

Delft University of Technology

On Self-Intersections of Cubic Bézier Curves

Yu, Ying-Ying; Li, Xin; Ji, Y.

DOI
10.3390/math12060882
Publication date
2024
Document Version
Final published version
Published in
Mathematics

Citation (APA)
Yu, Y.-Y., Li, X., & Ji, Y. (2024). On Self-Intersections of Cubic Bézier Curves. Mathematics, 12(6), Article
882. https://doi.org/10.3390/math12060882

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/math12060882
https://doi.org/10.3390/math12060882

Citation: Yu, Y.-Y.; Li, X.; Ji, Y. On

Self-Intersections of Cubic Bézier

Curves. Mathematics 2024, 12, 882.

https://doi.org/10.3390/

math12060882

Academic Editor: Kenjiro T. Miura

Received: 26 February 2024

Revised: 13 March 2024

Accepted: 15 March 2024

Published: 17 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On Self-Intersections of Cubic Bézier Curves
Ying-Ying Yu 1 , Xin Li 2 and Ye Ji 3,*

1 School of Mathematics, Liaoning Normal University, Dalian 116029, China; yuyydl@lnnu.edu.cn
2 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China;

lixin031@mail.dlut.edu.cn
3 Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands
* Correspondence: y.ji-1@tudelft.nl

Abstract: Cubic Bézier curves are widely used in computer graphics and geometric modeling,
favored for their intuitive design and ease of implementation. However, self-intersections within
these curves can pose significant challenges in both geometric modeling and analysis. This paper
presents a comprehensive approach to detecting and computing self-intersections of cubic Bézier
curves. We introduce an efficient algorithm that leverages both the geometric properties of Bézier
curves and numerical methods to accurately identify intersection points. The self-intersection problem
of cubic Bézier curves is firstly transformed into a quadratic problem by eliminating trivial solutions.
Subsequently, this quadratic system is converted into a linear system that may be easily analyzed
and solved. Finally, the parameter values corresponding to the self-intersection points are computed
through the solution of the linear system. The proposed method is designed to be robust and
computationally efficient, making it suitable for real-time applications.

Keywords: geometric modeling; Bézier curves; self-intersections

MSC: 65D17

1. Introduction

The representation of free-form curves and surfaces is a foundational research topic
within Computer-Aided Geometric Design (CAGD) and computer graphics (CG), as well
as various related fields [1]. Bézier curves and surfaces, constructed through control
points and Bernstein basis functions, represent one of the most pivotal methodologies
in this domain. Owing to the intrinsic properties of Bernstein basis functions, Bézier
entities exhibit several advantageous characteristics, such as affine invariance, the convex
hull property, and endpoint interpolation. The manipulation of control points allows
for nuanced and intuitive shape control of Bézier curves and surfaces, facilitating their
widespread application.

The identification of self-intersections in free-form curves and surfaces is a critical
requirement across various Computer-Aided Design (CAD) and Computer-Aided Man-
ufacturing (CAM) applications, such as NC machining and robotic navigation [2]. For
example, during the process of image deformation, self-intersection in the parameterization
can cause image overlapping, distortion, and loss of information. In addition, surfaces with
self-intersecting cross-section curves are difficult to manufacture directly using CNC ma-
chines in the field of mechanical engineering. Recognizing this, Hoffman has highlighted
the self-intersection computation of parametric curves and surfaces as one of the most
fundamental issues in geometric and solid modeling [3,4].

Given the importance of this issue, numerous researchers have dedicated their efforts
to identifying and efficiently calculating self-intersection points in free-form curves and
surfaces. Techniques such as light and shadow tracing have been employed to compute
these self-intersections, though they may not always yield accurate results. Barnhill et al. [5]

Mathematics 2024, 12, 882. https://doi.org/10.3390/math12060882 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060882
https://doi.org/10.3390/math12060882
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4208-9459
https://orcid.org/0000-0003-1200-9857
https://orcid.org/0000-0002-1173-6457
https://doi.org/10.3390/math12060882
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060882?type=check_update&version=2

Mathematics 2024, 12, 882 2 of 11

introduced a marching method that initially identifies potential intersection branches,
a process that, however, is susceptible to generating phantom branches and thus may
produce erroneous outcomes. Su and Liu [6] explored curve singularities (self-intersections,
cusps) and inflection points using the affine-invariant method (AIM), revealing that the
characteristic points of a curve align with its characteristic distribution graph in the presence
of self-intersections. Building on this concept, Ye [7] developed a simpler method to map the
distribution of singularities and inflection points, enabling the identification of characteristic
point regions in planar cubic Bézier curves without resorting to solving equations. This
methodology has inspired subsequent studies on the distribution of singularities in specific
curve types, such as C-Bézier and F-Bézier curves [8–11]. Lasser [12] introduced a curve–
curve method that evaluates the cumulative rotation angle of the tangent vector to detect
and calculate self-intersections in Bézier curves. However, the lack of a theoretical proof
within this method may affect the reliability of its predictions in some scenarios. Further
advancements by Zhu and Zhao [13,14] provided sufficient and necessary conditions for
rational Bézier curves and surfaces to be self-intersection-free, employing toric degeneration
theory and well-posedness conditions. Yet the stringent bijectivity conditions set forth
in these studies are often too restrictive, leading to inaccuracies when determining the
bijectivity of Bézier curves in practical situations. Yu et al. [15,16] introduced algorithms
to assess self-intersections in toric surfaces and volumes, applicable to Bézier geometries.
For more information on self-intersection studies in curves and surfaces, interested readers
can refer to [17–19].

