/8552 carbon 
fiber-reinforced epoxy unidirectional prepreg, with specific layups of 

[±45/0/45/90/-45/0]S and [±45/0/±45]S, respectively. Impact 
loading of 10 J was applied at various locations in the stiffener region 
(see Fig. 1 and Table 1), and one panel also had disbond defects inten-
tionally introduced between the skin and T-stiffener during 
manufacturing (additional information can be found in Table 1). In this 
experiment, various techniques were employed to monitor the com-
posite panels [32], including the GW method with a 5000-cycle interval, 
which is the focus of this research. GW data collection is carried out with 
eight surface-attached PZT sensors, where four sensors are located on 
the skin panel, two sensors are located on top of the stiffener-skin 
bondline, and two sensors are attached on the stiffener web. The GW 
system operates with one PZT serving as the actuator with six excitation 
frequencies (50 kHz, 100 kHz, 125 kHz, 150 kHz, 200 kHz, and 250 kHz) 
and the remaining seven PZTs functioning as sensors, rotating through 
all eight PZTs. 

The second dataset, NASA, has three different layups, Layup 1, Layup 
2, Layup 3, with the ply orientation, [02/904]S, [0/902/±45/90]S, and 
[902/±45]2S, respectively [33,36,37]. Torayca T700G unidirectional 
carbon-prepreg material has been used to manufacture the dogbone 
geometry coupons. The coupons with a notch have been submitted to 
T-T fatigue load, and the damage accumulation has been quantified 
through X-ray imaging for specific damage types, which are matrix 
cracks and delamination mainly. GW acquisition has been performed 
through a surface-attached PZT network with three different boundary 
conditions: traction-free, clamped, and loaded, among which the clam-
ped boundary condition was considered due to its closer resemblance to 
real-world scenarios. The network contains one actuator and one sensor 
array with six linearly distributed PZT transducers in each, as shown in 
Fig. 1. GW acquisition is realized between the linear arrays, which 
makes 36 sensor paths in total. Seven excitation frequencies have been 
applied in the range of 150–450 kHz with 50 kHz incrementation by a 
5-cycle Hanning modulated tone-burst signal which is a short-duration 
signal that consists of a few cycles of a sinusoidal waveform and it is 
often used in applications like ultrasonic testing and medical imaging. 
The choice of the number of cycles depends on the application’s specific 
requirements as the short duration helps in achieving good resolution in 
time-domain measurements [38]. Information regarding the mechanical 
test parameters can be found in Table 2. Further information regarding 
the mechanical experiment, GW data acquisition, and X-ray imaging 
process can be found in Refs. [33,36,37]. 

4. Methodology 

In this section, the methodologies and step-by-step process are 
introduced as can be seen in Fig. 2. 

4.1. Signal processing and 3D input preparation 

Prior to using DL networks, signal processing techniques with 
explicit and fast solutions can improve performance and simplify 
following DL modeling. An effective method involves extracting GW 
signal envelopes using the magnitude of their analytic signals. This is 
achieved through the Hilbert transform (HT): 

Z(t)= x(t) + jH {x(t)} ; H {x(t)} =
1
π

∫+∞

− ∞

x(τ)
t − τ dτ (9) 

Table 1 
Information of single T-stiffener CFRP panels tested under C–C fatigue loading 
(ReMAP dataset). Dimensions are in [mm].  

Name L1-03 L1-04 L1-05 L1-09 L1-23 

Name index SSP1 SSP2 SSP3 SSP4 SSP5 
X-location of 

impact 
50 25 115 82.5 – 

Y-location of 
impact 

80 80 160 140 – 

Time of Impact at 
0 cycles  

at 
0 cycles 

at 
0 cycles 

– 

Size of disbond – – – – 30 × 30 
y-location of 

disbond 
– – – – 60 

Min Load (kN) − 6.5 − 6.5 − 6.5 − 6.5 − 5 and − 6 
Max Load (kN) − 65 − 65 − 65 − 65 − 50 and 

− 60 
Cycles 152,458 280,098 144,969 133,281 438,000  

Table 2 
Information of the dogbone CFRP plates tested under T-T fatigue loading (NASA dataset).  

