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Numerical methods for delamination analysis, such as the cohesive zone method, require fracture energy as an 
essential input. Existing formulations rely on a phenomenological relationship that links fracture energy to the 
mode of fracture based on linear elastic fracture mechanics (LEFM). However, doubts exist about the applicability 
of LEFM. It has been demonstrated that the phenomenological relationships describing fracture energy as a 
function of mode-ratio are not universally valid. Computational homogenization (FE2) provides an alternative 
where the dissipative mechanisms can be resolved on the microscale. This paper aims to assess the suitability 
of a proposed discontinuous FE2 framework for characterizing delamination growth under mode-II conditions 
by comparing it to direct numerical simulations (DNS). The impact of plasticity on effective fracture energy is 
evaluated for two distinct mode-II test configurations. The dissipation density from the bulk integration points 
within the delamination propagation zone is monitored. The findings demonstrate the FE2 model’s capability 
to accurately capture plastic energy dissipation around a growing crack. Variations in plastic dissipation are 
observed between the mTCT and ENF test setups, leading to differences in effective mode-II fracture energy. 
These nuances, unaccounted for in state-of-the-art mesoscale cohesive models, highlight the FE2 framework’s 
potential for enhancing delamination modeling.
1. Introduction

Due to the relatively low interlaminar strength, composite laminates 
are susceptible to delamination. Delamination can lead to significant 
loss of load-bearing capacity of laminates. Moreover, this failure mode 
is often visually imperceptible in most practical applications, which re-

quires sophisticated non-destructive detection methods [1,2] to inspect. 
Thus, during the design phase of laminated composite structures, it is 
crucial to analyze the extent of potential delamination in order to en-

sure structural reliability.

In the past decades, extensive research has been conducted to study 
the delamination, both experimentally and numerically. There exist a 
number of excellent review articles [3–7] in literature on this topic. 
For modeling delamination, the dominant approach is based on the co-

hesive zone method (CZM) that was introduced by Dugdale [8] and 
Barenblatt [9] in early sixties. The CZM can describe both initiation 
based on the interfacial strength and crack growth based on the mate-

rial fracture energy. Ortiz and Pandolfi [10] introduced a 3D cohesive 
element using irreversible cohesive laws to accurately track dynamic 
crack growth. Alfano and Crisfield [11] presented a finite element anal-

* Corresponding author.

ysis method using interface elements and cohesive laws to assess de-

lamination in laminated composites. Camanho et al. [12] proposed a 
decohesion interface element with a softening law employing a relative 
displacement-based damage parameter to simulate delamination under 
mixed-mode loading. Iannucci [13] presented a CZM-based interface 
modeling method for explicit FE simulation of dynamic delamination 
progress in composites. Bouhala et al. [14] proposed a CZM/XFEM-

based inverse method for identification of mode-I failure parameters 
of unidirectional carbon/epoxy composite. Turon et al. [15] proposed 
a mode-dependent penalty stiffness in the cohesive law to improve the 
accuracy of delamination simulation using the CZM.

The fracture energy which is an input in these models strongly influ-

ences the rate and extent of delamination growth. In order to accurately 
simulate delamination growth, it is crucial to reliably characterize the 
fracture energy as a model input. Numerous test methods [4,16] have 
been proposed to quantify the fracture energy for mode-I, mode-II and 
mixed-mode I/II delamination fracture, such as the double cantilever 
beam (DCB) [17] [18], end-notched flexure (ENF) [19,20], end-loaded 
split (ELS) [21,22], transverse crack tension (TCT) [23,24] and mixed-
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mode bending (MMB) [25–27] tests. With the experimental results at 
certain given mode ratio, numerical models need to generalize such 
fracture energy input to deal with the arbitrary changing mode ra-

tio during the simulation. Thus, phenomenological relations on the 
macroscale are used to characterize the fracture energy as function 
of mode ratio. The common assumption that fracture energy depends 
purely on fracture mode-ratio is rarely debated. However, there is ev-

idence that reality is more complex than that. Davidson et al. [28]

showed from measurements on a wide range of tests that the measured 
fracture energy as function of mode ratio does not collapse on a single 
line. Pérez-Galmés et al. [29] investigated different bending-dominated 
mode-II test setups for adhesive crack growth and found little differ-

ence between the different setups. However, when comparing bending-

dominated (ENF) to extension-dominated (TCT) measurements several 
experimental studies have shown a difference in measured mode-II frac-

ture energy between the two tests [30,31], although Allegri et al. [32]

reported similar mode-II fracture energy for both setups. Wisnom [33]

reported a size-effect in mode-II fracture energy. Uncertainty about the 
general applicability of fracture energy measurements endangers the 
accuracy of state-of-the-art numerical models for progressive failure 
analysis. Thus, an investigation into the energy dissipation mechanisms 
in the delamination process that govern the fracture energy is relevant 
to improve the reliability of macroscale CZM predictions.

Since composite materials are intrinsically heterogeneous, dissipa-

tive processes among the constituents are naturally described on the 
microscale. The major dissipation mechanisms include fiber break-

age/bridging, matrix-microcracking/crazing, fiber-matrix debonding 
and matrix plasticity [34–36]. Computational micromechanical models 
have been proposed in literature to predict the nonlinear response up 
to failure of composite materials. Based on the concept of a statistically 
representative volume element (RVE) [37], deformation and failure 
of fibers, matrix and fiber/matrix interfaces in the microstructure of 
composites can be explicitly modeled by relatively simple constitutive 
laws. Subjected to fundamental loading cases, the micromodel response 
is then upscaled to the effective response of the composite material 
via homogenization. For example, by adopting micromechanics-based 
analysis, several papers [38–41] studied failure envelopes of composite 
materials by extracting maximum stress values from RVE simulations. 
McCarthy and Vaughan [42] proposed micromechanics models to ex-

tract macroscale elastic moduli and effective strength properties while 
Naya et al. [43] adopted similar method but include influence from 
different environmental conditions such as temperature and humidity. 
Fu and Wang [44] developed a micromechanical model to predict the 
effective cohesive strengths of all the three delamination modes in uni-

directional laminates.