In practical scenarios, quadratic and cubic Bézier curves are favored for their robust
capability in geometric representation, along with their cost-effective computational costs
and numerical stability, as compared to their higher-degree counterparts. Yet the current
algorithms for identifying self-intersections do not cater specifically to cubic Bézier curves,
which leads to computational inefficiencies in these instances. Furthermore, the bijectivity
conditions proposed in [12,13] may prove overly stringent for a range of practical applications.

This paper proposes a simple yet effective method for computing all self-intersections
of cubic Bézier curves. Drawing on the algebraic decomposition approach as discussed
in [20,21], the self-intersection problem of cubic Bézier curves can be firstly transformed
into a quadratic problem by eliminating the trivial solutions. Subsequently, this quadratic
system is converted into a linear system that may be easily analysed and solved. Finally,
the parameter values corresponding to the self-intersection points are obtained through the
solution of the aforementioned linear system. The proposed methodology offers an efficient
and precise computation of all self-intersections within cubic Bézier curves, overcoming
the limitations of the existing algorithms as noted in [12,13].

The remainder of this paper is structured as follows. Section 2 details the methodology
for computing self-intersections in cubic Bézier curves. Section 3 showcases numerical
experiments to demonstrate the effectiveness and efficiency of the proposed method. Finally,
Section 4 summarizes our findings and contributions.

2. Methodology

In this section, we discuss both the existence and the fast computation of self-intersections
in cubic Bézier curves. Section 2.1 provides a brief introduction to cubic Bernstein basis
functions and cubic Bézier curves. Section 2.2 discusses the scenario where the four control
points of the cubic Bézier curve are collinear, while Section 2.3 covers the case in which
they are not collinear.

2.1. Cubic Bernstein Basis Functions and Bézier Curves

Bernstein basis functions are polynomials that have a partition of unity and are non-
negative over the interval [0, 1]. Bernstein basis functions of degree n are expressed as

Bn
i (ξ) =

(
n
i

)
(1 − ξ)n−iξ i, ξ ∈ [0, 1], (1)

Mathematics 2024, 12, 882 3 of 11

for i = 0, 1, . . . , n. Figure 1a illustrates cubic Bernstein basis functions with n = 3.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) Bernstein basis functions (b) A cubic Bézier curve

Figure 1. Cubic Bernstein basis functions and a cubic Bézier curve.

The Bernstein basis functions (1) form the mathematical foundation of Bézier curves,
a class of parametric curves extensively used in computer graphics, animation, and CAD
systems due to their intuitive design and easy computation. A cubic Bézier curve is defined
as a linear combination of four control points Pi = (xi, yi, zi)

T ∈ R3 (i = 0, 1, 2, 3), with the
degree-3 Bernstein basis functions as coefficients. Then, a cubic Bézier curve is defined as
the image of the following vector-valued parametric function [1]

C(ξ) =

 x(ξ)
y(ξ)
z(ξ)

 =

 ∑3
i=0 xiB3

i (ξ)

∑3
i=0 yiB3

i (ξ)

∑3
i=0 ziB3

i (ξ)

 =
3

∑
i=0

PiB3
i (ξ), ξ ∈ [0, 1]. (2)

Figure 1b illustrates a cubic Bézier curve. Due to the specific properties of Bernstein
polynomials, such as the fact that the sum of their values at any given ξ is always one,
the resulting Bézier curve exhibits strong stability and predictable behavior, making it
a preferred tool for curve design. The partition of unity and non-negativity property of
Bernstein basis functions ensures that the curve lies within the convex hull of its control
points Pi (i = 0, 1, 2, 3). In addition, Bézier curves possess the affine invariance property,
meaning that their shape is preserved under affine transformations, providing a useful
property for various geometric modeling applications and computations.

Self-intersections in cubic Bézier curves are of significant interest due to their im-
plications in design and rendering processes. A cubic Bézier curve may intersect itself
depending on the geometric configuration of its control points when there are distinct
parameters ξ1 and ξ2 such that C(ξ1) = C(ξ2). Figure 2a shows a cubic Bézier curve that is
free of self-intersections, while Figure 2b presents a cubic Bézier curve that intersects itself
due to the placement of specific control points. Both serve as examples for understanding
the geometric implications of control point configurations in curve design.

