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A B S T R A C T

Large-scale electrification of heavy-duty road freight faces challenges including scarcity of
charging infrastructure and high battery costs. Dynamic charging could help overcome these
challenges by enabling trucks to charge while driving. Important additional benefits for
carriers related to lower required sizes and longer lifetimes of batteries could justify the
required investments. The study investigates the optimal configuration of network sections to be
electrified so that the balance between costs and benefits turns out positive. A case study for a
highway network spanning 4 countries in Europe suggests that dynamic charging can lead to a
significant reduction in overall transport system costs, up to very large network sizes. The study
supports the decision-making of policymakers and road authorities by providing new insights
into the costs and benefits of dynamic charging networks, and simultaneously considering the
perspectives of investors and users.

. Introduction

Heavy-duty road freight transport is responsible for 5.6% of Europe’s Greenhouse gas emissions (ACEA, 2020). Electrification
f heavy-duty trucks is an important solution for decarbonization. However, installing charging stations poses several challenges,
uch as the need for large batteries for long haul movements, the net payload loss of vehicles and the very high power levels
eeded (Transport&Environment, 2021). In addition to these practical complexities, another challenge is the potential shortage of
atteries once new European measures and regulations to decarbonize road transport take effect (ACEA, 2023).

A recent alternative for charging electric vehicles is dynamic charging, also known as Electric Road System (ERS) (Gustavsson
t al., 2019), and it provides continuous power supply during driving through wireless/inductive charging, catenary and rail-based
nfrastructure. The introduction of ERS can impact transport costs in several ways. A recent research conducted by Shoman et al.
2022) in Sweden about passenger vehicles found that ERS combined with home-based charging would reduce the required battery
ange by 62%–71%, as batteries would mainly be needed to allow movements away from the main charging lines. Importantly, the
avings in battery costs would be sufficient to cover the investment costs in ERS. As an additional benefit, fewer discharging and
harging cycles would be needed with ERS, which improves battery lifespan. Moreover, directly tapping electricity from catenary
ines leads to higher energy efficiency than charging stations and battery-swapping stations (Speth and Funke, 2021). In short,
RS appears to be a promising alternative for charging electric vehicles. In this paper, we focus on the application of ERS for
eavy-duty freight transport. As with stationary charging, the introduction of ERS requires a major investment in the construction
nd maintenance of the system. In light of this, one question becomes paramount: how do investment and transport cost savings

∗ Corresponding author.
E-mail address: m.saeednia@tudelft.nl (M. Saeednia).
vailable online 1 March 2024
361-9209/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

ttps://doi.org/10.1016/j.trd.2024.104128
eceived 13 October 2023; Received in revised form 18 February 2024; Accepted 18 February 2024

https://www.elsevier.com/locate/trd
https://www.elsevier.com/locate/trd
mailto:m.saeednia@tudelft.nl
https://doi.org/10.1016/j.trd.2024.104128
https://doi.org/10.1016/j.trd.2024.104128
http://creativecommons.org/licenses/by/4.0/


Transportation Research Part D 129 (2024) 104128X. Liao et al.

o
f
S
s
o
E
v

p
T
a
s

2

d
D
t
L
o
T
m
m
f
d
m
f
c

c
p
t
t
o
r

d
t
T
a
h
t
d
m
a
u
o
d
A
p

determine the economically feasible network size and its configuration? Information about the impact of ERS on net system costs,
and on the resulting advisable network length is an important input for authorities to initiate investments in dynamic charging. Only
a few studies have delved into this issue, and research has been limited to examining the impacts of ERS through fixed network
scenarios, where it was unclear whether the designs evaluated were the best ones possible, given the underlying cost structures.
For instance, in de Saxe et al. (2022), possible reductions in battery size were explored with three specific scenarios related to the
UK freight road network. While the results were positive for ERS, it is unclear whether different networks would have produced
significantly different results. We argue that to provide an assessment of the full potential of ERS, it is crucial to consider the
best possible networks for different magnitudes of investment. This requires a form of network optimization, beyond pragmatic or
scenario-wise network designs.

To address this void in the literature, our contributions are the following. Firstly, we propose an approach to identify the
ptimal ERS network for a given investment budget, minimizing infrastructure costs and operational costs. We develop a model
or optimal dynamic charging infrastructure network design, where the objective functions consider the relevant cost trade-offs.
econdly, we present the outcomes of a case study conducted on a European freight network. The results reveal significant net
ocietal benefit of investments in ERS, mainly due to reduction in battery sizes. Dynamic charging not only alleviates the challenge
f deploying stationary charging infrastructure but also achieves this at lower costs to society. Our findings suggest that large-scale
RS investments could play a key role in expediting the electrification of road freight transport. This insight holds relevance for
arious stakeholders, particularly policymakers and the logistics industry.

The paper is structured as follows: Section 2 provides an overview of the existing literature on the charging infrastructure
lanning approach and identifies research gaps. Section 3 introduces the main research question and presents the methodology.
he case study and its key results are presented and discussed in Section 4 while the main assumptions and their potential impacts
re discussed in Section 5. Finally, Section 6 summarizes the contributions and recommendations. Details about the model and the
olution approach are included in the Appendix.

. Literature review

Studies addressing charging-infrastructure planning focus majorly on fixed charging infrastructure and only some studies address
ynamic charging capable of providing electric power to the moving vehicles, hence enabling vehicles to charge while driving.
ynamic charging has been studied mostly in the context of wireless dynamic charging (WDC) since 2013 (He et al., 2013) and

he impact on battery capacity has been considered as an element in most of them (Riemann et al., 2015; Jang et al., 2015, 2016;
iu and Song, 2017; He et al., 2020). Additionally, Chen et al. (2020) considers battery life cycles in a multi-route network. DWC
ffers flexibility in terms of vehicle movement, making it better suited for passenger transport at the cost of some lost efficiency.
hese studies are predominantly evaluated in theoretical or small-scale scenarios, nevertheless, they provide valuable insights and
ethodologies for optimizing other categories of dynamic charging infrastructures. Alwesabi et al. (2020) develop an optimization
odel minimizing total cost based on a trade-off between battery size and wireless dynamic charging allocation, including a method

or battery size reduction for E-buses. The model is applied to a small bus network at Binghamton University. Mubarak et al. (2021)
esign a model from the perspective of decision-makers to optimally place wireless dynamic charging tracks in the urban networks,
eeting all EVs’ energy demands at minimum cost, considering traffic congestion where several lanes are available for EVs to choose

rom. Moreover, Chen et al. (2017) and Hassane et al. (2022) both create an optimization model considering dynamic and static
harging facilities placement for EVs and explore their potential competition.

Electric road systems (ERS), especially those offering continuous charging like overhead catenary lines, employ physical
onductive elements to directly and constantly provide power to vehicles. This enhances efficiency but limits flexibility in vehicle
ositioning. Nevertheless, these systems are well-suited for electrifying road freight due to the additional efficiency they provide as
rucks spend most of their working time on highways and normally move along a certain lane. There is a significant research gap in
he extensive planning of dynamic charging infrastructure (ERS) for Heavy-Duty Trucks (HDTs). Most literature on freight focuses
n stationary charging facilities, and detailed studies considering aspects such as battery downsizing and the associated cost savings
esulting from reduced battery requirements are lacking.