However, in fracture tests, the local strain history that is seen is 
not as simple as in fundamental loading scenarios such as simple ten-

sion or pure shear. The stress or strain path that a macroscale material 
point near the crack plane follows in a fracture test is not proportional. 
The nonlinear interaction between neighboring material points in and 
around the failure process zone (FPZ) makes it impossible to predict the 
strain path at any point on the macroscale before solving the full prob-

lem. Therefore, in order to use a micromodel for describing the material 
response in a fracture test, a fully coupled approach is needed. This can 
be achieved either by explicitly modeling the microstructure in (part of) 
the macroscopic domain with an embedded cell model [45–48] in a di-

rect numerical simulation (DNS), or by coupling an RVE simulation to 
every macroscopic integration point using computational homogeniza-

tion (or FE2) [49]. In the DNS approach, a region with fully-resolved 
microstructure is modeled around the FPZ while a coarse mesh with 
homogenized material properties is adopted in the rest of the speci-

men. Due to the large scale difference between the full problem and 
the micro-constituents, a highly refined mesh is required to discretize 
the embedded cell region, which limits the applicability of DNS to a 
relatively small-scale crack propagation modeling. Moreover, for the 
2

typical scenario, where delamination grows in the direction parallel to 
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the fibers, a 2D modeling approach is not suitable while a 3D DNS 
model is simply not feasible due to the formidable computational cost.

With the FE2 approach no assumptions on the constitutive response 
of the homogenized material are needed. The point-wise overall re-

sponse on the macroscale is directly evaluated, on the fly, from a rep-

resentative lower scale problem which accounts for the microstructural 
geometry and properties of the constituents [50]. The strain from the 
macroscale is translated to microscale boundary conditions, for which 
the microscale boundary value problem (BVP) is solved after which 
averaged stresses are passed back to the macromodel. When localiza-

tion takes place, the classical first-order FE2 approach [51] becomes 
problematic because the averaged response becomes pathologically de-

pendent on the size of the micromodel. To overcome the issue of the 
first-order FE2 approach, several models have been proposed in re-

cent years. For instance, Massart et al. [52] proposed to use a two-fold 
first-order FE2 to resolve the response in both damaging and unloading 
material parts where an embedded discontinuity band is incorporated 
at the macroscale while on the microscale localization bands appear as 
a consequence of softening material laws. Nguyen et al. [53] proposed 
a continuous-discontinuous FE2 framework to model the transition of 
microscopic diffusive damage to macroscopic cohesive failure for ten-

sile cracking problems. Turteltaub and Suárez-Millán [54] established 
an energetically-consistent FE2 framework that upscales the micro-

scopic cohesive traction to macroscale discontinuity. Yu [55] proposed 
a vector-based damage-driven computational homogenization approach 
with localized gradient enhanced boundary conditions to resolve the 
RVE size dependency issue. For detailed review, readers are referred to 
the contributions of [56], [57] and [58]. Most formulations involve a 
discontinuous formulation on the macroscale, such that the micromodel 
is used to provide a traction-separation relation. The size of the micro-

model can then be included in the scale transition to recover RVE-size 
independence in the macroscopic response [50].

However, to authors’ knowledge the proposed FE2 approaches for 
localization problems have not been used beyond the proof-of-principle 
level. With a view to establish a standard for analyzing the macroscopic 
effective fracture energy from FE2 simulations, the applicability of FE2

approaches for composite delamination has to be proven. To define 
a case study, mode-II delamination is of particular interest for three 
reasons. Firstly, there is evidence that the effective fracture energy 
under pure mode-II depends on the test setup [23,31,33]. Secondly, 
unlike mode-I dominated cases, longitudinal shear failure has rarely 
been investigated via microscale simulations. For example, in [59]

where mode-II delamination is studied via an analytical homogeniza-

tion method based on plate theory, the smallest considered scale is still 
the mesoscale where the composite ply is modeled as a homogeneous 
material. Lastly, there is significant plastic deformation in mode-II de-

lamination. This has been observed experimentally with digital image 
correlation by Jalalvand et al. [60]. Furthermore, in a numerical inves-

tigation Van der Meer and Sluys [61] showed that plasticity is likely 
to play a role in the experimental observations by Wisnom [33] on the 
existence of a size effect in the TCT test.

In this contribution, the suitability of the previously proposed dis-

continuous FE2 framework [50] for describing crack growth in an 
elasto-plastic medium under mode-II conditions is verified by compari-

son with DNS. The influence of plasticity on the total energy dissipation 
per unit crack length is assessed for two different tests, namely the ENF 
and modified TCT [23] setup to exemplify what kind of insight the 
multiscale approach can provide. Because DNS of an actual fiber rein-

forced matrix composite for the case where the crack grows in direction 
parallel to the fibers is not computationally feasible, a simplified lay-

ered microstructure is devised with alternating thin layers of elastic 
and elasto-plastic material and with the possibility of debonding along 
the interface between the layers. Note that the adopted layered simpli-

fied microstructure is not fully representative of actual UD composite. 
However, it does share essential characteristics in having long straight 

reinforcements that govern the direction of crack growth combined 
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with a softer matrix that can undergo plastic deformation. Consistency 
between FE2 and DNS results for this case verifies the FE2 approach 
for this type of problems. Further analysis of the model results demon-

strates how FE2 analysis can be employed to investigate the source of 
energy dissipation in material characterization tests. Special attention 
is given to the question to what extend the multiscale model confirms 
the observation that effective macroscopic fracture energy depends on 
the test setup.

2. Modeling strategies

2.1. Failure computational homogenization framework

The two-scale failure computational homogenization framework 
proposed in Ke and van der Meer [50] is briefly described in this sec-

tion. Two superscripts, namely □M and □m, are adopted to indicate 
macroscopic and microscopic quantities, respectively.

