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1
Introduction

Q uestions are critical for information seeking and learning. For example, it is widely ac-
cepted in education that some form of questions (quizzes, tests, examinations) should

be used in the classroom. There is a long history of research on this topic, consistently
demonstrating the advantages of active learning, which includes the use of questions, over
the passive consumption of learning material [1–3]. In addition to classroom learning,
there is an increasing trend towards learning online. The recent decade has witnessed a
significant surge in enrollment for massive open online courses (MOOCs). By 2022, online
learning platforms like edX, Coursera, Udemy, and Khan Academy collectively offered
over 100,000 courses from more than 950 universities worldwide [4]. These platforms
have garnered considerable attention, attracting over 220 million learners, with Cours-
era accounting for 118 million of them, thereby significantly enhancing access to higher
education [5, 6]. These systems usually provide learners with assessments, quizzes, and
discussion forums for testing their understanding of the material and tracking learning
progress. MOOCs require a large pool of questions due to the extensive range of courses
and the ongoing need for assessment. They also require the frequent replacement of these
assessment questions to maintain their validity, as their effectiveness can diminish after
multiple rounds of use, primarily due to sharing among participants. Designing a large
number of high-quality questions is a time-consuming and cognitively demanding task
that requires trained instructors’ expertise and experience [7]. Besides, as suggested by
Bloom et al. [8], instructors need to follow the learning objectives and create questions
assessing varying types of cognitive complexity. Automatic Question Generation (AQG)
can ease the burden of instructors and provide students with more opportunities for as-
sessments and self-assessments [9]. In this case, the course material, such as textbooks,
course video subtitles, and the learning objectives, are taken as the inputs to the question
generator targeting for generating questions satisfying specific learning goals.

Beyond the MOOCs, informal learning by searching and reading online resources via
search engines like Google and Bing has become a meaningful learning and information-
seeking method. This process often involves only reading the results passively. As afore-
mentioned, actively engaging participants with questions in their learning process would
be helpful. However, active learning is not part of modern-day search engines. One lim-
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Context

So plus 8 electrons. So what happened to
oxygen? Well, oxygen gained electrons. What is
gaining electrons? Reduction is gaining RIG. So
carbon oxidized by the oxygen, which is part of
the motivation for calling it ”oxidation.” And
what reduced the oxygen? Well, oxygen took
those electrons from the carbon. So oxygen
reduced by the carbon. And this type of
reaction where you have both oxidation and
reduction taking place, and really they’re two
sides of the same coin.

Question
Why is oxygen only being reduced by
carbon and not carbon and hydrogen?

Answer
whilst the hydrogen is involved in the
reaction, it isn’t involved in the transfer of
electrons because ....

Context

The clinical pharmacist’s role involves creating
a comprehensive drug therapy plan for patient-
specific problems, identifying goals of therapy,
and reviewing all prescribed medications prior
to dispensing and administration to the patient.
The review process often involves an
evaluation of the appropriateness of the
drug therapy (e.g., drug choice, dose, route,
frequency, and duration of therapy) and its
efficacy.

Question

What is involved in a review of prescribed
medications?

Answer

an evaluation of the appropriateness
of the drug therapy

Figure 1.1: Examples of questions used for learning. The left example is taken from the SQuAD dataset where the
context is passages fromWikipedia articles, and the question is close-ended regarding word spans extracted from
the context (used in Chapter 2). The right example is taken from a MOOC discussion forum where the context
is context course materials, and the question is open-ended regarding long-form answers (used in Chapter 3).

iting factor is that it requires trained experts to create good questions. Given the content
available on the Web, the response time requirements of these platforms, and the ad-hoc
information needs of users, the manually curated question banks can only cover a small
part of the web corpus, and they need help to update. Therefore, creating high-quality,
meaningful questions in a scalable way has become a critical challenge. Automatic Ques-
tion Generation from text has become a promising solution [10–18].

Given these factors that motivate Automatic Question Generation (AQG) for learning,
AQG has attracted considerable attention in the research community, and many aspects of
AQG have been explored for developing robust, generalizable, and effective AQG systems.
In this thesis, we focus on generating questions given a text passage. In this setting, the
input to the AQG system, or the question generator, is the text context i.e., the grounded
content for creating the questions, e.g., the textbook passage from the textbook and the
transcripts fromMOOC course video clips. Besides the text context, another optional input
for the AQG systems is the question requirements i.e., the requirements from the users
of the AQG systems, such as the instructors, regarding the types and target answers of the
generated questions. In Figure 1.1, we present two types of QA examples to demonstrate
the inputs, such as the text context and the question requirements, including the target
answer and the question types to the question generator.

In recent years, research on AQG in this setting has witnessed significant progress,
primarily attributed to the advancements in deep learning techniques, particularly pre-
trained language models [19]. Despite the impressive progress, these methods can be
brittle due to the diverse and complex properties of the input. The results are not entirely
reliable in practice, which makes question quality evaluation critical. Designing reliable
question quality evaluation metrics is also important to assess and train AQG systems
and remains a challenging task in great need. Further, these systems are data-hungry and
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Question Generator

Data Sources

Large Labeled Datasets

Low-resource DomainsDataset Creation
Filtered Generated Questions

Question Evaluation

Domain Adaptation

User Interface

Figure 1.2: An illustration of the research scope of this thesis.

necessitate vast amounts of labeled data for training, highlighting the persistent challenge
of data scarcity. To address this challenge, there has been a surge in the creation of labeled
datasets facilitated by crowdsourcing and extracting question-and-answer data available
on online platforms [20]. However, these data collection methods often entail significant
labeling costs or result in datasets of suboptimal quality. Moreover, while the deep learning
methods havemade significant strides in AQG, their performance can exhibit performance
inconsistencies when applied to domain-specific data that diverge in theme or genre from
their training datasets.

As illustrated in Figure 1.2, we study the question generation for formal or informal
learning, where the data sources range from MOOC platforms like Khan Academy and
Coursera to Wikipedia and online discussion forums like Stackoverflow and Reddit. We
study the dataset creation from diverse sources, the question generation and evaluation
based on the collected data, and the adaptation of AQG models for different domains. Fi-
nally, we study the filtered automatically generated questions’ effects on users’ learning
when applying them on the platforms.

Specifically, considering the challenges mentioned above, in this thesis, we investigate
the following:

• the method and the automatic evaluation metrics of generating questions given a
text passage (Chapter 2);

• the efficient question answering dataset creation via collaboration between crowd-
sourcing and deep neural models (Chapter 3&4);

• an unsupervised domain adaptation method for improving out-of-domain general-
ization of automatic question generation models (Chapter 5);

• the impacts and effectiveness of automatically generated questions on learning in
the search-as-learning setting (Chapter 6).

Finally, in Chapter 7, we recap this thesis and discuss future research directions. In the
following sections, we will introduce the research background and their limitations, in-



1

4 1 Introduction

cluding the question generation approaches, the related research on dataset creation and
domain adaptation for question generation, and the questions’ effects on human learning.
Then, we will delve into several research questions, the corresponding research method-
ologies, and the contributions used in the thesis.

1.1 Question Generation Approaches
Prior question generationmethods can be broadly classified into two high-level categories:
the rule-based approaches and the sequence-to-sequence (Seq2Seq) generative neuralmod-
els according to the generation approaches they employ.

1.1.1 Rule-based approaches
The rule-based approaches [10–12, 21–23] rely on well-designed, manually created tem-
plates and heuristic linguistic and semantic rules for question generation. Rule-based ap-
proaches are efficient and retain interpretability. Although the generated questions may
fall short in quality compared with other methods, they are especially effective for ques-
tion generation in low-resource domains where training/fine-tuning on these domains is
impractical [24, 25]. The rule-based methods rely on high-quality rules and fall short in
quality compared to human-curated questions. Therefore, recent research like Dhole and
Manning [26] combines rule-based methods and neural models for AQG.

1.1.2 Sequence-to-sequence (Seq2Seq) Neural Models
With the advance in deep learning, various neural network models have been proposed
for question generation [13–17, 27–31]. These models formulate the question generation
task as a sequence-to-sequence (Seq2Seq) neural learning problem which takes the con-
text passage as input and the questions as the output. The model architectures can be
categorized into two types based on their architecture, including encoder-decoder models
and decoder-only models, as shown in Figure 1.3.

Encoder-Decoder Models
In the models with the encoder-decoder architecture, the encoder is designed to encode
the input text token sequence to hidden states while the decoder takes the hidden states as
inputs and generates outputs autoregressively. A broad range of research that adopts this
architecture has explored different types of encoders, decoders, and attentionmechanisms,
such as LSTM [32] and transformers based on multi-head self-attention [33]. Furthermore,
as pre-trained language models (PLMs) have advanced the state-of-the-art across various
natural language processing tasks [34], they have been introduced for AQG. For example,
UniLM [18, 35], BART [36], and Prophetnet [37] are pre-trained encoder-decoder models
for text generation and show the ability to generate high-quality questions after being
fine-tuned for AQG; the encoder-decoder model T5 [38] is the backbone model for many
approaches that create queries from documents such as docT5query [39] and InPars [40].
The encoder-decoder models are flexible to incorporate the bi-directional encoder that
processes each token in the context both from the past and the future in order to capture
intricate relationships and dependencies in the data effectively.
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Encoder Decoder

Gamma rays are produced
when <sep> radioactive <sep>
elements decay. Radioactive
elements are ...

<s> what type of elements
give off gamma rays?

what type of elements give
off gamma rays?

(a)

Decoder

Gamma rays are produced when
<sep> radioactive <sep>
elements decay. <s> what type of
elements give off gamma rays?

what type of elements give off gamma rays?

(b)

Figure 1.3: An illustration of transformers-based question generation model in (a) encoder-decoder structure:
the input to the encoder is the context passage, and the input to decoder is the target question started with the
start-of-sentence <s> token and shifted right. (b) The Decoder-only generative language models: the input to
the decoder is the context, and we use the special <s> token to indicate the start of the target question shifted
right, and we only show the next token prediction outputs and ignore auxiliary prediction heads for clarity.

Decoder-only Generative Models

Unlikemodels with the encoder-decoder architecture, the decoder-only generative models
utilize the generative decoder component of the traditional encoder-decoder architecture
without the explicit encoder. GPT (Generative Pre-trained Transformers) [41] uses a multi-
layer transformers decoder for the language model and is pre-trained on plain-text data
to predict the following tokens with leftward tokens based on the left-to-right language
model. It first demonstrates the effectiveness of this approach, and the successors GPT-
2 [42] and GPT-3 [43] further show substantial improvements in a range of tasks. A lot of
decoder-only models have been proposed [44]. These models have demonstrated remark-
able generative capabilities by focusing solely on the decoder and leveraging large-scale
pre-training, setting new standards for a wide range of language tasks.

Both the encoder-decoder and the decoder-only models for question generation are
primarily based on autoregressive language generation. They are usually trained by the
Maximum Likelihood Estimation (MLE) objective, which does not always align with the
metrics to evaluate the generations’ quality. Therefore, some research [45–47] argues that
it is necessary to optimize directly for the eventual evaluation metrics via reinforcement
learnings (RLs) in addition to the MLE loss. In this way, the generated questions are eval-
uated by external evaluation functions and use the measures as rewards to train the AQG
model. In [48], we propose to evaluate various evaluation methods’ impacts on the quality
of the trained AQG model. PLMs in both architectures have achieved impressive results
after fine-tuning for AQG or in a zero-shot or few-shot manner. However, their perfor-
mance is not robust, and they suffer issues like language degeneration [47, 49], which
results in both the data and the inherent structure of the models. To address the unreli-
ability and the lack of robustness issue, it is necessary to conduct research on both data
aspects, such as the creation and denoising of datasets, and the model aspects, such as
domain adaptation and evaluation.
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Collect, fusion
and validate

Question
Dataset

Online Platforms

(a)

Crowd Workers

QA Pairs

Passages

Requirements

Aggregation
and Validation

(b)

Figure 1.4: An illustration of common QA dataset creation methods. (a): Dataset creation by collecting user-
generated questions and answers from online platforms. The collected data are further processed by fusion
and validation with other online knowledge sources, such as Wikipedia, to formulate the final dataset. (b): A
common work pipeline of dataset creation by crowdsourcing where the crowd workers are tasked to follow the
requirements and curate questions and answers, and their annotations would be further aggregated and validated
to formulate the final dataset.

1.2 Dataset Creation and Domain Adaptation for Ques-
tion Generation

1.2.1 Dataset Creation
The rapid advance in AQG has been driven by the aforementioned deep learning mod-
els and the access to massive labelled datasets that support training and evaluating these
data-hungry models. AQG can be viewed as a dual task for Question Answering (QA)
and shares the datasets initially created for QA. Questions can be categorized into two
types based on their intent: i.e., for extracting specific knowledge, particularly the exact
spans from the given context, as shown in the left example in Figure 1.1, or for seeking
information [20], as shown in the right example in Figure 1.1. Figure 1.4 shows the two
dataset creation pipelines. Datasets that contain probing questions are created mainly by
crowdsourcing, where crowd workers already know the context passage and the target an-
swer and then create these questions [50, 51]. Datasets that contain information-seeking
questions are primarily created by crawling web platforms such as Amazon [52], Red-
dit [53], and MOOCs [54] where the questions are created by users on these platforms.
These methods have been proven effective and efficient, and many benchmark datasets
like SQuAD [50], HotpotQA [55], Natural Questions [56], and MS MARCO [57] have been
widely used. However, given the inherent complexity associated with question generation
and the extraction of relevant context, these methodologies often grapple with a trade-off
between the financial implications of dataset creation and the ensuing data quality. As
a result, the derived datasets either incur significant labeling costs or include incorrect
labels. Therefore, in this thesis, we investigate data creation via both methods.

1.2.2 Domain Adaptation
Languages used in different applications often show unique linguistic characteristics, e.g.
in-domain vocabularies, formal or in-formal style [58, 59], as we can observe in the two ex-
amples shown in Figure 1.1 where the left one is from the Wikipedia article on Pharmacy
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and the right example is collected from a MOOC in KhanAcademy platform. Question
generation by fine-tuning PLMs heavily relies on the quantity and quality of available
training data. However, data sources that contain well-formed questions are insufficient,
especially in the educational domain, where much expertise is required to create questions
geared toward human learning. To mitigate the lack of labeled training data, one solution
is to pre-train models for AQG on a data-abundant labeled domain (source domain) and
transfer the learned knowledge to the unlabeled target domain, which is known as un-
supervised domain adaptation (UDA) [60]. It is a common challenge in machine learning
research to learn knowledge in one domain and apply it in other domains with good gen-
eralization performance. One obstacle is the domain shift [61] between the source domain
and the target domain, which violates the assumption that the training set and the test
set are independent and identically distributed (i.i.d.). This, in turn, limits the model’s
generalization and portability.

1.2.3 Question Quality Evaluation

AQG plays an essential role in a wide range of critical tasks. It is critical to evaluate the
quality of generated questions before applying them in real applications because the gen-
erated questions can drift away from the corresponding context semantics and the target
answer or suffer from low grammar quality [45, 62, 63]. Human judgments are widely
accepted as golden metrics to evaluate question quality. Generally, human evaluation in
prior research scores the generated questions based on the following criteria [30, 63–65]:
Grammaticality, Relevance, and Answerability. The grammaticality measures the gram-
matical fluency and the syntax structure coherence of the questions. The relevance mea-
sures the consistency between the generated question and both the context document and
the target answer for factual questions. Different from other NLG tasks like translation
and summarization, the evaluation of AQG should consider the answerability of the gen-
erated questions, which focuses on whether the question contains relevant information
such as question words (Wh-types), necessary information like entities and relations, and
whether the question is targeting on the correct answer span. However, human evalua-
tion is applied on a small scale because it is expensive and time-consuming. Therefore,
many automatic evaluation metrics have been proposed. 𝑛-grams-based metrics such as
BLEU [66], ROUGE [67], andMETEOR [68] are widely used for evaluating the generations’
quality by comparing the lexical overlapping between the generations and the gold refer-
ences because they are unsupervised. Furthermore, many metrics have been proposed to
compare the similarity between the generations and the references using learned embed-
dings and PLMs for better evaluation than surface-level similarity [69–73]. Some recent
research investigates using the learned models’ ability to score the generated questions
directly without references to mimic human judgments on question quality [74–79]. The
model-based metrics rely on the learned models that depend on the data and methods
used to train them. They may suffer from biases like spurious correlation and domain
knowledge. Despite the numerous evaluation metrics proposed to evaluate one or some
aspects of question quality, there is no comprehensive comparison, especially their effects
on automatic question generation.
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1.3 Questions’ Effects on Human Learning
In both formal online learning and informal learning by online search, questions play a
pivotal role, making it essential to investigate the quantity and qualitative study on the
impacts of questions on learning. The effects of questions on human learning have been
first studied in the classroom setting [1–3]. Since learning has increasingly transferred
to digital media, some recent works [80–83] have begun to investigate questions’ effects
on learning through these media, although these studies tend to be on a small scale. In
particular, the research [80] systematically analyzed the effectiveness of AQG on human
learning compared to manually curated questions, as well as other impact factors such
as learners’ prior knowledge, the type of adjunct questions (factoid or synthesis), and the
content that questions focused on. Similar to [80], Steuer et al. [83] studied automatically
generated adjunct questions’ effects on non-native speakers’ English vocabulary learning.
The effects were evaluated by the self-report of prior knowledge on the topic and the cor-
rectness of post-test questions. Van Campenhout et al. [84] used automatically generated
questions in a university course as formative practice and evaluated the questions’ effects
by measuring the students’ behaviour, such as engagement in the practice. However, the
effects of automatically generated questions on human learning, including user behaviour
and learning outcomes, are not well studied.

1.4 Main Research Questions
Asmentioned above, despite the progress of AQG, it remains a challenging task to generate
questions for long, unstructured documents and fairly evaluate the quality of generated
questions. Deep neural models, when trained on limited labelled datasets, are susceptible
to a range of issues that can compromise the quality and applicability of AQG. Deep neural
models trained with limited labelled data suffer from exposure bias, and the generated
questions can suffer from various types of errors, such as the grammatical issue, semantic
drift, and off-the-target answers, which limits the application of AQG. This motivates our
first main research question:

RQ1: What metrics should be used for evaluating the quality of generated ques-
tions? How to compare the effectiveness of these metrics?

We then turn to dataset creation for the AQG task, considering both dataset creation
by crawling online questions and by crowdsourcing. The two primary dataset creation
methods suffer from noisy labels. For example, many user-created questions MOOC dis-
cussion forums do not contain specific references to the particular course content and
limit the quality of question generation models trained on them [54]. The annotations
created by crowd workers also often contain noisy annotations and disagreements among
crowd workers. To address the issue of noisy annotations in crawled or crowdsourced
data, we can extract the most relevant context related to questions, thereby enabling the
training of more effective question-generation models. Further, we can develop models
and strategies designed to handle labeling disagreements more efficiently and effectively.
This motivates our second main research question:

RQ2: How to use deep neural models to facilitate dataset creation for question
generation and reduce the noise of created datasets?
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There are various application domains of AQG. Although there are already abundant
annotated questions in some domains, or it is easier to find competent crowd workers
for creating questions, in some domains, there are no sufficient labeled data. Therefore,
we further investigate the domain adaptation for AQG. Understanding and identifying
the domain shift in datasets derived from different sources and devising strategies for
mitigating its impacts is crucial for AQG. This leads to the third main research question:

RQ3: How does domain shift in context affect AQG and how to improve AQG
performance on out-of-distribution unlabeled target domains?

Finally, we investigate the effects of automatically generated questions on human
learning, specifically in informal learning, by searching and reading online. Understand-
ing the impacts of automatically generated questions on user learning behaviour and out-
comes, characteristics of questions that can affect their impacts, and how the characters of
users can impact their impacts are crucial for applying AQG in the platforms to facilitate
users learning. This leads to our final research question:

RQ4: How do automatically generated questions impact learners’ behaviour and
learning outcomes?

Guided by these research questions, we start by developing a question generation and
evaluation pipeline. With this pipeline, we characterize the low-quality generated ques-
tions and provide an evaluation platform for evaluating the effects of automatic question
quality evaluation metrics by comparing their effects on guiding the training of AQG
model. Labeled datasets are essential for applying AQG for the target domains. There-
fore, we explore the dataset creation for AQG with a preference on learning. We take
a deep look at data collected from MOOC platforms and examine how well a deep neu-
ral ranking model can help improve label quality. We further explore how deep learning
models can help aggregate crowdsourced disagreements in complex sequence annotations
automatically. The understanding of automatic dataset denoising is crucial for training
and evaluating AQG in broader application domains. Given the diversity in the datasets
collected from different sources, we further investigate modeling the domain differences
based on their deep contextual embeddings. With the knowledge of the differences in
these domains, we research how to adapt AQG models trained on other domain data to
the low-resource target domain. With the ever-improving performance of AQG systems,
we take a user study to understand the generated questions’ impacts on users’ behaviour
and learning outcomes, which is crucial for guiding the application of AQG systems.

1.5 Contributions
The main contribution of this thesis can be summarized as:

1. We propose three novel question quality evaluation metrics. These metrics provide
a more accurate and multi-aspect evaluation of question quality beyond their simi-
larity to gold references. We further provide a thorough empirical evaluation of the
previously introduced metrics (Chapter 2).
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2. We propose a novel dataset MOOC-Clip for MOOC discussion questions and evaluate
the effectiveness of applying various neural ranking models for video clip recom-
mendation for MOOC forum questions (Chapter 3).

3. We propose a novel aggregation approach for aggregating crowdsourced answer
annotations for extractive question answering (EQA), which utilizes a simple yet
effective method of collaboration between human and deep learning models for ef-
ficiently labeled dataset creation (Chapter 4).

4. We propose a two-stage unsupervised domain adaptation approach for AQG tomake
use of the labeled source domain data and abundant unlabeled data. In the first
stage, The proposed two-stage approach mitigates noise and selects data close to
the target application distributions with unsupervised domain clustering and data
selection and achieves best adaptation performance (Chapter 5).

5. We conduct an empirical study on the automatically generated questions’ effects on
learners’ behaviour and learning outcomes in the Search as Learning (SAL) setting
(Chapter 6).

1.6 Thesis Origins
We now list the publications on which the research chapters were based.

Chapter 2 is based on the following paper:

 Zhu, Peide, and Claudia Hauff. ”Evaluating BERT-based Rewards for Question
Generation with Reinforcement Learning.” ICTIR’21. [85]

Chapter 3 is based on the following paper:

 Peide Zhu, Jie Yang, and Claudia Hauff. ”MOOC-Rec: Instructional Video Clip
Recommendation for MOOC Forum Questions.” Poster@EDM’22. [86]

Chapter 4 is based on the following paper:

 Peide Zhu, Zhen Wang, Claudia Hauff, Jie Yang, and Avishek Anand. 2022. ”An-
swer Quality Aware Aggregation for Extractive QACrowdsourcing.” Findings@EMNLP’22. [87]

Chapter 5 is based on the following paper:

 Peide Zhu, and Claudia Hauff. ”Unsupervised Domain Adaptation for Question
Generationwith DomainData Selection and Self-training.” Findings@NAACL’22. [88]

Chapter 6 is based on the following paper:

 Peide Zhu, Arthur Câmara, Nirmal Roy, David Maxwell, and Claudia Hauff, ”On
the Effects of Automatically Generated Adjunct Questions for Search as Learning.”
To Appear@CHIIR’24
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Transformers-based Question

Generation and Evaluation
In this chapter, we describe automatic question generation and evaluation methods. Auto-
matic question generation systems aim to generate questions relevant to a given text, which
can usually be answered by considering this text. Prior works have identified a range of
shortcomings (including semantic drift and exposure bias) and thus have turned to the re-
inforcement learning paradigm to improve the effectiveness of question generation. As part
of it, different evaluation metrics have been proposed to serve as rewards for the RL-based
learning paradigm. Typically, these reward functions have been empirically investigated in
different experimental settings (datasets, models, and parameters), but we lack a common
framework to compare them. In this chapter, we first categorize existing rewards systemat-
ically. We then propose three new question evaluation metrics. Finally, we provide a fair
empirical evaluation of different rewards in a common framework.

This chapter is based on the following conference paper:  Zhu, Peide, and Claudia Hauff. “Evaluating BERT-
based Rewards for Question Generation with Reinforcement Learning.” ICTIR’21. [85]
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2.1 Introduction
Automatic Question Generation (AQG) systems aim to generate natural language ques-
tions that are relevant to a given piece of text (the context) and can usually be answered by
just considering the context. As an important natural language processing task, AQG can
be used to improve question-answering [24, 45], conversational systems [89], and informa-
tion retrieval (IR) [90, 91]. As a concrete example of the latter, AQG has been employed to
improve the retrieval effectiveness of search systems by expanding documents with gener-
ated questions that the document might answer [39, 92]. The use of AQG has also recently
been shown to be beneficial for learners in an interactive reading experiment [80], aiding
learners’ comprehension and learning. The natural next step is to employ question gener-
ation in the search as learning area [93], which consists of interactive reading, searching,
and browsing activities [14–18].

The current state-of-the-art AQG systems are based on deep encoder-decoder neural
networks, which take the context and the target answer as the input of the encoder and
generate a question about the context (and the provided answer) with a decoder. Then,
the models are trained with the objective of maximizing the log-likelihood of the ground-
truth question paired with each input context. However, the evaluation of these models
often involves not just the perplexity of the generated question but also other metrics like
its relevance and fluency, adding complexity to the task.

Many datasets have been employed for AQG research, such as SQuAD [50, 94], MS
MARCO [57] and HotpotQA [55]. In these datasets, only one ground-truth question is pro-
vided for each question-answer pair. However, for each context paragraph, there are usu-
ally several different facts related to the answer that questions can be generated about. In
addition, even if there is only one fact contained in the answer, several syntactically very
different questions may semantically be strongly related or even the same.

Based on these two observations, it is clear that the ground-truth questions provided
in these datasets are not sufficient for high-quality question generation purposes. In fact,
prior research has found that the likelihood-based training suffers from the problem of
exposure bias [95], i.e., the model does not learn how to distribute probability mass over
sequences that are valid but different from the ground truth. Because of exposure bias,
many AQG models are not trained well enough to discover the relations between context
and questions. In addition, AQG models trained in this manner can also suffer from the
semantic drift problem, i.e., the models ask questions that are not relevant to the context
and answer [45].