Few research works study ERS implementation using optimization models; Colovic et al. (2022) present a multi-objective network
esign model for determining optimal electrified roads using ERS-Overhead Catenary technology with the objective of maximizing
ruck flows served by ERS, minimizing diesel-caused environmental cost and ERS investment without battery cost considerations.
his model is applied in a simple highway structure and targets hybrid trucks specifically. Schwerdfeger et al. (2022) provides
n optimization approach for modeling optimal electrified highways to guarantee an ample energy supply for trucks on a German
ighway. This model is applicable to a single highway consisting of some small road segments. Their study targets hybrid trucks and
he aim is to minimize ERS investment costs with various battery charge levels as input(parameters) of the model. As continuous
ecision variables are considered, the small segments on the highway may only partially be electrified thereby constraining the
odel’s applicability to less extensive cases due to the substantial computational load. The study does not consider battery costs

nd discounting the ERS investment over its lifespan. Recently, de Saxe et al. (2022) investigate the potential battery size reductions
nder 3 discrete scenarios for the UK road network. As the scenarios were exogenously defined, however, the aspect of network
ptimality has not been addressed. To address these gaps in the literature, our study considers the large-scale implementation of
ynamic charging, considering both government and carriers’ perspectives, accounting for the complexity of freight trip chains.
dditionally, in an attempt to address an overlooked impact, a battery lifespan estimation model is integrated that sketches a
2
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Fig. 1. Research framework.

3. Problem description and methodology

The question of the trade-off between network investments and transport costs needs to be studied in the context of the question
of optimality: what are the investments that minimize costs on both fronts? Out of the many options available, we aim to rule out
those investments that are unfavorable in both aspects and focus solely on the specific set that cannot be improved upon, known as
the Pareto set. Within this set, network and battery costs are interconnected, meaning that an increase in one will immediately result
in reductions in the other. Fig. 1 shows the main questions investigated by this paper and a brief presentation of the methodology
and the outcome of the analysis.

The primary goal is to identify the optimal highway segments for electrification and determine the appropriate battery pack
capacity. Optimal segments are those that can minimize infrastructure investment (i.e., construction and operation) and transport
operation costs (i.e., battery usage, energy consumption, and toll expenses). The model accounts for the complexity of freight
transport trip chains, considering urban center origins, sequential paths, and destination cities. The bi-objective function concerns
two key goals: minimizing network investment costs as well as the operational costs. The model output is the optimal level of
electrification of the network and the required size of batteries. Trucks should have sufficient energy to fulfill their order at all
times and logistics companies are obliged to pay a toll which is different for electrified and non-electrified links. Since batteries and
infrastructures are high-value assets and are operated for many years, discounting these costs over their lifespan is considered by
applying the equivalent annual cost concept.

An important consideration is the extended battery life, which is an additional hidden benefit of large-scale implementations of
dynamic charging. Since the energy provided by ERS can be directly bypassed to the engine, it is not necessary to always use energy
from the battery. As a result, the total equivalent cycles of the battery for each trip and the subsequent battery degradation can
be significantly reduced. Here a lifespan estimation model is used that assumes a positive linear correlation between lifespan and
electrification rate. Details of the model and its solution approach can be found in the Appendix. It should be noted that the purpose
of the model presented here is to obtain a Pareto front to support policy decisions. In cases that entail the requirement to arrive
at accurate design recommendations, further work may include deploying other search methods or using additional computational
time and resources.
3
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Fig. 2. Highway network depicted by directed links and nodes.

The next section includes the presentation of the results of the case study, along with a discussion about the main limitations,
and policy implications.

4. Insights from the case study

4.1. Case description and data

The case study concerns the highway network spanning the Netherlands, Germany, Luxembourg, and Belgium (depicted in Fig. 2).
The network is represented by a set of directed highway links connecting a set of nodes. The demand nodes refer to the cities where
freight demand (in vehicles, 𝑚𝑡) is picked up/delivered. This requires the movement of E-trucks along the links in the network
connecting the demand nodes.

The freight demand data is extracted from ETIplus dataset (Speth et al., 2022; Szimba et al., 2013) which includes freight demand
flows between European Union member states. To make this data more manageable, data clustering is adopted to aggregate the
demand from smaller regions (NUTS-3 level) into larger ones (NUTS-2 level) where NUTS are administrative divisions in Europe.
Then, the distance matrix was obtained using Networkx and Openstreet map packages. An average payload factor of 14 tons was
assumed (Mercedes Benz HDTs’ information from Leonard et al. (2022)) to calculate the number of trucks required for transporting
the freight demand. This calculation aligns with a freight trip estimation model (Tavasszy and De Jong, 2013), as shown in the
equation below:

𝑚𝑡 =
𝑈𝑡 ⋅ 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒

𝑝𝑎𝑦𝑙𝑜𝑎𝑑
(1)

where 𝑚𝑡 represents the converted freight demand in vehicles for trip 𝑡, connecting demand points, as explained in the Appendix;
𝑈𝑡 denotes the freight demand in tons for trip 𝑡 before conversion; 𝐵𝐸𝑇𝑠ℎ𝑎𝑟𝑒 is the market share of Battery-Electric Trucks (BETs),
which is set at 50%; and 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 denotes the payload factor. Additionally, we need to estimate the number of E-trucks that will
utilize the ERS. The assumption is that a truck will operate 250 times per year, 𝑞 = 250, based on research (Shoman et al., 2023).
Therefore, the number of trucks operating per OD trip is calculated by dividing its truck flows, 𝑚𝑡, by the average trips per truck per
year, 𝑞, as formulated in the objective function. The values of other parameters used in this case are reported in detail in Tables 5
and 6 in the Appendix.

4.2. General observations

The combination of optimal solutions for both objectives, the infrastructure and total transport costs is presented in a Pareto
front, as shown in Fig. 3. There is a clear trade-off between the yearly total transport cost and the ERS infrastructure investment
across the Netherlands, Germany, Luxembourg, and Belgium. By increasing investments in ERS construction, the overall transport
cost, which includes battery, energy, and toll costs, significantly decreases. This trade-off gives policymakers insight into how ERS
implementation can impact total transport costs given different budget scenarios.

Importantly, as can be seen by the scaling of the two axes of the figure, this cost reduction greatly surpasses the ERS investment
cost, signaling a strong economic viability of the system.
4
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Fig. 3. Pareto front associated with the two optimization objectives.

Fig. 4. Transport costs reduction per year under different ERS deployment sizes.