2.1.1. Macroscopic problem

The macroscopic problem is schematically shown in Fig. 1. Cohe-

sive cracks are represented by displacement discontinuities along the 
internal boundary ΓM

𝑑
(lines in two-dimensions or surfaces in three-

dimensions) within the solid domain ΩM. At the position of the internal 
boundary, the material splits in two, giving rise to two opposite sur-

faces +ΓM
𝑑

and −ΓM
𝑑

. Cohesive tractions 𝐭M
𝑑
= −𝐭M

𝑑
are present across ΓM

𝑑

and related to the displacement jump, i.e. �𝐮M� = +𝐮M−−𝐮M where 𝐮M
is the displacement field. The outward unit normal vector is denoted 
by 𝐧M

𝑑
that points to the positive side +ΓM

𝑑
. Prescribed displacements �̂�

are applied on Dirichlet boundary ΓM
𝑢

while tractions �̂� are imposed on 
Neumann boundary ΓM

𝑡
.

Exploiting the balance of virtual work and under the small displa-

cement-gradient assumption, the weak form of the equilibrium can be 
expressed as

∫
ΩM⧵ΓM

𝑑

∇sym𝛿𝐮M ∶ 𝝈MdΩ+ ∫
ΓM
𝑑

𝛿�𝐮M� ⋅ 𝐭M
𝑑
dΓ = ∫

ΓM
𝑡

𝛿𝐮M ⋅ �̂�dΓ, (1)

where the left-hand-side contains the contribution from the bulk ma-

terial and the cohesive cracks while the right-hand-side is the external 
virtual work. ∇sym refers to the symmetric gradient. Bulk constitutive 
laws relate the stress 𝝈M to the bulk strain 𝜺M while traction-separation 
laws relate the cohesive traction 𝐭M

𝑑
and displacement jump �𝐮M� as 

well as the bulk strain 𝜺M, as follows,

𝝈
M = 𝝈

M(𝜺(𝐮M), 𝜅); 𝐭M
𝑑
= 𝐭M

𝑑
(�𝐮M�,𝜺(𝐮M),𝜔), (2)

where 𝜅 and 𝜔 are internal variables. Note that Eq. (2) also includes 
the dependency of the cohesive traction on the surrounding bulk strain, 
which is claimed an advantageous cohesive formulation in van der Meer 
and Sluys [62], and is also present in the current FE2 framework. Due 
to the fact that material histories such as plasticity and damage are 
tracked on the microscale it is not necessary to explicitly define the 
internal variables on the macroscale.

2.1.2. Kinematics scale transition

The macroscopic deformation measures are defined separately in the 
continuous part of the domain ΩM

𝑐

def
= ΩM ⧵ ΓM

𝑑
and the discontinuous 

part ΓM
𝑑

. For the bulk integration points in the continuous part, the 
macrostrain field 𝜺M is described as

𝜺
M
𝑐
=∇sym𝐮M (3)

while for the cohesive integration points on ΓM
𝑑

, it is defined as

𝜺
M
𝑑
= 𝜺

M
𝑏
+ 𝜺

M
𝑓

(4)
3

with
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𝜺
M
𝑏

def
= 1

2
(𝜺+

ΓM
𝑑

+ 𝜺
−
ΓM
𝑑

) and 𝜺
M
𝑓

def
= 1
ℎ
(�𝐮M�⊗𝑠𝑦𝑚 𝐧M

𝑑
), (5)

where 𝜺M
𝑏

is the bulk strain average from +ΓM
𝑑

and −ΓM
𝑑

; 𝜺M
𝑓

is the 
second-order discontinuity tensor. Note that a scaling parameter ℎ is 
introduced in the latter quantity. It functions to regulate the energetic 
equivalence between two scales in order to fulfill the extended Hill-

Mandel macrohomogeneity principle [63] and to guarantee RVE-size 
objectivity in the homogenized response. The value of ℎ is acquired 
from the underlying microscopic problem accounting for the developed 
failure mechanism and morphology of the microstructure. Readers are 
referred to [50] for detailed discussion on the definition of ℎ. In the cur-

rent work where a microstructure with thin layers of two material (as 
shown in Fig. 2) is devised for the longitudinal mode-II delamination, 
the value of ℎ simply equals the height of the RVE.

On the microscale, the displacement field is defined in the first-order 
FE2 approach as:

𝐮m = 𝐮M + 𝜺
M ⋅ 𝐱m + �̃�m, (6)

where 𝜺M is either 𝜺M
𝑐

or 𝜺M
𝑑

; �̃�m is the displacement fluctuation field in-

side the RVE domain; and 𝐱m is the position vector. The kinematics scale 
transition is completed by adopting appropriate boundary conditions 
(BCs) on the RVE to form the microscopic boundary value problem. 
Different types of BCs exist for microscale problems with localization in 
literature [see e.g. 64–67]. For the simulation in the present work, node-

to-node periodic BCs (as schematically shown in Fig. 3) are adopted.

2.1.3. Stress and traction homogenization

At the converged state of the microscopic BVP, microscale quantities 
are upscaled to the macroscale via homogenization.

The macroscopic stress at bulk points in ΩM
𝑐

is obtained through 
averaging as

𝝈
M
𝑐
= ⟨𝝈m⟩Ωm = 1|Ωm| ∫

Ωm

𝝈
mdΩ, (7)

where ⟨□⟩Ωm denotes the domain averaging operation; |Ωm| is the mea-

sure of the domain Ωm which is the area for two-dimensions and volume 
for three-dimensions.