(a) Non-self-intersecting cubic Bézier curve (b) Self-intersecting cubic Bézier curve

Figure 2. Comparison of cubic Bézier curves with and without self-intersection.

2.2. Cubic Bézier Curves with Collinear Control Points

Consider the four control points {Pi}3
i=0 of a cubic Bézier curve C(ξ) to be collinear,

i.e., satisfying
−−→
P0Pj = k j

−−→
P0P3 (j = 1, 2). Thanks to the affine invariance property of Bézier

curves, its shape remains unaltered by translation and rotation transformations. Therefore,

Mathematics 2024, 12, 882 4 of 11

we apply Rodrigues’ rotation formula to translate and rotate the control points {Pi}3
i=0 to

{P̃i}3
i=0, positioning P̃0 at the origin (0, 0, 0)T and aligning P̃3 along the positive x-axis at a

distance x̃3 =
√
(x3 − x0)2 + (y3 − y0)2 + (z3 − z0)2, i.e., P̃3 = (x̃3, 0, 0)T. This adjustment

sets the x-coordinate of {P̃j}j=1,2 to k j x̃3. Under these transformations, the cubic Bézier
curve C̃(ξ), redefined by the control points {P̃i}3

i=0, simplifies to a linear trajectory along
the x-axis, and can be expressed as

C̃(ξ) = [(3k1 − 3k2 + 1)x̃3]ξ
3 + [(3k2 − 6k1)x̃3]ξ

2 + 3k1 x̃3ξ. (3)

To analyze the trend of the cubic Bézier curve C̃(ξ), we examine its derivative as
derived from Equation (3)

C̃ ′
(ξ) = 3[(3k1 − 3k2 + 1)x̃3]ξ

2 + 2[(3k2 − 6k1)x̃3]ξ + 3k1 x̃3. (4)

The monotonicity of C̃(ξ) hinges on the solvability of its derivative function C̃ ′
(ξ).

Concurrently, the presence of solutions for the derivative function, as defined in Equation (4),
is contingent upon the value of its discriminant

∆̃ = (2[(3k2 − 6k1)x̃3])
2 − 4 × 3[(3k1 − 3k2 + 1)x̃3]× 3k1 x̃3

= 36x̃2
3(k

2
1 + k2

2 − k1k2 − k1).
(5)

Based on the calculations in (3)–(5), we are now prepared to articulate the following theorem.

Theorem 1. Consider the set of control points {Pi}3
i=0 lying on a straight line, fulfilling the

condition
−−→
P0Pj = k j

−−→
P0P3 (j = 1, 2), for a cubic Bézier curve C(ξ). The cubic Bézier curve C(ξ) is

self-overlapping if and only if k2
1 + k2

2 − k1k2 − k1 > 0 holds; otherwise it has no self-intersections.

Proof. Upon applying translation and rotation to the curve C̃(ξ) as defined in Equation (3),
a condition arises where k2

1 + k2
2 − k1k2 − k1 > 0 leads to a consistently positive dis-

criminant in Equation (5). Under these circumstances, the quadratic derivative function
C̃ ′
(ξ) in Equation (4) possesses two distinct roots, indicating a change in the monotonic-

ity of the cubic function C̃(ξ) at these roots. Given that the control points are aligned
collinearly, the cubic Bézier curve C̃(ξ) is constrained to the line defined by these points
and maintains continuity. A change in monotonicity thus signifies self-overlapping within
the curve. In contrast, the absence of such a change denotes a monotonic C̃(ξ) devoid
of self-intersections.

According to the affine invariance property of Bézier curves, it follows that C(ξ) retains
the identical geometric relationships as C̃(ξ).

Theorem 1 serves as a pivotal tool for identifying the presence of a self-intersection,
or more precisely, a self-overlap in cubic Bézier curves when their control points are aligned
collinearly. In the following subsection, our discussion will expand into scenarios where
cubic Bézier curves exhibit non-collinear control points.

2.3. Cubic Bézier Curves with Non-Collinear Control Points

Consider the four non-collinear control points Pi = (xi, yi, zi)
T, for i = 0, 1, 2, 3, of a

cubic Bézier curve C(ξ). The problem of identifying self-intersections within this curve
boils down to determining the parameters ξ1 and ξ2 such that ξ1 ̸= ξ2 while simultaneously
ensuring C(ξ1) = C(ξ2). From the definition in Equation (2), that is,

x(ξ1) = x(ξ2)
y(ξ1) = y(ξ2)
z(ξ1) = z(ξ2)

. (6)

Mathematics 2024, 12, 882 5 of 11

To streamline our analysis, similarly, we reposition the control points {Pi}3
i=0 to

{P̂i}3
i=0, where P̂i = (x̂i, ŷi, ẑi)

T and set P̂0 as the origin. The resulting cubic Bézier curve,
represented by the control points {P̂i}3

i=0 and denoted as Ĉ(ξ), retains identical geometric
properties to C(ξ).