Ply orientation Layup 1: [02/904]S Layup 2: [0/902/±45/90]S Layup 3: [902/±45]2S 

Name index S1 S2 S3 S4 S1 S2 S3 S1 S2 S3 S4 
Static Failure (Mpa) 133.8 147.5 104.8 
Max Load (kN) 111.7 127.5 89.6 
Load Ratio 0.14 0.14 0.13 
Cycles (£1000) 227 100 1650 125 207 900 1250 150 300 895 750  

M. Moradi et al.                                                                                                                                                                                                                                 



Composites Part B 275 (2024) 111328

6

where x(t) is the input signal, j is the imaginary unit, and H { • } is the 
Hilbert transform. This is replaced by a finite impulse response (FIR) 
filter in discrete-time signal processing to reduce computational 
complexity [39]. This specific FIR filter is termed the Hilbert transform 
FIR (HT-FIR) filter, with its length determined by the excitation fre-
quency in the current work. For example, a 400 kHz frequency corre-
sponds to an HT-FIR filter length of 400. The filter is created by applying 
a Kaiser window to minimize the effects of spectral leakage and to 
control the shape of the frequency response of the signal. The Kaiser 
window is characterized by a parameter, often denoted as β, that allows 
for adjusting the trade-off between the main lobe width and the side lobe 
levels [40,41]. The shape parameter selected as β = 8 to an ideal 
brick-wall filter. Similar processing generates upper and lower enve-
lopes for all GW signals. 

A 3D form of data (according to [paths between actuators and sen-
sors] × [signal length] × [upper and lower envelopes in two states]) is 
implemented to prepare inputs for the subsequent SSCNN model. 
Accordingly, the input dimensions are 36 × 2000 × 4 and 56 × 2000 × 4 
for the NASA and ReMAP datasets, respectively. Fig. 3 shows, for the 

NASA dataset (Layup 1), the received GW signals excited by one fre-
quency (150 kHz), the extracted envelopes for all paths, and the perti-
nent 3D input of SSCNN at cycle 60000. 

4.2. Base learner model 

This section introduces the learning paradigm, the DL architecture, 
and the training adjustments. 

Learning Framework: In the absence of true HI values, an idealized 
function is used to generate HI labels, and an SSL paradigm is employed 
by incorporating prognostic metrics (Mo, Pr, and Tr) while leveraging 
existing EoL [31,42]. This approach belongs to the category of intrin-
sically semi-supervised inductive learning algorithms, which extend 
traditional supervised methods to use both labeled and unlabeled data 
for optimizing an objective function. The optimal generator function is 
represented as a quadratic polynomial: 

HI(t) =
t2

t2
EoL

(10) 

Fig. 2. The overall proposed framework: (a) guided wave (GW) monitoring; (b) signal processing (Hilbert transform); (c) base learner model (SSCNN); (d) ensemble 
learner model; (e) extracted health indicator (only shown for single T-stiffener CFRP panels). 
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where t is the operating time and tEoL is the time of the final failure. Eq. 
(10) results a HI in the range [0, 1], which can also be scaled by a 
multiplication in a coefficient [13,43]. The normalization via t2EOL is 
necessary to obtain the desired values for Pr since each unit has a 
different lifetime. The labels in this study are scaled by a factor of 100, 
resulting in a range from 0 (healthy state) to 100 (failure threshold, 
EoL). It is important to note that this hypothetical HI is only utilized for 
the available training samples where lifetimes are known in advance. 

DL architecture and adjustments: A CNN architecture, illustrated 
in Fig. 4, has been designed to map GW inputs to the simulated ideal HI. 
The inputs, as previously described, take the 3D shape of (Na × Ns) ×
2000 × 4, where Na and Ns represent the number of actuators and 
sensors, respectively. The Leaky Rectified Linear Unit (Leaky ReLU) is a 
variation of the ReLU activation function, distinguished by a small slope 
for negative values. In contrast to the flat slope of ReLU, Leaky ReLU 
introduces a small, positive gradient for inactive units, addressing the 
vanishing gradient problem [44]. The leakage coefficient, the small 
slope, for all Leaky ReLU functions is set at 0.01, after trial and error. To 
calculate the loss function between predictions and targets, a mean 
squared error (MSE) is employed: 

Lregress =
1
R
∑R

i=1
(Ti − HIi)

2 (11)  

where Ti = ti2/t2
EOL denotes the target value and HIi is the output of the 

last layer. An Adam optimizer [45], a stochastic gradient descent 
method that is based on adaptive estimation of first-order and 
second-order moments, was utilized to train the SSCNN with 38400 and 
28800 learnable parameters for ReMAP and NASA setups. After trial and 
error, an initial learning rate of 0.001 was employed. 