Combining Eq. (7) with the Cauchy theorem, cohesive tractions for 
points on the macroscale discontinuity ΓM

𝑑
are given as,

𝐭M
𝑑
= 𝝈

M ⋅ 𝐧M
𝑑
. (8)

2.1.4. Macroscopic localization criteria
Localization criteria are crucial for accurate detection of the initia-

tion and propagation of the macroscale cohesive crack. As in [68] and 
[69], we adopt a bifurcation criterion based on singularity of the acous-

tic tensor,

Find 𝐧M
𝑑
⇒ 𝐐 ⋅𝐦 = 𝟎 at the first time 𝑡𝐵 for any 𝐦

with 𝐐 = 𝐧M
𝑑
⋅𝐃M ⋅ 𝐧M

𝑑
and ||𝐧M

𝑑
|| = ||𝐦|| = 1

(9)

where 𝐃M is the macroscopic bulk tangent stiffness; 𝐐 is the corre-

sponding acoustic tensor; and 𝐦 is the polarization vector indicating 
the initial displacement jump velocity.

A sweeping procedure is used with the parameterization of the nor-

mal vector 𝐧M
𝑑

in terms of spherical coordinates. Once the global mini-

mum of det(𝐐) turns negative, it is identified that bifurcation occurs at 
this load step and 𝐦 is also computed as the eigenvector of 𝐐 associated 
with the negative eigenvalue.

In order to robustly discern the correct localization angle regardless 
of the loading scheme, an extra condition has been proposed in [50] to 
reinforce the Condition (9). At the load step when det(𝐐) turns negative 
for the first time, if multiple negative local minima are detected, we 
select that non-positive stationary point of which the failure mode is 

mostly aligned with the bulk strain field 𝜺M:
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Fig. 1. Cohesive failure problem on macroscale.
Fig. 2. Simplified microstructure with alternating layers of elastic and elasto-

plastic material.

Fig. 3. Node-to-node periodic BCs on 3D RVE, which reads 𝐮+Γm
𝑖
= 𝐮−Γm

𝑖
+ 𝐮𝑖

with 𝑖 = 1, 2, 3 and 𝐮0 = 𝟎.

Find (𝐦,𝐧M
𝑑
)⇒ Maximum(𝜺M ∶ (𝐦⊗𝑠𝑦𝑚 𝐧M

𝑑
)). (10)

2.2. Implementations

As a natural match with the discrete cohesive fracture problem, the 
phantom node method [70] is adopted in the present work to model 
discontinuities on the macroscale. On the microscale as well as in DNS, 
a model that inserts interelement cohesive elements into the finite ele-

ment mesh dynamically on the fly is adopted [71,48].

The solution algorithm is a Newton-Raphson iterative procedure 
with an extra check for cohesive segment insertion at the end of 
each converged load step. In order to handle the possible snapback 
behavior, a dissipation-based arclength approach combined with a dy-

namic switching strategy between load control and dissipation control 
is adopted [72,73].

2.2.1. Phantom node model

In the phantom node method, cohesive cracks are simulated by du-
4

plicating elements in which the localization criteria are violated. A 
triangular element with original nodes [𝑛1, 𝑛2, 𝑛3] and one bulk integra-

tion point (IP) as schematically shown in Fig. 4 serves as an example. 
Once the localization is detected, the element domain ΩM is split by 
a new cohesive segment ΓM

𝑑
into subdomains, ΩM

𝐴
and ΩM

𝐵
, where 

ΩM
𝐴

⋃
ΩM
𝐵
=ΩM. Two new elements, 𝐴 and 𝐵, with connectivities being 

nodes𝐴 =
[
𝑛1, �̃�2, �̃�3

]
and nodes𝐵 =

[
�̃�1, 𝑛2, 𝑛3

]
, now replace the original 

element. They are partially active within the subdomains ΩM
𝐴

and ΩM
𝐵

, 
respectively. The displacement field within ΩM now reads:

𝐮M(𝐱M) =

{
𝐍(𝐱M)𝐮𝐴, 𝐱M ∈ΩM

𝐴

𝐍(𝐱M)𝐮𝐵, 𝐱M ∈ΩM
𝐵

, (11)

where 𝐍(𝐱M) is the standard shape function matrix. The displacement 
jump along ΓM

𝑑
is defined as:

�𝐮(𝐱M)�M =𝐍(𝐱M)
(
𝐮𝐴 − 𝐮𝐵

)
, 𝐱M ∈ ΓM

𝑑
. (12)

Following Eq. (5), the bulk macrostrain along the discontinuity is eval-

uated in Voigt notation as

𝜺
M
𝑏
= 1

2
𝐁(𝐮𝐴 + 𝐮𝐵) (13)

where 𝐁 is the strain-displacement matrix which is the same for both 
overlapping elements, while the smeared discontinuity strain is defined 
as

𝜺
M
𝑓
= 1
ℎ
𝐀𝐍

(
𝐮𝐴 − 𝐮𝐵

)
, where 𝐀𝑇 =

[
𝑛M
𝑑1 0 𝑛M

𝑑2

0 𝑛M
𝑑2 𝑛M

𝑑1

]
. (14)

For partially-active elements 𝐴 and 𝐵 and the cohesive crack seg-

ment, new integration schemes need to be constructed. To determine 
integration weights, triangulation is performed for the bulk elements. 
When the constant strain triangular element is used, only one bulk 
RVE is present in the uncracked element, which is cloned to all newly 
allocated bulk and cohesive IPs, with the deformation state at the lo-

calization. When multiple IPs are used for macro-elements, a cloning 
operation is performed based on the distance between old and new IPs 
such that the new RVE is copied from the closest old IP.

It is worth mentioning that the secant unloading stiffness can be used 
as an alternative for the new bulk IPs if linear unloading is assumed, 
as discussed in [53]. This strategy is beneficial for the computational 
robustness since unloading could sometimes incur convergence issues 
in the microscopic simulations. Note that the secant unloading stiffness 
does include the effect of material damage that has accumulated before 
the element is cracked.

2.2.2. Interelement cohesive model

For the microscopic problem in the FE2 simulation and DNS cases, 
a model [71] that inserts cohesive elements between neighboring el-
ements during the simulation is adopted in order to reduce computa-
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Fig. 4. Phantom node model with cohesive segments on the macroscale while 3D slice RVEs are adopted on the microscale.

Fig. 5. Insertion of interelement cohesive element.
tional costs and achieve good robustness, which is especially important 
for DNS cases.