As a response to the training regime and dataset shortcomings, recently, the reinforce-
ment learning (RL) paradigm has been taken up by the research community in order to
optimize the AQG model during training with rewards that can directly evaluate question
quality next to the available likelihood-based loss, so that questions with different forms
from the ground-truth can be explored [45, 46, 62, 96, 97].

In the literature, a number of very different types of evaluation metrics have been pro-
posed to evaluate question quality automatically and use them as rewards for the training
process, such as the n-gram based metrics BLEU, Meteor and Rouge [46, 98, 99], the an-
swerabilitymetrics [27, 45], and fluencymetrics [27, 100]. However, as Hosking and Riedel
[101] reports, high scores in the metrics do not always equate to better questions when
evaluated in a human evaluation setting. Undoubtedly, achieving a high score in a human
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evaluation is more important than an automatic evaluation metric.
The existing metrics are not sufficient for properly evaluating the quality of generated

questions. First, n-gram-based metrics evaluate question quality by computing the exact
match of n-grams in the generated and ground-truth questions. On the one hand, these
metrics may give high scores for low-quality generated questions that repeat 𝑛-grams
(such as shown in Example 1 in Table 2.1 where the term versailles appears twice in the
generated question); on the other hand, since multiple questions are valid but only one
ground-truth question is provided, these metrics can also fail to appropriately score ques-
tion paraphrases and semantically equivalent questions (as shown in Examples 2 and 3
in Table 2.1). Second, there are several essential components involved in the generation
and evaluation of a question: the context, the answer, and the ground truth. However,
most of the proposed automatic metrics only consider one of them. For example, the
n-gram based metrics compare the generated question with the ground-truth question;
the answerability metric evaluates the possibility the question can be answered given the
context, and the fluency metric computes the perplexity of the generated question. This
chapter aims at further improving AQG with RL-based training with these metrics as the
rewards. However, previously introduced metrics have been empirically investigated in
different experimental settings (datasets, model, parameters), which does not enable us to
compare their effectiveness directly. Therefore, we argue that further work is required to
investigate how to jointly use these three components for question evaluation and evalu-
ate the effectiveness of question evaluation metrics on serving as rewards for reinforced
AQG training.

To sum up, we make two contributions: First, we categorize existing metrics and pro-
pose three novel question evaluation metrics and evaluate their effects of using them as
rewards for reinforced AQG training; Second, we provide a thorough empirical evalua-
tion of the previously introduced rewards employed inside a common base model. This
in return allows us to compare the impact different rewards have on the model quality.
Concretely, we use BERT [34] (because of its strong performance across a wide range of
NLP tasks) as the base model to provide rewards for AQG. Overall, our main finding is
that in such a fair comparison, the rewards that model answerability are the most effective,
both in terms of an automatic evaluation as well as a human evaluation.

2.2 Background
In this section, we first discuss question generation applications and approaches, then turn
to common evaluation metrics used to evaluate AQG approaches.

2.2.1 Question Generation
As an important natural language processing task, AQG has been applied to a wide range
of applications. We here discuss three types of applications, including AQG for QA, con-
versational systems, and human learning, and then discuss the different types of existing
automatic question generation approaches.

QG for QA
As the available information online and the requirement for quick access to information
grows, question answering (QA) is playing an ever more important role. As a dual task of
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question-answering, AQG can be used to improve QA performance. Some works [14, 24,
45, 102, 103] take AQG as a generator to harvest question-answer pairs from passages and
use this harvested data to pre-train QA models, which subsequently result in improved
QA model effectiveness. AQG is also widely used in IR tasks, such as improving search
system effectiveness by generating clarifying questions [91] or generating questions from
e-commercial customers reviews [90].

QG for Conversational Systems
Conversational systems have become an important tool for information seeking. Asking
good questions is significant for both providing user interaction and conversational QA
training. Yao et al. [104] used AQG to create conversational characters. Wang et al. [89]
and Ling et al. [105] proposed learning to ask questions in open-domain conversational
systems with conversational context information. Gao et al. [106] and Gu et al. [107]
proposed to use conversational question generation and conversation flow modeling as a
means to generate synthetic conversations for training and evaluation purposes.

QG for Learning
Questions are a fundamental tool for a variety of educational purposes. Manual construc-
tion of good learning-oriented questions is a complex process that requires experience,
resources and time. To reduce the expenses of manual construction of questions and sat-
isfy the need for a continuous supply of new questions, AQG techniques are introduced.
Kurdi et al. [9] provide a systematic review of AQG works for educational purposes. Be-
sides, by conducting an interactive reading experiment and gaze tracking, Syed et al. [80]
showed that the use of automatic AQG is indeed beneficial for learners as it aids learners’
comprehension and learning.

QG Approaches
Past question generation research can be categorized as rule-based and neural network
based on the generation approach employed. The rule-based approaches [10–12, 21–23]
rely on well-designed manually created templates and heuristic linguistic and semantic
rules for question generation. Labutov et al. [108] proposed a pipeline for question tem-
plates generation by crowdsourcing and ranking. Other works [24, 109, 110] proposed to
generate factoid source question-answer triplets from passages, subtitles, or wiki knowl-
edge graphs. Inspired by the advances in applying deep learning in natural language gen-
eration, various neural network models have been proposed for question generation [13–
17, 27–29, 46, 46]. These models formulate the question generation task as a sequence-to-
sequence (Seq2Seq) neural learning problem with different types of encoders, decoders
and attention mechanisms.

2.2.2 RL-based Question Generation
To address the exposure bias and semantic drift problem, the reinforcement learning (RL)
paradigm has been taken up by the research community in order to optimize the AQG
model during training with metrics that can directly evaluate question quality next to
the available likelihood-based loss so that questions with different forms from the ground-
truth can be explored. To efficiently train AQGmodel with reinforcement learning, Rennie
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et al. [111] proposed the self-critical sequence training (SCST) algorithm that utilizes the
test-time inference algorithm directly to obtain the output with the current model to nor-
malize the rewards it experiences. In this way, SCST avoids estimating the reward signal
and estimating normalization while at the same time harmonizing the model with respect
to its test-time inference procedure. Because of its effectiveness, SCST is commonly used
in follow-up RL-based AQG methods, while they use different evaluation metrics calcu-
lated with different methods and models as rewards [45, 46, 62, 96, 97]. We will discuss
these metrics in the next section.

2.2.3 QG Evaluation Metrics
As a natural language text generation task, most previous AQG works use traditional met-
rics such as BLEU and Rouge to evaluate generated questions by comparing them with
the ground-truth questions. However, Novikova et al. [112] and Nema and Khapra [65]
pointed out that human ratings about question quality or answerability do not correlate
well with these automatic evaluation metrics. Therefore, several different metrics have
been proposed to evaluate different aspects of question quality, including fluency [27, 100],
answerability [45, 65, 100], paraphrasing [45, 101], or discriminator-based relevance [100].
We broadly categorize question evaluation metrics used in prior works into lexical metrics
and learned metrics, based on the underlying methods they use.

Lexical Metrics
Traditionally, lexical metrics like 𝑛-grams based metrics are widely used for evaluating
the generations’ quality by comparing the lexical overlapping between the generations
and the gold references because they are unsupervised. Specifically, BLEU [66] is the
most widely used metric in machine translation and AQG. It is a precision-based metric
that measures the percentage of 𝑛-grams in the generations (here: the generated question)
that overlap with references (here: the ground-truth question). ROUGE [67] is a recall-
based metric that computes the percentage of 𝑛-grams in references that overlap with
the generated questions, while Rouge−𝐿 is a variant of Rouge−1, but uses the length of the
longest common subsequence to compute thematch rate. METEOR [68] extends BLEU and
ROUGE by considering both precision and recall of overlapping 𝑛-grams by computing
the harmonic mean. METEOR also extends exact 𝑛-gram matches to weighted matches of
stemmed words, synonyms, and paraphrases.

Learned Metrics
Due to the ambiguity and diversity of natural languages, the lexical metrics may be mis-
leading, especially for open-ended question generation. Therefore, many metrics have
been proposed to mitigate this issue by comparing the similarity between the generations
and the references using learned embeddings and PLMs for better evaluation. The learned
word embeddings [113] or contextual embeddings [34] have been shown to provide better
representations for capturing the lexical and semantic similarity. Various metrics have
been proposed that use these learned embedding or neural models to optimize the cor-
relation with human judgments, such as SMS [114] or BERTscore [71]. In addition to
metrics that evaluate the lexical or semantic similarity of the generations and the ground
truth, question quality evaluation requires a special focus on other dimensions, such as
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the answerability of the generations, and the relevance to both context and the ground
truth. Many metrics have been proposed to fulfill these special requirements, such as
Q-metrics [65], QPP, and QAP [45].

2.3 Methodology
We now present our methodology. In order to evaluate the different rewards, we designed
a common framework that provides a fair testbed. This framework is visualized in Fig-
ure 2.1. It consists of two parts: the QG model and the reward evaluator. We see that
beyond the reward computations (which are described in detail in this section), the re-
mainder of the framework is the same, no matter the reward employed.

Generally, we use 𝒞 and A to represent the context and answer span, respectively.
Here, the context is composed of a sequence of words 𝒞 = [𝑤𝑖]𝑀𝑖=1 with 𝑀 being the size
of the context. The answer span A = {𝐴𝑠 ,𝐴𝑒} indicates the start and end position of the
answer in the context. Let �̂� represent the generated question, which is a sequence of
predicted tokens �̂� = 𝑦0, 𝑦1,… ,𝑦𝑁 . Then, the question generation task can be formalized
as:

�̂� = argmax𝑄 Pr(𝑄|𝐶,𝐴) (2.1)

We now describe our two framework components (QG model and reward evaluator)
in turn before detailing the different rewards we implemented.

2.3.1 Question Generation Model
TheAQGmodel uses the Seq2Seq framework with a maxout pointer mechanism and gated
self-attention network similar to Zhao et al. [16] for paragraph-level question generation,
as it is straightforward, and similar models have been widely employed in recent AQG
research. To utilize the long-distance relation information at paragraph-level we add a
multi-head attention mechanism in the encoder. We use the unsupervised pre-trained
Glove [113] embeddings to initialize our word embeddings, as Glove embeddings have
learned the substructure and statistical relation among words. In terms of word embed-
dings, besides word vectors, we also include word feature embeddings, including the part-
of-speech (𝑃𝑂𝑆), named entity (𝑁𝐸), and answer tag. The answer tag vector is used to
indicate whether a word is in the answer span. The 𝑃𝑂𝑆 and 𝑁𝐸 labels were extracted
with Spacy¹.

2.3.2 Reward Evaluator
We use the self-critical sequence training (SCST) algorithm [111] for reinforcement learn-
ing training. SCST is an efficient reinforcement algorithm that directly utilizes the test-
time inference output to normalize the rewards. In this setting, the evaluators are the
environment, and the AQG model is the agent that interacts with it. The AQG model’s
parameters 𝜃 define a generation policy (i.e., the predicted token probability) P𝜃 which
makes the prediction of the next word, i.e., the action. After each action, the agent up-
dates its state, i.e., updates hidden states, weights, etc., of the AQG model. Once the agent

¹https://spacy.io/usage/linguistic-features

https://spacy.io/usage/linguistic-features
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Figure 2.1: Architecture of our proposed question generation model.

finishes generating a sequence𝑄, it observes a reward 𝑟(𝑄) computed with a given reward
metric. Then, the RL loss function is defined as:

L𝑟𝑙 = −E𝑄𝑠∼P𝜃 (𝑟(𝑄𝑠)) (2.2)

where 𝑄𝑠 is the sampled output produced by multinomial sampling, that is, each word 𝑞𝑠𝑡
is sampled according to the likelihood Pr(𝑞𝑡 |𝑋 ,𝑞<𝑡 ) predicted by the generator. Because
the sampling procedure is non-differentiable, the policy gradient ∇𝜃L𝑟𝑙 is approximated
using the baseline output 𝑄𝑏 obtained by greedy search, that is, by maximizing the output
probability distribution at each decoding step. The loss function, when instantiated as just
discussed, becomes thus:

L𝑟𝑙 = (𝑟(𝑄𝑏) − 𝑟(𝑄𝑠))∑
𝑡

logPr(𝑞𝑠𝑡 |𝑋 ,𝑞𝑠<𝑡 ). (2.3)

Using this reinforcement loss alone does not result in correctly learned word proba-
bilities. For this reason, we follow the mixed objective approach [46], combining both
cross-entropy loss (base model loss) and the RL loss:

L𝑚𝑖𝑥𝑒𝑑 = 𝜆L𝑟𝑙 + (1−𝜆)L𝑏𝑎𝑠𝑒 . (2.4)

Here, 𝜆 is a mixing ratio to control the balancing between RL loss and the base model loss.
In the following sections, we will explain the evaluation metrics used for rewards in detail.

2.3.3 Rewards
We categorized the metrics used for rewards from the literature into different types, as
shown in Table 2.2. Importantly, in Table 2.2, we also provide insights into what informa-
tion (context, answer, ground truth question, generated question) the evaluation metrics
take as input. Naturally, all metrics used for rewards take the generated question into ac-
count. However, beyond that, there is little agreement as to what else to use. Based on the
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Table 2.2: List of categorized reward functions employed in this chapter. Shown here are the inputs used to
compute each reward. GT refers to the ground truth and GQ refers to the generated question. The novel rewards
for AQG we propose in this chapter are labeled with ⋆.

Reward BERT Context Answer GT GQ
Task

Fluency category

Fluency [100] LM �
Similarity category

⋆ BERTscore LM � �
QPP [45] Classifier � �
Answerability category

BERT-QA-loss[45] QA � � �
BERT-QA-geo[100] QA � �
Relevance category

C-Rel [100] Classifier � �
⋆ CA-Rel Classifier � � �
⋆ CAQ-Rel Classifier � � � �

inputs to the evaluation metric and the downstreammodel type, we categorize the metrics
into four types: (i) fluency indicates whether the generated question is a valid expression
according to the language model; (ii) similarity indicates the similarity between the gen-
erated question and the ground-truth question; (iii) answerability indicates whether the
generated question can be answered given the context; and (iv) relevance indicates how
the generated question is relevant to the context, or the combination of the context, the
answer and the ground truth.

The BERT-Task in Table 2.2 is the downstream task of BERT we use to compute the
metric. For the Fluency metric and BERTscore, we use BERT as the language model to
generate the contextual embeddings of the inputs. For metrics that are based on sequence
classification, we add the BERT model transformer with a sequence classification head on
top of the pooled output as the classifier. For metrics that rely on the QA task, we use the
BERTmodel with a span classification head on top to predict the start and end positions of
the answers. Lastly, we point out that we indicate in Table 2.2 also the three novel reward
functions we contribute in this chapter: BERTscore, CA-Rel and CAQ-Rel.

We now discuss the different metrics that are used for rewards in the order of their
appearance in Table 2.2.

Fluency Category
The perplexity of a sentence under a well-trained language model usually serves as a good
indicator of its fluency [115]. We adopt the LM-based fluency metric as proposed by Xie
et al. [100]. We first fine-tune the BERT language model with questions from the SQuAD
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dataset. The fluency metric 𝑅𝑓 𝑙𝑢 for question 𝑄 is calculated as follows:

𝑅𝑓 𝑙𝑢 = −exp (− 1
|𝑄|

|𝑄|
∑
𝑖=1

log𝑀𝑓 𝑙𝑢(𝑄𝑖 |𝑄<𝑖)) (2.5)

We use the 𝑅𝑓 𝑙𝑢 score as the reward.

Similarity Category
The n-gram based automatic evaluation metrics (BLEU, Meteor and Rouge) score the ques-
tion similarity by computing the exact match of n-grams in the generated and ground-
truth questions. As pointed out in Section 2.1, these metrics may yield a high score for
low-quality generations that repeat n-grams in the generated question sequence. As there
may be many valid questions with similar semantics, but only one ground truth ques-
tion is provided, these metrics can also fail to appropriately score question paraphrases
and semantically similar but syntactically very different questions. Therefore, we investi-
gate two learned semantics-based question similarity metrics: BERTscore (the use as the
rewards for AQGwe propose) andQuestion Paraphrasing Probability (QPP).These twomet-
rics are based on BERT and compute the semantic similarity with high-level contextual
representations instead of exact or heuristic 𝑛-gram matching.

BERTscore BERTscore [71] scores the similarity between the generated question (the
generation) and the ground-truth question (the reference) by computing a similarity score
for each token in the generation with each token in the reference. In contrast to n-gram-
based metrics, BERTscore first represents contextualized token vectors with BERT and
then uses greedy matching to maximize the matching similarity score, where each token
is matched to the most similar token in the other sentence; subsequently, precision and
recall are computed to yield the F1 measure. Given the generated question �̂� and the
ground-truth question 𝑄, the BERTscore can be computed as follows:

𝑅𝐵𝐸𝑅𝑇 = 1
|𝑄| ∑𝑦𝑖∈𝑄

max
�̂�𝑗∈�̂�

y𝑇𝑖 ŷ𝑗 (2.6)

𝑃𝐵𝐸𝑅𝑇 = 1
|�̂�| ∑�̂�𝑖∈�̂�

max𝑦𝑗∈𝑄
ŷ𝑇𝑖 y𝑗 (2.7)

𝐹𝐵𝐸𝑅𝑇 = 2 𝑃𝐵𝐸𝑅𝑇 ̇𝑅𝐵𝐸𝑅𝑇
𝑃𝐵𝐸𝑅𝑇 +𝑅𝐵𝐸𝑅𝑇 .

(2.8)

Here, 𝑦𝑖 is the 𝑖𝑡ℎ token in the question sequence, and y𝑖 is the pre-normalized contextual
vector generated by BERT. We use the 𝐹𝐵𝐸𝑅𝑇 score as our reward.

QPP Given one reference, n-grams based metrics sometimes fail to evaluate question
paraphrases appropriately. Thus, inspired by the QPP metric proposed by Zhang and
Bansal [45], we propose a BERT-based question paraphrasing classifier to provide para-
phrasing probability as the reward. We pre-train this classifier model with the Quora
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Question Pairs dataset². As shown in Example 2 of Table 2.1, it scores question para-
phrases more fairly: given the ground-truth question What is involved in a review of pre-
scribed medications? and the generated question What does the review process often use?,
we find BLEU-4 to assign these semantically similar questions a score of 0 while QPP as-
signs a score of 99.94. During the training of the AQG model, we use the QPP classifier
to provide the probability of the generated questions and the ground-truth question being
paraphrased as the reward.

Answerability Category
The answerability of a question measures the possibility that the generated question can
be answered given the context. There are several reasons to consider answerability as a
reward for AQG. First, for many AQG applications, such as generating questions for read-
ing comprehension or question answering, it is a common requirement to ask questions
that can be answered with the context information. Second, semantically drifted questions
usually cannot be answered by the given context and answer, such as the relevance issue
and the non-answerable question shown in Example2 in Table 2.1. Third, given the context,
several valid questions are usually valid for the answer. Some contain information that is
not used in the ground truth. The question similarity based metrics cannot evaluate this
kind of novel generation fairly. Besides the ground-truth question, the answerability re-
ward can take the context information into consideration. Therefore, we investigate two
BERT-QA based answerability rewards. One is based on the QA loss (BERT-QA-loss), and
one is a heuristic reward based on the geometric average of the QA probability (BERT-
QA-geo). We use the BERT-QA model that is pre-trained on SQuAD to provide the QA
probability, i.e., given the input context 𝒞 , the ground-truth answer 𝐴 = {𝐴𝑠 ,𝐴𝑒} and the
generated question �̂�, the question answeringmodel outputs two probability distributions
𝑃 𝑠𝑎𝑛𝑠 = 𝑃(𝐴𝑠 |𝒞 , �̂�) and 𝑃𝑒𝑎𝑛𝑠 = 𝑃(𝐴𝑒 |𝒞 , �̂�) over tokens in𝐶 , where 𝑃 𝑠𝑎𝑛𝑠(𝑖)/𝑃𝑒𝑎𝑛𝑠(𝑖) is the prob-
ability that the 𝑖-th token is the start and end position of potential answer spans in the
context.

BERT-QA-loss Given the ground-truth answer 𝐴 = {𝐴𝑠 ,𝐴𝑒}, we evaluate the answer-
ability by computing the cross-entropy loss of the QA predictions with the ground-truth
answer:

𝑙𝑜𝑠𝑠(𝑃 𝑠𝑎𝑛𝑠 , 𝑃𝑒𝑎𝑛𝑠 ,𝐴) = CE(𝑃 𝑠𝑎𝑛𝑠 ,A𝑠) +CE(𝑃𝑒𝑎𝑛𝑠 ,A𝑒) (2.9)
𝑅𝑎𝑛𝑠(𝐶,𝑄,𝐴) = 𝑒−𝑙𝑜𝑠𝑠 (2.10)

BERT-QA-geo As argued by Xie et al. [100], when the question is answerable, themodel
should be quite confident about the start/end span of the answer, so the distribution should
peak for both 𝑃 𝑠𝑎𝑛𝑠 and 𝑃𝑒𝑎𝑛𝑠 , i.e., the value of 𝑚𝑎𝑥𝑖𝑃 𝑠𝑎𝑛𝑠(𝑖) and 𝑚𝑎𝑥𝑗𝑃𝑒𝑎𝑛𝑠(𝑗) are both large.
Therefore, the geometric average of these start and end position probability distributions
can be used as a heuristic answerability reward:

𝑅𝑎𝑛𝑠(𝐶,𝑄) = max
1≤𝑖≤𝑗≤𝑇 ,𝑗−𝑖≤𝑙 √𝑃

𝑠𝑎𝑛𝑠(𝑖|𝐶,𝑄) ⋅ 𝑃𝑒𝑎𝑛𝑠(𝑗|𝐶,𝑄). (2.11)

²https://www.kaggle.com/c/quora-question-pairs

https://www.kaggle.com/c/quora-question-pairs
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Here, 𝑙 represents the maximum answer length.

Relevance Category
There are several essential components involved in the generation and evaluation of a
question: the context, the answer, and the ground truth.

We investigate a series of binary classifier based discriminators to judge whether the
generated question is relevant to the context (C-Rel), the context and answer (CA-Rel), and
the context, answer, and reference(CAQ-Rel). While the first reward (C-Rel) stems from
prior work, we extended it and propose the just mentioned two novel rewards for AQG
(which include more information than C-Rel in the input).

C-Rel This reward indicates whether a question is relevant to the context. We design
a binary classifier based on BERT, inspired by Xie et al. [100]. It takes the context 𝒞 and
the generated question �̂� as inputs, and the output is the probability that �̂� is relevant to
𝒞 . To fine-tune the BERT classifier, we use the ground truth questions provided in the
SQuAD dataset as the positive samples. We create negative samples in two ways: based
on (i) question swapping and (ii) entity swapping. Negative sampling based on question
swapping means randomly selecting ground-truth questions about a different context 𝒞
as negative question samples for context 𝐶 . In contrast, negative sampling based on entity
swapping means replacing entities in the ground truth question with entities that do not
occur in the context. We prefer to select entities that are of the same entity types, such as
locations, dates, and names. Secondly, we create negative samples based on entity swap-
ping by replacing entities in ground truth questions with entities from the same context
though of different entity types.

CA-Rel We propose to use the probability that �̂� is relevant to the context 𝒞 and the
answer𝐴 pair as a reward. We design a BERT-based binary classifier that takes the context,
the answer, and the generated question as inputs.

As there is only one ground-truth question for each context-answer pair, it is a chal-
lenge to create enough positive samples to train the classifier. We use three approaches
to create positive samples: (i) back translation, (ii) information from a large paraphrase
database, and (iii) a neural paraphrasing model. We now discuss each of these options in
more detail. Paraphrases can be obtained by translating an English string into a foreign
language and then back-translating it into English [116]. We select German as the pivot
and use two pre-trained neural translation models: English-German and German-English,
to generate question paraphrases. The PPDB [117] is a large-scale paraphrase database
containing over a billion paraphrase pairs in 24 different languages. In our work, we em-
ploy bidirectionally entailing rules from PPDB, which replace single words or phrases with
their paraphrases in PPDB. Finally, we train a seq2seq translation model with the Quora
Question Pairs dataset and apply beam search to decode paraphrasing questions. Having
created positive samples in these manners, we are left with creating negative samples for
each question: we here employ the same manner as described for C-Rel.

CAQ-Rel Lastly, we propose a binary classifier that takes the context, answer, ground-
truth 𝑄𝐺 and the generated question as input and outputs the probability that the gen-
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erated question is relevant to the triplet {𝒞 ,𝐴,𝑄𝐺 }. We create the positive and negative
samples in the same way as described for CA-Rel.

2.4 Experiments
We conduct our experiments on the SQuAD 1.0 [50] dataset which is widely used in AQG
and QA research [13, 45, 91, 103]. It contains over 100K question-answer pairs generated
by crowd-workers from 536Wikipedia articles. The answers are selected word spans from
Wikipedia article sentences. The dataset contains publicly accessible train and validation
splits and a privately hosted test split. We split the public validation set into two parts: the
development set and the test set. Thus, we have 87,598/5,285/5,285 samples for training,
validation, and testing, respectively.

In the first step, we train all the proposed metrics with the huggingface’s³ uncased
PyTorch BERT implementation. For the answerability metrics, we fine-tune BERT for the
QA model with the SQuAD dataset. On the test set, the fine-tuned model obtains 80.28%
exact match score and 87.89% F1 score. For the fluency metrics, we fine-tune the BERT
language model with ground-truth questions in SQuAD and achieve 23.29 perplexity on
the development set. For BERTscore, we use the available BERTscore implementation⁴
provided by Zhang et al. [71]. This model does not require further fine-tuning.

We use the BERT model with a linear layer on top of the pooled output as the discrim-
inator for the QPP metric and all three metrics in the relevance category. We train the
model for all rewards with different datasets. For the QPP metric, we rely on the Quora
Question Pairs dataset and spit the dataset as train/dev/test sets following the ratio of
70%, 15%, 15%, which expressed in numbers of samples amounts to 283K/60,643/60,643
respectively. For the C-Rel metric, based on the dataset creation strategy mentioned in
Section 2.3.3, we harvest 297,980/17,322/17,954 samples for training, validation, and test-
ing, respectively. For the CA-Rel metric, we harvest 1,137,052/68,649/68,703 samples as
the training, development, and test set. Finally, for the CAQ-Rel metric, the size of the
training, development, and test sets are 560,774/33,809/33,177. The performance of the
trained models used as rewards is summarized in Table 2.3. Numbers are reported on
each task’s test set. In all cases, the accuracy reaches at least 90.98, indicating that our
training regime yielded highly accurate models.