Substituting the control points {P̂i}3
i=0 and the cubic Bernstein basis functions {B3

i }
3
i=0

into Equation (6), we have
3x̂1ξ1(1 − ξ1)

2 + 3x̂2ξ2
1(1 − ξ1) + x̂3ξ3

1 = 3x̂1ξ2(1 − ξ2)
2 + 3x̂2ξ2

2(1 − ξ2) + x̂3ξ3
2

3ŷ1ξ1(1 − ξ1)
2 + 3ŷ2ξ2

1(1 − ξ1) + ŷ3ξ3
1 = 3ŷ1ξ2(1 − ξ2)

2 + 3ŷ2ξ2
2(1 − ξ2) + ŷ3ξ3

2

3ẑ1ξ1(1 − ξ1)
2 + 3ẑ2ξ2

1(1 − ξ1) + ẑ3ξ3
1 = 3ẑ1ξ2(1 − ξ2)

2 + 3ẑ2ξ2
2(1 − ξ2) + ẑ3ξ3

2

. (7)

To discuss the solutions of the system (7), we first organize the cubic Bernstein basis
functions {B3

i }
3
i=0 as follows:

(1 − ξ1)
3 − (1 − ξ2)

3 = (ξ2 − ξ1)[3 − 3(ξ1 + ξ2) + (ξ2
1 + ξ1ξ2 + ξ2

2)],

ξ1(1 − ξ1)
2 − ξ2(1 − ξ2)

2 = (ξ2 − ξ1)[−1 + 2(ξ1 + ξ2)− (ξ2
1 + ξ1ξ2 + ξ2

2)],

ξ2
1(1 − ξ1)− ξ2

2(1 − ξ2) = (ξ2 − ξ1)[−(ξ1 + ξ2) + (ξ2
1 + ξ1ξ2 + ξ2

2)],

ξ3
1 − ξ3

2 = (ξ2 − ξ1)[−(ξ2
1 + ξ1ξ2 + ξ2

2)].

(8)

For a polynomial parametric curve, denoted as L(ξ), the equation characterizing
self-intersections, originally expressed as L(ξ1) − L(ξ2) = 0, can be transformed into
(ξ1 − ξ2)L̂(ξ1, ξ2) = 0. It allows for the exclusion of the trivial solution ξ1 = ξ2, thereby
simplifying the process and focusing on non-trivial intersections, which is also referred
to as the algebraic decomposition approach. By employing this strategy, we denote
m1 = ξ2

1 + ξ1ξ2 + ξ2
2, m2 = ξ1 + ξ2. Equation (8) is substituted into Equation (7) and

the non-zero common factor ξ2 − ξ1 is eliminated. Then, the system of cubic equations in
Equation (7) can be equivalently expressed as the following linear system

(−3x̂1 + 3x̂2 − x̂3)m1 + (6x̂1 − 3x̂2)m2 = 3x̂1

(−3ŷ1 + 3ŷ2 − ŷ3)m1 + (6ŷ1 − 3ŷ2)m2 = 3ŷ1

(−3ẑ1 + 3ẑ2 − ẑ3)m1 + (6ẑ1 − 3ẑ2)m2 = 3ẑ1

. (9)

Now, the task at hand is to solve the linear system (9) to effectively determine the
self-intersections of cubic Bézier curves.

Denote
a11 = −3x̂1 + 3x̂2 − x̂3, a12 = 6x̂1 − 3x̂2, b1 = 3x̂1,
a21 = −3ŷ1 + 3ŷ2 − ŷ3, a22 = 6ŷ1 − 3ŷ2, b2 = 3ŷ1,
a31 = −3ẑ1 + 3ẑ2 − ẑ3, a32 = 6ẑ1 − 3ẑ2, b3 = 3ẑ1,

and

A =

 a11 a12
a21 a22
a31 a32

, B =

 b1
b2
b3

, Â =

 x̂3 x̂2
ŷ3 ŷ2
ẑ3 ẑ2

, B̂ =

 x̂1
ŷ1
ẑ1

.

Equation (9) are abbreviated as
a11m1 + a12m2 = b1

a21m1 + a22m2 = b2

a31m1 + a32m2 = b3

, (10)

where A is the coefficient matrix, and (A, B) denotes its augmented matrix.
To elucidate the resolution of the linear system in Equation (10), we introduce the

following lemma:

Mathematics 2024, 12, 882 6 of 11

Lemma 1. Consider a set of four non-collinear control points {P̂i}3
i=0 of a cubic Bézier curve.

The rank of the augmented matrix (A, B) is determined to be either 2 or 3.