Second-order six-node triangular elements are adopted to discretize 
the specimen domain in 2D problems. For 3D microscopic models in the 
current FE2 simulation, the 2D mesh is extruded to a 3D mesh with only 
one element in the thickness direction (the longitudinal direction on the 
macroscale). As a result, six-node triangular elements are extended to 
twelve-node wedge elements.

Cohesive cracks can only initiate at the mid-node and propagate 
along element edges (see Fig. 5) when the following local failure crite-

rion is violated,

�̄� ≥ 𝑓𝑡 with �̄� =
⎧⎪⎨⎪⎩
√(

𝑡𝑛
)2 + 𝛽 (||𝑡𝑠||)2, �𝑢�𝑛 ≥ 0√

𝛽
(||𝑡𝑠||− 𝜇 ||𝑡𝑛||) , �𝑢�𝑛 < 0

, (15)

where �̄� is the effective stress, 𝑓𝑡 is the material tensile strength, 𝑡𝑛 and 
𝑡𝑠 is the normal and shear traction component, 𝛽 is a shear stress factor 
and 𝜇 is the friction coefficient. In 3D, 𝑡𝑠 is the norm of the two shear 
components. At every converged load step this criterion is checked at 
every mid-node in the mesh. Because the crack insertion introduces 
unbalance force the Newton-Raphson procedure is re-performed until 
equilibrium is reached again.

Because the cohesive element is inserted at a non-zero stress state, it 
is necessary to adopt an initially rigid cohesive law [72]. To achieve this 
without introducing a singularity at zero-opening, we shift the origin of 
a non-rigid cohesive law (bilinear) such that the traction at zero dis-

placement jump and zero damage matches the surrounding bulk stress 
on the mid-node from the bulk element, as shown in Fig. 6 (see [48] for 
more details).

2.2.3. Plasticity model

For the elasto-plastic ‘matrix’ material, the pressure dependent hard-

ening plasticity model developed by Melro et al. [41] for polymers is 
5

adopted. The model is briefly described in the following.
The stress is related to the strain via

𝝈 =𝐃e ∶ (𝜺− 𝜺p) with 𝐷𝑖𝑗𝑘𝑙 =𝐺
(
𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

)
+
(
𝐾 − 2

3
𝐺

)
𝛿𝑖𝑗𝛿𝑘𝑙

(16)

where 𝐃e is the elastic stiffness tensor, 𝜺𝑝 is the plastic strain, 𝐾 is the 
bulk modulus and 𝐺 is the shear modulus.

A paraboloidal yield function is defined as:

𝑓
(
𝝈, 𝜎c, 𝜎t

)
= 6𝐽2 + 2𝐼1

(
𝜎c − 𝜎t

)
− 2𝜎c𝜎t (17)

where 𝐽2 is the second deviatoric stress invariant and 𝐼1 is the first 
invariant. The compression yield stress 𝜎c and tension yield stress 𝜎t
are not constant but rather a function of the equivalent plastic strain 
𝜀
𝑒𝑞
p , which is defined as

�̇�
eq
p =

√
𝑘�̇�p ∶ �̇�p with 𝑘 = 1∕(1 + 2𝜈𝑝) (18)

where 𝜈𝑝 is the plastic Poisson ratio, introduced by Guild et al. [74] and 
also adopted by Melro et al. [75].

A non-associative flow rule is introduced to describe the increment 
in plastic strain as:

Δ𝜺p = Δ𝛾
(
3𝐒+

1 − 2𝜈p
1 + 𝜈p

𝐼1𝐈
)

(19)

where Δ𝛾 is the increment of plastic multiplier and 𝐒 is the deviatoric 
stress tensor.

In the current implementation, the plastic dissipation density 𝑑M is 
monitored for analyzing the plastic contribution in the energy dissipa-

tion along the delamination growth, defined as:

𝑑M =

𝑡

𝝈 ∶ �̇�p𝑑𝑡. (20)
∫
0
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Fig. 6. Pure mode I representation of shift in cohesive law to mimic initially rigid behavior.
Fig. 7. 3D RVE for unidirectional fiber-reinforced composite material.

Note that in the FE2 simulation, the plastic dissipation density is an 
average over the RVE volume.

2.2.4. 3D slice RVE

As the concerned longitudinal mode-II delamination can be simu-

lated accurately in 2D, the FE2 implementation as well as the DNS is 
applied to a plane strain macroscopic problem. However, when con-

sidering a microstructure of fiber-reinforced composite material a 3D 
micromodel is needed, because the plane in which the microstructural 
geometry can be described (the transverse plane) is perpendicular to the 
plane in which the macroscopic geometry and boundary conditions can 
be described. Thus, for the simplified microstructure shown in Fig. 2, 
we also use a 3D RVE. Under the assumption that fibers are straight and 
perfectly aligned, a 3D RVE can be obtained by extruding a 2D RVE to 
a single element in fiber direction, as the one in Fig. 7. Such slice RVE 
is able to capture the interaction between longitudinal shear and stress 
in fiber direction [35]. Notably, the slice itself does not describe crack 
growth in longitudinal direction. However, in line with the concept of 
separation of scales, a series of slice RVEs representing different stages 
of material degradation can be representative for the FPZ of a growing 
crack.

3. Test setup and material properties

Two mode-II delamination tests, ENF and modified TCT specimen, 
are chosen to investigate the suitability of the failure FE2 framework 
with a slice RVE for simulating shear crack growth in unidirectional 
laminates. The setups of both tests are schematically given in Fig. 8. In 
both specimens, a notch (shown in red lines) is pre-defined ahead of a 
critical region (shown in blue) over which the microstructure is mod-

eled, either with FE2 or with the embedded DNS model. In the modified 
TCT specimen (or mTCT), as proposed by Scalici et al. [23], horizon-
6

tal pre-cracks are included, extending from both ends of the vertical 
notch to create a pre-crack in the form of a lying H, which makes the 
test more well-behaved as compared to the classical TCT test with only 
the vertical notch. Due to the symmetric test setup with symmetric re-

sponse, only one quarter of the mTCT specimen is modeled to reduce 
the computational cost without affecting the numerical results, follow-

ing several earlier studies in literature where the (modified) TCT setup 
has been modeled numerically [61,23,76,77].