Before RL training with these metrics as rewards, we first train the basic AQG model
by minimizing the cross-entropy loss and the copying loss. The encoder of the basic AQG
model uses a two-layer bi-directional LSTM. The LSTM hidden cell size is 300. A dropout
layer with a probability of 0.3 is applied between two bi-directional LSTM layers. We
keep the 30K most frequent words in SQuAD as vocabulary. The word embedding size is
300. The decoder uses a 1-layer LSTM. We use SGD with momentum for optimization
(momentum value is 0.8). The initial learning rate is 0.1 and decreases linearly after half of
the training steps. We use beam search (beam size 10) for the decoding. We first train the
basic AQGmodel for 16 iterations, and then we fine-tune the basic model with RL training,
as described in Section 2.3.2. The mixing ratio (𝜆) in RL is set to 0.2. We use the basic AQG
model as our baseline to compare the performance of all the rewards. To compare the

³https://huggingface.co/transformers/
⁴https://github.com/tiiiger/bert_score

https://huggingface.co/transformers/
https://github.com/tiiiger/bert_score
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Table 2.3: Performance of the fine-tuned BERT-based classification models that serve as the rewards.

Reward Precision Accuracy Recall F1

QPP 85.70 90.98 90.68 88.12
C-Rel 86.06 92.20 87.70 86.87
CA-Rel 93.27 92.62 92.99 93.13
CAQ-Rel 97.67 97.86 98.95 98.30

BERT-based rewards with n-gram-based metrics, we also train our AQG model with a
Meteor-based reward. We choose Meteor as the representation of n-gram-based rewards
as, based on our previous experience, Meteor usually outperforms other n-gram rewards.

2.4.1 Automatic Evaluation
We investigate the AQG models’ performance along n-gram-based automatic evaluation
metrics and the proposed rewards. The automatic metrics we use are BLEU, Meteor, and
Rouge-L. They are based on the n-gram similarity between the generated questions and
the ground truth, and are commonly used in text generation tasks. We calculate these
metrics with the package released by Du et al. [13].

Table 2.4 summarizes our main results. We make the following key observations:

1. Training the AQG model with RL on every reward leads to better effectiveness with
respect to the automatic metrics, except for the fluency reward on Meteor. This
result shows that it is effective to apply reinforcement learning on AQG
model training in terms of automatic metrics.

2. Optimizing one reward always leads to the improvement of the corresponding re-
ward score. However, the improvement of each reward varies from each other, e.g.,
when optimizing the CAQ-Rel reward, the CAQ-Rel score improves by 5.02 com-
pared to the baseline; however, optimizing the fluency reward only leads to a 0.02
improvement. This shows that the degrees of how rewards influence AQG training
differ.

3. The rewards we use can be categorized into four types as already outlined in Sec-
tion 2.3.3: fluency, answerability, similarity, and relevance. We find optimizing
one reward also leads to a score increase for other rewards of the same type.
This implies that rewards of the same type are correlated. We further investigate the
correlation between them. The correlation matrix (expressed in Pearson correlation
coefficient) is shown in Figure 2.2. We find the similarity-based rewards BERTscore
and QPP are strongly correlated to each other, with a correlation coefficient 0.62.
The relevance-based rewards are more related to the similarity rewards than each
other. The BERT-QA-loss reward and the BERT-QA-geo reward are almost indepen-
dent, which shows the heuristic reward BERT-QA-geo may not be a good indicator
of whether a question can be answered by a QA model. This insight is helpful for
designing an unsupervised QA system. The BERT-QA-loss reward and the fluency
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Figure 2.2: Pearson correlation coefficient matrix of the rewards.

reward are not correlated to other rewards, which shows the fluency and BERT-QA-
loss rewards focus on different aspects of the generated questions’ quality.

2.4.2 Human Evaluation
In addition to the automatic metrics, we further conduct a human evaluation of our test
set to investigate whether optimizing the proposed rewards leads to the improvement in
question quality by human standards.

To this end, we randomly sampled 100 testing documents, and three computer science
students rated questions generated by 9 different models in a blind setup (i.e., they did not
receive information on which question was generated by which model): the basic AQG
model, and the models trained with our different reward functions. We also included
the ground-truth question in the labeling process as a control setting, as we expect these
questions to receive the highest scores in a human evaluation. In order to rate each sample,
we provided the context, the ground truth answer span, and all the questions for each
sample on one screen.

The rating was conducted along three criteria: the Syntax (on a scale of 1-3 ), the
Relevance (on a scale of 1-3), and the Answerability (a boolean value). For syntax, score
1 means major syntax issues; score 2 means a small mistake (e.g., lacking an article or
pronoun); and score 3 is correct. In the relevance category, score 1 means the question
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Table 2.5: Human evaluation results. GT means Ground Truth. Shown in bold is the best measure for each of the
three evaluation dimensions. The ground truth row is not included here.

Reward Syntax Relevance Answerability
(1/2/3) (1/2/3) (0/1)

GT 2.86 2.84 0.93
Baseline 2.49 2.32 0.67
Meteor 2.55 2.35 0.67
Fluency 2.47 2.18 0.63
QA-loss 2.50 2.39 0.72
QA-geo 2.41 2.20 0.66
BERTscore 2.50 2.24 0.69
QPP 2.36 2.31 0.68
C-Rel 2.39 2.19 0.61
CA-Rel 2.30 2.22 0.63
CAQ-Rel 2.40 2.22 0.63
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Figure 2.3: Pearson correlation coefficient matrix between reward scores and human ratings.

is not relevant to the context and the answer; score 2 means it is partially relevant (e.g.,
a question may be more general than what the answer is about); and score 3 means the
question is relevant and relevant to the given answer. In terms of answerability, it needs
to be rated whether the question can be answered with the context information and the
provided answer. To provide the reader with intuition, we report three examples of gener-
ated questions with syntax/relevance/answerability issues in Table 2.1, Example 2. As all
raters rated the same 100 samples, we considered their average rating for each dimension.

We report the human evaluation results in Table 2.5. In addition, in Figure 2.3 we
present the correlation between the reward scores and the human ratings.

We make the following observations.

1. The baseline (i.e., no reward, just the likelihood loss) outperforms all relevance-
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based rewards. Although optimizing on relevance-based rewards (C-Rel, CA-Rel,
and CAQ-Rel) leads to improvement of the automatic rewards, it reduces the hu-
man rating with respect to syntax, relevance, and answerability.

2. We also addMeteor for the comparison of the performance of n-gram-based rewards.
We find that optimizing on the Meteor rewards improves all of the three rating cri-
teria. It achieves the best syntax score. As we show in Figure 2.2 for the automatic
evaluation, Meteor is strongly correlated with BERTscore, QPP and CAQ-Rel re-
wards. This implies that Meteor can capture the lexical and semantics similarity in
a way and can be used as a computation-efficient reward for AQG.

3. The BERT-QA based answerability reward BERT-QA-loss outperforms all other re-
wards regarding both Relevance and Answerability. This shows that the BERT-QA-
loss metric is a good indicator that reflects the questions’ relevance and answer-
ability. This also shows that the AQG task is different from common text genera-
tion tasks like machine translation or summary generation; here, answerability is a
critical criterion for question quality evaluation. Although BERT-QA-geo does not
perform as well as BERT-QA-loss, as shown in Figure 2.3, BERT-QA-geo is most
correlated to the human judgment on answerability, relevance, and syntax. As the
BERT-QA-geo reward is a heuristic indicator for a question’s answerability and it
does not require answer information, this correlation between the BERT-QA-geo
reward and the human judgments implies that it is possible to develop an indicator
based on BERT-QA-geo for unsupervised or semi-supervised QA/QG training.

4. In general, the correlation between the human evaluation dimensions (syntax, rele-
vance, answerability) and the reward scores is low: the linear correlation coefficient
reaches 0.11 (between answerability and BERT-QA-geo) at best. One apparent rea-
son is the different scoring system (binary or three levels for the human evaluation
dimensions). At the same time, though, this lack of a high correlation between hu-
man ratings and reward scores shows that the reward functions we use are vastly
different from the human rating dimensions.

2.5 Limitations
One limitation of this study is that we only focus on extractive close-domain question
answering, which limits its application in the open-domain and targeting at long-form
answering applications. Some of the evaluation functions designed in this research, such
as the rewards in the answerability category, cannot apply on information-seeking ques-
tions. The more recent research, such as GPTScore [118] and G-Eval [119] that use LLMs
such as ChatGPT and GPT-4 as evaluators, which may be better for evaluating quality
of diverse types of questions. Another limitation is that we only one dataset is used for
evaluating these rewards. Although it fits the requirement of a fair evaluation on the
rewards, perform comparison along different extractive QA datasets constructed from dif-
ferent domains and applications would provide more insights on performance of different
rewards.
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2.6 Conclusions
In this chapter, we investigated the task of question generation. We systematically cat-
egorized the question evaluation metrics that past reinforcement learning proposed as
rewards for training AQG model. We implemented all these rewards—as well as three
we proposed ourselves—in a common framework to enable a fair evaluation. We per-
formed both an automatic evaluation (with established metrics commonly employed for
AQG evaluation) as well as a human evaluation, where human raters evaluated the gen-
erated questions along the dimensions of syntax, relevance, and answerability. We found
that it is indeed effective to apply reinforcement learning on AQGmodel training in terms
of the automatic metrics. Overall, the BERT-QA-loss and QPP rewards had the best ef-
fectiveness. Our human evaluation showed that BERT-QA-loss also achieves the highest
relevance and answerability scores while using Meteor as the reward achieves the highest
syntax rating.
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3
MOOC-Rec: Instructional Video

Clip Recommendation for MOOC
Forum Questions

In this chapter, we focus on the noisy data issue in the data collected from MOOC online dis-
cussion forums for addressing the information overload. To this end, we investigate the rec-
ommendation of one-minute-resolution video clips based on the textual similarity between
the transcripts of clips and MOOC discussion forum entries. We first create a large-scale
dataset from Khan Academy video transcripts and their forum discussions. We then inves-
tigate the effectiveness of applying pre-trained transformers-based neural retrieval models
to rank video clips in response to a forum discussion. The retrieval models are trained with
supervised learning and distant supervision to effectively leverage the unlabeled data—which
accounts for more than 80% of all available data. Our experimental results demonstrate that
the proposed method is effective for this task by outperforming a standard baseline by 0.208
on the absolute change in terms of precision.

This chapter is based on the conference paper:  Peide Zhu, Jie Yang, Claudia Hauff. “MOOC-Rec: Instructional
Video Clip Recommendation for MOOC Forum Questions”. EDM’22. [86]
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3.1 Introduction
Massive Open Online Courses (MOOCs) provide open access to world-class courses for
the public, which greatly improves the opportunities for online learning. The discussion
forum is a major component of a MOOC as it is the primary communication tool among
learners and instructors [120] to moderate the lack of physical access in MOOCs. It can
help learners build a sense of belonging and learn from peers or help instructors monitor
learner affect and academic progress [121]. However, since questions targeting the same
video content are scattered among discussion threads, without supporting navigation fa-
cilities, learners cannot effectively retrieve valuable discussions for a particular piece of
content. In addition, learners’ posts seeking help may be drowned out by the many other
competing posts, making it hard for learners to get attention from instructors and peers.
The unstructured, unorganized forums with a large number of discussions (that can lead
to information overload [122]) are hindering instructors and learners from benefiting from
them, decrease community interaction, reduce responsiveness in forums, and in the end
lead to low MOOC retention rates [123, 124].

Yes
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Annotated?

Negative Sampling

Labeled Data

Unlabeled
Data

Positive Negative

Weak Labels

0 1

Positive Negative

Strong Labels

Ranking  
Scores

Ranker

Weak Label Sampling

Useful
Classifier

Discussions

Video Snippets

Figure 3.1: Overview of the MOOC-Rec system. The useful classifier first distinguishes the unuseful questions
in the MOOC forum discussions. Then the discussions with annotated timestamps would be used for training
the ranker as labeled data, and the unlabeled data would be used for distant supervision.

Existing works directed at addressing the information overload issue inMOOC forums
have proposed more effective navigation tools to identify instructional video content and
make recommendations of a ranked list of video clips. For example, Agrawal et al. [121]
classify posts that need help and employ bag-of-words-based retrieval techniques to map
those posts to minute-resolution course video clips. The clip recommendation algorithm
is evaluated on posts from one course. Trirat et al. [125] built a recommender system
to generate a ranked list of video clips giving a student’s question with a deep neural
network; they evaluate the system with 50 questions. Despite these attempts, we argue
that prior works on video clip recommendation suffer from a lack of training data and,
as a consequence, report evaluations only on small-scale data. It remains a challenge to
develop and evaluate a system that can scale to thousands of MOOCs across different
domains.

In our work, we first address the lack of training data issue by creating MOOC-CLIP, a
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Table 3.1: Examples of MOOC video clip transcripts, labeled and unlabeled discussions from Khan Academy, and
an overview of the creation of strong-labeled and weakly labeled items for BERT training.

Video
Clips

8:00-
9:00

Actually, let me write it like this. Let me move this part.
So cut and paste. Let me move it over to the right a little
bit because what I want to show is the gaining of the elec-
trons. So plus 8 electrons. So what happened to oxygen?
Well, oxygen gained electrons. What is gaining electrons?
Reduction is gaining RIG

9:00-
10:00

So carbon oxidized by the oxygen, which is part of the mo-
tivation for calling it ”oxidation.” And what reduced the
oxygen? Well, oxygen took those electrons from the car-
bon. So oxygen reduced by the carbon. And this type of
reaction where you have both oxidation and reduction tak-
ing place, and really they’re two sides of the same coin.

Labeled
Discussion

Q At 8:22 , why does oxygen gain 8electrons and not gain 2
electrons?

A one oxygen gains 2 electrons there were 4 oxygen’s so it
gained 4*2=8 electron’s

Unlabeled
Discussion

Q Why is oxygen only being reduced by carbon and not car-
bon and hydrogen?

A

whilst the hydrogen is involved in the reaction, it isn’t in-
volved in the transfer of electrons because its oxidation
number remains the same throughout the reaction. if the
hydrogen was reducing the oxygen as well, its oxidation
number would also have to change (from 1+ to 0)

Content
Irrelevant
Questions

plz help me now.
how new are these videos?
dadhadhadhahdhadh
nice smiley face.

novel large-scale dataset from Khan Academy ¹, that includes video transcripts and forum
posts (both questions and answers) using raw data available from LearningQ [54], an open
source tool and dataset for educational question generation. We split a wholeMOOC video
into one-minute-resolution clips based on timestamps in video captions. We represent
each video clip with its textural feature, i.e., the captions of each clip. We tread a thread
of forum posts starting with one question and its following answers as one discussion.
Table 3.1 shows examples ofminute-resolution video captions and discussions. Second, we
propose MOOC-Rec, a dense retrieval based instructional video clip recommendation system
for MOOC forum questions. For each content-related thread, MOOC-Rec recommends a
ranked list of video clips that are likely relevant and helpful for answering the question.
Figure 3.1 demonstrates the overview of the system. Although dense retrievers have been
applied in various retrieval tasks such as DPR [126] and ColBERT [127], it is unknown

¹https://www.khanacademy.org/

https://www.khanacademy.org/
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whether they are an effective approach for MOOC video clip recommendation. Lastly, we
point out that only 11.57% of all discussions in our dataset are labeled with a target video
clip, which poses challenges for training MOOC-Recwith limited labeled data and abundant
unlabeled resources.

We here first investigate the effectiveness of MOOC-Rec, and thenwe address the scarcity
of labeled data by using distant supervision and in-batch negatives to train the ranker.
The comprehensive experiments on our large-scale dataset, which consists of about 274K
discussions, show that our systems significantly improve the clip recommendation perfor-
mance by outperforming a standard baseline by 0.208 in terms of precision.

3.2 The MOOC-Clip Dataset
To address the lack of research data, we create a large-scale dataset using raw data crawled
with LearningQ² from Khan Academy, a MOOC platform that allows learners to ask and
answer questions about the learning materials during learning. We keep video transcripts,
forum questions, and answers of MOOCs with both transcripts and discussions available.

Learners use discussion forums in different ways. Besides asking questions related
to the course materials, they may also discuss irrelevant topics [128] for the purposes of
socializing, spamming, or expressing their appreciation for the course materials. Some
questions posted by learners also suffer from a lack of proper context or are too generic.
Therefore, it is necessary to remove these relatively—for our purposes—low-quality ques-
tions. In line with LearningQ, we consider a user-generated question to be useful for learn-
ing when all of the following conditions hold: (i) the question is concept-relevant, i.e., it
seeks for information on knowledge concepts taught in lecture videos; (ii) the question
is context-complete, containing sufficient context information to enable other learners to
answer the question; and (iii) the question is not generic. Besides labeled questions in
LearningQ, we manually labeled the usefulness of 2K questions among topics that are not
labeled in the useful question subset of LearningQ by adopting the same procedure. We
also labeled 5K questions based on their lexical relevance to video transcripts (2.5K with
the highest BM25 scores as useful, 2.5K with the lowest BM25 scores as negative) in order
to exclude non-relevant questions. In total, there are 13,290 labeled questions over 8 top-
ics. We found 60.9% of them to be useful and 39.1% of them to not be useful. We keep all
items belonging to 3 topics (2,344 in total ) as the unknown set for our cross-topics evalu-
ation, 8,766 questions on the remaining five topics for training, and 2,186 questions as the
known topic test set. We train a BERT-based text sequence classifier for useful question
classification. Table 3.2 summarizes its performance.

During preprocessing, we first remove noisy discussions that contain only meaning-
less tokens, as well as videos that have no discussions. Then, we apply the useful question
classifier on all items(522K) and retrain only items that are classified as useful. In the end,
we retain 273,887 discussions from 7,349 videos of 6 topics. We use regular expressions
to retrieve discussions where learners label posts with exact timestamps in questions or
answers. We split the video transcripts into snippets with a one-minute length. The dis-
cussions and the snippets which cover the timestamp are labeled as positive items. The
other discussions are treated as unlabeled. Table 3.2a and Figure 3.2a summarize the data

²https://github.com/AngusGLChen/LearningQ

https://github.com/AngusGLChen/LearningQ
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Table 3.2: Useful question classifier results. The classifier is trained on three topics. Therefore, we report its
performance on the same topics of training data, and the performance on other topics (Cross-Topics).

Same Topics Cross Topics
Method Acc Rc F1 Acc Rc F1
Q 89.40 96.68 92.90 77.20 74.49 75.82
Q+C 89.75 96.54 93.02 73.30 82.68 77.71

Table 3.3: Dataset overview, in terms of videos (#V), snippets (#S) per video, discussions (#D) per video, clip (#W),
the number of words per question (Q) and the number of words per answer (A)

Split #V #S/V #W/S #W/Q #W/A

Train 4590 7.91 198.51 39.96 80.89
Dev 895 8.37 199.04 40.02 79.26
Test 1126 8.14 198.64 39.67 81.92
Unlabeled 7283 7.70 197.96 38.46 78.58

statistics. In summary, there are 31,680 positive labeled items and 240,551 unlabeled items,
i.e., 11.57% of all discussions are labeled.

This dataset also covers a series of educational topics, including math, science, ca-
reers, humanities, etc. We conduct an exploratory analysis along each topic dimension in
Fig 3.2a. We observe a topic imbalance, e.g., discussions under math and science topics
account for 78.88% of labeled items and 76.82% of all items. Figure 3.2b further demon-
strates the imbalance within the number of discussions of each video. The number of
discussions of each video under topic test-prep and humanities are significantly less than
topics like computing. The labeled data is then split into 80% and 20% for training and test
sets, respectively, based on the number of discussions in each set.



3

36 3 MOOC-Rec: Instructional Video Clip Recommendation for MOOC Forum Questions

math
science

test-prep
economics

humanities
computing

0

20000

40000

60000

80000

100000

120000

#q
ue

st
io

ns

18639
9255

2755 1027 2604 584

123117

68288

20694
12836 12892

3846

Labeled
Unlabeled

(a)

math
science

test-prep
economics

humanities
computing

0

50

100

150

200

250

#d
isc

us
sio

ns
 / 

vi
de

o

(b)

Figure 3.2: Dataset overview regarding the number of labeled and unlabeled questions and the average number
of discussions for each video across all topics. We can see the unbalanced distribution of questions in each topic.

3.3 Methodology
Theproblem ofMOOC video clip recommendation studied in this chapter can be described
as follows. Given a forum discussion question, the system retrieves a ranked list of the
most relevant video clips as represented by their transcripts. We assume the questions
filtered by the useful question classifier are relevant to the course materials, and the most
relevant video clips should be instructional for learners. Assume a MOOC video 𝒱 lasts
for 𝑇 seconds, then we split it into 𝑠 𝑡 = 60 seconds clips, where 𝑠 = ⌈𝑇𝑡 ⌉. Then the video
𝒞 contains clips 𝑐1, 𝑐2,⋯ ,𝑐𝑠 . Each clip 𝑐𝑖 is represented with its transcripts, which can
be viewed as a sequence of tokens 𝑤 𝑖1,𝑤 𝑖2,⋯ ,𝑤 𝑖

|𝑐𝑖 |. We also formally define a discussion
as 𝑑𝑖 = [𝑞𝑖 , {𝑎𝑖}], where {𝑎𝑖} are the answers to the question 𝑞𝑖 . Note that in some cases,
the question has not been answered yet, which is common in MOOC forums. The task
is retrieve a ranked list of clips 𝑐𝑖,1, 𝑐𝑖,2,⋯ ,𝑐𝑖,𝑠 given each discussion 𝑑𝑖 . Notice that the
video clip recommender needs to work effectively for MOOCs in different domains that
the corpus covers. Formally speaking, the recommender ℛ ∶ (𝑑,C) → Cℛ is a function
that takes a discussion 𝑑 and video clip list C as the input and returns a ranked list of clips
Cℛ . We can also choose to return only the top-𝐾 relevant clips.

3.3.1 Dual-Encoder
We employ a standard neural IR architecture [126] for the ranker. It uses a dense encoder
𝐸𝐶 (⋅), which encodes the video clip transcripts into𝑚-dimensional real-valued vectors. At
run-time, MOOC-Rec maps the input discussion 𝑑 = [𝑞,𝑎] to another 𝑚-dimensional vector
using the query encoder 𝐸𝑄(⋅), and retrieves the top-𝑘 closest video clip vectors from the
same video. We use cosine similarity to model the similarity between the discussion and
the clip vectors by the following function:

𝑠𝑖𝑚(𝑑, 𝑐) = (1− 𝜄(𝑎))cos(𝐸𝑄(𝑞),𝐸𝐶 (𝑐)) + 𝜄(𝑎)cos(𝐸𝑄(𝑑),𝐸𝐶 (𝑐)). (3.1)
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where

𝜄(𝑎) = {0, if 𝑙𝑒𝑛(𝑎) = 0
𝛼, otherwises

(3.2)

Some questions are not answered yet, but the MOOC-Rec’s performance on these questions
is especially important since the recommendation can assist learners in resolving their
confusion and finding the answers they need. Therefore, we define the 𝑠𝑖𝑚(𝑑, 𝑐) in this
way in order to improve the encoders’ performance on unanswered discussions where the
similarity is calculated based on the video clip and the question only. The parameter 𝛼 is a
real value between 0 and 1 to give different weights for similarities between the question,
answers, and the clip.

The goal of training is to learn a better embedding function for both the clips and
discussions which can map relevant pairs of discussions and clips to vectors with smaller
distances, i.e., higher similarity, so that the similarity function 𝑠𝑖𝑚(𝑑, 𝑐) becomes a good
ranking function for the task of MOOC video clip recommendation. This is essentially a
metric learning problem [126, 129, 130].

Letℳ = {⟨𝑑𝑖 , 𝑐+𝑖 , 𝑐−𝑖,1,⋯ ,𝑐−𝑖,𝑛⟩}𝑚𝑖=1 be the training MOOC discussion corpus that contains
𝑚 instances. Each example has one discussion 𝑑𝑖 = [𝑞𝑖 , 𝑎𝑖], one relevant (positive) video
clip transcript 𝑐+𝑖 , and 𝑛 irrelevant (negative) clips 𝑐−𝑖,𝑗 . We train the retrieval model by
optimizing the negative log-likelihood of the positive clip:

𝐿(𝑑𝑖 , 𝑐+𝑖 , 𝑐−𝑖,1,⋯ ,𝑐−𝑖,𝑛) = − log 𝑒𝑠𝑖𝑚(𝑑𝑖 ,𝑐+𝑖 )

𝑒𝑠𝑖𝑚(𝑑𝑖 ,𝑐+𝑖 ) +∑𝑛
𝑗=1 𝑒𝑠𝑖𝑚(𝑑𝑖 ,𝑐−𝑖,𝑗 ) (3.3)

Positive and Negative Video Clips
For labeled discussions, positive and negative video examples are explicit. We use the
video clip whose time duration contains the timestamp of the discussion as a positive
example. All other video clips from the same video can be treated as negatives. As MOOC
videos vary in the number of clips and to boost the model training and balance the number
of positive and negative examples, we selected 𝑛 of them as the training negative examples.
We apply in-batch negatives [126, 131] for training. In this case, the positive clips for other
questions are also treated as the negatives for the current question.

Distant Supervision with Unlabeled Data
As we show in Table 3.3, over 80% of all discussions are unlabeled (i.e., there is no video
timestamp available). It would be labor-intensive and expensive to create human annota-
tions. Thus, we adopt distant supervision [132] to effectively utilize the rich unlabeled data
and train a better model with them. This process involves training the model with noisy,
weakly labeled data. MOOC-Rec is able to achieve over 50% precision in top-1 prediction
and over 70% in top-3 with a Recall@3 of over 80%. Therefore, we use the ranker trained
on the labeled training set as the scorer, and clips with the highest 𝑠𝑖𝑚(𝑑, 𝑐) are selected
as positives, while the clips with the lowest 𝑠𝑖𝑚(𝑑, 𝑐) (besides top-3) as negatives. The
weakly labeled data are then used to train the ranker.
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Inference
During inference time, we pre-compute all clip embedding 𝑣𝑐 by applying the clip encoder
𝐸𝐶 to all MOOC video clips offline. Given a discussion 𝑑 = [𝑞,𝑎] at run-time, we concate-
nate the question and answers if 𝑎 is available and compute the discussion embedding
𝑣𝑑 = 𝐸𝑄(𝑑). The clips are then ranked by 𝑠𝑖𝑚(𝑑, 𝑐), and the top-𝑘 are retrieved.