The training time for the SSCNN model on NASA and ReMAP data-
sets is 161 s and 571 s, respectively, using a laptop with an Intel Core i7- 
8665U CPU and 16 GB RAM for 200 epochs with a batch size of 10. The 
variation in training time between datasets is attributable to differences 
in input dimensions (depending on the number of paths between actu-
ators and sensors—36 for NASA and 56 for ReMAP) as well as the 
number of training units and GW inspections (38 GW inspections for 3 
units of NASA (Layup 1) and 120 GW inspections for 4 units of ReMAP). 
To isolate the influence of the number of training units and GW in-
spections, the time required to train the SSCNN model for one batch with 
a size of 10 and one epoch is 0.201 s and 0.238 s, given 36 to 56 paths as 
input, respectively. 

4.3. Ensemble learner models 

Ensemble learning (EL) techniques mitigate randomness and un-
certainties in ML models post-HI extraction. They come in three main 
categories: bagging [46], boosting [47], and stacking [48]. From 

Fig. 3. Right column: (a) Sensed GW signals excited by 150 kHz and (b) their envelopes for all 36 paths of the NASA dataset (Layup 1) at baseline and cycle 60000, as 
well as the relevant (c) 3D input of SSCNN at cycle 60000. Left column: Their 2D display for only one path. 
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another point of view, EL models that rely on averaging can be mainly 
divided into two types: simple averaging ensemble (SAE) [49] and 
weighted averaging ensemble (WAE) [50], with the first being a case of 
the last. This work prioritizes averaging ensemble models with various 

weighting techniques and DL ensemble models due to their superior 
performance. 

The initial step involves leave-one-out cross-validation (LOOCV) 
[51]. Here, one unit (composite specimen) is set aside for testing, 

Fig. 4. The architecture of the semi-supervised convolutional neural network as the base learner.  

Table 3 
Ensemble learner models.  

Model num. Model name Architecture (hidden layers) 

1 SAE  
2 WAE-MSE  
3 WAE-RMSE  
4 WAE-Fitness  

5 FC-Net FC (100) D (0.5) ReLU FC (5) D (0.5) ReLU FC (1) 
6 BiLSTM-Net D (0.5) BiLSTM (5) D (0.5) FC (5) D (0.5) ReLU FC (1)  

Fig. 5. The architecture of the BiLSTM-Net ensemble learner model.  
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another for validation, and the rest are used for training. The validation 
unit rotates through all available options, and the base learner model 
(SSCNN) is trained ten times with different random seed numbers [52] 
for weight and bias initialization. Subsequently, the 100 HIs predicted 
by SSCNN are combined through a process that includes SAE, WAE, and 
DL models. The WAE is expressed as follows: 

fWAE =
∑K

k=1
ωkfk ; ωk =

ωk

∑K

k=1
ωk

(12)  

where fk represents the kth individual model and ωk is its normalized 
weight. ωk denotes the weight for the kth individual base model, and 
these weights can be determined based on various error metrics. In this 

Fig. 6. Fitness for HT-SSCNN over various subsets (train, validation, and test combinations) and frequencies in the ReMAP dataset (fitness calculated from Eq. (4), 
considering all units referred to as ‘F-All’). The blue line indicates the chosen unit for validation, the brown line represents the fitness score, and the black line 
illustrates the variance (Std) bars of the fitness with filled square markers denoting its mean value, plotted at every 10 iterations. Similar figures for the NASA dataset 
can be found in the Supplementary Materials.(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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study, the error metrics considered are MSE, RMSE, and fitness. MSE and 
RMSE are computed by comparing the predictions of the kth base model 
(HIk(E), where (E) denotes the ensemble HI) and the simulated HIs (T): 

ωMSE
k =

1
MSE

(
T,HIk(E)

)=
1

1
Mτ′

∑

j∈τ′

[

1
Nj

∑Nj

i=1

(
Tj(ti) − HIk(E)

j (ti)
)2
] (13)  

ωRMSE
k =

1
RMSE

(
T,HIk(E)

)=
1

1
Mτ′

∑

j∈τ′

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[

1
Nj

∑Nj

i=1

(
Tj(ti) − HIk(E)

j (ti)
)2
]√

√
√
√

(14)  

ωFitness
k = a.MoHI + b.PrHI + c.TrHI ; j ∈ τ’ (15)  

When all ωk are set to one, the SAE approach is implemented. 
In addition to averaging EL models, an alternative approach is to use 

a subsequent ML-based model to fuse predictions, aiming to reduce 
inherent randomness in base learner models. This ML-based ensemble 
learning model can be implemented using DL networks. Different net-
works with various layer types, including fully connected (FC), long 
short-term memory (LSTM), and bidirectional LSTM (BiLSTM) layers, 
were explored, among which the two best ones are presented. The DL 
architectures are summarized in Table 3, with the number of neurons, 
units, or dropout (D) percentages indicated in parentheses. For example, 
the architecture of BiLSTM-Net EL model can be seen in Fig. 5. The 
output layer is a seq2seq regression layer utilizing the loss function 
outlined in Equation (16). 