4.3. Trade-off between infrastructure and transport costs

For a comprehensive insight, each optimal solution within the Pareto set has been individually extracted. Sorted for increasing
ERS network size, the set is shown in Fig. 4. This illustration depicts the alterations in individual cost components of the total
transport cost per year. The overarching trend indicates a consistent reduction in the total transport cost as the ERS length increases.
The most significant impact is observed in the reduction of battery costs, while the influence on energy costs and toll costs is
relatively minor. This remains valid despite reductions in onboard battery weight and the application of lower toll rates for using
electrified highways, as the battery weight accounts for a very small part of a vehicle’s gross weight. The maximum energy cost
reduction observed through modeling is relatively modest, amounting to 2.5%—from 4.3 billion to 4.2 billion Euros annually. This
marginal reduction stems from the fact that battery weight, albeit reduced, constitutes only a fraction of the vehicle’s gross weight,
exerting limited influence on total energy consumption. This observation is reaffirmed by Fig. 5, which shows a less distinct trade-
off between the total transport cost, TTC, and infrastructure cost, IC. The considerable portion of energy and toll costs within total
transport cost prevents the total transport cost from being substantially impacted by ERS implementation.

In cases of limited budget, smart choices are crucial to maximize benefits for both the transportation system and stakeholders,
especially logistics companies. This is ensured at the break-even point, denoted by the red point in Fig. 5, representing the optimal
balance between cost savings in total transport expenses for logistics companies and the incurred ERS construction costs. In this
context, the break-even point (IC+TTC) is 7.04 billion Euros per year, achieved by electrifying 19,595 kilometers of highway with an
average battery size of 105 kWh. Beyond this point, the total system cost (infrastructure and total transport cost) increases, despite
continuous reductions in total transport costs. This indicates that although total transport cost continues to decrease, it no longer
fully compensates for the cost of ERS construction beyond 19,595 kilometers. Consequently, the economic justification for further
ERS expansion diminishes.

This observation was also reflected in the net TTC saving annually represented by a gray line in Fig. 6, which is obtained by
deducting ERS investment from TTC saving (Table 1), i.e. electrifying 19,595 kilometers of highway leads to the highest net total
TTC saving of 1855 million euros per year. The two competing costs (TTC and IC) balance out at 19,595 km of ERS length (see
Fig. 6). Finally, the break-even ERS network design with 19,595 kilometers of electrified highway considering TTC is shown in Fig. 7
where links marked in red indicate the electrified links (see Fig. 10).
5
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Fig. 5. Trade-off between infrastructure cost (IC) and total transport cost (TTC) per year.

Fig. 6. Net total savings in total transport cost (TTC) achieved through ERS per year after deducting the infrastructure cost (IC).

Fig. 7. Break-even network design considering total travel cost (TTC). Electrified links are marked in red. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
6
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Table 1
Net total transport cost savings per year.
ERS length (km) Toll (Me /year) IC (Me /year) Total TTC saving

(Me /year)
Net total TTC
saving (Me /year)

0 262 0 0 0
3897 229 139 1145 1006
6206 217 221 1514 1293
7300 213 260 1656 1396
8348 209 297 1775 1478
11 345 199 404 2061 1657
13 771 193 490 2246 1756
15 357 189 547 2353 1806
17 955 183 639 2487 1848
19 595 181 698 2553 1855
21 806 178 777 2619 1842
24 022 176 855 2666 1811
25 263 175 900 2686 1787
26 275 175 936 2695 1759
27 114 174 966 2700 1734

Fig. 8. Trade-off between battery cost (BC) and infrastructure cost (IC) per year.

4.4. Trade-off between battery cost and infrastructure cost

The previous section discusses the impact of ERS implementation on total transport cost reduction. This section carries out an
analysis of battery savings by focusing on showcasing the major trade-off between battery cost and infrastructure cost, as depicted
in Fig. 8.

Similarly as in the above, but now more clearly visible, different levels of investment in ERS construction yield substantial
reductions in annual battery costs. If the investment budget for ERS is unrestricted, the total annual battery cost reduces from 1.94
billion Euros without ERS, to 0.23 billion Euros with a fully electrified highway network. The average onboard battery size reduces
with the expansion of the ERS network. The initial maximum average onboard battery size of 370 kWh when no ERS is implemented,
lowers to 90 kWh when the highway is entirely electrified (see Fig. 10). This reduction in average onboard battery size is indicative
of a battery weight reduction and subsequently lowers energy consumption for E-trucks.

The break-even point focusing solely on battery cost is represented by the red point in Fig. 8. The horizontal axis represents the
solutions obtained from model, i.e. the total length of electrified highway links of one solution. In this figure, the break-even point
signifies the lowest total system cost, that is, infrastructure and battery costs, showing where battery savings from users optimally
offset the expenses of constructing ERS. Beyond this point, further ERS expansion triggers a situation where the reduction in battery
costs achieved through ERS adoption no longer adequately offsets the incurred costs of ERS construction. Thus, without any toll
reductions, the most beneficial strategy involves electrifying 15,375 kilometers of highway with an infrastructure investment of 0.55
billion Euros per year and an average onboard battery capacity of 124 kWh (as shown in Fig. 10). Here, battery costs decrease by
78%, from 1.9 billion Euros to 0.43 billion Euros annually, leading to an annual battery cost saving of 1.6 billion Euros.

The total battery cost saving is summarized in Table 2 and Fig. 9. The two costs, IC and BC, balance out at 15,375 km of ERS
length (see Fig. 9). The results also highlight an interesting finding; it is evident that there is an immediate cost reduction from the
start of ERS operation until around 5000 kilometers. This implies that already a first ERS network implementation on a relatively
small scale can be efficient.
7
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Fig. 9. Net total battery savings achieved through ERS per year.

Fig. 10. Battery cost and size reduction.

Table 2
Net total battery cost savings per year.
ERS length (km) Total battery saving

per year (Me /year)
Infrastructure
cost (Me /year)

Net battery cost
saving (Me /year)

0 0 0 0
3897 756 139 617
6206 995 221 774
7300 1089 260 829
8348 1166 297 869
11 345 1343 404 939
13 771 1453 490 963
15 357 1517 547 970
17 955 1594 639 954
19 595 1630 698 932
21 806 1668 777 892
24 022 1697 855 841
25 263 1707 900 808
26 275 1712 936 776
27 114 1714 966 749

4.5. Impacts on battery lifespan

ERS potentially improves battery lifespan, due to the fact that when Heavy-Duty Battery Electric Trucks (HDBETs) operate on
electrified highways equipped with ERS, they can bypass the battery and draw power directly from the overhead contact line for
8
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Fig. 11. Battery lifespan and energy transmission.

propulsion. Consequently, the charging and discharging cycles experienced by the battery are reduced, contributing to an extended
battery lifespan. Additionally, in scenarios where enough length of the chosen route is fully equipped with ERS infrastructure, BETs
may not need to use the onboard battery, as they can rely exclusively on grid power until reaching their destination.

This phenomenon is depicted in Fig. 11, showcasing how, as the ERS network expands, a growing proportion of energy
consumption by HDBETs is met by ERS rather than the battery. This energy directly bypasses the battery and powers the engine
during intercity transport on electrified highways. Consequently, the battery utilization rate decreases, leading to an increase in
battery lifespan. For instance, considering the break-even point design with 15,357 kilometers of electrified highway, approximately
84.3% of HDBETs’ energy consumption per year is supplied directly by ERS, resulting in a substantial increase in battery lifespan.
This effect is significant, as it extends the average lifespan under normal driving conditions from around 10 years (without any ERS)
to 19 years.