Although encoders can be implemented in many different ways [132], in this work,
we use two independent BERT [34] variant models as encoders, and the mean value of
all token embeddings is used as the final representation. We tokenize clip transcripts and
truncate the token list to the maximum length of 512 (starting with [CLS] and ending with
the [SEP] token). The discussion encoder works as a query encoder in typical neural IR
systems. Instead of using separate encoders for questions and answers of the discussion,
in our design, both of them share the same encoder. In this way, we train a better query
encoder for questions by taking advantage of important answer information.

3.3.2 Cross-Encoder
Both the cross-encoder and dual-encoder are two common approaches for matching sen-
tence pairs. While the dual-encoder produces sentence embedding vectors for clips and
discussions independently, the cross-encoder treats the clip recommendation for discus-
sions as a sequence classification task and performs full self-attention over the entire se-
quence. We concatenate the video clip transcripts and the discussions (question and an-
swers) with the [SEP] token as the input to the transformer network. The [CLS] token
embedding is then passed to a binary classifier to predict the binary relevance between
them.

We train the cross-encoder model by optimizing the pointwise loss as negative log-
likelihood of the positive clip:

𝐿(𝑑𝑖 , 𝑐+𝑖 , 𝑐−𝑖,1,⋯ ,𝑐−𝑖,𝑛) = − log 𝑠𝑖𝑚(𝑑𝑖 , 𝑐+𝑖 ) −
𝑛
∑
𝑗=1

log 𝑠𝑖𝑚(𝑑𝑖 , 𝑐−𝑖,𝑗) (3.4)

We use the query and the video clip containing the query timestamp as a positive item
labeled as 1 and select 𝑛 other video clips with the lowest BM25 score to the query as the
negative items labeled as 0.

3.4 Experiments and Results
3.4.1 Experimental Settings
Implementation
Two BERT variants: MPNet [133] (abbrv. MP, embedding size: 768) and MiniLM [134]
(abbrv. MP, embedding size: 384) are used as text encoders. We implement dual-encoders
using pre-trainedweights provided by Sentence-Transformers library ³ [135]. Bothmodels
are pre-trained on a large and diverse dataset of over 1 billion training query-paragraph
pairs for the semantic search task. The Adam optimizer [136] with warming-up and cosine
schedule is used for training; we set the maximum learning rate to 𝑙𝑟 = 2 × 10−5, 𝜖 = 1 ×
10−8 and the warmup steps to 1000. For the cross-encoder baseline, we follow previous

³https://github.com/UKPLab/sentence-transformers

https://github.com/UKPLab/sentence-transformers
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research [132, 137]. TheBM25 baseline is based on the Okapi BM25 implementation of the
rank_bm25 library ⁴. We train our models using 8 GTX-1080 GPUs for 10 iterations with
a batch size of 32. As Figure 3.3b shows, after one iteration, both clip recommendation
systems outperform the BM25 baseline.

3.4.2 Evaluation Metrics
We evaluate the trained model on the test set. We investigate the performance of the
trained model in terms of widely used rank-aware metrics [138, 139], including mean re-
ciprocal rank(MRR), MRR of top-K items (MRR@K), normalized discounted cumulative
gain(NDCG) and NDCG of top-K items (NDCG@K), using the implementation of the in-
formation retrieval evaluation toolkit Pytrec_eval [140] library. We focus on the perfor-
mance of top predictions, therefore, we also use metrics like precision@1 (P@1). Higher
𝑀𝑅𝑅 and𝑁𝐷𝐶𝐺 values suggest better ranking performance. MRR is the inverse harmonic
mean of the rank of the first relevant clip in the MOOC video’s clips list.

𝑀𝑅𝑅@𝐾 = 1
𝑛

𝐾
∑
𝑖=1

1
𝑟𝑖

(3.5)

where 𝑟𝑖 is the rank of the most relevant clip for discussion 𝑑 . Since the first result of the
ranking result matters for our application, MRR is a suitable metric.

NDCG@K is a precision-based metric that accounts for the predicted position of the
ground truth instance. Different from MRR, rather than rewarding only the first relevant
clip,

𝑁𝐷𝐶𝐺@𝐾 = 1
𝑍𝐾

𝐾
∑
𝑗=1

2𝑟𝑒𝑙𝑗 −1
log2(1+ 𝑗)

(3.6)

where 𝑍𝐾 is a normalizer to ensure the perfect ranking has a value of 1. 𝑟𝑒𝑙𝑗 is the ground-
truth rating of the item at position 𝑗.

3.4.3 Effectiveness of Dense Retrieval
Performance Comparison with Baseline
In this paper, we propose to jointly consider the similarity score of the answer and ques-
tion encoding to the clip encoding vector, as shown in Equation 3.1. We conduct ablation
experiments on the choice of 𝛼 value. As shown in Figure 3.3a, we findwhenwe set 𝛼 = 0.4,
the system can achieve the best overall performance. We report results with 𝛼 = 0.4. Af-
ter several iterations, the models’ performance first improves gradually and then becomes
steady, as illustrated in Figure 3.3b, which shows the effectiveness of the training system
and the effectiveness of the proposed models. Table 3.4 summarizes the models’ effective-
ness on the test set. We use BM25 as our baseline. Sparse vector-space models and the
probabilistic BM25 model have been widely used in instructional clip recommendation
systems. BM25’s effectiveness in terms of Precision@1 (P@1) and MRR is 0.417 and 0.60,
respectively, which shows queries possess more lexical similarity to related MOOC clips
than other clips in the course video and BM25 is an effective and strong baseline for this

⁴https://github.com/dorianbrown/rank_bm25

https://github.com/dorianbrown/rank_bm25
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Table 3.4: Performance of the proposed MOOC-Rec ranker and baselines on the test set in terms of rank-aware met-
rics. MLM/MPdual represents the MiniLM or MPNet based dual-encoder andMLM/MPcross represents the MiniLM or
MPNet based cross-encoder. “PT” represents ranker performance using pre-trained encoders without fine-tuning.
“FT” means fine-tuned model performance. “WL” means the model performance after training with weakly
labelled data.

Method P@1 MRR MRR@3 nDCG nDCG@3
BM25 0.417 0.600 0.550 0.696 0.593

PT

MLMcross 0.132 0.346 0.254 0.497 0.297
MLMdual 0.422 0.614 0.568 0.707 0.617
MPcross 0.135 0.344 0.248 0.495 0.288
MPdual 0.386 0.583 0.529 0.683 0.576

FT

MLMcross 0.511 0.677 0.641 0.755 0.683
MLMdual 0.529 0.692 0.658 0.767 0.700
MPcross 0.613 0.745 0.716 0.807 0.750
MPdual 0.570 0.720 0.690 0.788 0.730

WL

MLMcross 0.540 0.696 0.661 0.770 0.700
MLMdual 0.520 0.683 0.646 0.760 0.687
MPcross 0.625 0.751 0.722 0.812 0.754
MPdual 0.557 0.711 0.680 0.782 0.720

task. First, we find that without fine-tuning, the pre-trained dual-encoder can achieve
similar (MPNet), or even better (MiniLM-L6) performance than the BM25 baseline, while
the cross-encoders cannot make clip recommendations for discussions without training.
Second, we observe significant gains (𝑝 = 1.95 × 10−7) when using the MOOC-Rec neural
ranker after it has been trained on the data, with gains of over 0.15 in P@1 and over 0.19
in nDCG scores compared to the BM25 baseline. Thus, dense retrieval is an effective in-
structional MOOC clip recommendation approach for forum discussions which can model
the relevance between discussions and clip transcripts.

Impact of Model Size
To compare the impacts of model size, we use one distilled transformer model MiniLM
which contains 22M parameters, and one BERT size model MPNet which contains 109M
parameters. As Table 3.4 shows, in both cross-encoder and dual-encoder settings, the
larger model (i.e. MPNet) achieves better effectiveness after training, which shows that
the transformer model with more parameters may have a better potential to model the
relevance between clips and discussions.

Comparison of Cross-Encoder and Dual-Encoder
Both cross-encoder and dual-encoder are commonly used for sentence pair matching prob-
lems. In Table 3.4, we observe that with the distilled transformer model, the dual-encoder
outperforms the cross-encoder by 0.018 in terms P@1. However, with a large model, the
cross-encoder outperforms the dual-encoder by 0.043 on P@1, and around 0.02 on other
metrics. Despite the performance advantage of the cross-encoder with a large model, as
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Figure 3.3: (a) Ablation experiments on the 𝛼 value. (b) System performance along each training iteration. The
BM25method is the baseline method. We report the performance of BM25 using the default setting. We compare
the MRR scores of dual rankers based on MiniLM (MLM) and MPNet (MP).
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Figure 3.4: (a)The performance of MOOC-Rec on the MOOC-Clip dataset along all topics. (b) The average process-
ing time of different rankers.

outlined in Section 3.3.2, we observe a massive computational overhead with the cross-
encoder as illustrated in Figure 3.4b.

Effect of Distant Supervision
In the weakly-labeled data (WL) section of Table 3.4, we summarize the different mod-
els’ performance after distant training with weakly labeled data. Compared with model
trained with labeled data only, cross-encoders benefit from WL (+0.029 for MiniLM and
+0.012 for MPNet in terms P@1), while dual-encoders perform gets worse (-0.009 for MiniLM
and -0.013 for MPNet in terms P@1). Our hypothesis is that although MOOC-Rec achieves
good effectiveness after the initial training, the weakly labeled data created with it still
contains considerable noisy content.
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3.5 Limitations
One limitation of this study is we assume the useful questions in discussion forums are
related to the video clips’ transcripts. However, the useful questions can also be related
to concepts that are not explicitly mentioned the current video clip, such as prerequisite
courses. Creating context for discussion forum questions with both the course materials
and external knowledgemight further alleviate the information overload, and downstream
tasks such as question generation and answering.

3.6 Conclusions
We studied the task of video clip recommendation in the context of MOOC forums which
has the eventual goal to reduce learners’ information overload. We created a novel dataset
MOOC-Clip which includes video transcripts and discussions. We systematically inves-
tigated how well the state-of-the-art pre-trained neural IR models work for the task of
MOOC clip recommendation, and proposed a novel approach including data preparation,
useful question classification, clip ranker, and weak supervision training for this task. We
conducted the experiments with both cross-encoders and dual-encoders. The results on
our dataset show that neural IR approaches are indeed effective—at the same time, a P@1
value of less than 0.63 (at best) shows that we are still far away from solving this task. In
future work, we plan to further investigate the factors that affect MOOC-Rec’s effectiveness
such as the clip duration and methods of creating weak labels.
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4
Answer Quality Aware

Aggregation for Extractive QA
Crowdsourcing

In this chapter, we focus on quality control for creating datasets via crowdsourcing. Qual-
ity control is essential for creating extractive question answering (EQA) datasets via crowd-
sourcing. Aggregation across answers, i.e., word spans within passages annotated by differ-
ent crowd workers, is one major focus for ensuring quality. However, crowd workers cannot
reach a consensus answer on a considerable portion of questions. We introduce a simple yet
effective answer aggregation method that takes into account the relations among the answer,
question, and context passage. We evaluate answer quality from the perspectives of the QA
model to determine how confident the QA model is about each answer annotation and the
answer verification model to determine whether the answer annotation is correct. Then, we
compute aggregation scores using the quality of each answer annotation and its contextual
embedding produced by pre-trained language models. The experiments on a large real crowd-
sourced EQA dataset show that the proposed approach outperforms baselines by around 16%
on precision and effectively conducts answer aggregation for EQA. The code is available at
https://github.com/zpeide/Answer-Quality-Aware-Aggregation.

This chapter is based on the following conference paper:  Zhu, ZhenWang, Claudia Hauff, Jie Yang, and Avishek
Anand. 2022. “Answer Quality Aware Aggregation for Extractive QA Crowdsourcing.”, findings@EMNLP’22. [87]
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4.1 Introduction
Extractive Question answering (EQA) is a fundamental task in natural language process-
ing [141]. With access to large-scale datasets, deep neural models have achieved signifi-
cant advances in the EQA task [34, 142, 143]. Creating large-scale, high-quality datasets is
one of the essential factors driving this progress [144]. Currently, a prevalent method for
creating EQA datasets is crowdsourcing [50, 55, 94, 145, 146] thanks to its efficiency and
scalability due to the availability of crowd workers. Yet, answers collected from crowd
workers often contain a substantial amount of noise due to the reliability issue of crowd
workers affected by their varying expertise, skills, and motivation [147, 148].

WASHINGTON (CNN) -- During the presidential campaign, then-candidate Barack
Obama said that he hoped his administration wouldn't get [...]ssue. Former
Republican Speaker of the House Newt Gingrich called Sotomayor a racist.
Conservative talk [...] a better conclusion than a white male who hasn't lived that
life." One top GOP senator said he wants more than an explanation. "I think she
should apologize, but I don't believe any American wants a judge on the bench that's
going to use empathy or their background to punish someon. "She's been called the
equivalent of the head of the Ku Klux Klan by Rush Limbaugh; [...] yor's appellate
court decision against a mostly white group of firefighters who say they were
discriminated against after a promotion test was thrown out, because critics said it
discriminated against minority firefighters. But legal experts have said her full record
on race isn't that controversial -- in 96 race-related cases decided by Sotomayor on
the court of appeals, ...

Question What did the GOP leaders say? Vote Agreement
Measure

Newt Gingrich called Sotomayor a racist 0 0.3433

he wants more than an explanation 0 0.3118

they were discriminated against after a promotion test
was thrown out, because critics said it discriminated
against minority firefighters.

2 0.5564

Figure 4.1: An example of answer aggregation for QA crowdsourcing. In this example, three crowd workers are
asked to select a word span in the passage as the answer to the question. The gold answer can be aggregated
from the disagreed answers by asking another group of workers for answer selection (vote) or using answer
aggregation models (aggregation measure).

To reduce noise in crowdsourced data, a widely-adopted solution in previous crowd-
sourcing research is to assign each instance to multiple crowd workers to crate redundant
annotations [55, 145, 146]. Aggregation across answers provided by different crowd work-
ers thus becomes one primary focus for crowdsourcing EQA datasets. Majority voting is
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WASHINGTON (CNN) -- During the presidential campaign, then-
candidate Barack Obama said that he hoped his administration wouldn't
get ...ssue. Former Republican Speaker of the House Newt Gingrich
called Sotomayor a racist. Conservative talk ... a better conclusion than a
white male who hasn't lived that life." One top GOP senator said he wants
more than an explanation. "I think she should apologize, but I don't
believe any American wants a judge on the bench that's going to use
empathy or their background to punish someon. "She's been called the
equivalent of the head of the Ku Klux Klan by Rush Limbaugh; .... yor's
appellate court decision against a mostly white group of firefighters who
say they were discriminated against after a promotion test was thrown
out, because critics said it discriminated against minority firefighters. But
legal experts have said her full record on race isn't that controversial -- in
96 race-related cases decided by Sotomayor on the court of appeals, ...

Q:  What did the GOP leaders say?

Figure 4.2: System overview and an example of automatic answer aggregation. Crowd workers are asked to label
answer spans in passages for the given questions. If they achieve consensus, the QA pairs are used to fine-tune
the natural language inference (NLI) based answer correctness evaluation model and the question answering
(QA) model. Then we sort the non-consensus answers based on their encoding using a pre-trained language
model (PLM), the answer correctness (𝛽𝑖,𝑘 ), and the question answering confidence (𝛾𝑖,𝑘 ).

a simple and widely adopted aggregation method [149] which elects answers that most
crowd workers agree with. However, most of these majority voting based methods are
for categorical labels where the label space is small enough such that workers will more
likely produce the same label [150–153]. They cannot apply to this EQA task where the
answer candidates are word spans rather than a limited number of categorical labels, due
to the huge number of words in the dictionary. There are some methods for automatically
aggregating text sequences [154, 155], but they only apply to free text sequence tasks such
as translation. Unlike free text sequence tasks, answer candidates are word spans within
context passages, and their quality is related to both the question and the context passage.
The previous methods do not consider these dependencies. Therefore, answer aggregation
for EQA is commonly performed by having a second group of workers select and verify
answers [145, 156]. As the example in Figure 4.1 shows, crowd workers provide three dis-
tinct answer spans for the same instance. Another three crowd workers are then asked to
vote for each answer annotation. Answer3 got 2 votes and is selected as the ground-truth
answer for the question. This method requires more resources and human efforts.

In this chapter, we first model the candidate answer as a text sequence aggregation
problem [155]. Previous methods aggregate the best answer based on inter-answer dis-
tances of their vector representation. As answers for EQA are word spans within context
passages, we adapt previous methods by presenting answers using contextual vector em-
bedding produced by pre-trained language models [157]. In previous research, answer
quality is evaluated by estimating worker reliability. However, we argue that in EQA,
answer quality can also be evaluated based on its relation to the context passage and the
question. We investigate answer quality evaluation from both the view of question an-
swering ( Answer Confidence measure) by using QA models and from the view of answer
verification (Answer Correctness measure) by using natural language inference (NLI) mod-
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els. We further propose a novel joint approach to incorporate the answer quality measures
with the inter-answer distances based answer aggregation methods for EQA, as shown in
Figure 4.2.

With this chapter, we make the following contributions:

• We propose a simple yet effective novel aggregation approach for aggregating crowd-
sourced answer annotations for EQA.

• We explore two answer quality measures Answer Confidence and Answer Correctness us-
ing weak heuristic question answering signal and NLI models and illustrate their effec-
tiveness.

• The comprehensive experiments on a real large-scale crowdsourced QA dataset suggest
the effectiveness of the proposed answer quality measures and the proposed answer ag-
gregation methods. The results show that the proposed approach can effectively leverage
the rich information of context passage, questions and answer candidates for answer ag-
gregation and achieve an improvement of around 15% on precision to baseline methods.

4.2 Background
4.2.1 Crowdsourcing for QA Dataset Creation
Quality control in crowdsourcing has attracted intensive research [147, 148, 158–160]. To
reduce the noises of crowdsourced data, each data instance is commonly assigned to mul-
tiple workers to create redundant annotations to infer the hidden ground truth by ag-
gregation [55, 145, 146]. In contrast to classification or categorical crowdsourcing tasks
[152, 153, 161–163] which have small label spaces, it is harder for crowdworkers to achieve
consensus on the answer for the same question.

What signals the disagreement contains and how to effectively use them is an inter-
esting research question [164, 165]. Most existing work on this question focuses on classi-
fication problems. Some work [166, 167] found that it is possible to use noisy answers as
weak supervision signals to improve QA performance, especially in low-resource domains.
However, they still rely on the existence of ground-truth answers which are obtained by
crowdsourcing. In practice, multistage methods are commonly adopted for answer aggre-
gation in QA [56, 145, 156]. For example, a four-stage collection process is utilized for
collecting NewsQA [145]. Each item is assigned to multiple crowd workers (avg. 2.73)
to make answer annotations. Then another group (avg. group size is 2.48) is asked to
validate distinct answer annotations collected in the previous stage). The Google Natural
Questions dataset [56] evaluates non-null answer correctness with consensus judgments
from 4 “experts” and the k-way annotations (with k = 25) on a subset. This approach leads
to more cost of human efforts, time, and money.

4.2.2 Crowdsourced Text Sequence Aggregation
Majority Voting is the most common and simplest aggregation method. It assumes most
workers have comparable accuracy and reliability on the task. Thus some workers will
produce the same answer for the same question, especially for categorical label tasks
where the label space is small enough. However, it can perform poorly on complex se-
quence labeling tasks such as translation, summarization, and question answering. The
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number of words in the dictionary is so huge that it is difficult for workers to produce the
same answer so that the ground truth answer can be found. Therefore multi-stage crowd-
sourcing patterns are used to resolve disagreements by selecting, verifying, or correcting
answers like the aforementionedmethods in the last subsection. Several automationmeth-
ods have been proposed to reduce human labor. Li [154], Li and Fukumoto [155] converted
the answer texts into embeddings and extracted the potential optimal answer by estimat-
ing the embeddings of the true answer, considering both worker reliability and sequence
representation. Braylan and Lease [168] proposed a single, general annotation and ag-
gregation model by modeling label distances to support diverse tasks such as translation
and sequence labels. Braylan and Lease [169] proposed to perform answer aggregation
on complex annotations such as sequence labeling and multi-object image annotation by
matching and merging different labels. Although the proposed methods have achieved
great advantages in complex answer aggregation, little research focuses on the question
answering crowdsourcing.

4.3 Method
4.3.1 Problem Definition
For the extractive answer labeling task, each instance 𝐷𝑖 assigned to crowd workers is a
tuple containing a context passage 𝑃𝑖 and a question 𝑄𝑖 , i.e. 𝐷𝑖 = (𝑃𝑖 ,𝑄𝑖). The worker 𝑘 is
asked to select a word span 𝐴𝑖,𝑘 from the context passage 𝐴𝑖,𝑘 = (𝐴𝑠

𝑖,𝑘 ,𝐴𝑒
𝑖,𝑘), 𝑠, 𝑒 indicates

the start and end position of the answer in the passage, or NULL if no answer is present in
the passage. Then we get a set of answers for question 𝑄𝑖 : 𝒜𝑖 = {𝐴𝑖,𝑘}𝐾1 from 𝐾 workers.
The answer aggregation model aims to select one answer from𝒜𝑖 as the golden answer or
reject all answers. In this chapter, we focus on designing an effective automation answer
aggregation model to reduce human labor for multi-stage answer selection and verifica-
tion, especially when none of them agree with each other. We achieve this goal by making
a ranked list of all answers, so the answers with the highest evaluation score are ranked
in front.

4.3.2 Text Sequence Aggregation for Answer Aggregation
As word spans from context passages, we first model the answer aggregation problem
as a free text sequence aggregation problem and adopt the free text sequence aggrega-
tion methods Sequence Majority Voting (SMV) and Sequence Maximum Similarity (SMS)
on it [155]. These methods perform text sequence aggregation based on answers’ vector
representations.

Answer Representation
Different from text sequence aggregation problems like translation, the answer correct-
ness depends not only on the answer word span but also on its context. Therefore, to
produce a single vector representation of each answer, instead of encoding the answer
independently, we get the answer’s contextual embedding by encoding the passage con-
taining the answerwith transformers-based pre-trained languagemodels. Thenwe use the
mean value of all answer token embeddings as the embedding of the answer. Formally,
we define the passage which consists a sequence of words as 𝑃𝑖 = {𝑝𝑗 }|𝑃𝑖 |𝑗=1 (with |𝑃𝑖 | being
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the length of the passage and 𝑝𝑗 being the tokens in the passage), the language model as
𝐸 and the token-wise encoding as:

{ ̂𝑝1, ̂𝑝2,⋯ , ̂𝑝|𝑃𝑖 |} = 𝐸({𝑝1, 𝑝2,⋯ ,𝑝|𝑃𝑖 |})

then the answer representation ̂𝑎𝑖,𝑘 is produced by: �̂�𝑖,𝑘 = 𝑚𝑒𝑎𝑛({ ̂𝑝𝐴𝑠
𝑖,𝑘 ∶ ̂𝑝𝐴𝑒

𝑖,𝑘 })

Sequence Majority Voting (SMV)
The SMV method proposed by Li and Fukumoto [155] is the direct adaptation of majority
voting to the sequence label problem. SMV estimates the true answer embedding ̂𝑒𝑖 as the
mean vector of all answer vector representations:

̂𝑒𝑖 = 𝑚𝑒𝑎𝑛(�̂�𝑖,1, �̂�𝑖,2,⋯ , �̂�𝑖,𝐾 ) (4.1)

and ranks answer candidates according to their similarity to ̂𝑒𝑖 and extracts the golden
answer ̂𝑧𝑖 as the answer candidate with the most semantic similarity to ̂𝑒𝑖 :

𝑠𝑖,𝑘 = 𝑠𝑖𝑚(�̂�𝑖,𝑘 , ̂𝑒𝑖) (4.2)

Sequence Maximum Similarity (SMS)
The SMS method was first proposed for the unsupervised ensemble of outputs of multiple
text generation models [170]. It selects the gold output by selecting a majority-like output
close to other outputs by using cosine similarity, which is an approximation of finding
the maximum density point by kernel density estimation. Li and Fukumoto [155] adopts
SMS for crowdsourcing translation data which are generated by crowd workers instead of
text generation models. However, they only use it on free text sequences. In this chapter,
we further adopt it to the extractive QA task. We produce answer representation as fore-
mentioned, and extract the golden answer ̂𝑧𝑖 as the answer candidate with the largest sum
of similarity 𝑠𝑖,𝑘 with other answer annotations of the same question:

𝑠𝑖,𝑘 =
1

|𝒜𝑖 | − 1
∑
𝑘1≠𝑘

𝑠𝑖𝑚(�̂�𝑖,𝑘1 , �̂�𝑖,𝑘) (4.3)

4.3.3 Answer Quality Aware Answer Aggregation
The answer representations concentrate on answer contextual representation only, but
the quality of each answer also depends on whether it can answer the question based on
the context passage. The answer text sequence aggregation methods cannot fully utilize
the rich information of both the context and question. Therefore, we further propose to
aggregate crowdsourced answers in an answer quality-aware way. We first propose to
evaluate answer quality from the view of the question answering model (Answer Confi-
dence) and the view of the answer verification model (Answer Correctness). Due to the lack
of labeled data for training the QA and NLI models, the prediction of these models is noisy
and inaccurate. However, they can still provide hints on answer quality. Then we propose
a novel aggregation method to strengthen the influences of possible high-quality answers
(ACAF-SMS/SMV).
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Answer Quality Evaluation
Answer Confidence (AF)
We use BERT-QA [34] as our QA model. It consists of two parts, the BERT encoder and
the answer classifier. The answer classifier predicts the distributions of the start position
and the end position separately based on the outputs of the BERT encoder. As argued by
Zhu and Hauff [85], Xie et al. [100], the QAmodel should be quite confident about the pre-
diction of the answer start/end span to the answerable question. Thus the prediction prob-
ability distribution should peak on both 𝐴𝑠

𝑖,𝑘 and 𝐴𝑒
𝑖,𝑘 . Therefore, the geometric average

of these start position probability (Pr𝑠(𝑠|𝑃𝑖 ,𝑄𝑖)) and end position probability (Pr𝑒(𝑒|𝑃𝑖 ,𝑄𝑖))
distributions can be used as a heuristic of the confidence of the answer prediction. For-
mally, We define the answer confidence 𝛾𝑖,𝑘 as follows:

𝛾𝑖,𝑘 = max
𝐴𝑠
𝑖,𝑘−𝑤≤𝑏≤𝑐≤𝐴𝑒

𝑖,𝑘+𝑤 √
Pr𝑠 (𝑏|𝑃𝑖 ,𝑄𝑖) ⋅Pr𝑒 (𝑐|𝑃𝑖 ,𝑄𝑖). (4.4)

where 𝑤 is search window size.