Lregress =
1

2Nj

∑Nj

i=1

(
Tj(ti) − HIj(ti)

)2
; j ∈ M (16)  

5. Results and discussions 

To thoroughly evaluate various combinations and confirm the 
effectiveness, validity, and stability of the proposed framework, all po-
tential dataset folds were examined. In each fold, one specimen served as 
the test set, while the remaining composite specimens were used for 
training and validation. For both the ReMAP and NASA datasets, which 
offered four and three-two alternatives for validation, respectively, the 
process was repeated with 10 iterations using distinct random seed 
numbers. This approach essentially mirrors the LOOCV, employing a 
holdout validation strategy within each fold to assess the model’s 
generalizability. The runs were conducted on a high-performance 
computing cluster, utilizing 20 processors on a single node. In this sec-
tion, we initially present the results of the HT-SSCNN up to the ensemble 
stage, referred to as the Base learner models, before delving into the 
outcomes of the Ensemble learner models. 

5.1. Base learner models 

The comprehensive results of HT-SSCNN across various subsets and 
excitation frequencies for T-single stiffener CFRP panels (ReMAP data-
set) are presented in Fig. 6. The results display fitness scores (based on 
Eq. (4)) across different replications and their mean values (indicated on 
the right y-axis) over ten replications (shown on the x-axis) for each 
subset (validation index-based combinations displayed on the left y- 
axis), with error bars representing the standard deviation. The impact of 
the choice of the validation unit varies depending on the specific test 
unit and frequency. For instance, in fold 5, where the test unit is spec-
imen 5, unit 1 does not serve as a suitable validation case for GW signals 
at the excitation frequency of 50 kHz. This is either because it leads to 
the exclusion of unit 1 information during the training phase or it proves 
to be an unsuitable validation specimen for terminating the training 
process. Referring to Fig. 6, it becomes evident that frequencies of 150 
kHz and 200 kHz led to more consistent high fitness scores, whereas 100 

Table 4 
Fitness values for base learner models averaged over the 40 repetitions for ReMAP dataset.  

Frequency Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test 

50 kHz 2.23 
(±0.15) 

1.55 
(±0.34) 

2.31 
(±0.37) 

2.12 
(±0.45) 

2.46 (±0.25) 2.22 
(±0.48) 

2.41 
(±0.42) 

2.17 
(±0.35) 

2.49 (±0.5) 2.28 (±0.5) 

100 kHz 2.44 
(±0.35) 

2.25 
(±0.49) 

2.03 
(±0.26) 

1.55 (±0.3) 2.5 (±0.23) 2.23 
(±0.23) 

2.57 
(±0.23) 

2.41 
(±0.38) 

2.28 (±0.33) 2 (±0.37) 

125 kHz 2.54 
(±0.31) 

2.4 (±0.44) 2.21 
(±0.29) 

1.93 
(±0.24) 

2.52 (±0.21) 2.11 
(±0.35) 

2.55 
(±0.33) 

2.36 
(±0.43) 

2.55 (±0.2) 2.21 (±0.31) 

150 kHz 2.59 
(±0.45) 

2.43 
(±0.48) 

2.19 
(±0.34) 

2.01 
(±0.44) 

2.72 ( 
±0.14) 

2.43 (±0.3) 2.54 
(±0.19) 

2.14 
(±0.33) 

2.6 (±0.22) 2.3 (±0.29) 

200 kHz 2.45 (±0.3) 2.21 
(±0.45) 

2.16 
(±0.31) 

1.91 
(±0.33) 

2.5 (±0.09) 2.09 
(±0.24) 

2.63 
(±0.14) 

2.44 
(±0.46) 

2.62 ( 
±0.32) 

2.55 ( 
±0.39) 

250 kHz 2.51 
(±0.51) 

2.38 
(±0.52) 

2.21 
(±0.26) 

1.93 
(±0.24) 

2.35 (±0.2) 1.96 
(±0.35) 

2.29 (±0.4) 2.09 
(±0.55) 

2.45 (±0.25) 1.89 (±0.21) 

All 2.55 
(±0.32) 

2.4 (±0.46) 2.19 
(±0.37) 

1.84 
(±0.38) 

2.62 (±0.2) 2.42 (±0.3) 2.64 
(±0.25) 

2.48 
(±0.37) 

2.53 (±0.49) 2.33 (±0.55)  

Table 5 
Fitness values for base learner models averaged over the 30 repetitions for NASA dataset (Layup 1). Supplementary tables for other layups in the NASA dataset can be 
found in the Supplementary Materials.  