Proof. First of all, rank((A, B)) = 0 if and only if all control points are the same, which
falls into the collinear case in Section 2.2. Therefore, rank((A, B)) ̸= 0 holds. Utilizing
elementary matrix transformations, we can deduce that

(A, B) =

 a11 a12 b1
a21 a22 b2
a31 a32 b3

 c∼

 x̂3 x̂2 x̂1
ŷ3 ŷ2 ŷ1
ẑ3 ẑ2 ẑ1

 = (Â, B̂).

It is evident that the rank of the augmented matrix (A, B) cannot exceed 3. If rank((A, B)) < 2,
it effectively implies that rank((A, B)) = 1. Consequently, there must be two non-zero constants,
l1 and l2, leading to the matrix transformation:

(A, B) ∼

 x̂3 x̂2 x̂1
l1 x̂3 l1 x̂2 l1 x̂1
l2 x̂3 l2 x̂2 l2 x̂1

,

which would imply collinearity among the control points P̂i = (x̂i, ŷi, ẑi), contradicting
their non-collinearity. Therefore, we draw the conclusion that rank((A, B)) = 2 or 3.

Lemma 1 offers a thorough analysis of the rank of the augmented matrix (A, B),
providing a theoretical basis for the subsequent discussion. According to the foundational
principles of linear algebra, we may readily classify the solutions to the binary linear
equations system as delineated in Equation (10) by classifying the rank of the coefficient
matrix A and the augmented matrix (A, B). Consequently, we present the following
theorem without the need for further proof.

Theorem 2. For the four non-collinear control points {P̂i}3
i=0 defining a cubic Bézier curve,

the resolution of Equation (10) can be classified as

(1) If rank(A) < rank((A, B)), then Equation (10) has no solution, implying the cubic Bézier
curve Ĉ(ξ) does not exhibit self-intersections;

(2) If rank(A) = rank((A, B)) = 2, then Equation (10) has a unique solution m1 = m̂1 and
m2 = m̂2;

(3) When rank(A) = rank((A, B)) < 2, an infinite number of solutions is theoretically
possible. Nevertheless, Lemma 1 negates the feasibility of this case.

Remark 1. A similar analysis method can be applied to compute the self-intersections of quadratic
Bézier curves. It is easy to know that when the three control points of a quadratic Bézier curve are
non-collinear, there is no self-intersection.

In the context of case (2) outlined in Theorem 2, determining the self-intersection points
of the cubic Bézier curve Ĉ(ξ) necessitates solving a set of binary quadratic equations:{

m̂1 = ξ2
1 + ξ1ξ2 + ξ2

2

m̂2 = ξ1 + ξ2
. (11)

From the second equation in Equation (11), it can be deduced that ξ2 = m̂2 − ξ1.
Substituting this into the first equation yields a quadratic equation:

ξ2
1 − m̂2ξ1 + m̂2

2 − m̂1 = 0 (12)

Mathematics 2024, 12, 882 7 of 11

solvable using the quadratic formula. For ∆ = 4m̂1 − 3m̂2
2 ≥ 0, the roots are given by

ξ1,1 = −
2(m̂2

2 − m̂1)

−m̂2 + sgn(−m̂2)
√

∆
,

ξ1,2 = −−m̂2 + sgn(−m̂2)
√

∆
2

.

(13)

Given the symmetry between ξ1 and ξ2 in Equation (11), ξ1,1 and ξ1,2 represent the
solutions. If both ξ1,1 and ξ1,2 fall within the interval [0, 1], then Ĉ(ξ1,1) = Ĉ(ξ1,2) indicates
a self-intersection point of the cubic Bézier curve Ĉ(ξ). In the absence of such conditions,
the curve Ĉ(ξ) does not self-intersect. This rationale equally pertains to the curve C(ξ).

Remark 2. The analysis of planar cubic Bézier curves presents a more streamlined scenario. To find
the solution, it suffices to address only the initial two equations from Equation (9). A unique
solution exists if and only if the condition rank(A∗) = rank((A∗, B∗)) = 2 is met, with A∗ and
B∗ representing the matrices formed from the first two rows of A and B, respectively.

Following the above discussion, we introduce the following algorithm (Algorithm 1)
specifically formulated to compute self-intersections in cubic Bézier curves. The accuracy
of the obtained results can be verified by substituting them back into the expression for the
cubic Bézier curve. In fact, Algorithm 1 is known to accurately identify all self-intersections
of the cubic Bézier curve, according to the basic principles of linear algebra.

Algorithm 1: Computing Self-Intersections in Cubic Bézier Curves

Input: Control points {Pi}3
i=0 of a cubic Bézier curve.

Output: Parameter values ξ1 ̸= ξ2 satisfying C(ξ1) = C(ξ2).