Answer Correctness (AC)
QA models often lack the ability to verify the correctness of the predicted answer [171].
Oneway to address this issue is to reformulate it to a textual entailment problem [171–173]
by viewing the answer context as the premise and the QA pair as the hypothesis. Then
we use a natural language inference (NLI) system to verify whether the candidate answer
proposed by crowd workers satisfies the entailment criterion. We use the transformers-
based pre-trained sequence classification model for answer correctness verification. We
treat the answer candidate as a short text sequence (answer-text), and formulate the input
to the model in the format “ [CLS] question [SEP] passage [SEP] answer-text [SEP] ”.
We truncate passages longer than the maximum 512 tokens and only keep the sentences
containing the answer span. The embedding of the [CLS] token is used as the pooling
encoding of the sequence, and a linear classification layer has performed the encoding.
Finally, according to the passage, we use the 𝑠𝑜𝑓 𝑡𝑚𝑎𝑥 function to get the final probability
that an answer candidate is correct.

𝛽𝑖,𝑘 = V(𝑃𝑖 ,𝑄𝑖 ,𝐴𝑖,𝑘) (4.5)

Above, V represents the NLI model to verify the answer’s correctness. 𝛽𝑖,𝑘 is the probabil-
ity that the answer 𝐴𝑖,𝑘 to question 𝑄𝑖 is correct.

We then propose to combine the answer confidence and the answer correctness prob-
ability for answer quality evaluation. Assuming these two measures are complementary,
to make the method simple, we combine them as a simple sum:

𝜐𝑖,𝑘 = 𝛾𝑖,𝑘 +𝛽𝑖,𝑘 . (4.6)

The Joint Method (ACAF-SMS/SMV)
We propose to join the NLI model, QA model, and contextual answer vector represen-
tations for answer aggregation by incorporating the answer correctness probability and
answer confidence with sequence aggregation methods SMV and SMS to strengthen the
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influence of high-quality answers further. The joint sequence majority voting (ACAF-
SMV) method computes the answer aggregation measure 𝑠𝑖,𝑘 as:

𝑠𝑖,𝑘 =
𝜐𝑖,𝑘

∑𝑘 𝜐𝑖,𝑘
𝑠𝑖𝑚(�̂�𝑖,𝑘 , ̂𝑒𝑖) (4.7)

and the joint sequence maximum similarity (ACAF-SMS) method as:

𝑠𝑖,𝑘 = 𝜐𝑖,𝑘
∑𝑘1≠𝑘 𝜐𝑖,𝑘1 ⋅ 𝑠𝑖𝑚(�̂�𝑖,𝑘1 , �̂�𝑖,𝑘)

∑𝑘1≠𝑘 𝜐𝑖,𝑘1
(4.8)

The AF-SMS algorithm and AF-SMV algorithms are similar to the methods mentioned
above by replacing answer correctness probability 𝛽𝑖,𝑘 with answer confidence 𝛾𝑖,𝑘 or 𝑟𝑖,𝑘 .
Figure 4.2 illustrates the proposed method, and the pseudo-code in Algorithm 1.

Algorithm 1: ACAF-SMS/SMV answer aggregation algorithm.
Input :Passage: 𝑃𝑖 ;

Question: 𝑄𝑖 ;
Answer candidates: {𝐴𝑖,𝑘}𝐾1 ;
Answer verification model: V;
Sequence encoder: 𝐸
Question answer model 𝐺(𝑃𝑖 ,𝑄𝑖)

Output :Ranked answer candidate list
for Answer 𝐴𝑖,𝑘 do

𝛽𝑖,𝑘 = V(𝑃𝑖 ,𝑄𝑖 ,𝐴𝑖,𝑘);
𝑒𝑘𝑖 = 𝐸(𝐴𝑖,𝑘)
Answer start position probability: 𝑃𝑟𝑠(𝐴𝑠

𝑖,𝑘…𝐴𝑒
𝑖,𝑘 |𝑃𝑖 ,𝑄𝑖) = 𝐺(𝑃𝑖 ,𝑄𝑖)

Answer end position probability 𝑃𝑟𝑒(𝐴𝑠
𝑖,𝑘…𝐴𝑒

𝑖,𝑘 |𝑃𝑖 ,𝑄𝑖) = 𝐺(𝑃𝑖 ,𝑄𝑖)
𝛾𝑖,𝑘 =max𝐴𝑠

𝑖,𝑘−𝑤≤𝑖≤𝑗≤𝐴𝑒
𝑖,𝑘+𝑤 √𝑃𝑟𝑠(𝑖|𝑃𝑖 ,𝑄𝑖) ⋅ 𝑃𝑟𝑒(𝑗|𝑃𝑖 ,𝑄𝑖).;

end
if Using SMV then

̂𝑒𝑖 = 𝑚𝑒𝑎𝑛(𝐸(𝒜𝑖));
𝜔𝑖,𝑘 = 𝛽𝑖,𝑘 +𝛾𝑖,𝑘 ;
𝑠𝑖,𝑘 = 𝜔𝑖,𝑘

∑𝑘 𝜔𝑖,𝑘
𝑠𝑖𝑚(𝐸(𝐴𝑖,𝑘), ̂𝑒𝑖)

if Using SMS then
𝜔𝑖,𝑘 = 𝛽𝑖,𝑘 +𝛾𝑖,𝑘 ;
𝑠𝑖,𝑘 = 𝜔𝑖,𝑘

∑𝑘1≠𝑘 𝜔𝑖,𝑘1 ⋅𝑠𝑖𝑚(𝐸(𝐴𝑖,𝑘1 ),𝐸(𝐴𝑖,𝑘))
∑𝑘1≠𝑘 𝜔𝑖,𝑘1

;

Rank answer list according to 𝑠𝑖,𝑘 ;

4.4 Experimental Setup
4.4.1 Dataset
We evaluate the proposed method with the NewsQA dataset because it provides all crowd-
sourced raw answer annotations. The creation process of NewsQA demonstrates the chal-
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Figure 4.3: Number of answer annotations for questions in the four datasets we use, including the primary
consensus (Primary-C) set, the primary non-consensus (Primary-NC), the test consensus (Test-C) set, and the
test non-consensus (Test-NC) set.

lenges of QA dataset crowdsourcing and the importance and necessity of answer aggre-
gation. Answers in the NewsQA are collected through a two-stage process: the primary
stage (answer sourcing) and the validation stage. In the primary stage, each question so-
licits answers from avg. 2.73 crowdworkers. 56.8% of questions have consensus answers
between at least two answers on the primary stage. 37.8% of questions got consensus an-
swers after the validation stage. Crowdworkers do not come to a consensus for the rest
5.3% questions.

In this chapter, we split NewsQA into four subsets: the primary consensus (Primary-
C) set, which contains all passages, questions and their answers from the training set that
achieve answer agreement on the primary stage; the primary non-consensus (Primary-
NC) which contains all passages, questions and answer candidates that only achieve agree-
ment after an additional round of answer validation from the training set; test consensus
(Test-C) set which contains passages, questions and answers that achieve consensus from
the test set, and the test non-consensus (Test-NC) set which contains data items that only
reach consensus after an additional round of answer validation from the test set. Figure 4.3
shows the boxplot of the number of crowdsourced answers for each question. There are
more than four distinct answers per question in non-consensus sets. The Primary-C and
Test-C sets are gold answers that can be used for training and evaluating the NLI and QA
models used for answer aggregation. The Primary-NC and Test-NC sets are used for eval-
uating the proposed method. Passages in the training set do not contain passages in the
test set, making our evaluation generative. Table 4.1 shows the statistics of our data.

4.4.2 Hyper Parameters
Hyper-parameters for Training The NLI Model
Adam optimizer [136] with warming-up and linear schedule is used for fine-tuning the
answer verification model. We set the maximum learning rate (𝑙𝑟 ) as 𝑙𝑟 = 2 × 10−5 and
𝜖 = 1 × 10−8 and the warmup steps of 1000. The models are trained on a server using 4
GTX-1080 GPUs for 20,000 iterations, where each iteration is a batch size of 32 and uses
the best-performing checkpoint.
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Table 4.1: Statistics of the datasets; number of passages |𝑃 |; number of answerable questions |𝑄𝐴 |; number of
unanswerable questions |𝑄𝑈 |; number of correct answers |𝐴𝐶 | and number of wrong answers |𝐴𝑊 |.

Data |𝑃 | |𝑄| |𝐴𝐶 | |𝐴𝑊 |
Primary-C 11,469 61171 93,842 76,163
Primary-NC 11,469 40713 52,941 122,071
Test-C 634 3393 2,306 1,906
Test-NC 637 2273 2,980 6,620
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Figure 4.4: (a) Cumulative answer correctness distribution and (b) cumulative answer confidence distribution on
correct answers and incorrect answers.

Hyper-parameters for Training The QA Model
The QA model is trained on the same server consisting of 4 GeForce GTX 1080 GPUs with
a batch size of 32, the maximum learning rate of 1×10−5 with Adam as the optimizer for
10 epochs and take the epoch with the best validation accuracy as the final model.

4.4.3 Baselines
Random Selection (RS)
The baseline is to rank answer annotations randomly for each question. We report the RS
performance as the average performance over five rounds of random answer ranking.

Context-Free (CF) SMS/SMV
This baseline is to produce answer representation by treating answers as free text se-
quences without considering the context passages, i.e., the original SMS/SMV methods
proposed by Li and Fukumoto [155].

4.4.4 Evaluation
For each question, we sort the answers by the proposed aggregation methods. We evalu-
ate the results in terms of widely used rank-aware metrics, including Precision@1 (P@1),
Recall@1 (R@1), Mean Average Precision (MAP), and normalized discounted cumulative
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gain(NDCG).We choose the implementation of the information retrieval evaluation toolkit
Pytrec_eval [140] library.

4.5 Results and Analysis
4.5.1 Effectiveness of Answer Quality Evaluation Methods
Performance of AC on Answer Classification
We train the NLI model for producing AC using the BERT for sequence classification im-
plementation from the Huggingface Transformers library [157] on the Primary-C set. It
achieves 80.65% in accuracy and 87.59% in F1 on the Test-C set. On the Test-NC set, its
performance is 62.57% in accuracy and 64.52% in F1, which is much worse than its perfor-
mance on the Test-C set. The results indicate answers to questions that achieve consensus
in the first sourcing stage are relatively more distinguishable and show the difficulty of
specifying the correctness of disagreed answers. Figure 4.4a and Figure 4.5 show that AC
is an effective metric to distinguish correct and wrong answers, which achieves 0.70 in
AOC.

Performance of AF on Answer Classification
We train the QA model using the BERT-QA implementation from the Huggingface Trans-
formers library on the Primary-C set and adopt the exact match (EM) and F1 score (F1) to
evaluate its performance. Table 4.3 reports the QA performance. The QA model achieves
27.94% and 60.89% in EM and F1, respectively, on the Test-C set. In contrast, its perfor-
mance on the Test-NC set is 9.15% and 37.22% in EM and F1, which is much worse than its
performance on Test-C and demonstrates the difficulty of automatically answering these
questions. Although its performance is poor due to the lack of enough training data, we
observe that the AF score is an effective metric for correct answer classification as shown
in Figure 4.4 and Figure 4.5 and achieves 0.71 in AOC, which is slightly better than AC.
The combination of AC and AF (AC+AF) improves answer classification performance by
up to 4% by a simple sum.

Performance of Answer Quality Evaluation on Answer Aggregation
In Table 4.2, the rowsAC,AF andAC+AF show the experimental results of performing an-
swer aggregation by ranking answers according to AC, AF or by combining them(AC+AF).
AC and AF have comparable performance; both achieve over 57% on P@1 and around 10%
improvement over baselines, which shows the effectiveness of the proposed signals. By
combining the NLI model prediction and the QAmodel heuristic signal, we can further im-
prove the P@1 performance by around 3% on both Primary-NC and Test-NC sets, which
shows the complementary strengths of the two signals.

4.5.2 Effectiveness of Answer Text Sequence Aggregation
As shown in Table 4.2, SMV and SMS can achieve similar performance to AC and AF
by using the pre-trained BERT-base model as encoder without any fine-tuning. This sug-
gests the effectiveness of modeling answer aggregation for the extractive QA task as a
sequence answer aggregation problem. These methods outperform the context-free se-
quence aggregation baselines by about 10%, which proves the importance of contextual
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Figure 4.5: ROC Curve and area under the curve (AOC) of different answer classification methods, including
answer correctness (AC), answer confidence (AF), and their combination.

Table 4.3: The performance of the QA model trained on the Primary-C set.

Method Test-C Test-NC
Exact F1 Exact F1

Bert-base 27.94 60.89 9.15 37.22
Bert-large 31.21 62.21 12.23 37.33
Roberta-base 32.24 66.65 13.11 43.94

embedding. Since both SMV and SMS are based on the latent semantic similarity among
answer candidates, the effectiveness of these methods implies the crowdsourced answers
bear some common knowledge or contextual information that can be further explored.

We then conduct experiments by combining AC, AF with SMS and SMV separately
(AC-SMV, AF-SMV, AC-SMS and AF-SMS). Results in Table 4.2 show that the proposed
joint methods achieve around 3% absolute performance improvement on P@1, around 5%
on R@1 than using SMS and SMV only and similar to AC+AF (only slightly worse). By
combining AC+AF with SMS or SMV (ACAF-SMS / ACAF-SMV), the system performance
is further improved by around 2% on P@1 and around 1% on other metrics. These findings
first suggest the effectiveness of the joint aggregation method. They also demonstrate that
the system can achieve better performance by combining unsupervised contextual answer
representation and weak learned signals.

4.5.3 Influence of Encoders
Table 4.4 show the performance of the joint methods ACAF-SMV and ACAF-SMS on Test-
NC set using different types of pre-trained encoders BERT-base, BERT-large, Roberta-
base and BART-base. The results first show the performance of both methods is robust
alongside different encoders with different model sizes, types, and pre-training methods,
demonstrating the effectiveness and stability of the proposed methods. Second, ACAF-
SMS outperforms ACAF-SMV with all kinds of encoders on the Test-NC set.
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Table 4.4: Results of answer aggregation using different encoders.

Model P@1 R@1 MAP NDCG
ACAF-SMV

BERT-base 0.6274 0.4698 0.7606 0.8140
BERT-large 0.6238 0.4670 0.7575 0.8117
Roberta-base 0.6247 0.4653 0.7570 0.8111
BART-base 0.6291 0.4724 0.7545 0.8098

ACAF-SMS
BERT-base 0.6304 0.4762 0.7635 0.8159
BERT-large 0.6247 0.4726 0.7607 0.8140
Roberta-base 0.6300 0.4786 0.7638 0.8162
BART-base 0.6304 0.4750 0.7633 0.8155

4.5.4 Evaluation with More Metrics
Besides the rank-aware metrics, we also compare the method performance of the top-1
answer using two evaluation metrics: Exact Match (EM) and the macro-averaged F1 score.
The EM metric measures the percentage of answer predictions that match the ground
truth answer exactly. The F1 score calculates the F1 of the overlap of the bag-of-words
representation of the ground truth and top-1 answers. We use the implementation of
Exact Match and F1 from MRQA [174]¹. We report the EM and F1 results in Table 4.5.
The results further demonstrate the effectiveness of the joint methods ACAF-SMV and
ACAF-SMS, aligning with the conclusion from Table 4.2.

4.5.5 Impact of Answer Selection on QA Performance
To explore the impact of answer selection on QA performance on the NewsQA dataset.
We first train BERT-base-QA models on data where answers are the top-1 answer selected
by the proposed methods ACAF-SMS and ACAF-SMV against answers selected by hu-
mans. Table 4.6 demonstrates the EM and F1 scores of these experiments. We observe
that the F1-scores of the proposed methods ACAF-SMS (59.68) and ACAF-SMV (60.56) are
very close to the performance of the human-labeled data (61.12). We further investigate
the effectiveness of our method by using them as additional voters for selecting the best
answers in combination with human voting. Results show that the QA performance can
be improved to 61.63 (ACAF-SMS as the voter) and 62.27 (ACAF-SMV as the voter), sur-
passing the human-selection-only setting. These results show that the automated answer
aggregation method can be used for aggregating the disagreements among annotators
regarding the impacts of the results on the QA models.

4.5.6 Answer Aggregation Results on Other Datasets
In addition to theNewsQAdataset, we perform experiments on two extractive QA datasets,
including the SQuAD and Natural Questions datasets. The SQuAD and Natural Questions

¹https://github.com/mrqa/MRQA-Shared-Task-2019

https://github.com/mrqa/MRQA-Shared-Task-2019
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Table 4.5: Performance of answer agreement on Primary-NC and Test-NC using the BERT-base-uncased model
in terms of Exact Match (EM) and F1.

Method Primary-NC Test-NC
EM F1 EM F1

RS 0.4666 0.5246 0.4656 0.5292
CF-SMV 0.4640 0.5690 0.4729 0.5750
CF-SMS 0.4669 0.5696 0.4773 0.5749
AC 0.5638 0.6140 0.5689 0.6182
AF 0.5751 0.6300 0.5829 0.6337
AC+AF 0.5933 0.6426 0.5970 0.6454
SMV 0.5584 0.6179 0.5693 0.6287
SMS 0.5626 0.6202 0.5733 0.6309
AC-SMV 0.5980 0.6478 0.6027 0.6525
AF-SMV 0.5900 0.6449 0.5944 0.6459
AC-SMS 0.5957 0.6445 0.6089 0.6546
AF-SMS 0.5896 0.6423 0.6036 0.6492
ACAF-SMV 0.6132 0.6626 0.6146 0.6652
ACAF-SMS 0.6085 0.6568 0.6168 0.6622

datasets only provide multiple annotations for dev sets. Therefore, we perform experi-
ments on both datasets by treating the training set as the Primary-C set and selecting
questions with multiple different annotations and one consensus answer as the Primary-
NC set. To train the NLI models needed for answer verification, besides the ground truth
answers, we create negative answers by sampling different word spans with the same
named entity types, if possible, or word spans with the most similar part-of-speech(POS)
structures. Table 4.7 presents the results on the two extra datasets. The joint methods
(ACAF-SMS and ACAF-SMV) achieve similar performance (the performance differences
are around 1%) and generally outperform SMS and SMV across all metrics in both datasets
significantly. These results further highlight the effectiveness of incorporating answer
quality evaluation like answer correctness and answer confidence for answer aggregation.

4.5.7 Case Study
As shown in Table 4.8, we conduct a case study to examine the performance of the pro-
posed approach. In this case, AC, AC+AF, and SMS suggest waste is the correct answer.
However, its answer confidence is very low(0.0025). AF points great pacific garbage patch
that stretches is the best answer. Only ACAF-SMS ranks the golden answer of the pacific
ocean as the best answer, even though the AC and AF scores of this answer are not the
highest.

Table 4.9 further shows two examples of answer aggregation results. The first example
contains seven answer annotations. It is notable that all answer annotations are generally
located in the related parts of the context. However, some answer annotations are too
vague or point to the wrong spans. Although the answer correctness evaluationmodel and
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Table 4.6: The performance of the QA model trained on datasets created with different methods, including the
answer aggregation with humans (GroundTruth), the ACAF-SMS method, the ACAF-SMV method, and an-
swer selected by both human annotators and the automatic answer aggregation method (ACAF-SMVvoter and
ACAF-SMSvoter).

Method Exact F1
GroundTruth 28.00 61.12
ACAF-SMS 25.94 59.68
ACAF-SMV 26.37 60.56
ACAF-SMSvoter 27.44 61.63
ACAF-SMVvoter 28.55 62.27

Table 4.7: Performance of answer aggregation on SQuAD and Natural Questions.

Method P@1 R@1 MAP NDCG
SQuAD

SMS 0.6251 0.4829 0.8064 0.8573
SMV 0.8150 0.4787 0.8074 0.8580
ACAF-SMS 0.8597 0.5245 0.9265 0.9460
ACAF-SMV 0.8602 0.5244 0.9266 0.9460

Natural Questions
SMS 0.4725 0.4183 0.7159 0.7894
SMV 0.4636 0.4094 0.7118 0.7864
ACAF-SMS 0.7563 0.5233 0.8654 0.9008
ACAF-SMV 0.7474 0.5141 0.8587 0.8959

the answer confidence model cannot correctly distinguish the correct answer annotation,
by jointly considering the contextualized sequence similarity, the ACAF-SMS methods
can infer the correct answer annotation. The second example presents a negative case
where the answer correctness evaluation model and the answer confidence method make
the correct prediction. However, the ACAF-SMS method makes the wrong prediction
because the answer annotation Africa’s bread basket has maximum sequence similarity
over all answer annotations.
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Table 4.8: An example from NewsQA dataset. There are 7 different answer annotations for the question. Some
of the answers are overlapped. For each answer we report its ranking scores with AC AF SMS ACAF-SMS .

context

The American photographed the remains of albatross
chicks that had died from consuming plastic waste
found in the surrounding oceans. According to the
artist, not a single piece of plastic in any of the pho-
tographs was moved, placed or altered in any way. The
nesting babies had been fed the plastic by their par-
ents, who collected what looked to them like food to
bring back to their young. From cigarette lighters to
bottle caps, the plastic is found in what is now known
as the great Pacific garbage patch that stretches across
thousands of miles of the Pacific Ocean.

Question Plastic was found across thousands of miles of what

Answer
Candidates

great pacific garbage patch that stretches
0.0081 0.7406 0.0053 0.4904

of 0.0837 0.7406 0.0453 0.4737

of the pacific ocean. 0.7745 0.0898 0.3658 0.5306

waste 0.9175 0.0025 0.4142 0.4457

in the 0.0129 0.0017 0.0085 0.0091
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4.6 Limitations
While many automatic answer aggregation methods take crowd worker’s reliability into
consideration [155, 175], to keep the proposed approach simple and concise, we focus on
the influence of answer quality and ignore the worker reliability. Moreover, we only use
NewsQA to evaluate the proposed method. Although it is possible to consider more real
or simulated datasets, as shown by the experiments on SQuAD and Natural Questions
in Section 4.5.6, NewsQA is the only large extractive QA dataset that provides all actual
annotations to the best of our knowledge. Besides, this chapter assumes there is only
one correct answer for each question, while it is possible that there are multiple correct
answers in some applications.

4.7 Conclusion
In this chapter, we propose a novel answer annotation aggregationmethod for EQA crowd-
sourcing. We show that without any fine-tuning, ourmethods can achieve comparable per-
formance with the trained QA and NLI model using limited training data. We introduce a
novel algorithm for combining the NLI model, QA model, and contextual text embedding
for answer text sequence aggregation. The experiments on a real large-scale crowdsourced
EQA dataset show the effectiveness and stability of the proposed method. The proposed
methods outperform the baseline single metric method by around 16% absolute improve-
ment on P@1 and 10% improvement on other ranking metrics. For future work, we will
further explore methods incorporating crowd worker reliability and question answerabil-
ity for better answer aggregation. We will also explore the applicability of our approaches
to other tasks that deal with collecting extractive texts [176, 177].
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5
Unsupervised Domain Adaptation

for Question Generation with
Domain Data Selection and

Self-training
This chapter focuses on domain adaptation for Automatic Question Generation (AQG) sys-
tems. The effectiveness of the trained AQG models can degrade significantly when applied to
a different domain due to domain shift. In this chapter, we explore an unsupervised domain
adaptation approach to mitigate the lack of training data and domain shift issue with domain
data selection and self-training. We first present a novel answer-aware strategy for domain
data selection to select data with the most similarity to a new domain. The selected data are
then used as pseudo in-domain data to retrain the AQG model. We then present generation
confidence-guided self-training with two generation confidence modeling methods: (i) gener-
ated questions’ perplexity and (ii) the fluency score. We test our approaches on three large
public datasets with different domain similarities using a transformer-based pre-trained AQG
model. The results show that our proposed approaches outperform the baselines and show
the viability of unsupervised domain adaptation with answer-aware data selection and self-
training on the AQG task. The code is available at https://github.com/zpeide/transfer_qg.

This chapter is based on the following conference paper:  Peide Zhu, Claudia Hauff. 2022. “Unsupervised Domain
Adaptation for Question Generation with Domain Data Selection and Self-training”, findings@NAACL’22. [88]
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5.1 Introduction
Automatic Question Generation (AQG) aims to generate questions from given text pas-
sages. It has been applied to a wide range of applications, such as question answer-
ing [24, 178], conversational systems [107], and education [9, 110]. Recently, pre-trained
language models (LM) have significantly improved the state-of-the-art performance of
various natural language processing tasks [34]. Pre-trained LMs have also substantially
advanced the state-of-art performance on AQG [18, 35] by modeling AQG as a sequence-
to-sequence task and fine-tuning on task-specific data.

However, with billions of parameters, the performance of these deep neural models
heavily relies on the quantity and quality of available training data. As the manual process
of creating high-quality questions is expensive in terms of time and money compared with
abundant unlabeled data, the available data sources containing well-formed questions are
insufficient, especially in the educational domain, where a lot of expertise is required to
create questions geared towards human learning. To mitigate the lack of labeled training
data, one solution is to pre-train models for AQG on a data-abundant labeled domain
(source domain) and transfer the learned knowledge to the unlabeled target domain, which
is known as unsupervised domain adaptation (UDA) [60]. It is a common challenge in
machine learning research to learn knowledge in one domain and apply it in other domains
with good generalization performance. One obstacle is the domain shift [61] between the
source domain and the target domainwhich are assumed to be independent and identically
distributed (i.i.d.), as illustrated in Figure 5.1. This limits the model’s generalization and
portability. To understand the effect of differences among domains on the performance of
downstream AQG tasks, following previous research [179, 180], we perform a preliminary
cross-domain study. We first train the AQG model on all domains separately and evaluate
them across different domain test sets. As shown in Table 5.1, the model achieves the
best performance on the test set from the same domain and degrades dramatically on test
sets of other domains, which poses a great challenge to the transferring task. Based on
these numbers, we argue that further research into domain adaptationmethods for AQG is
needed. There is a growing interest in applying unsupervised domain adaptation to tackle
the domain shift issue in natural language processing tasks, such as question answering
(QA) [181, 182], or neural machine translation (NMT) [179, 183, 184]. However, UDA is
under-examined in the context of question generation. Unlike the QA task that can be
modeled as a multi-label classification problem, AQG is a sequence generation problem,
where it is hard to model the confidence or quality of generations [185]. Therefore, UDA
methods for QA, like pseudo-label generation and filtering, cannot be directly extended
to the AQG area. Moreover, data augmentation UDA methods for the NMT task, such
as domain mixing [186], back-translation [187], or target sentences copying [188] are not
directly applicable to AQG.