Frequency Fold 1 Fold 2 Fold 3 Fold 4 

F-All F-Test F-All F-Test F-All F-Test F-All F-Test 

150 kHz 1.86 (±0.36) 1.16 (±0.47) 2.18 (±0.42) 2.08 (±0.47) 1.67 (±0.29) 1.21 (±0.38) 2.32 (±0.12) 2.18 (±0.16) 
200 kHz 1.99 (±0.4) 1.4 (±0.49) 2.49 (±0.32) 2.21 (±0.36) 1.52 (±0.32) 0.86 (±0.51) 2.4 (±0.22) 2.12 (±0.45) 
250 kHz 2.41 (±0.24) 2.03 (±0.31) 2.3 (±0.35) 1.87 (±0.32) 2.22 (±0.16) 1.92 (±0.22) 2.54 (±0.26) 2.32 (±0.32) 
300 kHz 2.47 (±0.2) 2.11 (±0.24) 2.56 (±0.15) 2.14 (±0.27) 1.98 (±0.22) 1.61 (±0.28) 2.52 (±0.2) 2.13 (±0.33) 
350 kHz 2.12 (±0.35) 1.71 (±0.39) 1.9 (±0.39) 1.43 (±0.52) 1.84 (±0.25) 1.45 (±0.25) 2.11 (±0.41) 1.57 (±0.75) 
400 kHz 2.02 (±0.29) 1.52 (±0.58) 1.85 (±0.46) 1.24 (±0.51) 1.73 (±0.28) 1.18 (±0.42) 2.12 (±0.34) 1.91 (±0.53) 
450 kHz 2.35 (±0.38) 2.05 (±0.44) 2 (±0.42) 1.59 (±0.55) 1.71 (±0.36) 1.25 (±0.47) 2.26 (±0.35) 1.87 (±0.64) 
All 2.23 (±0.35) 1.86 (±0.48) 2.36 (±0.3) 2.06 (±0.28) 2.07 (±0.4) 1.65 (±0.43) 2.37 (±0.32) 2.28 (±0.48)  
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kHz and 250 kHz exhibit unstable performance. The Supplementary 
Materials also include analogous illustrations for the NASA dataset, 
highlighting the influence of validation unit selection and GW excitation 
frequency. Tables 4–5 present averaged fitness values (±standard de-
viation) across all repetitions, irrespective of the validation unit chosen, 

for various folds. F-All corresponds to the fitness scores obtained from 
Eq. (4) considering all units, while F-Test relates to the fitness scores 
obtained from Eq. (7) focusing solely on the test unit. Tables (similar to 
Tables 4 and 5), including results for Layups 2 and 3 of the NASA 
dataset, are provided in the Supplementary Materials. 

Fig. 7. HIs obtained by the proposed HT-SSCNN methodology (with SAE) for different datasets, given single frequency input. The actuating GW frequencies were 
selected based on the best fitness scores (Tables 4–5 and those in the Supplementary Materials). 
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The highest-scoring frequency is 150 kHz for the ReMAP dataset, 
with an average of 2.53 for all units and 2.26 for test units across all 
folds. In the NASA datasets, the top-performing frequencies are 250 kHz, 
300 kHz, and 350 kHz for Layups 1, 2, and 3, respectively. The average 
scores across all folds are 2.37, 2.19, and 2.32 when considering all 
units, and 2.04, 1.97, and 2.04 when considering test units, as high-
lighted in green in the tables. Layup 2 yields lower scores because it has 
limited training data from only one unit. 

The results vary across different folds, with the folds showing the 
highest fitness scores highlighted in bold in the tables. The HIs generated 
from HT-SSCNN for the optimal frequencies in different datasets are 
displayed in Fig. 7. These HIs represent the averages across all repeti-
tions, irrespective of the validation unit selection (SAE method). How-
ever, showcasing the HIs from a single repetition could yield more 
promising results. 

For T-single stiffener CFRP panels, the results are highly promising 
despite the presence of uncertainties such as broken sensors, impacts, 
and disbond. In the NASA dataset, Layup 2 is hindered by a lack of 
training data, while the HIs for Layup 1 (except for unit 2) and Layup 3 
(except for units 1 and 4) are acceptable. 