1 if control points {Pi}3
i=0 are collinear then

2 // Section 2.2

3 Compute k j for j = 1, 2 ensuring
−−→
P0Pj = k j

−−→
P0P3;

4 if k2
1 + k2

2 − k1k2 − k1 ≤ 0 then
5 return No self-intersection in C(ξ). // Theorem 1
6 else
7 return Self-overlapping in C(ξ).
8 end
9 else

10 // Section 2.3
11 Translate control points {Pi}3

i=0 to {P̂i}3
i=0 with P̂0 at the origin;

12 Compute the ranks of matrices A and (A, B);
13 if rank(A) == rank((A, B)) == 2 then
14 Solve for m̂1, m̂2; // Equation (10)
15 if 4m̂1 ≥ 3m̂2

2 then
16 Compute the roots ξ1,1 and ξ1,2 from Equation (12) using Equation (13);
17 if ξ1,1, ξ1,2 ∈ [0, 1] then
18 return Self-intersection at ξ1,1 and ξ1,2, i.e., C(ξ1,1) = C(ξ1,2).
19 else
20 return No self-intersection in C(ξ).
21 end
22 end
23 end
24 end

3. Numerical Experiments

This section details numerical experiments conducted to evaluate the performance
and efficiency of the proposed algorithm across both two-dimensional (2D) and three-
dimensional (3D) cubic Bézier curves. The experiments were executed using Matlab
2023a on a system equipped with a 2.10 GHz, 12th Generation Intel(R) Core(TM) i7-1260P
processor and 16 GB of RAM.

Mathematics 2024, 12, 882 8 of 11

Example 1. Figure 3 presents a collection of cubic Bézier curves, each defined by randomly
generated control points. The first row displays two-dimensional curves, while the second row
shows three-dimensional curves. As determined by Algorithm 1, these cubic Bézier curves exhibit
no self-intersections. The computation time associated with each curve, as denoted next to their
respective image identifiers, underscores the high computational efficiency of the proposed method.

0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

(a) t = 812 µs

0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

(b) t = 326 µs

0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) t = 285 µs

(d) t = 522 µs (e) t = 214 µs (f) t = 210 µs

Figure 3. Two-dimensional and three-dimensional cubic Bézier curves exhibiting no self-intersection.

In [12], Lasser introduced a condition for bijectivity: the sum of rotation angles for a Bézier
curve’s tangent vector must be less than π. Figure 4a demonstrates a case where |α1|+ |α2| > π,
suggesting a violation of this condition and potential self-intersection. However, this particular cubic
Bézier curve does not exhibit any self-intersections, as shown in Figure 3b. Furthermore, according
to the established bijectivity conditions and well-posedness definitions in [13], the control polygons
depicted in Figure 3b is identified as non-well-posed cases because the segment P2P3 passes through
the triangle formed by P0, P1, and P2, as shown in Figure 4b, which are inherently intractable using
the established method. Contrary to these limitations, our proposed Algorithm 1 adeptly circumvents
these constraints, accurately confirming that these contentious cases are devoid of self-intersections.
This suggests that our proposed method not only directly addresses the shortcomings of previous
techniques but also significantly advances the computational determination of self-intersecting
Bézier curves with robustness.

𝛼!
𝛼"

(a) (b)

Figure 4. Illustrative examples of bijective cubic Bézier curves while the bijectivity conditions are not
satisfied, based on criteria established in [12,13]. (a) Exceeding sum of tangent angles |α1|+ |α2| > π

in [12], indicating potential self-intersections. (b) Non-well-posed control points configurations
in [13], indicating potential self-intersections.

Mathematics 2024, 12, 882 9 of 11

Example 2. Figure 5 shows a series of cubic Bézier curves, each defined by control points generated
at random. Through the application of Algorithm 1, we calculate the parameter values corresponding
to the self-intersections within these curves, alongside the required computation time. For enhanced
clarity, zoomed-in views of the intersection regions are provided within each figure. Table 1 presents
the comprehensive computation results from this example.

0 0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

(a) t = 369 µs

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

(b) t = 325 µs

0 0.2 0.4 0.6
0.2

0.4

0.6

0.8

1

(c) t = 371 µs

(d) t = 369 µs (e) t = 414 µs (f) t = 492 µs

Figure 5. Two-dimensional (in the first row, a–c) and three-dimensional (in the second row, d–f) cubic
Bézier curves demonstrating self-intersection.

Table 1. Computation results from Example 2.