This improved battery lifespan is advantageous for both logistics companies and truck manufacturers (Original Equipment
Manufacturers, or OEMs). For logistics companies, there are two primary benefits. Firstly, a lower battery utilization rate correlates
with fewer quality-related battery problems. Secondly, due to the extended battery lifespan, companies incur lower battery
replacement costs each year. From the perspective of OEMs, a prolonged battery lifespan is favorable, especially since they typically
provide battery warranties for a set number of years when selling the trucks. Consequently, the possibility of decoupling the value
of the battery from that of the trucks arises.

Finally, the break-even network design considering BC only with 15,357 kilometers of electrified highway is shown in Fig. 12,
where links marked in red indicate the electrified links:

4.6. Impacts on energy demand

The implementation of ERS will undoubtedly impact the energy market and the vehicle charging industry. Fig. 13 illustrates the
annual energy demand from ERS based on varying lengths of the ERS network.

As the ERS network expands and more Heavy-Duty Battery Electric Trucks (HDBETs) adopt this technology, the energy demand
from ERS will naturally increase. For instance, in the case of the break-even design that considers battery cost only (Fig. 12) with
15,357 kilometers of electrified highway, ERS will deliver around 168 billion kWh of electricity to E-trucks annually. This equates
to a daily energy demand of approximately 4.6 million kWh by the year 2030, assuming that only BETs use this technology along
the highway.

Considering the potential profit of selling electricity via ERS to E-trucks, which is estimated at 0.14e /kWh (Aronietis and
Vanelslander, 2021) (compared to the base price of electricity at 0.08e /kWh from the electricity company), a substantial business
opportunity arises in operating ERS infrastructure in these four countries. The potential profits from operating the ERS infrastructure,
given the break-even design, could amount to as much as 2.3 billion Euros per year.

Moreover, it is worth noting that three busy highway links with the highest energy demand in the break-even design have been
identified. These links include the highway from Frankfurt to Freiburg, as well as both directions of the highway between Freiburg
and Stuttgart. These highways exhibit high energy demand due to their lengthy stretches and heavy truck traffic flow.

4.7. Sensitivity analysis

The results depend on the initial selection of some key parameters (i.e., battery price, market share and ERS cost per km). Thus,
this section analyses the sensitivity of the results to the assumed values. We specifically consider the break-even designs, where the
two conflicting objective functions—battery cost and ERS investment cost are given equal importance. In Table 3, the variation of
parameters in the format of (𝑚𝑖𝑛;𝑚𝑎𝑥; 𝐢𝐧𝐭𝐞𝐫𝐯𝐚𝐥) in the analysis was presented.
9
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Fig. 12. Break-even network design considering trade-off between BC and IC, electrified links marked in red. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Annual energy demand associated with different ERS deployment levels.

Table 3
Summary of the sensitivity tests.
Sensitivity test Battery price BET market ERS cost

(e /kWh) share (Me /km)

Test on battery price (100; 200; 25) 0.5 0.5
Test on BET market share 150 (0.3; 0.5; 0.05) 0.5
Test on ERS cost 150 0.5 (0.5; 2.0; 0.5)

Initially, the primary focus was directed towards the dynamic fluctuations in battery pricing within the market. With reference to
Figs. 14 and 15, as battery prices vary between the range of 100 to 200 e /kWh, a corresponding extension of approximately 7000
kilometers and 30% reduction of onboard battery size in the break-even design were observed. Concurrently, the net total battery
savings show a tripling effect, elevating from 500 million to 1500 million euros. Consequently, it is evident that as battery prices
increase, the output of the optimization model shows an increase in the electrification of additional highway segments, subsequently
mitigating the reliance on batteries within the system, which can serve as a countermeasure to the escalating battery costs. In essence,
the prevailing high battery prices in the market encourage ERS implementation across these four countries as a more economically
viable solution.
10
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Fig. 14. Varying battery price.

Fig. 15. Cost–benefit analysis.

Fig. 16. Varying market share.

Fig. 17. Cost–benefit analysis.

A similar trend is observed as a result of the sensitivity analysis of the BETs market share, as depicted in Figs. 16 and 17. It is
evident that a higher market share yields greater advantages in the context of constructing an extensive ERS network. The net total
battery saving doubles (from 400 million to 900 million euros) when the market share of BETs varies from 0.3 to 0.5.

Lastly, a sensitivity analysis is carried out regarding the ERS construction costs per km, illustrated in Figs. 18 and 19. With
an increase in ERS expenses per kilometer, the model tends to curtail the total length of electrified highway infrastructure within
the system. The impact of variations in ERS construction cost per km on the optimal ERS length and net total battery savings are
therefore substantial. A threefold increase in ERS cost per kilometer would result in a staggering 83% reduction in the optimal ERS
length and a decline of 76% in net total battery savings. This highlights that higher ERS costs per km render the implementation
of ERS in this region less feasible, making the acquisition of larger batteries a more economic consideration.
11
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Fig. 18. Varying ERS cost per km.

Fig. 19. Cost–benefit analysis.

5. Discussion

We present a multi-objective optimization model for identifying the optimal network for Electric Road Systems (ERS) catering
to Heavy-Duty Battery Electric Trucks (HDBETs). The application presents new insights about the potential impact of ERS
implementation on cost savings in terms of total transport expenses, with a particular focus on reduction of battery-related costs.
The analysis substantiates the economic viability of ERS deployment for HDBETs . In our case, the ERS investment costs can be
balanced with cost reduction, up to a network length of around 20,000 km.

Overall, results confirm earlier findings (de Saxe et al., 2022) that significant savings in battery size are possible: 20,000 km of
ERS will help save around 2/3 onboard battery size on average. In addition, our study addresses the design question that has not
been answered so far: how do these savings determine the economically feasible network size? We find that a large expansion of
the ERS network is possible, with net positive economic effects.

Below we reiterate the main assumptions and simplifications that were made to allow the large-scale application of the model
and discuss their possible impacts on the results. Where relevant, these present future lines of research building upon the results of
this study.

• The above problem explanations only consider the battery-electric trucks with pantograph. Induction and rail-based charging
systems may yield different results.

• In this stylized case all the highway network links were allowed to be electrified regardless of any prohibited sections, such
as tunnels or bridges. The unavailability of certain links in the network may negatively impact the results.

• We have not studied possible savings in high-power stationary charging stations if ERS becomes widely adopted. From this
perspective, our results underestimate the net societal benefits. Ideally, the implementation of stationary, both public and
private connections, and dynamic charging facilities would be coordinated and optimized together. Clear assumptions about
the nature of coordination would be needed in such studies. This is a subject for future research.

• We assume a predefined constant charging rate for ERS per unit of time. In reality, the energy consumption will be influenced
by many factors such as battery size, speed and weather as well as technological advancements. Conservative assumptions
have been made here and more detailed models will probably show longer charging times. Their effect could be investigated
further.

• The number of vehicles needed for each trip was estimated based on the freight demand of each OD trip and average
truck operation times per year. The assumption that all BETs are operating with maximum cargo loads inevitably leads
to an underestimation of the number of trucks in service. Results for the future will also depend on changes in trip
patterns and vehicle utilization, which we have ignored. Furthermore, the analysis focused exclusively on direct point-to-
point transportation, neglecting scenarios where a single trip involves multiple stops or when trucks are operating empty,
which could impact the cost savings. The net effect of these simplifications is hard to predict and would require additional
research.