For the elasto-plastic ‘matrix’ material, the plasticity model is used 
with the hardening curve adapted from Fiedler et al. [78], as shown in 
Fig. 9. Note that moderate hardening tails are added to both compres-

sion and tension curves for compatibility with the stress-based cohesive 
initiation criterion. The Poisson’s ratio in the matrix is 𝜈𝑚 = 0.3 and 
Young’s modulus is 𝐸𝑚 = 10100MPa, while the plastic Poisson’s ra-

tio 𝜈𝑚𝑝 = 0.39 [35]. The ‘fibers’ are modeled as isotropic linear elastic 
with Poisson’s ratio 𝜈𝑓 = 0.2 and Young’s modulus 𝐸𝑓 = 121000MPa. 
‘Fiber/matrix’ debonding is modeled with the shifted cohesive law de-

scribed in Section 2.2.2.

Interfacial parameters are given in Table 1. The initial stiffness is 
decided by preliminary simulations. It is chosen as high as possible 
without endangering the computational convergence. The fracture en-

ergy is chosen in the range of measured mode-II values of composites 
with epoxy matrix reported in literature [79,80]. It is assumed to al-

ready include the effect of increased crack surface due to formation of 
cusps or hackles [81]. The chosen value for 𝛽 is combined with the 
chosen value for 𝑓𝑡 to ensure that shear failure happens just before 
the maximum value of the matrix shear stress-strain curve. The relative 
value of the strength with respect to plasticity hardening curve has a 
strong influence on the contribution of plasticity to the energy dissipa-

tion. Further increase of the strength would lead to pure matrix plastic 
deformation without interface cracking. Because only mode-II cases are 
considered in this paper, similar results could be obtained with a lower 
𝛽 in combination with a lower value for 𝑓𝑡. Finally, a low 𝜇 limits the 
effect from compressive normal traction which is anyway very small in 
the mode-II case.

The micromodel contains a number of parameters, some of which 
are standard and independently identifiable, like the elastic properties 
of the matrix and fiber, while others may be more difficult to identify, 
such as the plastic Poisson’s ratio for the matrix and the fiber/matrix 
interfacial properties. In line with the motivation for FE2, it is assumed 
in this work that a micromodel with realistic parameters exist and that 
the present micromodel includes the relevant physical ingredients.

4. Results and discussion

In mode-II delamination crack growth, there is a thin layer of mate-

rial around the crack in which crack growth is accompanied by signifi-

cant plastic deformations. In a homogenized model, and therefore also 
on the macroscale in FE2 model, a sufficiently refined mesh is needed to 
capture this accurately [61]. Furthermore, the FE2 model relies on the 
principle of separation of scales, meaning that every macroscopic inte-

gration point represents a region with uniform deformation apart from 
a microscopic fluctuation that can be modeled as periodic. The principle 

of separation of scales requires that the microstructural length scale, in 
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Fig. 8. ENF and mTCT tests setups. (For clarity, figures not to scale.)

Table 1

Material parameters of cohesive laws.

Penalty stiffness

𝐾𝑝 (N∕mm3)

Fracture strength

𝑓𝑡 (MPa)
Fracture energy

𝐺𝑐 (N∕mm)

Interaction 
coefficient 𝛽

Friction 
coefficient 𝜇

1.0e5 60 1.5 0.8 0.1
Fig. 9. Hardening curves for the plasticity model.

this case the thickness of the layers, is small with respect to the length 
scale of macroscopic variations, in this case the thickness of the plastic 
zone around the crack. In light of these considerations, agreement be-

tween DNS and FE2 requires sufficiently thin layers in the DNS and a 
sufficiently refined mesh in the FE2. Therefore, a twofold convergence 
study is performed on these two aspects. The results are compared in 
terms of global load-displacement response and predicted plastic energy 
dissipation.

4.1. Mesh refinement study

The discretization in the critical region where delamination cracks 
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propagate is illustrated in Fig. 10. Six-node triangle elements are 
Table 2

Thickness of material layers in DNS and 
macro-element in FE2.

Case 𝑡𝐷𝑁𝑆 (μm) 𝑡𝐹𝐸2 (μm)

ENF 5, 4, 3.125, 2.5 14.8,10.8,8.9,6.6

mTCT 5, 4, 3, 2.5 80, 57.1, 44.4

adopted for DNS cases while for FE2 cases four-node quadrilateral ele-

ments are used. For the mesh refinement study, we progressively reduce 
the thickness of individual layers (𝑡𝐷𝑁𝑆 ) in the DNS mesh and thickness 
of element layers (𝑡𝐹𝐸2 ) in the FE2 mesh. Table 2 shows the considered 
varying thickness values. Note that due to the much thinner plastic layer 
in ENF tests than in mTCT tests, 𝑡𝐹𝐸2 of the ENF mesh is set to smaller 
values than those of the mTCT mesh.

4.1.1. ENF test
The load-displacement curves at the loading point of ENF simula-

tions are shown in Fig. 11. A load drop can be observed following the 
peak point due to the propagation of the delamination crack. Although 
the curves start to increase again soon because of the short region where 
crack growth is allowed, a region with stable crack growth is achieved. 
The position of the load drop is governed by the effective fracture en-

ergy consisting of a cohesive and a plastic contribution.

From the convergence study in Fig. 11, it is observed that the FE2

results have converged. For the DNS, a slight mesh-dependence remains 
for the investigated layer thicknesses. Further refinement is challenging, 
because the finest mesh simulations are already heavy and convergence 
of the nonlinear solution procedure deteriorated for finer meshes. Nev-

ertheless, the DNS results are close to the converged FE2 solution and 
the finest DNS solution is considered representative for more detailed 

comparison with the FE2 solution.
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Fig. 10. Mesh in critical region. (a) DNS case; (b) FE2 case.