In this chapter, we propose a two-stage unsupervised domain adaptation approach
for AQG to make use of the labeled source domain data and abundant unlabeled data.
In the first stage, we focus on unsupervised domain data selection. Although the defini-
tion of “domain” in AQG is ambiguous, including the distribution of vocabulary, stylis-
tic preferences, answer types etc, we first confirm that the learned BERT-based context
paragraph representation can be used for robust domain data clustering as shown in Fig-
ure 5.1, and use Gaussian Mixture Models (GMMs) on the learned representations to find
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Figure 5.1: 2D visualization of average-pool BERT hidden states of data from different domains using t-SNE. (a)
Datasets NQ and RACE. (b) NQ and SciQ.

Table 5.1: Impact of domain shift on AQG. Each row represents the METEOR score of the UniLM [18] model
trained on one dataset (the row: NQ, SciQ and RACE) and tested on the test sets (the column).

Dataset NQ RACE SciQ

NQ 29.64 13.76 14.32
RACE 16.59 23.91 12.37
SciQ 17.36 13.02 29.47

clusters, using methods proposed by Aharoni and Goldberg [180]. We perform domain
data selection based on the distance of data examples to cluster centroids. To mitigate the
gap of answer-type distributions, we further propose an answer-type aware data selection
method (AADS) for pseudo-in-domain data selection. The selected pseudo-in-domain data
are used to re-train the fine-tuned data to mitigate the domain shift.

In the second stage, we focus on self-training on the unlabeled target domain with
the AQG model trained in the first stage. The self-training approach is substantially hin-
dered by noisy and low-quality generated pseudo labels. We first propose a normalization
method to avoid re-enforcing poorly generated questions. We also explore using sentence
perplexity and fluency scores to model the confidence of sequence generation. We fil-
ter pseudo labels with low sequence confidence during self-training to prevent the model
from being degraded by wrong or low-quality predictions.

We conduct experiments across three domains, including the Natural Question dataset
as the source domain, RACE as one target domain of education, and SciQ as the target
domain of science. Our results show our proposed approach is effective even when the
target domain is substantially different from the source domain and outperforms several
baselines including Latent Dirichlet Allocation (LDA) [189], BERT discriminator-based
data selection [190], and unsupervised Gaussian mixture model(GMM) clustering on pre-
trained language model features [180].
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5.2 Background
In Chapter 2, we have introduced automatic question generation. In this section, we
present a brief review of UDA and then discuss how our work differs from recent related
research.

In many machine learning algorithms, samples in the training set and the test set are
assumed to be independent and identically distributed (i.i.d.). When the underlying dis-
tributions do not match, the algorithms face the domain shift problem [191, 192], i.e., the
source domain and the target domain data are not sampled from the same distribution.
This issue happens in real-world scenarios, where labeled training data are scarce, while
unlabeled data may be abundant since annotations are time-consuming and costly to ac-
quire. It then translates into performance degradation. Unsupervised domain adaptation
provides an elegant and scalable solution for mitigating this issue by learning only from
unlabeled target data. In this chapter, we focus on the data-centric methods: data selection
and self-training with pseudo-labeling [192].

There are abundant data samples in the source domain, but the importance of samples
varies for adaptation. The data selection method [193] aims to select the data samples
that are most related to the target domain. It is attracting more attention, thanks to the
abundance of data and the large pre-trained models [194]. It has been studied for several
NLP tasks, such as machine translation [180, 183], sequence classification [190, 195], and
parsing [196]. Various domain similarity metrics have been investigated for data selec-
tion, such as Jensen-Shannon divergence on term distribution [196], perplexity [197], and
cosine similarity [180]. Moreover, Aharoni and Goldberg [180] showed that sentence rep-
resentation learned by pre-trained language models, e.g., BERT [34] and Roberta [198] is
capable of clustering textual data to domains in an unsupervised way with high precision.
In our work, we follow this research and perform domain clustering and selection with
BERT.

Self-training is a bootstrapping method that has been used for domain adaptation in
multiple NLP tasks [199–202]. The main idea of self-training [203] is to predict labels
for unlabeled samples with a trained classifier as their ‘pseudo’ ground truth and use the
synthetic data for further training.

Although the AQG approaches have made great strides in improving AQG effective-
ness, they are trained and tested with data from the same dataset. When there is domain
shift between training and test data, themodel performance deteriorates considerably. Pre-
vious research, such as Liao and Koh [204], investigated transfer learning for AQG using
supervised and semi-supervised adaptation methods but ignored the unsupervised setting.
While some research [181, 205, 206] investigate the unsupervised iterative generation of
synthetic QA pairs for question answering, they are not explicitly designed for AQG and
do not demonstrate AQG performance. The most related recent work to ours is by Kul-
shreshtha et al. [207], who propose a new training protocol for UDA AQG. However, it
requires unlabeled questions in the target domain, which is not always available, and we
focus on investigating a more effective self-training method. We compare this chapter in
Section 5.7.5. In this chapter, we close the gap by performing the answer-type aware do-
main data selection and self-training for mitigating the shift in source and target domain
distributions.
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5.3 Formalization
We now formulate the problem and present our notation. The data in the source domain
with ground truth questions are denoted as 𝒟𝑠 = {(𝐶𝑠 ,Q𝑠)}, while unlabeled data in the
target domain is 𝒟𝑡 = {(𝐶 𝑡 }; here, 𝐶 is denoting the context (the passages, and answer
spans used for generating questions). The question generation task is then to generate a
sequence �̂� that maximizes the conditional probability of the prediction Pr(𝑄|C, 𝜃):

�̂� = argmax𝑄 Pr(𝑄|C, 𝜃)

= argmin𝑄

𝑇
∑
𝑡=1

− logPr(𝑄𝑡 |C, 𝜃,𝑄<𝑡 )
(5.1)

where 𝜃 represents the parameters of the AQG model, which is initially learned from
training data in the source domain. In our work, we aim to learn to adapt the 𝜃 from a
source domain 𝒟𝑆 to the target domain 𝒟𝑇 and achieve optimal performance.

5.4 Domains
5.4.1 Source Domain
We use the question answering corpus Natural Questions (NQ) [56] as our source domain.
It consists of aggregated questions issued to the Google search engine and answers an-
notated by crowd-workers from the most related Wikipedia pages. It consists of a large
amount of unique passages and covers a range of topics, which makes it a good source
domain for transferring. As there are many examples in NQ with tables as context, to use
this dataset forAQG, we select a subset that contains 89,453 samples in the training set
and 3,726 samples in the test set from the original NQ dataset.

5.4.2 Target Domains
Education
The first target domain we choose is education, for which we use the RACE [51] dataset.
RACE is a large dataset consisting of questions, answers, and associated passages used in
English exams designed for middle-school and high-school Chinese students. Questions
in RACE are designed by instructors (i.e., domain experts) for evaluating students’ reading
comprehension ability. There are three types of questions: cloze, general and specific.
Following the practice of EQG-RACE [208], we only keep the specific questions. For un-
supervised AQG, we use 18.6K data examples in the training set. The original dev and test
sets are used for evaluation.

Science
Our second target domain is science, wherewemake use of the SciQ [156] dataset. SciQ con-
sists of 13.7K crowdsourced multiple-choice science exam questions, including 11.7K ques-
tions in the training set and 1K for the dev and test set each. Each SciQ question has an
associated passage, the correct answer, and the distractors. The SciQ passages are chosen
from science study textbooks of different topics, including biology, chemistry, earth sci-
ence, and physics. For unsupervisedAQG, we utilize the support passages in the training
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Table 5.2: Overview of the source domain dataset NQ, and the selected datasets for target domains SciQ and RACE.

Features NQ SciQ RACE

Question Search Logs Crowdsourced Experts
Context Wikipedia Textbook Examinations
Train set 89,453 11,679 18,614
Test set 3,726 1,000 1036
#W/doc 106.27 78.05 318
#Sent./doc 4.43 4.84 17
#W/Sent. 26.81 16.13 17.96
#W/Q 10.20 14.31 10.8

set without questions as unlabeled data; we use the original dev and test sets for AQG
evaluation.

Table 5.2 lists the basic statistics of our three datasets. On those datasets, we can make
a thorough evaluation of the AQG model’s transfer performance and the effectiveness of
the proposed approach.

5.5 Domain Data Selection
Not all data are equally important or useful for domain adaptation. Irrelevant data samples
can add noise and affect the learned model’s performance and robustness towards cross-
domain application considerably [209]. A solution to reduce the impact of irrelevant data
is domain data selection, i.e., to retrieve the most appropriate data from the source domain
data given the target domain data. Most proposed domain data selection approaches con-
sider ranking training examples from 𝒟𝑆 according to a domain similarity measure and
select the top-𝑛 examples that are closest to 𝒟𝑇 .

We encode the context passage at the paragraph level with BERT, and perform average
pooling of the last layer hidden state of each token to create its vector representation. To
show that this is a robust representation for mapping sentences to domains in an unsu-
pervised, data-driven approach, we first visualize them with t-SNE, as shown in Figure 5.1.
We can observe the encoding vector representation with BERT indeed can cluster data
examples to domains. Following the practice of Aharoni and Goldberg [180], we then per-
form unsupervised clustering by fitting Gaussian Mixture Models (GMMs) to the vector
context representations with 𝑘 predefined clusters. We assign each cluster the domain
class by measuring its purity (proportion of examples belonging to each domain). We
use the Euclidean distance [210] of each example to cluster center as the measure of do-
main distance. Figure 5.2 shows the distribution of NQ dataset examples’ distance to NQ’s,
RACE’s and SciQ’s domain center, respectively. We sort source data examples based on
their distance to the target domain center and select data examples with the most domain
similarity as the pseudo-in-domain data.

Table 5.3 shows the unsupervised domain clustering results. We compare the proposed
methods with Latent Dirichlet Allocation-based (LDA) clustering [189]. We also compare
different ways of creating paragraph vector representations, including using BERT [CLS]
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Figure 5.2: Distribution of the distance between each data example to domain cluster center. (a) NQ and RACE. (b)
NQ and SciQ.

Table 5.3: The performance of different unsupervised domain clustering methods on the RACE and SciQ datasets.

RACE SciQ
Method Acc F1 Rc Acc F1 Rc
LDA 0.79 0.76 0.72 0.69 0.61 0.55
KM𝐶𝐿𝑆 0.37 0.35 0.98 0.33 0.25 0.97
KM𝐴𝑙𝑙 0.94 0.85 0.99 0.88 0.63 0.89
KM𝐿𝑎𝑠𝑡 0.97 0.91 0.97 0.91 0.72 0.99
GMM𝐶𝐿𝑆 0.42 0.36 0.97 0.37 0.26 0.94
GMM𝐴𝑙𝑙 0.96 0.90 0.95 0.88 0.64 0.89
GMM𝐿𝑎𝑠𝑡 0.98 0.95 0.96 0.91 0.72 0.99

token encoding (𝐶𝐿𝑆 ), average pooling of all BERT layer hidden states (𝐴𝑙𝑙 ), and average
pooling of the last hidden states (𝐿𝑎𝑠𝑡 ). Besides GMM clustering methods, we also compare
the GMM method with K-Means (KM). To accelerate the clustering, we perform PCA over
the paragraph representation first. Our results show the GMM method with the pooling
average of the last BERT hidden states to outperform the other methods.

5.5.1 Answer-Type Aware Data Selection
The question type distributions vary a lot for different application domains, as shown in
Figure 5.3a. For example, in NQ, the ‘who’ questions account for over 35% of all questions,
but in SciQ, 73.6% of questions have the ‘what’ type. Traditional data selection methods
are based only on the similarity of context passages, which may suffer from unbalanced
target label sampling. As there are no questions available in the target domain, it is a
challenge to perform data selection according to the distribution of target question types.
We first investigate the correlation between the answer types and question types. The
question types are identified by the interrogative ‘w’-word, such as ‘who’, ‘what’, etc. We
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Figure 5.3: (a) The distributions of question types of the Natural Questions (NQ) dataset, the RACE dataset, and
the SciQ dataset. (b) The correlation between answer types (including named entity types like time, location,
numeric, and person and POS taggers like noun, verb, adjective, and clause and question types.

identify the answer types such as ‘time’, ‘location’, etc. using the spacy¹ NER and part-of-
speech (POS) tagger. The correlation matrix (expressed in Pearson correlation coefficient)
is shown in Figure 5.3b. We find question types and answer types are strongly correlated
to each other. For example, the correlation coefficient between ‘time’ and ‘when’ is 0.67,
and between ‘person’ and ‘who’ is 0.63. Thus, we propose a heuristic answer-type aware
data selection strategy for domain data selection from the source domain with a similar
answer type distribution in order to mitigate the label divergence. Specifically, we first
group the data by answer types, and then conduct data selection on each group.

5.6 Self-Training
When training the AQG model with pseudo-labels, it is natural to put more emphasis
on the labels that the model is more confident about. An intuitive solution is to weigh
each pseudo-token according to its estimated probability in order to avoid re-enforcing
poor predictions. Thus, we propose the following normalized training objective for self-
training:

�̂� = argmin𝑄

𝑇
∑
𝑡=1

− log𝛼𝑡 Pr(𝑄′
𝑡 |C, 𝜃,𝑄

′
<𝑡 ) (5.2)

where 𝑄′ is the pseudo-label, and 𝛼𝑡 is the predicted probability of the 𝑡-th word 𝑄′
𝑡 , and

𝑇 is the length of the pseudo-label.
We apply the AQG model to generate questions on unlabeled target-domain data,

which are then used as ‘pseudo’ gold labels for further training. The self-training approach
is substantially hindered by noisy, low-quality labels. How to deal with noisy pseudo la-

¹https://spacy.io/

https://spacy.io/
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bels is crucial to the final UDA effectiveness. Classical pseudo label generation methods
[211–213] filter generated labels by their ‘confidence’, i.e., the predicted probability of the
label in those classification tasks. How to represent the confidence of sequence gener-
ation in pseudo-labeling is insufficiently explored. Traditionally, confidence estimation
has been defined as a task of assessing the quality of the whole sequence of words in the
target sentence. Therefore, we propose a question quality guided pseudo labeling method
to address this problem, with two confidence metrics: (i) the sentence perplexity and (ii)
the BERT-based fluency score.

Sentence Perplexity
The first metric is the perplexity of the generated questions. The generation with higher
confidence should have lower perplexity. Here, perplexity (PPL) is defined as follows:

PPL(𝑄) = 2−
1
𝑇 log∏𝑇

1 Pr(𝑄𝑡 |𝑄<𝑡 ) (5.3)

BERT-based Fluency Score
For our second metric, we use fluency as the question quality metric, which indicates
whether the generation follows grammar rules and correct logic. The perplexity of a
sentence under a well-trained language model usually serves as a good indicator of its
fluency [115]. We use a fine-tuned BERT language model as the evaluator. The fluency
metric 𝑅𝑓 𝑙𝑢𝑒𝑛𝑐𝑦 for question 𝑄 is calculated as follows:

Rfluency(𝑄) = exp (− 1
𝑇

𝑇
∑
𝑡=1

logBERT(𝑄𝑡 |𝑄<𝑡 )). (5.4)

During the unsupervised self-training, after each epoch, we perform beam search with the
trained model, and the generated questions are ranked according to their fluency score.
Only questions with confidence metrics better than the threshold 𝜙 and 𝑃𝑃𝐿 are selected
as pseudo-labels. If one data sample got selected in the last epoch, but its generated ques-
tion’s confidence metric in the current epoch is not higher than before, it is removed. In
this way, only questions of high quality that improve over time are chosen for training.
Algorithm 2 demonstrates the pseudo-code of the self-training algorithm.
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Algorithm 2: Self-training for AQG
Input :Target domain data: 𝒟𝑡 = {𝐶 𝑡 }. AQG model ℳ𝑄𝐺 with parameters 𝜃
repeat

for 𝐶 𝑡 ∈ 𝒟𝑡 do
[𝑄′

𝑡 ,𝛼𝑡 ]𝑇1 =ℳ𝑄𝐺(𝐶)
if Use Fluency Score then

f = exp (− 1
𝑇 ∑𝑇

𝑡=1 log𝐵𝐸𝑅𝑇(𝑄
′
𝑡 |𝑄

′
<𝑡 ))

else if Use PPL then

f = 2−
1
𝑇 log∏𝑇

1 Pr(𝑄𝑡 |𝑄<𝑡 )
if 𝑓 > 𝜙 then

ℒ =ℒ +∑𝑇
𝑡=1− log𝛼𝑡 Pr(𝑄

′
𝑡 |C, 𝜃,𝑄

′
<𝑡 )

end
end
𝜃 ← Adam(∇𝜃ℒ).

until Convergence or Reach Maximum Epochs;

5.7 Experiments
In this section, we describe the model and the training regime in more detail.

5.7.1 Experimental Settings
QG Model
We use the state-of-the-art pre-trained transformer-based sequence-to-sequence natural
language understanding and generatingmodelUniLM [18] for question generation. Specif-
ically, we choose the uncased pre-trained unilm1.2-base-uncased model for fine-tuning.
It has 12 transformer layers and is jointly pre-trained on large amounts of text, opti-
mized for bidirectional, unidirectional, and sequence-to-sequence language model objec-
tives. We use the s2s-ft package² for fine-tuning. To fine-tune our model, the input
context passage, the answer, and the generated question are combined together into a se-
quence: “[CLS] context passage[EOS] answer span [EOS] question [EOS]”. Both the input
passage and answer are regarded as the first text segment, while the generated question
is the second segment in the unified LM.

Training Details
Themodel is trained on a server consisting of 4 GeForce GTX 1080 GPUs with a batch size
of 32, amask probability of 0.8, and a label smoothing rate of 0.1. Themax_source_seq_length
is set to 464; themax_target_seq_length is 48. We first fine-tune UniLMwith the NQ dataset
for ten epochs. We use the Adam optimizer with 𝜖 = 1𝑒 −8, learning rate is 1𝑒 −4 with 500
warmup steps.

²https://github.com/microsoft/unilm/tree/master/s2s-ft

https://github.com/microsoft/unilm/tree/master/s2s-ft
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Table 5.5: In-domain test results of the AQG model (fine-tuned and tested on the same dataset).

Dataset B-1 B-4 MT RG

NQ 60.05 30.31 29.64 59.26
SciQ 46.99 33.22 29.47 42.73
RACE 37.86 17.90 23.91 37.56

Unsupervised Domain Data Clustering
We use 4,500 examples randomly selected from NQ, SciQ, and RACE for unsupervised data
clustering. We set the number of clusters as 2 since we intend to investigate the separabil-
ity between the source domain and the target domain.

Evaluation Metrics
We compare the model performance along three automatic evaluationmetrics: BLEU [66],
which is computed with the geometric average of the modified n-gram precision and the
brevity penalty; Meteor [68], which compares the generation with the gold question in
terms of exact, stem, synonym, and paraphrase matches; and Rouge-L [67], which mea-
sures the shared longest common sub-sequence. We calculate these metrics with the pack-
age released by Du et al. [13]. We also conduct a human evaluation.As a sanity check and
to evaluate the AQGmodel’s ability to generate questions based on these datasets, we first
conduct in-domain tests on these three datasets separately, i.e., we fine-tune and test the
model on the training/test set from the same dataset. As shown in Table 5.5, we achieve
results comparable with state-of-art for the NQ, RACE and SciQ datasets.

5.7.2 Experiments on Data Selection
In this experiment, we compare the proposed answer-type aware data selection with sev-
eral baselines. We train the AQG model with the selected data and evaluate the data se-
lection method by comparing its performance. The first baseline is random data selection
(random). With this baseline, we randomly sample 1,000 samples from NQ. The second
baseline is LDA-based clustering [189]. We use the gensim [214] LDA implementation for
this baseline. The third method (BERT-DDS) is proposed byMa et al. [190], where a BERT-
based domain discriminator is used for data selection. The discriminator is first trained
with randomly sampled data from the datasets. The baseline model achieved 99.85% for
RACE and 92.35% accuracy for the SciQ dataset. The last baseline method we compare is
adopted from the unsupervised domain clustering method (GMM) proposed by Aharoni
and Goldberg [180], as described in Section 5.5. We use the BERT-base model implementa-
tion of huggingface transformers [157] to get the context passage encoding. In addition to
GMM, we also compare the K-Means method [215]. The results are presented in Table 5.4.

Impact of Domain Data Selection
Re-training with randomly selected data does not improve our model’s generalization per-
formance. All other data selection methods outperform random data selection except
BERT-DDS. One reason is that BERT-DDS training needs sampling data from different
domains; its performance relies on the sampled data and also label examples that are sim-
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Figure 5.4: Change of (a) average perplexity, and (b) standard deviation of generations along iterations.

ilar to the target domain as the source domain. Data selection with unsupervised domain
clustering with BERT context encoding outperforms other methods, which confirms its effec-
tiveness.

On the RACE dataset, answer-type aware data selection with K-Means (AA-KMeans)
andGMM (AA-GMM) outperform the same selectionmethodwithout answer-type aware-
ness. We note this result does not always hold for the SciQ dataset. One possible reason
is due to the extremely unbalanced answer type distribution in SciQ: we have to select ex-
amples with generally low domain similarities w.r.t. the source domain to create identical
answer-type distributions.

5.7.3 Experiments on Self-Training
We conduct self-training with the target-domain unlabeled data on the AQG model fine-
tuned on the NQ dataset. We first verify the effectiveness of the proposed normalized
training objective. As the results show in Table 5.4, self-training with normalization (w/o-
Filter) outperforms self-training without any confidence filtering and normalization (w/o-
Norm), which indicates its effectiveness.

Impact of Generation Confidence Guided Self-training
We explore two generation confidence metrics for self-training, the sentence perplexity
and the question fluency score. To train the BERT LM for generating fluency scores for
question quality evaluation, we combine all questions from NQ and the Quora Question
Pairs dataset³, creating a dataset consisting of 834,834 questions. The final model achieves
a perplexity of 9.27 on the evaluation set. As the results in the ST part of Table 5.4 show,
both proposed generation confidence metrics improve the performance considerably up
to 6%. This can be explained by removing low-quality and noisy data, which hinders
model training. As Figure 5.4 shows, with perplexity filtering—although the changing
curves of mean perplexity of the generated pseudo-labels in each iteration are similar—the
standard deviation drops faster and more steady. As Figure 5.5 shows, the average fluency
score improves along iterations even without fluency filtering, but with fluency filtering,

³https://www.kaggle.com/c/quora-question-pairs

https://www.kaggle.com/c/quora-question-pairs
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Figure 5.5: Change of (a) average fluency score, and (b) the percentage of generated questions whose fluency
score is higher than 𝜙 along iterations.

Table 5.6: Influence of the fluency threshold (𝜙).

𝜙 B-1 B-4 MT RG

RACE

8.5 23.83 5.12 14.65 23.06
9.5 24.20 5.11 14.74 23.66
10.5 24.23 5.06 14.68 23.29
11.5 23.93 5.10 14.46 23.09
12.5 23.78 4.55 14.41 23.05

the average fluency score improves more steadily and increases towards the threshold
value 𝜙. The proportion of questions with higher fluency scores than 𝜙 increases along
iterations. As reflected in Figure 5.5b and Table 5.6, if the threshold value is too low, fewer
noisy pseudo examples can be filtered out. If the threshold is too high, there would be
less supervision for the AQG model. Both of these settings would lead to performance
degradation.

Impact of Joining Domain Data Selection and Self-Training
We also conduct domain adaptation by joining domain data selection and self-training
(DDS+ST). As shown in Table 5.4, joining DDS and self-training without filtering does not
show performance improvement on both datasets, which implies with DDS, pseudo-labels
during self-trainingmay be noisier. With the proposed filtering with fluency score or ques-
tion perplexity, the joint method outperforms DDS and self-training. On the RACE dataset,
the answer-type aware joint method generally achieves the best performance across all
evaluation metrics.

5.7.4 Human Evaluation
In addition to the automatic evaluation results shown in Table 5.4, we also report on our
human evaluation in Table 5.7. We randomly sampled 50 generated questions from the
RACE and SciQ test sets, respectively, and asked three domain experts (both male and fe-
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Table 5.7: Human evaluation (mean and standard deviation) on RACE and SciQ datasets. Syntax and Relevance
evaluation adopt a 3-point scale. Higher is better; Answerability is boolean type (0-1).

Syntax Relevance Answerability

Method RACE

w/o-UDA 2.60 (0.66) 2.00 (0.78) 0.43 (0.49)
ST 2.78 (0.51) 2.12(0.73) 0.46 (0.50)
DDS+ST 2.81(0.47) 2.12 (0.75) 0.51 (0.50)

SciQ

w/o-UDA 2.83 (0.40) 2.40 (0.64) 0.57 (0.50)
ST 2.94 (0.26) 2.49 (0.64) 0.67 (0.47)
DDS+ST 2.92 (0.27) 2.53 (0.63) 0.67 (0.47)

Table 5.8: Unsupervised domain adaptation results on MLQuestions dataset.