• The effect of underlying mechanisms of pricing and technology adoption has not yet been studied. Here, a constant electricity
cost per unit of kWh has been assumed. Variations during the day could affect the results. Also, the fleet of trucks using ERS
has been assumed fixed in this study, while this could also depend on the availability of infrastructure.
12
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• It was assumed that all infrastructure will be available in the year 2030 and the initial investments spread out over its lifespan,
discounted over this lifespan with a fixed discount rate. In reality, infrastructure will be built out gradually and benefits will
materialize more slowly.

• Battery sizes were considered to be the same for all trips on one OD pair, assuming that the OD pair is the relation that
determines the battery dimension. More intricate trip and tour structures will undoubtedly exist. These would require detailed
trip data for the entire population of trucks in the area, however, which are not available for networks of this size.

• A critical assumption is related to our prediction of the battery price by 2030. This projection might be conservative,
considering ongoing advancements in battery technology and the anticipated scale of mass in battery production in the future.
Consequently, the cost reduction potential in battery expenses could be lower than anticipated.

• Battery lifespan is described by a simple model while in reality, degradation is influenced by a multitude of factors, including
depth of discharge, environmental conditions, and current levels. This introduces additional uncertainty in the lifespan
estimations.

• We have not addressed effects on battery disposal and recycling resulting from the reduction in battery size and extended
replacement cycles. These would be additional benefits that can be added in a life cycle analysis framework.

• Lastly, constraints related to network capacity or grid power are not incorporated in our model. The interactions between
power grid capacity and highway capacity are intricate and challenging to estimate accurately based on current conditions.

On balance, although further refinement can still be done based on assumptions that will bias the results up- or downward, the
ain implication remains that battery cost savings are to be taken into account when deciding about investments, as the savings

re of the same order of magnitude as the costs. While the single optimal network length as found here is quite sensitive to several
xternal factors, two robust findings are that (1) a break-even situation can be reached already with a relatively modest network
ength, which will be cost-neutral in the worst case and very profitable in the best and (2) the objective function being quite flat,
he societal net benefit is insensitive to network length and can be obtained with many different near-optimal network designs.

One should note that, although catenary dynamic charging systems have a high TRL level and have seen several public
rials (PIARC, 2023), there is less experience with rail-based conductive and induction-based systems. Which specific solution will
revail is not a subject of our study. The expectation of important savings on the part of the users, however, is an important result
hat could motivate the creation of extensive trials for the relatively new technologies.

The study shows that there are net societal benefits of the introduction of an ERS network mainly due to the battery size reduction
ffect. These net benefits result from aggregating effects across all public and private actors. In practice, each of these actors will
ave its own accounting of the new system. The initiation of investments will require a set of consistent and valid business models
or each actor. Issues to consider here include (1) the mission of governments to invest in collective infrastructure without direct
eturn, based on benefit to the commons; (2) the need of government to replace the loss of fuel-based taxes due to electrification;
3) the approach towards building of ERS, with or without a commercial concessioning business model; (4) the new role of the
lectricity providers, possibly as part of consortia operating transport infrastructures; (5) transfers between actors in the form of
axes and subsidies to compensate for losses.

. Conclusion

The ERS network design model presented in this paper offers crucial insights into the sizing and location of the network. It
alances the trade-offs between transport costs and infrastructure investments and produces optimal network designs, for all cases
here the relative importance of these costs may differ. In the case when these are equal, the societal optimum where the two
bjective functions can be added to reflect a societal optimum, the optimal network size is nearly 20,000 km of ERS lines, almost
he entire network considered. The benefits of reduced battery size appear to be dominant in the savings booked with ERS, and of
uch magnitude that they more than balance out the investment needs for ERS, up to this optimal network size. Societal savings
ill still exist for even larger network sizes, albeit at lower levels than the required investments.

The main policy implication is that it appears to be worthwhile to consider large-scale public investment in dynamic charging
ystems, to help accelerate the energy transition in transport. The study provides evidence on three points to support this position.
irstly, dynamic charging creates significant new benefits that stationary charging cannot offer. Secondly, these new benefits
n themselves outweigh the costs, up to investments in very large network sizes. Thirdly, the availability of dynamic charging
onsiderably reduces the investment need for the transport sector, which may help accelerate fleet renewal.

The research underscores the importance of quantitative, model-based analysis, in the pursuit of a sustainable and efficient
ransportation system. Future work could extend the model to include various vehicle types that can leverage ERS technology,
s well as other ERS technologies, like induction. In addition, network designs could include the use of stationary chargers to
omplement dynamic charging and the resulting possible savings in high-power stationary charging. Although recent simulations
uggest that stationary charging could have a role when considering the total system costs, network optimization would be needed
o (1) understand whether these solutions are Pareto optimal, guaranteeing the best network for combined public and private
xpenditures, and (2) determine quickly which network designs can be traded off under different relative importance of public
nd private expenditures. Various assumptions related to energy consumption rate as influenced by factors such as battery size,
peed and weather as well as technological advancements, additional benefits resulting from battery disposal and recycling, would
urther enrich the model and its outcome.
13
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ppendix

odel formulation

This section includes the details of the bi-objective optimization model. The solution of the model will identify links in a network
o be equipped with ERS as well as the battery levels for all individual OD relations, that are needed to complete trips successfully.
elow, we introduce the optimization model, the underlying cost functions and further assumptions in detail.

ets
The highway network is considered as a directed graph G=(I, L) where:
𝐼 = {1,… , 𝑖,… , 𝑛}: set of network nodes, which can be the origin and destination points of demand;
𝑇 = {1,… , 𝑡,… , 𝑡𝑢}: set of trips connecting demand OD pair 𝑖, 𝑗 ∈ 𝐼 in the network;
𝑂: origin nodes matrix, and element 𝑂𝑡 represents the origin node of trip 𝑡 ∈ 𝑇 ;
𝐿 = {𝑙𝑖,𝑗}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐼|𝑖 ≠ 𝑗: set of highway links;
𝐷: distance matrix with elements 𝑑𝑙𝑖,𝑗 representing the distance (km) of directed highway link 𝑙𝑖,𝑗 ∈ 𝐿;
𝑀 : freight demand matrix with elements 𝑚𝑡 representing the truck flows (in vehicles) of trip 𝑡 ∈ 𝑇 ;
𝐴𝑡: ordered set of consecutive highway links 𝑙𝑖,𝑗 on route of trip 𝑡 ∈ 𝑇 .