5.2. Ensemble learner models 

Ensemble learners are employed to blend diverse predictions and 

enhance the effectiveness of HIs compared to the base learner models. 
Tables 6–7 present the ensemble models’ fitness scores averaged across 
all folds for various ensemble techniques. EL models can be applied to 
the HIs generated by HT-SSCNN using a single excitation GW frequency 
or a fusion of all frequencies (labeled ’Fused (all)’ in Tables 6–7). These 
tables includes results for ReMAP dataset and Layup 1 of the NASA 
dataset, while results for Layups 2 and 3 of the NASA dataset are pro-
vided in the Supplementary Materials. 

For the ReMAP dataset, the WAE-Fitness model using the fusion of all 
GW excitation frequencies achieved the best fitness scores whether 
considering all or only test units, with F-All of 2.78 and F-Test of 2.67. 
Additionally, SAE and the FC network (FC-EL) models using the fusion of 
frequencies also resulted in high scores. Aside from the fusion of all 
frequencies, the 150 kHz frequency, when employed with SAE and WAE- 
Fitness, yielded high fitness scores (exceeding 2.6, meeting 87% of 
evaluation criteria). 

In the NASA dataset, for Layup 1, the BiLSTM network (BiLSTM-EL) 
using the fusion of all frequencies obtained the highest fitness scores (F- 
All of 2.68 and F-Test of 2.31). However, it is important to note that this 
HI construction model for Layup 1 is not historical-independent as it 
uses prior information in the EL step. WAE-Fitness with GW signals 
generated from the 250 kHz frequency achieved better fitness scores in 
second place. The WAE-Fitness using the fused frequencies for this layup 
produces scores that are not very low (F-All of 2.41 and F-Test of 2.03). 

Table 6 
Fitness values for ensemble learner models averaged over the 5 Folds for ReMAP dataset.  

Freq. 
(kHz) 

SAE WAE Deep learning 

MSE RMSE Fitness FC BiLSTM 

F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test 

50 2.58 
(±0.24) 

2.32 
(±0.60) 

2.58 
(±0.21) 

2.33 
(±0.56) 

2.58 
(±0.23) 

2.32 
(±0.59) 

2.58 
(±0.24) 

2.32 
(±0.60) 

2.60 
(±0.16) 

2.29 
(±0.44) 

2.00 
(±0.22) 

1.64 
(±0.16) 

100 2.45 
(±0.26) 

2.13 
(±0.52) 

2.25 
(±0.44) 

2.04 
(±0.53) 

2.34 
(±0.37) 

2.08 
(±0.51) 

2.46 
(±0.26) 

2.12 
(±0.52) 

2.62 
(±0.26) 

2.33 
(±0.47) 

2.31 
(±0.34) 

1.97 
(±0.52) 

125 2.69 
(±0.12) 

2.52 
(±0.26) 

2.66 
(±0.12) 

2.50 
(±0.26) 

2.68 
(±0.12) 

2.51 
(±0.27) 

2.69 
(±0.12) 

2.52 
(±0.27) 

2.68 
(±0.13) 

2.50 
(±0.22) 

2.24 
(±0.22) 

1.75 
(±0.20) 

150 2.73 ( 
±0.12) 

2.60 ( 
±0.11) 

2.70 
(±0.11) 

2.58 
(±0.09) 

2.72 
(±0.12) 

2.59 
(±0.1) 

2.73 ( 
±0.12) 

2.60 ( 
±0.11) 

2.71 
(±0.14) 

2.45 
(±0.35) 

2.43 
(±0.39) 

2.00 
(±0.36) 

200 2.60 
(±0.14) 

2.51 
(±0.38) 

2.57 
(±0.16) 

2.47 
(±0.41) 

2.57 
(±0.17) 

2.48 
(±0.41) 

2.60 
(±0.14) 

2.51 
(±0.38) 

2.60 
(±0.15) 

2.49 
(±0.37) 

2.49 
(±0.24) 

2.18 
(±0.52) 

250 2.54 
(±0.14) 

2.25 
(±0.35) 

2.49 
(±0.12) 

2.27 
(±0.31) 

2.52 
(±0.13) 

2.26 
(±0.34) 

2.54 
(±0.14) 

2.25 
(±0.32) 

2.49 
(±0.18) 

2.10 
(±0.32) 

2.59 
(±0.12) 

2.26 
(±0.46) 

Fused 
(all) 

2.77 ( 
±0.15) 

2.66 ( 
±0.22) 

2.71 
(±0.23) 

2.57 
(±0.40) 

2.75 
(±0.18) 

2.64 
(±0.26) 

2.78 ( 
±0.15) 

2.67 ( 
±0.20) 

2.76 ( 
±0.14) 

2.62 ( 
±0.22) 

2.38 
(±0.37) 

2.010 
(±0.43)  

Table 7 
Fitness values for ensemble learner models averaged over the 4 Folds for NASA dataset (Layup 1). Supplementary tables for other layups in the NASA dataset can be 
found in the Supplementary Materials.  