Dataset B-1 B-4 MT RG

w/o-UDA 30.06 7.96 18.62 31.60
DDS 29.89 8.27 18.63 31.64
ST 32.58 9.41 19.41 34.20
DDS+ST 34.76 10.57 20.41 37.02

Net Gain 4.7↑ 2.61↑ 1.79↑ 5.42↑

male, ages ranging from 25 to 35) to rate the generated questions by the AQG model
without UDA (w/o-UDA), with self-training (ST), and self-training and domain data se-
lection(DDS+ST). The experts are also presented with the context paragraphs and the
answers, as shown in Figure 5.6. The generated questions are shown in Table 5.10 and
Table 5.11. We rate questions along three dimensions: (i) syntax, (ii) relevance, and (iii)
answerability. We evaluate the syntax correctness on a 3-point scale: score 1 for signifi-
cant syntax issues, score 2 for minor issues, and score 3 for the question is syntactically
correct. We evaluate the relevance, i.e., whether the question is relevant to the context
and the answer on a 3-point scale: score 1 for irrelevance, score 2 for partial relevance,
and score three for meaning entirely relevant. In contrast, we regard the answerability
as a boolean-type value, indicating whether the question can be answered given the con-
text and answer. As the results show, all AQG with UDA methods outperform the AQG
model without domain adaptation. On the RACE dataset, the proposed unsupervised do-
main adaptation for AQGwith data selection and self-training (DDS+ST) achieves the best
performance along with all metrics; although the performance of UDA with self-training
only outperforms DDS+ST slightly in terms of syntax and answerability, DDS+ST outper-
forms self-training.
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Figure 5.6: The interface for human annotation. We display the context and the ground truth answer to the
annotators. Questions generated by different methods are displayed in a random order.

5.7.5 Experiments on MLQuestions
In addition to experiments on RACE and SciQ datasets, we also conduct unsupervised do-
main adaptation experiments on MLQuestions [207].

We first conduct unsupervised domain data selectionwith𝐺𝑀𝑀𝑙𝑎𝑠𝑡 method and present
the confusion matrix in Figure 5.7 and select 1,000 data examples from NQ that are closest
to MLQuestions clustering center. We set the number of clusters as two because we want
to directly investigate the unsupervised separability between NQ and MLQuestions. We
use the provided development set and the test set of MLQuestions. Then, we perform do-
main adaptation for AQG and show results in Table 5.5. Compared with the self-training
method explored in [207], the proposedmethod in this chapter achievesmore performance
increase, e.g., DDS+ST method achieved 5.42 and 4.7 net gain in Rouge-L and BLEU-1
score respectively, compared with 0.58 and 0.80 net gain with self-training in [207]. In this
chapter, we focus on the self-training method, so we consider conducting open-domain
retrieval-based methods like Back-Training in future research.
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Figure 5.7: Confusion matrix for unsupervised domain data clustering results on MLQuestions and NQ datasets.
We use 3,000 data examples from NQ and MLQuestions each.

5.8 Case Study
5.8.1 Examples Selected Data
Table 5.9 illustrates several data examples of selected from NQ dataset that are most sim-
ilar to education domain, i.e. the RACE dataset, and to science domain, i.e. SciQ dataset
using the GMM𝑙𝑎𝑠𝑡 BERT based domain data selection method. The RACE dataset is a large
dataset of English exams for middle-school and high-school Chinese students. Its vocab-
ulary is middle-school and high-school level. Many passages in it are story-style. As
NQ→RACE data examples show, the selected data from NQ are close to SciQ in terms of both
the vocabulary and text style. Meanwhile, SciQ passages are chosen from science study
textbooks of different topics, including biology, chemistry, earth science, and physics. The
examples of selected data (NQ→RACE) can be categorized into the biology domain, which
includes a lot of the biology terms, elucidating biological processes. These examples show
the effectiveness of the data selection method.
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Table 5.9: Examples of selected data from NQ dataset that are most similar to RACE dataset (NQ→RACE) and SciQ
dataset (NQ→RACE).

NQ → RACE NQ → SciQ
To expand the number of women smokers Hill
decided to hire Edward Bernays, who today is
known as the father of public relations, to help
him recruit women smokers. Bernays decided
to attempt to eliminate the social taboo against
women smoking in public. …The targeting of
women in tobacco advertising led to higher rates
of smoking among women. In 1923 women only
purchased 5% of cigarettes sold, in 1929 that per-
centage increased to 12%, in 1935 to 18.1%, peak-
ing in 1965 at 33.3%, and remaining at this level
until 1977.

The lysosomes also act as the waste disposal sys-
tem of the cell by digesting unwanted materials
in the cytoplasm, both from outside the cell and
obsolete components inside the cell. Material
from outside the cell is taken - up through en-
docytosis, while material from the inside of the
cell is digested through autophagy. Their sizes
can be very different. They were discovered and
named by Belgian biologist Christian de Duve,
who eventually received the Nobel Prize in Phys-
iology or Medicine in 1974.

A man named Bailey intends to take his family
from Georgia to Florida for a summer vacation ,
but his mother , (referred to as “the grandmother”
in the story) wants him to drive to East Tennessee
, where the grandmother has friends (“connec-
tions”). She argues that his children, JohnWesley
and June Star, have never been to East Tennessee,
and she shows him a news article in the Atlanta
Journal Constitution …He and the grandmother
agree that things were much better in the past
and that the world at present is degenerate; she
concurs with Sammy’s remark that “a good man
is hard to find.”

Decomposition is the process by which organic
substances are broken down into simpler matter.
The process is a part of nutrient cycle and is es-
sential for recycling the finite matter that occu-
pies physical space in the biosphere. Bodies of
living organisms begin to decompose shortly af-
ter death. Animals, such as worms, also help de-
compose the organic materials. Organisms that
do this are known as decomposers. Although no
two organisms decompose in the same way, they
all undergo the same sequential stages of decom-
position. The science which studies decomposi-
tion is generally referred to as taphonomy from
the Greek word taphos, meaning tomb.

The next day, just before Lincoln and Sara board
a boat to escape to the Dominican Republic, Su-
cre gives Sara the $100,000 they stole from the
General, apologizing for not being able to wire
the money to them the night before as planned.
Mahone gives Sara the paper Michael asked him
to deliver, …, but don’t ever, say. He then says
what he wants to say is that he loves them both,
very much. He tells them to make sure his child
is told every day how much he is loved and how
lucky he is to be free. The video, and the entire
series

An elater is a cell (or structure attached to a cell)
that is hygroscopic, and therefore will change
shape in response to changes in moisture in the
environment. Elaters come in a variety of forms,
but are always associated with plant spores. In
many plants that do not have seeds, they func-
tion in dispersing the spores to a new location.
Mosses do not have elaters, but peristome which
also change shape with changes in humidity or
moisture to allow for a gradual release of spores
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Table 5.10: Examples of generated questions on the RACE dataset with different methods.

RACE RACE

Context

Jenny was a pretty five-year-old girl.
One day when she and her mother
were checking out at the grocery store,
Jenny saw a plastic pearl necklace
priced at $2.50. Her mother bought the
necklace for her on condition that she
had to do some homework to pay it off.
Jenny agreed. She worked very hard
every day, and soon Jenny paid off the
necklace. Jenny loved it so much that
she wore it everywhere except when
she was in the shower. Her mother
had told her it would turn her neck
green! Jenny had a very loving daddy.
When Jenny went to bed, he would
read Jenny her favorite story. One
night when he finished the story, he
said, ”Jenny, could you give me your
necklace?” ”Oh! Daddy, not my neck-
lace!” Jenny said.” But you can have
Rosy, my favorite doll. Remember
her?

Lawmakers in the United States have
expanded an investigation into the
use of location-tracking systems on
mobile devices. The action follows
recent reports about the storing of
information on the Apple iPhone.
Some people consider location track-
ing to be a threat to personal privacy
and security. Allan Friedman, the
research director, says, ”All wireless
companies do some location tracking
as part of their networks. This infor-
mation is usually stored by the com-
panies, not the devices, and there are
laws to protect it. Law enforcement
agencies, …There’s the idea that be-
cause it’s on my phone and on my
computer, rogue applications that I
pay for or that I’m tricked into down-
loading may be able to access this
data and somehow misuse it.” Apple
says it is ”not tracking the location
of your iPhone”. It is simply keep-
ing a database of Wi-Fi hotspots and
cell phone towers near the user’s lo-
cation.

Answer She had to help her mother do
some housework.

Because it is thought to threaten
users’ privacy.

w/o-UDA what’s the meaning of the name
jenny?

why is there a tracking system onmy
phone?

ST what is the name of jenny’s necklace? why is there a location tracking sys-
tem on apple?

DDS+ST how did jenny get her necklace in
the movie?

why do we not use location track-
ing on iphone?
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Table 5.11: Examples of generated questions on the SciQ dataset with different methods.

SciQ SciQ

Context

Gamma rays are produced when ra-
dioactive elements decay. Radioactive
elements are elements with unstable
nuclei. To become more stable, the
nuclei undergo radioactive decay. In
this process, the nuclei give off energy
and may also emit charged particles of
matter. Types of radioactive decay in-
clude alpha, beta, and gamma decay.
In alpha and beta decay, both particles
and energy are emitted. In gamma de-
cay, only energy, in the form of gamma
rays, is emitted.

Not all wetlands are alike, as you can
see below (Figure below). Wetlands
vary in how wet they are and how
much of the year they are soaked.
Wetlands also vary in the kinds of
plants that live in them. This de-
pends mostly on the climate where
the wetland is found. Types of wet-
lands include marshes, swamps, and
bogs.

Answer radioactive wetland

w/o-UDA where do gamma rays come from
when they decay?

what do you call a place that is cov-
ered with water?

ST what type of element is the source of
gamma rays?

what do you call marshes that are
wet?

DDS+ST what type of elements give off
gamma rays?

what are marshes and bogs
called?
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5.9 Conclusion
We proposed an unsupervised domain adaptation approach for question generation. Our
approach includes an answer-type aware unsupervised domain data selection method
and a sequence generation confidence-guided self-training algorithm. We conduct exper-
iments on three domains. We use the Natural Questions dataset as the labeled source
domain, RACE as the target education domain, and SciQ as the target science domain. Our
results suggest our approach is effective for this application setting. We find that it signif-
icantly improves domain adaptation performance of our AQG model.
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6
On the Effects of Automatically

Generated Adjunct Questions for
Search as Learning

In this chapter, we focus on the impacts of automatically generated questions on learners
SAL scenario. Actively engaging learners with learning materials has been considered nec-
essary, especially in the SAL setting. One active reading strategy relies on asking so-called
adjunct questions, i.e., manually curated questions geared towards essential concepts of the
target material. However, manual question creation is impractical, given the vast online con-
tent. Recent research has explored the effects of AQG on prompting human learning. These
studies have primarily focused on user studies in controlled online reading scenarios with lim-
ited documents. However, the impacts of adjunct questions on learning in the SAL setting,
which involves learning through web searching, are not yet well understood. This chapter
addresses this gap by conducting a user study with automatically generated adjunct ques-
tions integrated into the reading interface built on top of a search system. We conduct a
between-subjects user study (𝑁 = 144) to investigate the incorporation of automatically gen-
erated adjunct questions on participants’ learning by employing three different generation
strategies as well as a control condition: (i) synthesis questions; (ii) factoid questions target-
ing random text spans; and (iii) factoid questions targeting terms and phrases relevant to the
information need at hand.

This chapter is based on the following conference paper:  Peide Zhu, Arthur Câmara, Nirmal Roy, DavidMaxwell,
and Claudia Hauff. 2024. “On the Effects of Automatically Generated Adjunct Questions for Search as Learning”, to
appear@CHIIR’24.
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6.1 Introduction
Searching and reading online materials has become a crucial way of learning. However,
it is generally considered inefficient to learn by passively browsing and reading docu-
ments [216, 217]. In contrast, actively engaging learners during this process with retrieval
practice methods like adjunct questions— i.e., asking questions about specific parts of a doc-
ument to draw attention to the reading materials [217] and retrieving information from
one’s memory [218, 219]—leads to better learning outcomes. Research on the effects of
asking such questions has been extensively studied and generally been found to have a
positive effect on learning. However, these studies have been conducted in controlled
classroom settings [3, 220, 221] and with manually curated questions.

Considering the amount of content available on the web, this is not a feasible approach
in the Search as Learning (SAL) setting, where learning behaviour commonly involves
searching over open-domain resources, targeting complex concepts instead of fact-finding,
and learning by reading and integrating knowledge across documents [93, 222–224].

With the ever-improving generation quality of PLM, some works have analyzed the
effectiveness and potential benefits of Automatic Question Generation (AQG) on human
learning. For example, Syed et al. [80], Van Campenhout et al. [84] demonstrated that
automatically generated questions performed comparably to human-authored questions.
Moreover, someworks [80, 83] highlighted the potential importance of incorporating auto-
matically generated adjunct questions. Notably, Syed et al. [80] found that in the context of
reading comprehension, learners who received automatically generated adjunct questions
spent longer reading time and paid more attention to reading material than those without
such questions. Additionally, the impact of adjunct questions on learning outcomes var-
ied depending on learners’ prior knowledge. Learners with low prior knowledge benefited
from adjunct questions significantly in terms of long-term retention, in contrast to other
conditions and short-term retention.

Despite these insights, two major limitations remain. First of all, as a crucial way of
learning, the searching component is absent from these studies [80, 83, 84] which focused
on the controlled online reading scenario with a relatively small number (around 100)
of questions. Secondly, these studies evaluate learning outcomes with factoid questions
instead of higher-level skills like writing. Learning through web search engines signifi-
cantly differs from the controlled reading comprehension settings—learners choose their
own queries, have access to a much larger body of documents, and self-select documents
to view—the effect of including adjunct questions in the SAL setting is not yet well under-
stood.

In our study, we endeavor to address this gap by investigating the effects and fac-
tors of actively involving learners with adjunct questions integrated within the reading
interface. We aim to assess the impact of this approach on both learners’ behavior and
learning outcomes in the context of learning-oriented search tasks. We implemented a
search system that supports adjunct questions with a corresponding UI widget on top of
the open-source SearchX system [225] as shown in Figure 6.1. We conducted a between-
subjects user study with 𝑁 = 144 participants, where participants were assigned to one of
the following four variants: (i) Qnone, the control condition without adjunct questions; (ii)
Qsynthesis, synthesis questions; (iii) Qrandom, factoid questions targeting random text spans;
and (iv) Qterm, factoid questions targeting terms and phrases relevant to the information
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Figure 6.1: Screenshot of the system interface used by participants for searching and learning on the assigned
topic (e.g., radiocarbon dating considerations). The circled numbers correspond to the narrative of Section 6.3.1.

need at hand. Participants’ learning outcomes were measured by two tasks: a recall-based
vocabulary learning task [223, 226, 227], and an essay writing task [223, 228, 229] that in-
volved higher cognitive complexity. With this user study, we aim to answer the following
research questions in the SAL setting:

RQ1 To what extent do automatically generated adjunct questions impact learners’ behaviour
and learning outcomes?

RQ2 How do the characteristics of adjunct questions, including the question types—factoid
questions vs. synthesis questions¹—and the selection of questioning targets and the par-
ticipants’ prior knowledge affect the participants’ learning?

Overall, we find (i) compared to the control condition, adjunct questions have a significant
influence on learners’ behaviour, such as more fine-grained reading evidenced by more
reading time and scrolls, as well as fewer queries in the search session; (ii) question types
(factoid v.s. synthesis) have significant influence on participants’ reading behaviour, and
with synthesis questions, participants achieve better learning outcomes on the task that
requires higher cognitive complexity than those with factoid questions regarding random
text spans; (iii) the target spans of adjunct questions (random vs. focused) have a signif-
icant influence on learning outcomes. Qterm participants have 76.9% higher vocabulary
knowledge gains than Qrandom; (iv) Participants’ prior knowledge levels affect adjunct

¹Factoid questions require only the extraction of basic facts. Synthesis questions require higher-level cognitive
skills like integrating, evaluating, and analyzing different facts.
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questions’ effects on their learning outcomes and reactions to different AQG strategies.
Participants with higher prior-knowledge, in general, achieve better learning gains. These
findings provide empirical evidence that to incorporate adjunct questions into a learning-
oriented searching system, it is essential to identify the learners’ learning target and their
prior-knowledge and then generate different types of questions accordingly.

6.2 Background
6.2.1 Search as Learning
Unlike traditional ad-hoc search systems that generally consider a user’s information need
as atomic (i.e., a single information need is covered by a single user query) [93, 230, 231], a
search system designed for SAL must be aware of the nature of users’ tasks [222, 224, 232,
233], as thesemay encompassmultiple rounds of interactionwith the system, with varying
degrees of complexity. Over the past decade, SAL has attracted considerable attention, and
many different approaches which touch different parts of the search system to help users
learn while searching have been proposed.

Backend adaptations.
Search systems are naturally complex, withmultiple components working together to help
the user search for relevant documents. While many prior SAL works have focused on
front-end adaptations (as we will discuss below), studies investigating how changes made
directly to the retrieval pipeline impact learner’s behaviour are still rare. For example,
Syed and Collins-Thompson [234] designed a retrieval algorithm to improve the ranking
of documents with a higher density of vocabulary terms related to the topic the learner
is interested in. Collins-Thompson et al. [235] demonstrated how tweaking the ranking
system according to the learner’s reading level can also be beneficial. Finally, Athukorala
et al. [236] showed that a reinforcement-learning-based ranking algorithm can improve
the learner’s experience by balancing the diversity or depth of the search results according
to the learner’s intention.

Frontend adaptations.
Most prior SAL works have focused on aiding users in writing queries and organizing
thoughts and content. Learning-oriented adaptations to the Search Engine Results Page
(SERP), such as displaying an outline of the topic the learner is interested in [223], pro-
viding entity cards [237], or including conversational interfaces [238] have been shown to
help users with their knowledge acquisition process—at least to some extent. Approaches
that help formulate queries have also been studied since learners’ querying behaviour
plays a vital role in their learning process [239, 240]. For instance, inspired by [241], Câ-
mara et al. [223] displayed a progress bar that estimates how much topic exploration has
been done, and this considerably influenced learners’ querying behaviour. Another type
of change made to the UI is related to how learners organize their materials and thoughts,
as explored in [227] where learners were prompted to highlight parts of the text they may
find relevant and take notes directly on the SERP. Liu et al. [242] asked learners to build
mind-maps. They considered search as a method of keeping track and organizing complex
information, leading to a measurable change in user behaviour and knowledge gains.
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Active learning.
Some of the strategies mentioned above are examples of educational active learning tech-
niques. Instead of passively reading, the learner actively engages with the learning ma-
terial. These strategies have consistently been shown to considerably improve learner’s
knowledge retention [243–245]. A popular method of implementing active learning is
asking learners questions about the material they come across during the search process.
These questions are designed to guide learners’ attention to specific portions of the mate-
rial (ideally those covering the key ideas) and, therefore, help learners to understand and
remember the material better [216, 246]. The effects of using questions to foster learning
(i.e., adjunct question effects) are well known in the classroom setting [3, 220, 221, 247].
Importantly, these questions are typically created manually by topical and educational ex-
perts. This is an expensive and slow process and not feasible to do at scale, considering
the quantity and diversity of online learning materials. In contrast, automatic question
generation is scalable.

6.2.2 Automatic Question Generation
As a critical Natural Language Processing (NLP) task, AQG has been heavily researched
over the past decades. Various template-based [11, 21, 24] and neural network-based [13,
18, 248] methods have been proposed. Like other NLP tasks, with the advance of PLM,
AQG approaches have jumped considerably in quality as measured by automatic metrics
and human evaluations [34, 36, 249–252]. Some works have investigated the application
of AQG to education [9, 15, 19, 54, 253–257]. These prior works though, focus mainly on
how to apply AQG methods to educational materials and how to generate various types
of questions for educational purposes. The effects of automatically generated questions on
human learning still need to be well investigated.

Several works [80–83] have recently begun to study this question. In particular, Syed
et al. [80] systematically analyzed the effectiveness of AQG on human learning compared
to manually curated questions, as well as other impact factors such as learners’ prior
knowledge, the type of adjunct questions (factoid or synthesis), and the content that ques-
tions focused on. Like Syed et al. [80], Steuer et al. [83] studied automatically generated ad-
junct questions’ effects on non-native speakers’ English vocabulary learning. The effects
were evaluated by the self-report of prior-knowledge on the topic and the correctness of
post-test questions. Van Campenhout et al. [84] used automatically generated questions in
a university course as formative practice and evaluated the questions’ effects by measur-
ing the students’ behaviour such as engagement in practice. As mentioned, these works
were conducted in a controlled reading comprehension scenario by showing participants one
Wikipedia article or a fixed list of documents and corresponding questions (around 100).

Finally, we point out that two types of questions were considered: factoid questions,
i.e., questions that ask the knowledge of specific facts from the document which primarily
address the Remembering level of cognitive complexity in Bloom’s taxonomy [8], and the
synthesis questions which require higher levels of cognitive complexity like Analyze and
Evaluate. In Syed et al. [80], while the factoid questions were automatically generated, the
synthesis questions were not. This chapter extends prior work in two directions: (i) we
instantiate the concept of adjunct questions in an actual search system, and (ii) we auto-
matically generate different types of questions and investigate their effect on behaviour
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& learning.

6.3 Adjunct Questions in SearchX
6.3.1 SearchX Interface
To carry out this study, inspired by [80, 223, 227], we used SearchX [225], a modular, open-
source framework that supports IR experiments. SearchX contains a number of modern
search engine front-end features and widgets akin to a contemporary web search engine’s
SERP. Moreover, combined with LogUI [258], it offers fine-grained search logs (hovers,
clicks, scrolls, etc.). Figure 6.1 shows the interface we implemented for our experiments.
1 represents the query box (without query auto-completion). 2 denotes the timer to
help participants count the task time. After the search session lasts at least 20 minutes,
the To Final Test button becomes available and leads the participant to the post-test when
clicked. The task description is shown in 3 , where the assigned topic is bold-faced. 4
represents the search results page. We show 10 results per page and up to 5 pages, which
we consider sufficient search depth as participants only sometimes go beyond the second
page [233, 259]. The search results are provided by the BM25 ranker of ElasticSearch².
Notably, we show a short snippet created by extracting document sentences containing
content words of the query in order to provide participants with essential information.
Once the participant clicks on a link, a scrollable document viewer 5 pops up and displays
the document. At the bottom of the viewer is the AQG widget 6 which is invisible for
participants in the control condition (Qnone). In the other three conditions, it shows one
automatically generated question about the document. A participant can only proceed to
another document or the SERP if they provide some answer to the question. The answer
correctness does not affect participants’ payment and is only used for further analysis.

6.3.2 Automatic Adjunct Question Generation
Dataset
Realistic learning by searching involves searching, reading, and gathering knowledge over
large-scale open-domain documents. While we could have opted for a web search API as
a retrieval backend, this was not feasible as we could not generate questions at scale from
any website within a few milliseconds. Instead, we selected a corpus and pre-computed
the questions of each type. Specifically, we used the benchmarkY1train set from TREC-
CAR v1.5 dataset [260]. This dataset contains a set of structured Wikipedia topics with
headings designed for retrieving answers for complex information needs and also used
for SAL research [223, 227]. Moreover, we used topics and vocabulary terms (phrases
representing the topic) created by [223] from the same subset for the following learning
tasks. Additionally, we extracted 136 topics in the Wikipedia dumps that contained the
vocabulary terms to ensure participants were posed with plenty of documents containing
the target vocabulary terms. In total, we used 253 Wikipedia topics. As each topic corre-
sponds to one long Wikipedia article that requires considerable reading time, as shown
in [80], we split articles into 1,627 documents based on their heading structures to engage
participants with more searching and reading behaviour.

²https://www.elastic.co/
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Table 6.1: An example of automatically generated questions from a given document. Shown here are two factoid
questions (𝑄random, 𝑄term) and a synthesis question (𝑄synthesis). Highlighted in cyan and green are answers
for creating the corresponding factoid questions. Extracted word spans that are filtered out are highlighted in
violet .

Example 2 Irritable bowel syndrome

Document

Approximately 10 percent of IBS cases are triggered by an acute gastroenteri-
tis infection. Genetic defects relating to the innate immune system and epithe-
lial barrier as well as high stress and anxiety levels appear from evidence to
increase the risk of developing post-infectious IBS. Post-infectious IBS usually
manifests itself as the diarrhea predominant subtype. Evidence has demon-
strated that the release of high levels of proinflammatory cytokines during
acute enteric infection causes increased gut permeability leading to translo-
cation of the commensal bacteria across the epithelial barrier resulting in
significant damage to local tissues which is likely to result in chronic gut ab-
normalities in sensitive individuals. However, increased gut permeability is
strongly associated with IBS regardless of whether IBS was initiated by an in-
fection or not.

Qrandom
What percentage of ibs cases are triggered by an acute
gastroenteritis infection? 10 percent

Qterm
What part of the gut is affected by irritable bowel syn-
drome? epithelial barrier

Qsynthesis
Why do some people develop IBS more often than oth-
ers?

We studied two categories of questions and employed separate question generators
for each: (i) factoid (or low-level) questions and (ii) synthesis (or high-level) questions.
As illustrated in Table 6.1, factoid questions seek text spans that pertain to specific facts,
such as concepts and numbers, which can be directly retrieved from the text. In contrast,
synthesis questions necessitate comprehensive efforts, such as integrating and analyzing
document information, surpassing the mere extraction of text spans.

Factoid Question Generation
We used the PAQ [250] framework for generating factoid questions. First, we utilized two
extraction methods provided by PAQ to identify text spans within a document that are
worth questioning. One method involved extracting all named entities as potential an-
swers, as named entities such as names, numbers, and locations often convey significant
information. The other method involved a trained neural model as the answer span ex-
tractor called Span2DAnswerExtractor³. In addition, we also included all vocabulary terms
as question-worthy text spans as experts chose them as the most representative terms for
each topic. We opted for the qgen_multi_base⁴, a BART [36]-based model fine-tuned on
various QA datasets as the factoid question generator. It took the document and extracted
text spans as inputs, resulting in 65,237 questions. The generated questions underwent

³https://github.com/facebookresearch/PAQ#answer-extraction
⁴https://github.com/facebookresearch/PAQ

https://github.com/facebookresearch/PAQ#answer-extraction
https://github.com/facebookresearch/PAQ
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a filtering process concerning question length and consistency. First, questions shorter
than 6 words were disregarded, resulting in the removal of 392 questions. Subsequently,
the remaining questions were filtered using PAQ’s QA-Pair filtering tool, which assessed
the consistency between the answer and the generated question. This step led to the fur-
ther filtering of 37,016 questions. If multiple valid QA pairs existed for a single document,
we selected the pair with the highest answer score for that document. We then separated
all factoid questions into two groups: questions regarding the vocabulary terms (Qterm,
750) and other text spans (Qrandom, 1,627). Although answers for Qrandom tend to be infor-
mative and important, they were extracted regardless of the participants’ learning goals.
Therefore they are independent or random from the learning purpose.