Parameters:
𝑎: weight of truck+trailer+payload excluding battery weight (𝑘𝑔)
𝑎𝑓 : frontal area of E-truck (𝑚2)
𝑐𝑎: aerodynamic drag coefficient
𝑐𝑓 : calendar fade rate per year
𝑐𝑏: battery price (e ∕𝑘𝑊 ℎ)
𝑐𝑑 : cost of building ERS (Catenary) (e ∕𝑘𝑚)
𝑐𝑒: electricity price (e ∕𝑘𝑊 ℎ)
𝑐𝑟𝑟: rolling resistance coefficient
𝑑𝑚𝑎𝑥: maximum battery degradation rate per year
𝑒𝑓 : ERS energy transfer efficiency (%)
𝑒𝑛𝑑: battery replacing threshold (%)
𝑔: gravity
ℎ1 and ℎ2: toll costs for HGVs when using battery-only (non-electrified highway) and electrified highway (e ∕𝑘𝑚)
𝑝𝐸𝑅𝑆 : ERS charging power (𝑘𝑊 )
𝑞: operation trips per truck per year
𝑟: discount rate per year. Given that the assets (infrastructure and battery) will be owned and operated for several years,

discounting the cost is essential for economic comparison
𝑆𝑂𝐶𝑚𝑎𝑥 and 𝑆𝑂𝐶𝑚𝑖𝑛: maximum and minimum allowed state of charge of battery
𝑣: E-truck speed (𝑘𝑚∕ℎ)
𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥: minimum and maximum cycle fade rate per year
𝑧: battery energy density (𝑤ℎ∕𝑘𝑔)
𝜇: operation and maintenance cost rate per year
𝜌: air density (𝑘𝑔∕𝑚3)
𝜏: operational life of infrastructure (years)

Decision variables:
𝑏𝑡: integer decision variable; the battery size selected for trip 𝑡 ∈ 𝑇 (𝑘𝑊 ℎ).
𝑥𝑙𝑖,𝑗 ={0,1}: binary decision variable; If directed highway link 𝑙𝑖,𝑗 ∈ 𝐿 is electrified, 𝑥𝑙𝑖,𝑗 = 1, otherwise 0.

Other variables:
𝑎𝐼 : annuity factor of infrastructure investment
𝑎𝑏: annuity factor of battery cost of trip 𝑡 ∈ 𝑇
14
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𝑒𝑙𝑖,𝑗 𝑡: energy consumption when E-truck of trip 𝑡 ∈ 𝑇 running on link 𝑙𝑖,𝑗 ∈ 𝐴𝑡 (𝑘𝑊 ℎ)
𝑒𝐸𝑅𝑆
𝑙𝑖,𝑗 𝑡

: energy supply from ERS when E-truck of the trip (OD pair) 𝑡 ∈ 𝑇 running on electrified link 𝑙𝑖,𝑗 ∈ 𝐿 (𝑘𝑊 ℎ)
𝑒𝑡: total energy consumption of trip 𝑡 ∈ 𝑇 (𝑘𝑊 ℎ)
𝑓𝑡: battery lifespan of E-truck of trip 𝑡 ∈ 𝑇
𝑛𝑡: non-electrification rate of route of trip 𝑡 ∈ 𝑇
𝑝𝑡𝑟𝑢𝑐𝑘𝑡 : energy consumption rate of E-truck of trip 𝑡 ∈ 𝑇 (𝑊 )
𝑆𝑂𝐶𝑙𝑖,𝑗 𝑡: state of charge of E-truck on link 𝑙𝑖,𝑗 of route of trip 𝑡 ∈ 𝑇 at node 𝑗, 𝑙𝑖,𝑗 ∈ 𝐴𝑡 (%)
𝜃𝐸𝑅𝑆
𝑡 and 𝜃𝐵𝐴𝑇𝑡 : total toll cost when E-truck of (OD pair) trip 𝑡 ∈ 𝑇 running on electrified and non-electrified links (e )
𝑤𝑡: battery weight of E-trucks of trip 𝑡 ∈ 𝑇 (kg)
𝑦𝑡: cycle fade rate per year of E-truck battery of trip 𝑡 ∈ 𝑇
The E-trucks are assumed to depart with the maximum allowable State of Charge (𝑆𝑂𝐶𝑚𝑎𝑥) and an assigned battery pack, 𝑏𝑡,

which serves as one of the decision variables. A constant energy consumption rate 𝑝𝑡𝑟𝑢𝑐𝑘𝑡 associated with the battery weight, 𝑤𝑡, is
pplied to the travel on link 𝑙𝑖,𝑗 of trip 𝑡, resulting in the corresponding energy consumption, denoted as 𝑒𝑙𝑖,𝑗 𝑡. If 𝑥𝑙𝑖,𝑗 equals 1, the
-truck can constantly receive energy from ERS when running on the link 𝑙𝑖,𝑗 with the fixed charging rate of 𝑝𝐸𝑅𝑆 .

This enables calculation of both energy supply from ERS and consumption, i.e. 𝑒𝐸𝑅𝑆
𝑙𝑖,𝑗

and 𝑒𝑙𝑖,𝑗 , on each link 𝑙𝑖,𝑗 ∈ 𝐿 and the
harging state 𝑆𝑂𝐶𝑙𝑖,𝑗 𝑡 of E-trucks of (OD pair) trip 𝑡 ∈ 𝑇 at node 𝑗 after passing through link 𝑙𝑖,𝑗 . In addition, as the 𝑆𝑂𝐶 of
he E-truck battery cannot fall below 𝑆𝑂𝐶𝑚𝑖𝑛, which is the minimum allowable state of charge of the battery, either the selected
oute of trip 𝑡 must be equipped with adequate length of electrified links or E-trucks need to be assigned a bigger battery to ensure
sufficient energy supply. Consequently, various combinations of electrified links, 𝑥𝑙𝑖,𝑗 , within the network and the battery pack

ssigned to each trip 𝑡 lead to distinct combinations of cost related to investment, operation, and battery cost.

ulti-objective model:
Firstly, two objective functions representing the interests of investors and operators are introduced.

min
𝐱

𝐼𝐶 = min
𝐱

∑

𝑙𝑖,𝑗∈𝐿
𝑥𝑙𝑖,𝑗 ⋅ 𝑑𝑙𝑖,𝑗 ⋅ 𝑐𝑑 ⋅

( 1
𝑎𝐼

+ 𝜇
)

(2)

min
𝐱,𝐛

𝐵𝐶 + 𝑇𝐶 = min
𝐱,𝐛

∑

𝑡∈𝑇

𝑚𝑡
𝑞

⋅
𝑏𝑡 ⋅ 𝑐𝑏
𝑎𝑏𝑡

+ 𝑚𝑡 ⋅
(

𝑒𝑡 ⋅ 𝑐𝑒 + 𝜃𝐸𝑅𝑆
𝑡 + 𝜃𝐵𝐴𝑇𝑡

)

(3)

q. (2) minimizes the total amortized infrastructure investment cost, 𝐼𝐶, for constructing ERS along the highway, while Eq. (3)
inimizes the total transport cost, 𝑇𝑇𝐶 per year for each trip (OD pair) 𝑡, which consists of total battery costs, 𝐵𝐶, and transport

osts, 𝑇𝐶. These two objectives present a clear interplay, i.e., the total transport cost of companies is influenced by the ERS
vailability and network. The amortized 𝐵𝐶 per year pertains to the cumulative purchase expenditure incurred for all batteries
ssential to sustain the freight transport system throughout its operational life span. This incorporates the comprehensive battery
rocurement costs, given our specific scenario where maintenance expenses are encompassed within the battery price. We assume
hat batteries retain no residual value upon the culmination of their operational life. 𝐵𝐶 is calculated as the summation of the
nticipated battery count for each distinct trip. This count is subsequently multiplied by the unit battery cost, 𝑐𝑏, and the chosen

battery pack, 𝑏𝑡. This product is then divided by the corresponding discounted battery annuity, 𝑎𝑏𝑡 , to ascertain the amortized total
battery cost per year. The generalized 𝑇𝐶 consists of toll and energy costs that the logistics companies have to pay on the highway.