Freq. 
(kHz) 

SAE WAE Deep learning 

MSE RMSE Fitness FC BiLSTM 

F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test F-All F-Test 

150 2.14 
(±0.37) 

1.71 
(±0.59) 

2.05 
(±0.28) 

1.73 
(±0.51) 

2.09 
(±0.31) 

1.73 
(±0.53) 

2.15 
(±0.37) 

1.72 
(±0.59) 

1.78 
(±0.54) 

1.43 
(±0.92) 

2.23 
(±0.41) 

1.87 
(±0.23) 

200 2.24 
(±0.52) 

1.80 
(±0.71) 

2.22 
(±0.47) 

1.86 
(±0.71) 

2.23 
(±0.48) 

1.85 
(±0.70) 

2.25 
(±0.52) 

1.79 
(±0.70) 

2.12 
(±0.53) 

1.54 
(±0.90) 

2.14 
(±0.56) 

1.77 
(±0.91) 

250 2.52 ( 
±0.23) 

2.12 ( 
±0.26) 

2.50 ( 
±0.22) 

2.12 ( 
±0.26) 

2.50 ( 
±0.23) 

2.12 ( 
±0.25) 

2.52 ( 
±0.21) 

2.13 ( 
±0.23) 

2.45 
(±0.24) 

2.10 
(±0.39) 

2.33 
(±0.21) 

1.89 
(±0.33) 

300 2.47 
(±0.36) 

2.06 
(±0.32) 

2.41 
(±0.35) 

2.06 
(±0.36) 

2.44 
(±0.35) 

2.07 
(±0.33) 

2.48 
(±0.36) 

2.08 
(±0.32) 

2.36 
(±0.37) 

1.96 
(±0.33) 

2.34 
(±0.44) 

1.84 
(±0.52) 

350 2.19 
(±0.41) 

1.82 
(±0.52) 

2.16 
(±0.38) 

1.85 
(±0.51) 

2.18 
(±0.39) 

1.85 
(±0.49) 

2.20 
(±0.40) 

1.82 
(±0.52) 

1.93 
(±0.44) 

1.26 
(±0.51) 

1.78 
(±0.42) 

1.24 
(±0.41) 

400 2.11 
(±0.38) 

1.70 
(±0.52) 

2.06 
(±0.32) 

1.73 
(±0.46) 

2.09 
(±0.35) 

1.73 
(±0.48) 

2.11 
(±0.36) 

1.69 
(±0.51) 

1.89 
(±0.41) 

1.26 
(±0.75) 

1.73 
(±0.18) 

1.18 
(±0.31) 

450 2.37 
(±0.45) 

1.95 
(±0.62) 

2.33 
(±0.45) 

1.99 
(±0.68) 

2.37 
(±0.45) 

2.00 
(±0.68) 

2.36 
(±0.45) 

1.93 
(±0.57) 

2.01 
(±0.56) 

1.58 
(±0.63) 

2.04 
(±0.46) 

1.73 
(±0.74) 

Fused 
(all) 

2.39 
(±0.44) 

2.02 
(±0.64) 

2.35 
(±0.39) 

2.01 
(±0.57) 

2.36 
(±0.41) 

2.03 
(±0.61) 

2.41 ( 
±0.43) 

2.03 ( 
±0.63) 

2.29 
(±0.50) 

1.92 
(±0.60) 

2.68 ( 
±0.20) 

2.31 ( 
±0.36)  
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For Layup 2, EL models on the GW excitation frequency of 300 kHz 
provided higher scores than others, but the fitness scores are not yet 
highly proper (more than 90% performance, i.e., above 2.7) as this 
dataset, as previously mentioned, suffers from the limited data needed to 
train the models. In Layup 3, WAE-Fitness on the fusion of all fre-
quencies achieved the highest fitness scores (F-All of 2.42 and F-Test of 

2.23). 
On average, WAE-Fitness using the fusion of all GW excitation fre-

quencies resulted in higher fitness scores, and the related constructed 
HIs using this model (i.e., the end-to-end model made of 
HT–SSCNN–WAEFitness) can be seen in Fig. 8. Considering the scores 
reported in Table 6 and the generated HIs in Fig. 8 for T-single CFRP 

Fig. 8. HIs obtained by the proposed methodology with WAE-Fitness for different datasets, given all frequency inputs.  
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panels under C–C fatigue loading (ReMAP dataset), the performance is 
highly satisfactory, achieving 93% (2.78/3.00) given all units and 89% 
(2.67/3.00) given test units. The HIs exhibit monotonic, prognostable, 
and trendable behavior, making them suitable for predicting the RUL of 
composite structures. 