Figure Pi
T (i = 0, 1, 2, 3) ξ1 ξ2 Time (µs)

Figure 5a

(0.493975, 0.839373, 0.000000)

0.27740 0.81496 369(0.062019, 0.269493, 0.000000)
(0.705941, 0.771317, 0.000000)
(0.120210, 0.481265, 0.000000)

Figure 5b

(0.575209, 0.0597795, 0.000000)

0.16128 0.55362 325(0.234780, 0.353159, 0.000000)
(0.821194, 0.015403, 0.000000)
(0.043024, 0.168990, 0.000000)

Figure 5c

(0.362199, 0.328344, 0.000000)

0.17267 0.82733 371(0.551930, 0.847394, 0.000000)
(0.016733, 0.878166, 0.000000)
(0.410816, 0.659777, 0.000000)

Figure 5d

(1.000000, 0.000000,−1.000000)

0.27740 0.81496 369(0.000000, 2.000000, 1.000000)
(0.000000, 0.000000, 1.000000)
(1.000000, 1.000000,−1.000000)

Figure 5e

(1.000000, 0.000000, 0.000000)

0.09211 0.90789 413(0.000000, 4.927500, 1.000000)
(0.000000, 1.274800, 1.000000)
(1.000000, 1.000000, 0.000000)

Figure 5f

(1.000000, 1.000000, 0.000000)

0.29314 0.70686 492(0.000000, 1.524640, 1.000000)
(0.000000, 2.800000, 1.000000)
(1.000000, 0.000000, 0.000000)

Similar to Example 1, again, the control polygons depicted in Figure 5b,c fall into the category
of non-well-posed cases. These complexities render traditional methods incapable of verifying the

Mathematics 2024, 12, 882 10 of 11

bijectivity of the Bézier curves generated by these particular sets of control points. In contrast, our
developed Algorithm 1 is equipped not only to rigorously assess the presence of self-intersections but
also to precisely compute the parametric values corresponding to these intersections with notable
efficiency, as shown in Table 1.

Example 3. In this example, control points for 104 instances of both two-dimensional and three-
dimensional cubic Bézier curves were generated randomly. The application of Algorithm 1 revealed
that, in the 2D context, 87.22% of these curves were devoid of self-intersections, whereas the
remaining 12.78% exhibited such intersections. Conversely, within the 3D domain, 41.11% of
the curves lacked self-intersections, with 58.89% presenting them. Figure 6 delineates the average
computation times involved in identifying or calculating self-intersections across all cubic Bézier
curves, as well as those specifically with and without self-intersections.

The discrepancy in the computation time between 3D and 2D analyses, as shown in Figure 6,
stems from the underlying complexity of solving the cubic Bézier curve equations. For curves
without self-intersections, the determination is straightforward through the rank assessment of
the augmented matrix, bypassing the need for solving linear systems entirely. In contrast, self-
intersecting scenarios require solving a set of three equations in 3D, compared to just two in 2D.
This distinction naturally leads to a variance in computational effort and, consequently, computation
time, which is more pronounced in 3D analyses. Nonetheless, it is crucial to highlight that our
proposed method maintains high efficiency in both dimensions.

2D 3D
0

20

40

60

80

100

120

140

T
im

e
(

s)

All
No Self-intersections
With Self-intersections

Figure 6. Histogram illustrating the average computation times for detecting self-intersections in 2D
and 3D cubic Bézier curves.

4. Conclusions

In this paper, we systematically investigate the computation of all self-intersections
of cubic Bézier curves. For collinear control points of a cubic Bézier curve, its geometric
properties and the monotonicity condition of cubic functions are employed to establish
a positional relationship that predicts self-intersections. In cases of non-collinear control
points, we check the variations of the same Bernstein basis function at different parameter
values, simplifying the intersection problem from cubic to quadratic by eliminating the
trivial solution. The resultant quadratic system is then converted into a linear system
through variable substitution. By integrating linear algebraic principles and the quadratic
formula, we develop a robust and efficient algorithm to compute all self-intersection points
on a cubic Bézier curve. The proposed algorithm is easy to comprehend and implement.
Moreover, it distinctly outperforms existing methodologies by rapidly calculating all self-
intersection points on cubic Bézier curves with enhanced speed and accuracy.

Mathematics 2024, 12, 882 11 of 11

The limitation is that we only consider the cubic Bézier curves. Further research is
needed to assess the self-intersections of higher-order Bézier curves and Bézier surfaces.
In addition, robust and efficient algorithm for solving the intersection of multiple Bézier
curves is worthy of investigation.

Author Contributions: Conceptualization, Y.-Y.Y. and Y.J.; methodology, Y.-Y.Y. and Y.J.; software,
Y.-Y.Y., X.L. and Y.J.; validation, X.L.; formal analysis, Y.-Y.Y.; investigation, Y.-Y.Y., X.L. and Y.J.;
writing—original draft preparation, Y.-Y.Y. and Y.J.; writing—review and editing, Y.-Y.Y., X.L. and Y.J.;
visualization, Y.-Y.Y. and Y.J.; project administration, Y.-Y.Y.; funding acquisition, Y.-Y.Y. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 12301490),
Youth Foundation of Liaoning Provincial Department of Education (No. JYTQN2023262), and Young
Science and technology Talent Foundation of Dalian Science and Technology Bureau (No. 2023RQ088).