Constraints:
1. Annuity factor of infrastructure, 𝑎𝐼 , and battery of each trip t ∈ 𝑇 , 𝑎𝑏𝑡 . The EAC (equivalent annual cost) is applied to reflect the

annual cost for owning, operating, and maintaining an asset over its entire lifespan. This enables the comparison of the amortized
annual cost of infrastructure and battery costs that have unequal lifespans (Kenton, 2023).

𝑎𝐼 =
(1 − (1 + 𝑟)−𝜏 )

𝑟
(4)

𝑎𝑏𝑡 =
(1 − (1 + 𝑟)−𝑓𝑡 )

𝑟
, 𝑡 ∈ 𝑇 (5)

2. Energy supply from ERS, 𝑒𝐸𝑅𝑆
𝑙𝑖,𝑗

, on link 𝑙𝑖,𝑗 ∈ 𝐿 if 𝑙𝑖,𝑗 is electrified:

𝑒𝐸𝑅𝑆
𝑙𝑖,𝑗

= 𝑝𝐸𝑅𝑆 ⋅ 𝑒𝑓 ⋅ 𝑑𝑙𝑖,𝑗 ⋅
𝑥𝑙𝑖,𝑗
𝑣

, ∀𝑙𝑖,𝑗 ∈ 𝐿 (6)

3. The battery weight specific to a given trip denoted as 𝑤𝑡 signifies a crucial variable. The optimization model, in its pursuit of
ptimal outcomes, systematically designates an appropriate battery pack for each individual trip. Importantly, the battery weight
llocated to the E-truck associated with trip 𝑡 is intrinsically tied to the battery’s physical dimensions—expressed as its size, 𝑏𝑡, a
actor that is normalized by the battery’s energy density, symbolized as 𝑧:

𝑤𝑡 =
𝑏𝑡 , ∀𝑡 ∈ 𝑇 (7)
15
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4. The energy consumption rate of an E-truck on a specific trip is denoted as 𝑝𝐸𝑡𝑟𝑢𝑐𝑘
𝑡 (in watts). A larger battery leads to a higher

-truck total weight and, consequently, more energy required. The adopted energy demand model is based on research (Gao et al.,
017) and industry insights, factoring in acceleration, inertia, aerodynamic drag, rolling resistance, and road gradient. However,
or this study, E-trucks are assumed to operate at a constant speed 𝑣 without considering road gradient:

𝑝𝐸𝑡𝑟𝑢𝑐𝑘
𝑡 =

𝜌 ⋅ 𝑐𝑎 ⋅ 𝑎𝑓 ⋅ 𝑣3

2 ⋅ 3.63
+ (𝑎 +𝑤𝑡) ⋅ 𝑔 ⋅ 𝑐𝑟𝑟 ⋅

𝑣
3.6

, ∀𝑡 ∈ 𝑇 (8)

5. Energy consumption, 𝑒𝑙𝑖,𝑗 𝑡, on each link 𝑙𝑖,𝑗 ∈ 𝐴𝑡 of route of trip 𝑡 ∈ 𝑇 , which is calculated as

𝑒𝑙𝑖,𝑗 𝑡 =
𝑑𝑙𝑖,𝑗
𝑣

⋅
𝑝𝐸𝑡𝑟𝑢𝑐𝑘
𝑡
1000

, ∀𝑙𝑖,𝑗 ∈ 𝐴𝑡, 𝑡 ∈ 𝑇 (9)

6. The lifespan of an E-truck battery for a given trip 𝑡 represents the duration that the battery can endure under average driving
onditions. This lifespan estimation encompasses two primary facets: cycle aging and calendar aging, driven by the interaction
etween charging/discharging cycles and time. Under average driving conditions, a maximum allowable degradation rate per year,
𝑚𝑎𝑥, for EV batteries, as established in prior research, is considered. The battery is deemed ripe for replacement when its capacity
ips below a predefined threshold, denoting the maximum permissible degradation rate. Accordingly, the proposed model assumes
hat the battery’s capacity fades until reaching the threshold triggering its replacement.

Furthermore, the battery degradation process entails two primary drivers: cycle age, linked to charging/discharging cycles, and
alendar age, linked to time. A parameter 𝑐𝑓 accounts for the average calendar aging ratio per year. Given these assumptions, the
aximum cycle aging rate per year (𝑦𝑚𝑎𝑥) is derived through the equation:

𝑦𝑚𝑎𝑥 = 𝑑𝑚𝑎𝑥 − 𝑐𝑓 (10)

his model correlates the battery’s cycle aging rate per year, 𝑦𝑡, with the non-electrification rate of the chosen truck route, 𝑛𝑡. We
ncorporate a fixed minimum cycle aging rate, 𝑦𝑚𝑖𝑛, for fully electrified routes (𝑛𝑡=0%) to account for battery degradation stemming
rom E-trucks using battery power to access highways from logistics hubs and potential charging actions at these hubs. When no
lectrification exists (𝑛𝑡=100%), the annual cycle aging rate is maximum, 𝑦𝑚𝑎𝑥.

Accordingly, 𝑦𝑡 is calculated as follows:

𝑦𝑡 = (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ⋅ 𝑛𝑡 + 𝑦𝑚𝑖𝑛, ∀𝑡 ∈ 𝑇 (11)

he variable 𝑛𝑡 denotes the non-electrification rate of the route of trip 𝑡. The electrification rate is calculated as the ratio of the
otal electrified distance of the selected route of trip 𝑡 and its total route distance. Thus, the non-electrification rate of the route is
alculated by 1 subtracting the electrification rate of the selected route:

𝑛𝑡 = 1 −

∑

𝑙𝑖,𝑗∈𝐴𝑡
𝑥𝑙𝑖,𝑗 ⋅ 𝑑𝑙𝑖,𝑗

∑

𝑙𝑖,𝑗∈𝐴𝑡
𝑑𝑙𝑖,𝑗

, ∀𝑡 ∈ 𝑇 (12)

In this way, the estimated lifespan of the battery of trip 𝑡 can be obtained as follows:

𝑓𝑡 =
𝑒𝑛𝑑

𝑦𝑡 + 𝑐𝑓
, ∀𝑡 ∈ 𝑇 (13)

where 𝑒𝑛𝑑 refers to the battery’s capacity threshold triggering its replacement.
7. The energy conservation equation tracks the state of charge, 𝑆𝑂𝐶𝑙𝑖,𝑗 𝑡, at node 𝑗 after passing through link 𝑙𝑖,𝑗 ∈ 𝐴𝑡 of the route

f trip 𝑡, and it cannot exceed its maximum SOC. This is expressed as follows:

𝑆𝑂𝐶𝑙𝑖,𝑗 𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑚𝑖𝑛

(

𝑆𝑂𝐶𝑚𝑎𝑥, 𝑆𝑂𝐶𝑙𝑠,𝑖𝑡 +
𝑒𝐸𝑅𝑆
𝑙𝑖,𝑗

−𝑒𝑙𝑖,𝑗 𝑡

𝑏𝑡

)

, ∀𝑙𝑖,𝑗 , 𝑙𝑠,𝑖 ∈ 𝐴𝑡, 𝑡 ∈ 𝑇 , 𝑖 ≠ 𝑂𝑡

𝑚𝑖𝑛

(

𝑆𝑂𝐶𝑚𝑎𝑥, 𝑆𝑂𝐶𝑚𝑎𝑥 +
𝑒𝐸𝑅𝑆
𝑙𝑖,𝑗

−𝑒𝑙𝑖,𝑗 𝑡

𝑏𝑡

)

, ∀𝑙𝑖,𝑗 ∈ 𝐴𝑡, 𝑡 ∈ 𝑇 , 𝑖 = 𝑂𝑡

(14)

where the first row is used when node 𝑖 is not the origin node of trip 𝑡, while the second row is used in case node 𝑖 is the origin
node.

8. The total energy consumption of trip t, 𝑒𝑡 is related to the energy consumption, 𝑒𝑙𝑖,𝑗 𝑡, on each link of its selected route as
ollows:

𝑒𝑡 =
∑

𝑙𝑖,𝑗∈𝐴𝑡

𝑒𝑙𝑖,𝑗 𝑡, ∀𝑡 ∈ 𝑇 (15)

9. The total toll cost, 𝜃𝐸𝑅𝑆
𝑡 , for using the electrified infrastructure during trip 𝑡 ∈ 𝑇 . The logistics companies must pay for the

sage of the highway depending on the distance traveled by the E-truck. This is calculated as

𝜃𝐸𝑅𝑆
𝑡 =

∑

ℎ2 ⋅ 𝑥𝑙𝑖,𝑗 ⋅ 𝑑𝑙𝑖,𝑗 , ∀𝑡 ∈ 𝑇 (16)
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Table 4
GA parameters.
Parameters Values

Generations 2000
Population size 100
Crossover probability 0.9
Mutation probability 0.6
Number of mutation
locations

30

Table 5
Assumed cost-related parameter values.
Cost-related parameters

ERS Investment cost, 𝑐𝑑
(Sven Kühnel, 2018; Taljegard et al., 2020)

e 500, 000∕km

ERS O&M cost rate per year, 𝜇
(Taljegard et al., 2020)

2%

Discount rate, 𝑟
(van Infrastructuur en Waterstaat, 2022)

2%

Operational life, 𝜏
(Taljegard et al., 2020; Peter and Lelieveld, 2022)

25 years

Battery price, 𝑐𝑏 e 150∕kWh
Electricity price, 𝑐𝑒
(Aronietis and Vanelslander, 2021; Eurostat, 2022)

e 0.22∕kWh

Toll (ERS), ℎ2
(Ministerie van Algemene Zaken, 2020; Peter and
Lelieveld, 2022)

e 0.1∕km

Toll (highway), ℎ1
(Ministerie van Algemene Zaken, 2020; Peter and
Lelieveld, 2022)

e0.15/km

10. On the other hand, the total toll cost when using only the battery, 𝜃𝐵𝐴𝑇𝑡 , which occurs when traveling through non-electrified
roads of trip 𝑡 ∈ 𝑇 , is calculated as

𝜃𝐵𝐴𝑇𝑡 =
∑

𝑙𝑖,𝑗∈𝐴𝑡

ℎ1 ⋅ (1 − 𝑥𝑙𝑖,𝑗 ) ⋅ 𝑑𝑙𝑖,𝑗 , ∀𝑡 ∈ 𝑇 (17)

11. The upper and lower bounds of the SOC of the battery to account for the highest and lowest allowable charging states, which
re fixed for a specific battery type. The SOC of the E-truck on each link of each trip when transversing a series of links to reach
ts destination should always be within this range:

𝑆𝑂𝐶𝑚𝑖𝑛 ≤ 𝑆𝑂𝐶𝑙𝑖,𝑗 𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥, ∀𝑙𝑖,𝑗 ∈ 𝐴𝑡, 𝑡 ∈ 𝑇 (18)

Search method

Given that the problem defined above is essentially a network design problem, there is a need for a search method able to deal
with the computational complexity of this class of problems (Menendez et al., 2015). While (mix-integer) linear problems are often
solved through exact methods in an efficient manner, large instances of non-linear optimization problems cannot be solved with
exact methods. In these cases, heuristic-based solving methods are the most efficient search methods. The meta-heuristic Genetic
Algorithm has proven helpful in tackling this type of problem (Marler and Arora, 2010) and has been selected as the preferred search
method where Elitism operators are introduced to improve the algorithm’s performance in finding the global optimal solution (Ahn
and Ramakrishna, 2003). Parameters of the GA are summarized in Table 4. Given that the problem involves 208 directed links
within the network and 20 battery sizes, the probabilities of crossover and mutation are set at sufficiently high levels to enhance
the exploration of a broader range of solutions, mitigating the risk of premature convergence to local optima during computation.

Detailed model parameters

See Tables 5 and 6.
17
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Table 6
Assumed vehicle-related parameter values.
Vehicle-related parameters

Maximum total degradation rate per year, 𝑑𝑚𝑎𝑥
(Geotab, 2020)

4.20%

Fixed average calendar aging rate per year, 𝑐𝑓
(Ali et al., 2023)

0.80%

Fixed cycle aging rate per year, 𝑦𝑚𝑖𝑛 1%
Battery replacing threshold, 𝑒𝑛𝑑
(Gorzelany, 2023)

40%

Truck speed, 𝑣 80 km/h
Aerodynamic drag coefficient, 𝑐𝑎
(Leonard et al., 2022)

0.6

Rolling resistance coefficient, 𝑐𝑟𝑟
(Leonard et al., 2022)

0.005

Frontal area of E-truck, 𝑎𝑓
(Leonard et al., 2022)

10.2 m2

Air density, 𝜌
(Leonard et al., 2022)

1.3 kg/m3

Gravity, 𝑔 9.8 m/s2
Weight of truck+trailer+
full payload excluding
battery, 𝑎 (Leonard et al., 2022)

40,000 kg

Battery pack option, 𝑏𝑡
(VolvoTrucks, 2022; Leonard et al., 2022)

90–1800 kWh(90 kwh each)

Energy density, 𝑧 (Leonard et al., 2022) 232 Wh/kg
Maximum SOC, 𝑆𝑂𝐶𝑚𝑎𝑥 0.9
Minimum SOC, 𝑆𝑂𝐶𝑚𝑖𝑛 0.1
ERS charging power, 𝑝𝐸𝑅𝑆
(Rogstadius, 2022; Gustavsson et al., 2019)

150 kW

Energy transfer efficiency, 𝑒𝑓
(Rogstadius, 2022; Gustavsson et al., 2019)

0.9
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