Fig. 11. Load-displacement responses at the loading point of ENF tests. (a) global view; (b) zoom-in around the peak.

Fig. 12. Load-displacement responses at the loading point of mTCT tests. (a) global view; (b) zoom-in around the plateau.
4.1.2. mTCT test
For the mTCT simulations, load-displacement curves are shown in 

Fig. 12. A plateau is present in the curve indicating the stable propa-

gation of delamination. Even more than in the ENF test, both DNS and 
FE2 results converge to a very close unique response. This means that 
the FE2 model in this case yields highly accurate solution compared to 
the DNS model. It is also clear that a relatively coarse macromesh in the 
FE2 model is already good enough to capture the plastic zone around 
the delamination crack. This will be clarified via the plastic energy dis-

sipation analysis in next section.

4.2. Plastic dissipation along crack propagation

To quantify the plastic contribution to the fracture energy i.e. the 
energy dissipation per unit crack growth, the dissipation density of a 
column of bulk integration points is integrated over the height of the 
8

critical region. The dissipation is firstly analyzed for an individual cross-
section over the height of the specimen after which the longitudinal 
variation of the integrated quantity is examined. The results from the 
finest-mesh simulations are adopted except where mesh size is explicitly 
mentioned.

4.2.1. ENF test
Fig. 13 shows the dissipation density from ENF simulations at each 

integration point over the height of the cross-section at 𝑥 = 32mm. 
The results are from the final time step in the analysis when the de-

lamination crack has propagated well beyond the cross section under 
consideration. The results of the DNS (𝑡𝐷𝑁𝑆 = 3.125 μm) in Fig. 13 (a) 
show a staggered pattern due to the fact that dissipation only occurs 
in the elasto-plastic ‘matrix’ layer. By contrast, for the FE2 cases, the 
macroscopic values are obtained by averaging over the two layers in 
the RVE. Thus, for comparison purposes, the DNS results are also av-
eraged. It is clear that a significant amount of plastic deformation is 
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Fig. 13. Dissipation density over the cross-section at location 𝑥 = 32mm in ENF test. (a) results from the case 𝑡𝐷𝑁𝑆 = 3.125 μm; (b) convergence of the peak value 
of the dissipation density profile.

Fig. 14. (a) Evolution of plastic fracture energy at 𝑥 = 32mm in ENF test from the DNS case with 𝑡𝐷𝑁𝑆 = 3.125 μm; (b) convergence of the plastic fracture energy at 

𝑥 = 32mm.

present in the central layers adjacent to the crack plane. DNS results 
show a higher plastic concentration than the FE2 results. This could ex-

plain the small difference which exists in Fig. 11. Fig. 13 (b) shows the 
peak of the dissipation density profiles at different layer thicknesses. 
The values are the average of the peaks from 𝑥 = 31.9mm ∼ 32.1mm
for each data point in order to mitigate any spurious fluctuations. The 
peak exhibits a converged trend with a decreasing layer thickness in 
DNS cases while in FE2 cases it oscillates with a very small variance. 
However, the difference between the DNS and FE2 peaks is not negligi-

ble even after averaging over two DNS layers.

After integrating the density over the height of the cross-section, the 
plastic contribution to the fracture energy at a certain 𝑥-location can be 
obtained. Fig. 14 (a) shows the evolution of such a value at 𝑥 = 32mm
corresponding to the DNS case with 𝑡𝐷𝑁𝑆 = 3.125 μm. It can be ob-

served that the time window over which plastic energy is dissipated in 
this cross section is relatively narrow. Plastic dissipation starts when 
the fracture process zone approaches the considered location and stops 
soon after decohesion starts at this 𝑥-location. Hence, from macroscopic 
perspective, all plastic energy dissipation contributes to the fracture en-

ergy. We call the cumulative plastic dissipation under unit crack length 
the plastic fracture energy. Fig. 14 (b) shows the convergence of the final 
integrated plastic fracture energy at 𝑥 = 32mm with regard to differ-

ence layer thicknesses. It is observed that FE2 simulations yield a result 
that is almost identical to the converged DNS result. Again, the plot-

ted values are the averages from 𝑥 = 31.9mm ∼ 32.1mm for each data 
point in order to mitigate any spurious fluctuations.

Fig. 15 shows the plastic fracture energy profile along the crack path 
at different time steps. At the top the progression of cohesive crack seg-

ments is visualized, with the blue line indicating the initial cohesive 
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crack, and the red line indicating the traction free crack. Plastic de-
formation initiates just ahead of the crack tip and further develops as 
the crack approaches. When crack cohesive initiation takes place, plas-

tic dissipation stops, which leads to a plateau in the profile curve. A 
similar pattern can be found in the FE2 results, as shown in Fig. 16 ex-

cept at the location of the initial crack tip (𝑥 = 30mm). At this point 
the phantom node mesh with a sharp crack tip on an element edge is 
apparently not sufficiently refined to capture the stress field accurately, 
while the principle of separation of scales is also violated with the sharp 
crack tip. Another difference between FE2 and DNS is observed in more 
noticeable oscillations in the FE2 solution. A finer macromesh or more 
cohesive integration points might be needed to get a smoother solution. 
Comparing the final profiles from DNS and FE2 models, a good agree-

ment in the amount of plastic dissipation around the growing crack is 
observed.

4.2.2. mTCT test
For the mTCT test, the same analysis is carried out. Fig. 17 shows 

the dissipation density at each integration point over the height of cross-

section at 𝑥 = 5mm. Same as for the ENF test, averaging is done for the 
DNS case. However, unlike with the ENF test, Fig. 17 shows an excellent 
agreement between the DNS and FE2 results not only in the shape but 
also in terms of the exact values obtained. The FE2 model in this case 
predicts the plastic dissipation in the critical region very accurately. It 
is worth noting that the plastic region in the mTCT test is much wider 
than that in the ENF test. This makes the mTCT models converge faster 
to the unique solution.