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Farin, G. Curves and Surfaces for CAGD: A Practical Guide, 4th ed.; Academic Press: Orlando, FL, USA, 1996.
2. Hoschek, J.; Lasser, D. Fundamentals of Computer Aided Geometric Design; AK Peters: Wellesley, MA, USA, 1993.
3. Patrikalakis, N.M.; Maekawa, T. Shape Interrogation for Computer Aided Design and Manufacturing; Springer: Berlin/Heidelberg,

Germany, 2002; Volume 15.
4. Hoffmann, C.M. Geometric and Solid Modeling; Morgan Kaufmann: Burlington, MA, USA, 1989.
5. Barnhill, R.E.; Kersey, S.N. A marching method for parametric surface/surface intersection. Comput. Aided Geom. Des. 1990,

7, 257–280. [CrossRef]
6. Su, B.Q.; Liu, D.Y. An affine invariant and its application in computational geometry. Sci. Sin. (Ser. A) 1983, 24, 259–267.
7. Ye, Z.L. Shape classification of planar B-spline cubic curves. In Proceedings of the Xi’an Proceedings of the Sino-German

CAD/CAM Conference, Xi’an, China, 6–9 October 1987; pp. 188–196.
8. Ye, Z.L.; Wang, J.Y. The location of singular and inflection points for planar cubic B-spline curves. J. Comput. Technol. 1992, 7, 6–11.

[CrossRef]
9. Ye, Z.L.; Wu, R.J. Analysis of inflection and singular points on planar C-Bézier curves. Math. Numer. Sin. 2005, 27, 63–70.
10. Wu, H.Y.; Bai, L. Detection and manipulation of singular and inflection points on planar F-Bézier curves. Numer. Math. J. Chin.

Univ. 2008, 30, 213–226.
11. Zhang, J.W.; Krause, F.L.; Zhang, H.Y. Unifying C-curves and H-curves by extending the calculation to complex numbers. Comput.

Aided Geom. Des. 2005, 22, 865–883. [CrossRef]
12. Lasser, D. Calculating the self-intersections of Bézier curves. Comput. Ind. 1989, 12, 259–268. [CrossRef]
13. Zhu, C.; Zhao, X. Self-intersections of rational Bézier curves. Graph. Model. 2014, 76, 312–320. [CrossRef]
14. Zhao, X.; Zhu, C. Injectivity conditions of rational Bézier surfaces. Comput. Graph. 2015, 51, 17–25. [CrossRef]
15. Yu, Y.Y.; Ji, Y.; Zhu, C.G. An improved algorithm for checking the injectivity of 2D toric surface patches. Comput. Math. Appl.

2020, 79, 2973–2986. [CrossRef]
16. Yu, Y.Y.; Ji, Y.; Li, J.G.; Zhu, C.G. Conditions for injectivity of toric volumes with arbitrary positive weights. Comput. Graph. 2021,

97, 88–98. [CrossRef]
17. Choi, Y.; Lee, S. Injectivity Conditions of 2D and 3D Uniform Cubic B-Spline Functions. Graph. Model. 2000, 62, 411–427.

[CrossRef]
18. Sottile, F.; Zhu, C.G. Injectivity of 2D Toric Bézier Patches. In Proceedings of the 2011 12th International Conference on

Computer-Aided Design and Computer Graphics, Jinan, China, 15–17 September 2011; pp. 235–238.
19. Ji, Y.; Yu, Y.Y.; Wang, M.Y.; Zhu, C.G. Constructing high-quality planar NURBS parameterization for isogeometric analysis by

adjustment control points and weights. J. Comput. Appl. Math. 2021, 396, 113615. [CrossRef]
20. Pekerman, D.; Elber, G.; Kim, M.S. Self-intersection detection and elimination in freeform curves and surfaces. Comput. Aided Des.

2008, 40, 150–159. [CrossRef]
21. Elber, G.; Grandine, T.; Kim, M.S. Surface self-intersection computation via algebraic decomposition. Comput. Aided Des. 2009,

41, 1060–1066. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/0167-8396(90)90035-P
http://dx.doi.org/10.1007/BF02946160
http://dx.doi.org/10.1016/j.cagd.2005.04.009
http://dx.doi.org/10.1016/0166-3615(89)90072-9
http://dx.doi.org/10.1016/j.gmod.2014.04.001
http://dx.doi.org/10.1016/j.cag.2015.05.017
http://dx.doi.org/10.1016/j.camwa.2020.01.001
http://dx.doi.org/10.1016/j.cag.2021.04.026
http://dx.doi.org/10.1006/gmod.2000.0531
http://dx.doi.org/10.1016/j.cam.2021.113615
http://dx.doi.org/10.1016/j.cad.2007.10.004
http://dx.doi.org/10.1016/j.cad.2009.07.008

	Introduction
	Methodology
	Cubic Bernstein Basis Functions and Bézier Curves
	Cubic Bézier Curves with Collinear Control Points
	Cubic Bézier Curves with Non-Collinear Control Points

	Numerical Experiments
	Conclusions
	References