For dogbone CFRP specimens under T-T fatigue loading (NASA 
dataset), layups with four units (Layup 1 and Layup 3), which have 2 
units for training and 1 unit for validation, yield better results compared 
to Layup 2, which has only one unit for training and another for vali-
dation. This can be observed in Fig. 8, particularly for coupon 4 of Layup 
1 and coupons 1, 2, and 3 of Layup 3. 

HIs constructed by BiLSTM-EL upon HT-SSCNN can be seen in the 
Supplementary Materials. These HIs interestingly exhibit multiple in-
cremental steps over the fatigue life in the ReMAP dataset and Layup 1 of 
the NASA dataset. These steps may signify distinct damage states, 
providing valuable insights for subsequent prognostic models, especially 
state-based ones, for RUL prediction. However, establishing a mean-
ingful link between these steps and physical damage states requires 
further research and experimentation. The HIs constructed by FC-EL 
after the HT-SSCNN model can also be found in the Supplementary 
Materials. 

In general, higher fitness scores for HIs could have been attained for 
the ReMAP datasets compared to the NASA dataset. We attribute this to 
several factors, including the larger number of training specimens (only 
one unit more) and a greater number of time steps for GW inspections, 
which provide more training data for the DL models. This difference in 
performance seems to be less related to the structural type, loading 
conditions, layups, or types of damage, as the T-single stiffener panels 
are inherently more complex in various aspects. Moreover, the ReMAP 
structures were monitored using a more intertwined GW network with 
56 paths, while the NASA structures used 36 paths. This richer, inter-
twined GW network offers more information to leverage for model 
training. In essence, the model’s performance is less affected by issues 
encountered during the monitoring process, such as the presence of 
broken or debonded PZT sensors, which occurred during ReMAP ex-
periments. It should be noted that data augmentation techniques may 
address the limited number of units available to train the model, such as 
the NASA dataset, and can improve performance, where data size for 
machine learning needs to be optimized after sensitivity analysis of the 
size [53]. 

6. Conclusions 

In this study, we introduced an innovative approach to construct 
comprehensive health indicators (HIs) for composite structures, 
addressing the challenges posed by the stochastic nature of damage 
accumulation during operational conditions and the need for HIs inde-
pendent of historical data. Leveraging the power of AI, we developed the 
Hilbert transform-convolutional neural network (HT-SSCNN) within a 
semi-supervised learning paradigm. The approach exclusively utilizes 
current guided wave (GW) data, eliminating the reliance on historical 
information. It flexibly accommodates different GW sensor numbers, 
networks, and setups. The results demonstrate the effectiveness and 
validity of the approach. To assess various combinations and ensure 
robustness, rigorous evaluations were conducted, considering different 
datasets under various conditions. 

Our findings indicate that certain frequencies, such as 150 kHz for 
the ReMAP dataset and 250 kHz for NASA Layup 1, consistently out-
performed others, resulting in more stable and reliable HIs. The use of 
ensemble learning techniques, specifically WAE-Fitness, led to signifi-
cant improvements in HIs’ performance. For the ReMAP dataset, the 
WAE-Fitness model, fusing all GW excitation frequencies, yielded the 
best fitness scores, with 93% accuracy considering all units and 89% 
given test units. While ReMAP experiments are more complex than the 
NASA ones, HIs with higher performance could be extracted from the 
ReMAP dataset than the NASA dataset, which can be attributed to the 

availability of one more training specimen and a greater number of time 
steps for GW inspections. Additionally, ReMAP structures were moni-
tored using a more intertwined GW sensory network, which provided a 
wealth of data for model training. The produced HIs exhibit desirable 
properties for RUL prediction. They are monotonic, prognostable, and 
exhibit correlated trends, which are essential characteristics for accurate 
predictions in PHM. The incremental steps observed in the HIs may 
potentially correspond to distinct damage states, which can be used to 
inform future state-based RUL prediction models. In conclusion, our 
approach offers a promising solution to the challenging task of con-
structing reliable and historical-independent HIs for composite struc-
tures. By combining AI with signal processing algorithms, we achieved a 
high level of performance and demonstrated the applicability of our 
method across different datasets. This research opens up new possibil-
ities for enhanced health monitoring and predictive maintenance of 
composite structures in various applications, including aerospace 
engineering. 
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