Regarding the plastic fracture energy profile along the crack path, 
Fig. 18 and Fig. 19 show the evolution for the DNS case and the FE2

case, respectively. Very similar plastic dissipation in terms of the shape 

and maximum value is obtained with the two models. Small oscillations 
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Fig. 15. Plastic fracture energy along the whole crack path from DNS model in ENF test.

Fig. 16. Plastic fracture energy along the whole crack path from FE2 model in ENF test.
Fig. 17. Dissipation density over the cross-section at location 𝑥 = 5mm in mTCT 
test.

are visible in both results but these are expected to vanish with a more 
refined mesh. As for the ENF test, the FE2 model accurately represents 
the local dissipation processes observed in the DNS reference solution.

4.2.3. ENF test vs. mTCT test
Comparing the maximum plastic fracture energy in from the two test 

cases, it appears that the mTCT test has a significantly higher contribu-

tion from the plastic deformation which further leads to a higher total 
fracture energy 𝐺𝑐 . The total fracture energy can also be assessed by 
the theoretical solution or comparison to simulations with elastic bulk 
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behavior, collapsing all nonlinear behavior in a cohesive crack.
Due to the relatively large FPZ, the existing analytical solutions for 
the ENF test such as the definition given by [82] do not yield very ac-

curate results if directly compared to the numerical load-displacement 
curve. Thus, we run the test with elastic matrix material and vary the 
cohesive fracture energy to test which effective value of the fracture 
energy gives a good match with the simulations that include plasticity. 
This is equivalent to performing a macroscale simulation with elastic 
bulk and effective fracture energy. The results are compared to the pre-

vious FE2 result in Fig. 20. First we set the cohesive fracture energy to 
1.5N∕mm, which is the same as was used for the cohesive cracks in the 
simulations with plasticity. It is observed that the global response devi-

ates significantly from the simulation that did include plasticity, which 
confirms that the plastic dissipation increases the effective fracture en-

ergy. Then the cohesive fracture energy is set to 1.68N∕mm, adding the 
plastic fracture energy which was found to be around 0.18N∕mm. Now, 
the load-displacement curve is very close to that from the FE2 simula-

tion that includes plasticity, although a small difference is found around 
the peak load. In order to further confirm the equivalence of the frac-

ture energy, we analyze the total dissipated energy when traction-free 
crack tip reached 𝑥 = 31.0mm (near the lowest point of the softening 
branch in Fig. 20) for both cases. For the plastic case, it is 4.55 J while 
it is 4.48 J for the elastic case with 𝐺elastic

𝑐
= 1.68N∕mm. Two values are 

close, which validates the prediction of the total dissipation of the FE2

approach.

For the mTCT test, fracture energy can be computed analytically as

𝑇
𝜎2ℎ𝑇𝐶𝑇 𝑡
𝐺 =
4𝐸1(ℎ𝑇𝐶𝑇 − 𝑡)

(21)
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Fig. 18. Plastic fracture energy along the whole crack path from DNS model in mTCT test.

Fig. 19. Plastic fracture energy along the whole crack path from FE2 model in mTCT test.
Fig. 20. Load-displacement response from ENF simulations, comparing the FE2

simulations to simulations with homogenized elastic bulk behavior and as in-

terfacial fracture energy of 1.5N∕mm and 1.68N∕mm.

where 𝜎 is the propagation stress corresponding to the plateau in the 
load-displacement curve and 𝑡 the thickness of the cut plies. By adopt-

ing the load when traction-free crack initiates in Fig. 12, we can ob-

tain 𝐺𝑇
𝑐𝐷𝑁𝑆

= 1.84N∕mm and 𝐺𝑇
𝑐
𝐹𝐸2

= 1.83N∕mm. This indicates that 
𝐺𝑝𝑙𝑎𝑠𝑡𝑖𝑐 ≈ 0.33N∕mm which is in the range of the results in Fig. 19.

Comparing the reference solutions of the ENF and mTCT test, it is 
shown that the latter has a higher effective fracture energy. An equiva-
11

lent cohesive law with fracture energy that includes a plastic contribu-
tion exists for both tests separately, but the effective 𝐺𝑐 depends on the 
test setup and can therefore not be considered a material property.

5. Conclusion

A multiscale framework for modeling mode-II delamination in uni-

directional composites has been developed. In this paper, it is shown 
through comparison with DNS on a material with simplified microstruc-

ture that the FE2 model can capture plastic energy dissipation around 
a growing crack accurately. The multiscale model response is indepen-

dent from the RVE size as shown in earlier work [50], and here it is 
also shown that the model response is independent on the macroscale 
element size. However, a very fine mesh is needed on the macroscale 
in order to obtain an objective response, especially for the ENF test 
where the plastic zone around the delamination crack is particularly 
narrow. In order to assess the plastic contribution to the total fracture 
energy, we propose to explicitly monitor the dissipation density from 
the bulk integration points in the zone where the delamination prop-

agates. Dissipation is integrated over the height to obtain the plastic 
fracture energy. It is found that there is a high concentration of plastic 
dissipation right next to the crack, with a zone of gradually decreasing 
plastic dissipation in the surrounding layers. This concentration, shown 
as the peak in the dissipation profile, is not converged between DNS 
and FE2 with the adopted layer thicknesses. However, the integrated 
plastic fracture energy converges much faster for both types of tests. In 
a comparison between two mode-II setups, it is observed that the ma-

terial experiences more plastic dissipation in the mTCT test than in the 
ENF test. Due to the difference in plastic dissipation, the mode-II frac-

ture energy does not exist as a material property for the investigated 

system. To investigate to what extend that also is the case for actual 
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fiber-reinforced composites, larger RVEs with realistic microstructure 
and material parameters need to be adopted. The requirement of using 
highly refined meshes on the macroscale to properly resolve the plastic 
zone around the growing crack makes multiscale simulations with re-

alistic microstructure excessively expensive. This exacerbates the need 
for acceleration techniques [83,84] to speed up microscale simulations.
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