Synthesis Question Generation
Synthesis questions typically require more than text spans from the documents to pro-
vide comprehensive answers. PAQ is primarily trained to cater to factoid questions, so
it may not be well-suited for generating synthesis questions. To address this limitation,
we opted to fine-tune the BART model [36] using the ELI5 dataset [53] which comprises
complex, diverse questions that require long-form multi-sentence answers, e.g., Why are
flutes classified as woodwinds when most of them are made out of metal?, aligning with the
requirements of synthesis question generation. We generated one synthesis question for
each document paragraph, resulting in 5,393 synthesis questions. Among the questions of
the same document, we selected the longest one as the synthesis question for the study.
Table 6.1 shows examples of our generated factoid and synthesis questions. As shown in
these examples, facts to answer the Qrandom and Qterm questions can be directly found in
the document as text spans. In contrast, the generated synthesis questions require com-
paring and analyzing document contents.

6.3.3 Question Quality Evaluation
We took a random sample of 30 generated questions from Qrandom, Qterm, and Qsynthesis,
respectively, in order to evaluate the quality of the generated questions. In addition, we
also chose 30 human-curated questions from the 4 SQuAD [50] articles used in [80] for
comparison. We conducted human evaluation by recruiting five native English speakers
with at least undergraduate degrees as annotators. The questions were rated on a 5-point
scale concerning their relevance to their context, the answerability, i.e., whether they can
be answered with information from the document, and the possibility that a human wrote
the question. The final rating of each question is determined by averaging all annotators’
ratings. Table 6.2 reports the average score along all these measures. We conducted a
one-way ANOVA test on the measures with respect to the question type factor. First, the
average length of questions ranged from 11.3 to 13.2, and there was no significant differ-
ence. Second, we can observe that although automatically generated questions were con-
sidered less human-written, they were still considered as likely written by humans (> 3.4
on a 5-point scale, compared to 4.28 for human-curated SQuAD questions). Furthermore,
Qsynthesis questions were significantly lower than the SQuAD questions in terms of rele-
vance (𝑝 < 10−4) and answerability (𝑝 < 10−4). One possible reason is synthesis questions
tend to require more cognitive complexity and background knowledge than SQuAD ques-
tions which are simple factoid questions. Notably, the answerability of Qrandom questions
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Table 6.2: Comparison of SQuAD and automatically generated questions in terms of average question length and
human evaluation for Relevance, Answerability, andHuman-Written (H-W) on a 5-point scale. † denotes the one-
way ANOVA significance, while 𝒰 (SQuAD), 𝒮 (Qsynthesis), ℛ(Qrandom), 𝒯 (Qterm) indicate post-hoc significance
(TukeyHSD pairwise test, p<0.05) over four groups of questions.

Method Length Relevance† Answerability† H-W†

SQuAD 11.3 4.75𝒯 𝒮 4.68𝒯 𝒮 4.28𝒯 𝒮
Qrandom 13.2 4.34 4.10𝒮 3.79
Qterm 12.8 4.03𝒰 3.55𝒰 3.55𝒰
Qsynthesis 12.0 3.87𝒰 3.47𝒰ℛ 3.44𝒰

was significantly higher than that of synthesis questions (𝑝 = 0.034). This is aligned with
our design since the synthesis questions are supposed to be more challenging to answer,
which leads to lower answerability ratings from annotators.

6.4 User Study Design
6.4.1 Topics
In line with prior research [223, 227, 228], we assessed participants’ learning outcomes
with two learning-focused tasks: a recall-based vocabulary learning task and an essaywrit-
ing task. The vocabulary-learning task assessed knowledge levels on vocabulary terms at
cognitive levels like remembering and understanding based on revised BLOOM’s taxon-
omy [8]. On the other hand, the essay writing task required participants to compose a
summary of at least 100 words based on their acquired knowledge during the search ses-
sion. This task aimed to assess higher cognitive levels, such as evaluating and analyzing.
We chose seven topics along with the vocabulary terms most representative of each topic
created by Câmara et al. [223]. These topics have suitable complexity, so they are not too
easy that most participants already have plenty of knowledge or are too hard to learn in
twenty minutes. Table 6.3 presents the topics and vocabulary terms.

6.4.2 Experimental Conditions
As mentioned earlier, in our user study, we randomly assigned each participant to one of
the following four conditions:

Qrandom For participants in this condition, to each document the participant opened, we
presented one automatically generated factoid question regarding a text span like
one named entity randomly sampled from each opened document.

Qterm In this condition, if there were vocabulary terms of the assigned topic in the docu-
ment, we presented the participant with an automatically generated factoid question
regarding one of the vocabulary terms. Otherwise, a random factoid question would
be presented instead.

Qsynthesis In this condition, we presented a participant with a high-level synthesis ques-
tion about the opened document.
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Figure 6.2: Illustration of the user study workflow. This flow describes the experimental conditions of Qrandom,
Qsynthesis, and Qterm. The Qnone condition does not take the QA step.

Qnone In the control condition we did not show participants the AQG widget ( 6 in Fig-
ure 6.1) in the document viewer.

6.4.3 Study Workflow
We now briefly introduce the experimental procedure that consists of seven phases.

1. Task Introduction. Participants read a general introduction to the entire study work-
flow.

2. Survey. Participants were asked to complete a demographics survey containing ques-
tions regarding their education level, language skills, and their use of web search engines
and online documents for learning.

3. Topic Selection. We selected seven topics for our user study. To prevent participants
from the familiarity bias [261], we designed a two-step knowledge selection procedure.
First, we randomly chose four of seven topics and asked participants to choose one topic
they knew best and one they knew least. Both of the topics were used for the vocabulary
knowledge pre-test.

4. Pre-Test. Participants were asked to complete two vocabulary knowledge tests. Each
test consisted of 10 vocabulary questions on the topics selected in the above topic selec-
tion phase. We chose one topic randomly with equal probability as the assigned topic
for participants to learn more about in the following phases.

5. Search Phase Participants were randomly assigned to one of our four experimental con-
ditions. Participants needed to spend at least 20 minutes searching and reading docu-
ments to learn about the assigned topic in line with prior research [80, 233].

6. Post-test. After 20 minutes in the search phase, participants could continue to the post-
test which consisted of a vocabulary test on the assigned topic (same 10 questions as in
the pre-test in shuffled order) and an essay writing assignment (100+ words).

7. Delay-test One week after the post-test, participants were invited to take a delay-test
which consisted of the vocabulary test as the post-test in different question order.
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6.4.4 Participants
We conducted our user study on the Prolific Academic⁵ platform. The required number of
participants was determined by a statistical power analysis conducted with a significance
level of 𝛼 = 0.05, a power of 1 − 𝛽 = 0.80, an expected effect size of 0.25 and a group size
of 4 using the software GPower [262]. This gave a minimum required number of 𝑛 = 136
participants. To ensure the response quality, we only recruited native English-speaking
participants within the age range of 18 to 51 with a minimum of 95% approval rate, at
least 100 successful task submissions, and at least a high-school level of education. The
entire study lasted for around 35 minutes. We paid each participant GBP £5 for the study.
Overall, 178 participants completed the post-test; we rejected 18 of them because of a lack
of attention (over 5minutes of no activity in the browser tab) in the search phase, which led
to 160 valid participants. We further paid £1 bonus for participants who took the delay-test
after one week, and 144 valid participants returned and completed the delay-test. Among
the 144 participants (77 male, 67 female), the median age is 34.5 (min. 20, max. 51). Forty
reported a high school degree as the highest education degree, 17 reported a community
college degree, 58 reported an undergraduate degree, 25 reported a graduated degree, and 4
reported doctorate degrees. Table 6.3 reports the distributions of participants over topics
and experimental conditions. The 144 participants were evenly distributed among the
topics, each with a participant count ranging from 19 to 23. Table 6.3 also shows the
average number of queries over each topic, which ranges from 3.26 to 4.65, indicating that
our participants actively engaged in the search phase.

6.4.5 Metrics
Learning Gains
In the pre-, post-, and delay–tests, we asked our participants to self-assess their knowledge
levels on a set of vocabulary terms. In line with [223, 227, 229, 233], we evaluated the study
participants’ knowledge of a term with the Vocabulary Knowledge Scale (VKS) [226] across
four levels:

1 I don’t remember having seen this term/phrase before.

2 I have seen this term/phrase before, but I don’t think I know what it means.

3 I have seen this term/phrase before, and I think it means …

4 I know this term/phrase. It means …

Besides, we further asked participants to write down the meaning of the vocabulary term
in their own words for vocabulary in knowledge level (3) and (4), which we can use to
judge the quality and reliability of the self-assessment. To reduce the question priming
effects, participants did not know that vocabulary terms asked in the pre-test would be
asked again in the post-test. Following earlier works [223, 227, 233], we first rescored
the knowledge level self-assessments to 0−2, specifically, knowledge level (1) and (2) was
rescored as 0, knowledge level (3) was rescored as 1, and knowledge level (4) as 2. Then
we evaluated the learning gain with Realized Potential Learning (RPL) [233, 263, 264]. RPL

⁵https://app.prolific.co
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is the absolute knowledge gain (ALG) normalized by the maximum possible learning gain
(MLG). The absolute knowledge gain represents the sum of knowledge level changes from
the pre-test to subsequent tests. The maximum possible learning gain means the total
possible knowledge level changes from the pre-test to the subsequent tests.

𝐴𝐿𝐺 = 1
𝑛

𝑛
∑
𝑖=1

max(0,𝑣𝑘𝑠𝑥 (𝑣𝑖) − 𝑣𝑘𝑠𝑝𝑟𝑒(𝑣𝑖)) (6.1)

𝑀𝐿𝐺 = 1
𝑛

𝑛
∑
𝑖=1

2−𝑣𝑘𝑠𝑝𝑟𝑒(𝑣𝑖) (6.2)

𝑅𝑃𝐿 = 𝐴𝐿𝐺
𝑀𝐿𝐺 (6.3)

(6.4)

where 𝑣𝑘𝑠𝑝𝑟𝑒(𝑣𝑖) is the rescored knowledge level of vocabulary 𝑣𝑖 in pre-test; 𝑣𝑘𝑠𝑥 (𝑣𝑖),𝑥 ∈
{post,delay} is the rescored knowledge level of vocabulary 𝑣𝑖 in post- or delay-test. 𝑣𝑘𝑠(𝑣𝑖) ∈
{0,1,2} and 𝑛 is the number of vocabulary items under the tested topic.

Self-assessment Quality

In order to determine the quality of vocabulary knowledge self-assessments, we sampled
𝑎𝑝𝑝𝑟𝑜𝑥10% of term definitions of knowledge levels (3) and (4) from both the pre- and post-
tests (specifically, 40 from the pre-test and 60 from the post-test) written by participants.
We tasked two experts to label these definitions as either correct, partially correct, or in-
correct, keeping in mind that the definitions were written by topical novices. Based on
the expert labels, among definitions of knowledge level (3), 20% were correct, 68% were
partially correct, and the rest 12% were incorrect. Among the definitions of knowledge
level (4), 70% were correct, 24% were partially correct, and 6% were incorrect. Based on
the low incorrect rate, we consider the self-assessment reliable.

Automatic Assessment

Another way to scale up the assessment of our participants’ definitions is to rely on large-
scale language models (LLMs). State-of-the-art LLMs such as GPT-3.5 or GPT-4 [265] have
reportedly achieved human-level performance on various complex natural language tasks.
To evaluate the influence of uncertainty in self-assessment, we evaluated all definitions
with the following prompt template (with {...} indicating placeholders):
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You are an expert in the topic {topic}, and your goal is to evaluate if a beginner’s
definition of a term related to this topic is correct. The definitions are written by
novices who just started reading the materials. The definitions are supposed to
be short, somewhat unprofessional, and with no more than 10 words.
First, write your own short and correct definition for each term. Then, reason
whether or not the user’s answer is correct. After this, evaluate the user’s defini-
tion with the following scale:

1) Incorrect: the definition is entirely incorrect. (e.g. “Positively charged particles
that form part of the atomic structure in the nucleus.” is an incorrect description
of “neutrons”).

2) Partially correct: the definition captures part of the base concepts correctly, but
part of the definition is incorrect. (e.g., ”A part of an atom.” is a Partially Correct
answer to the term “neutrons”).

3) Correct: the definition captures some basic concepts and contains no incorrect
description. (e.g., “Carbon 14 decays and dating can be done using this fact.” is
a correct definition for the term ”radiocarbon”).

Answer it in the following format:
Definition:
Reason:
Evaluation: 1, 2, or 3
—
Term: {term}
Definition: {definition}

Based on GPT-3.5’s output, we categorized partially correct term definitions as knowl-
edge level (3) and correct term definitions as knowledge level (4). Incorrect term definitions
were designated as level (2). We conducted our data analyses with the self-assessment and
knowledge levels as determined by GPT-3.5. The trends and statistical outcomes do not
differ between self-assessment and GPT-3.5 based assessment⁶. Thus, due to space con-
straints, in the remainder of this chapter, we report the learning gain evaluation
based on the self-assessed vocabulary knowledge levels only.

Essay Quality
In addition to RPL, we evaluated knowledge expressed in participants’ essays with two
additional measures as learning indicators: F-Fact and T-Depth, following [227, 266]. Con-
cretely, F-Fact represents the number of individual facts in an essay, and T-Depth repre-
sents the extent to which each subtopic is covered. We manually annotated the written
essays for bothmeasures. For F-Fact, the annotatorswere required to identify topic-related
facts and count the number of facts in an essay. For T-Depth, annotators scored the essay
on a scale of 0 to 3, where 0 represented not covered and 3 indicated the essay covered
the topic with great focus. Five annotators divided 160 essays among themselves. Twenty

⁶As an example, for the learning gain metric RPL, the scores were no larger than 0.01.
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essays were annotated by all annotators, achieving a Pearson correlation of 0.73 for F-Fact
and 0.75 for T-Depth, indicating high inter-annotator agreement for the metrics.

Behaviour Metrics
Following prior research [80, 229, 267], we extracted seven types of search and reading
behaviour from our collected search logs: (i) the number of queries a participant for-
mulates; (ii) the number of unique documents a participant viewed; (iii) the number
of snippets a participant viewed; (iv) the average time of between queries; (v) the
average time between documents; (vi) the average document dwell time; (vii) the
number of mouse scrolls over the opened documents.

Answer Quality
To examinewhether participants indeed engagedwith the adjunct questions, we evaluated
participant-written answer quality of the factoid questions with EM (Exact Match) score,
which measures the percentage of answers that match exactly with ground-truth answers,
and (macro-averaged) F1 score [50, 174], which treats all answers as bags of tokens and
calculate the average overlap between the participants’ answers and the ground truth
answer. We found the F1 scores of answers to Qrandom and Qterm were 0.589 and 0.408,
and the EM scores of answers to Qrandom and Qterm were 0.523 and 0.322, respectively.
These results confirmed that participants indeed engaged with the questions.

6.5 Results
In this section, we discuss the results of our user study. As a sanity check, we first analyze
participants’ overall learning gains. Figure 6.3a reports the distribution of knowledge lev-
els reported in pre-, post-, and delay-tests. Participants marked fewer vocabulary terms
as knowledge levels 1 or 2 and more as knowledge levels 3 and 4 in post- and delay-tests
than the pre-test, which shows that participants learned both short-term (post-test) and
long-term (delay-test) vocabulary knowledge over the assigned topics in the task. Further-
more, Figure 6.3b shows detailed knowledge state transitions on each condition from pre-
test to post-test. Although the assessment on most vocabulary terms (> 50%) remained
unchanged and transitions among lower knowledge levels accounted for most learning
gains, participants did achieve learning gains in all conditions. These results, together
with the evaluation of participants’ self-assessment quality (Section 6.4.5) and the quality
of answers to the adjunct questions (Section 6.4.5), validate our system and experimental
design. On average, participants were indeed actively engaged and learning throughout
the study.

We now present study results in line with the research questions. Table 6.4 presents
themain results. We conducted two-wayANOVA tests on thesemeasures, considering the
assigned topics and the conditions as factors, and examined the main effects with 𝛼 = 0.05.
We then used TukeyHSD pairwise tests for post-hoc analysis.

6.5.1 Adjunct Question Effects in SAL
Effects of Adjunct Questions on Participants’ Search Behaviour
In our user study, participants were required to learn one topic by searching and reading
for at least 20 minutes. The average document dwell time (Row XIV in Table 6.4) of par-



6

100 6 On the Effects of Automatically Generated Adjunct Questions for Search as Learning

Table
6.4:M

ean
(±

standard
deviations)ofevaluation

m
etricsacrossallparticipantsin

each
condition.†

denotesthe
tw

o-w
ay

A
N
O
VA

significance,w
hile𝒩

,𝒮
,ℛ

,𝒯
indicate

post-hocsignificance
(TukeyH

SD
pairw

ise
test,p<0.05)overthe

fourconditionsQ
none ,Q

synthesis ,Q
random ,and

Q
term ,respectively.

M
easure

Q
none

Q
synthesis

Q
random

Q
term

I.
N
um

ber
ofparticipants

32
37

36
39

II.
Search

phase
19m

47s(±1𝑚46𝑠)
21m

5s(±3𝑚16𝑠)
20m

6s(±2𝑚30𝑠)
20m

18s(±2𝑚56𝑠)
III.

Post-TestR
PL †

0.23(±0.18) ℛ
0.14(±0.14)

0.13(±0.12) 𝒩
𝒯

0.23(±0.15) ℛ
IV.

D
elay-TestR

PL
0.17(±0.20)

0.11(±0.12)
0.10(±0.12)

0.16(±0.19)
V.

Flesch
score

52.00(±12.33)
49.67(±17.06)

52.56(±13.23)
56.49(±13.42)

V
I.

T-D
epth

0.87(±0.35)
0.91(±0.48)

0.78(±0.47)
0.81(±0.41)

V
II.

F-Fact
13.88(±7.82)

12.68(±6.38)
10.16(±7.28)

12.68(±8.57)
V
III.

Fraction
oftopicalterm

s
used

by
essays

0.05(±0.04)
0.04(±0.03)

0.03(±0.03)
0.04(±0.02)

IX
.

N
um

ber
ofqueries †

6.09(±3.90) 𝒮ℛ
𝒯

3.49(±2.80) 𝒩
3.11(±2.78) 𝒩

3.49(±3.16) 𝒩
X
.

N
um

ber
ofunique

docum
ents

view
ed †

13.44( ±6.65) 𝒮ℛ
𝒯

7.49(±3.01) 𝒩
9.47(±5.14) 𝒩

9.10(±3.89) 𝒩
X
I.

N
um

ber
ofsnippets †

45.09(±21.16) 𝒮ℛ
𝒯

31.57(±17.55) 𝒩
32.47(±16.61) 𝒩

28.38(±15.70) 𝒩
X
II.

A
verage

tim
e
betw

een
queries

(secs.) †
379.97(±329.66) 𝒮ℛ

𝒯
685.47(±368.11) 𝒩

740.67(±375.35) 𝒩
615.45(±380.46) 𝒩

X
III.

A
verage

tim
e
betw

een
docum

ents
(secs.)

18.78(±16.89)
20.20(±13.70)

20.40(±19.73)
19.85(±20.87)

X
IV.

A
verage

docum
entdw

elltim
e(s) †

73.99(±35.46) 𝒮𝒯
182.89(±149.15) 𝒩

ℛ
𝒯

128.21(±54.73) 𝒮
128.93(±59.32) 𝒩

𝒮

X
V

N
um

ber
ofscrolls †

14.62(±18.76) 𝒮
98.18(±94.79) 𝒩

ℛ
𝒯

38.99(±43.97) 𝒮
36.30(±28.86) 𝒮

X
V
I.

A
verage

num
ber

ofnon-stopw
ords

in
answ

ers †
–

6.75(±4.50) ℛ
𝒯

0.82(±1.02) 𝒮
1.15(±1.38) 𝒮

X
V
II.

A
verage

reading
tim

e
before

answ
ering

(secs.)
–

116.43(±120.90)
98.32(±46.91)

89.73(±48.79)
X
V
III.

A
verage

tim
e
to

create
answ

ers
(secs.) †

–
36.55(±24.17) ℛ

𝒯
9.82(±8.79) 𝒮

13.49(±16.28) 𝒮
X
IX

.
F1

score †
–

–
0.58(±0.20) 𝒯

0.39(±0.23) ℛ
X
X
.

EM
score †

–
–

0.51(±0.24) 𝒯
0.30(±0.26) ℛ



6.5 Results

6

101

Ta
bl
e
6.5

:M
ea

n
(±

st
an

da
rd

de
vi
at
io
ns

)o
fe

va
lu
at
io
n
m
et
ric

sa
cr
os

sl
ow

kn
ow

le
dg

e
pa

rti
ci
pa

nt
si

n
ea

ch
co

nd
iti
on

.†
de

no
te
st

he
tw

o-
w
ay

A
N
O
VA

sig
ni
fic

an
ce
,w

hi
le

𝒩
,𝒮

,ℛ
,𝒯

in
di
ca

te
po

st
-h

oc
sig

ni
fic

an
ce

(T
uk

ey
H
SD

pa
irw

ise
te
st
,p

<0
.05

)o
ve

rt
he

fo
ur

co
nd

iti
on

sQ
no

ne
,Q

sy
nt
he

sis
,Q

ra
nd

om
,a

nd
Q

te
rm

,r
es
pe

ct
iv
el
y.

M
ea

su
re

Q
no

ne
Q

sy
nt
he

sis
Q

ra
nd

om
Q

te
rm

I.
#P

ar
ti
ci
pa

nt
17

19
18

19
II
.

R
ea

di
ng

ph
as

e
du

ra
ti
on

(m
in

ut
es

)
19

m
22

s(±
2𝑚

4𝑠)
20

m
58

s(±
2𝑚

53
𝑠)

19
m
49

s(±
2𝑚

1𝑠)
19

m
58

s(±
2𝑚

46
𝑠)

II
I.

Po
st
-T

es
tR

PL
0.1

9(
±0

.16
)

0.1
2(
±0

.14
)

0.1
4(
±0

.12
)

0.1
9(
±0

.11
)

IV
.

D
el
ay

-T
es

tR
PL

0.1
3(
±0

.17
)

0.0
6(
±0

.09
)

0.0
9(
±0

.11
)

0.1
2(
±0

.14
)

V.
Fl

es
ch

Sc
or

e
57

.12
(±9

.78
)

45
.92

(±1
9.2

3)𝒯
53

.05
(±1

3.5
3)

60
.87

(±1
1.4

2)𝒮
V
I.

T-
D
ep

th
0.8

4(
±0

.31
)

0.9
2(
±0

.30
)

0.8
3(
±0

.48
)

0.8
3(
±0

.45
)

V
II
.

F-
Fa

ct
13

.06
(±6

.06
)

13
.60

(±5
.03

)
9.9

3(
±7

.69
)

11
.62

(±6
.08

)
V
II
I.

Fr
ac

ti
on

of
to

pi
ca

lt
er

m
s
us

ed
by

es
sa

ys
0.0

4(
±0

.03
)

0.0
5(
±0

.03
)

0.0
3(
±0

.02
)

0.0
5(
±0

.03
)

IX
.

N
um

be
r
of

qu
er

ie
s

6.0
0(
±3

.95
)𝒮

ℛ
𝒯

2.4
7(
±1

.61
)𝒩

2.6
1(
±1

.82
)𝒩

3.2
1(
±2

.02
)𝒩

X
.

N
um

be
r
of

un
iq

ue
do

cu
m

en
ts

vi
ew

ed
13

.29
(±7

.15
)𝒮

𝒯
6.7

9(
±3

.01
)𝒩

9.5
0(
±5

.66
)

8.8
4(
±3

.52
)𝒩

X
I.

N
um

be
r
of

sn
ip

pe
ts

47
.24

(±2
1.8

7)𝒮
ℛ
𝒯

24
.47

(±1
3.0

5)𝒩
31

.50
(±1

6.6
6)𝒩

27
.95

(±1
2.7

7)𝒩
X
II
.

A
ve

ra
ge

ti
m

e
be

tw
ee

n
qu

er
ie
s
(s
ec

s.)
34

1.8
4(
±2

56
.41

)𝒮
ℛ

78
7.1

3(
±3

50
.49

)𝒩
76

0.2
5(
±3

67
.14

)𝒩
54

1.1
7(
±3

10
.61

)
X
II
I.

A
ve

ra
ge

ti
m

e
be

tw
ee

n
do

cu
m

en
ts

(s
ec

s.)
21

.55
( ±1

9.8
2)

16
.88

(±1
1.1

5 )
23

.69
( ±2

5.8
1)

21
.83

(±2
3.3

4 )
X
IV

.
A
ve

ra
ge

do
cu

m
en

td
w
el
lt

im
e
(s
ec

s.)
75

.29
(±3

5.6
5)𝒮

22
1.0

4(
±1

94
.78

)𝒩
ℛ
𝒯

12
3.1

2(
±4

9.4
4)𝒮

12
5.4

5(
±6

1.8
1)𝒮

X
V.

N
um

be
r
of

sc
ro

lls
14

.61
(±2

1.5
7)𝒮

11
5.0

6(
±1

18
.82

)𝒩
ℛ
𝒯

25
.85

(±2
0.1

5)𝒮
31

.14
(±2

1.4
1)𝒮

X
V
I.

A
ve

ra
ge

re
ad

in
g
ti
m

e
be

fo
re

an
sw

er
in

g
(s
ec

s.)
–

14
6.5

7(
±1

58
.02

)
92

.17
(±4

4.1
1)

99
.05

(±5
8.0

2)
X
V
II
.

A
ve

ra
ge

nu
m

be
r
of

no
n-

st
op

w
or

ds
in

an
sw

er
s

–
7.8

4(
±5

.81
)

0.5
8(
±0

.68
)

1.1
3(
±1

.43
)

X
V
II
I.

A
ve

ra
ge

ti
m

e
to

cr
ea

te
an

sw
er

s
(s
ec

s.)
–

39
.15

(±2
8.5

8)ℛ
𝒯

9.2
3(
±8

.39
)𝒮

9.2
4(
±8

.34
)𝒮

X
IX

.
F1

sc
or

e
–

–
0.6

2(
±0

.19
)

0.3
7(
±0

.25
)

X
X
.

EM
sc

or
e

–
–

0.5
6(
±0

.20
)

0.2
7(
±0

.28
)



6

102 6 On the Effects of Automatically Generated Adjunct Questions for Search as Learning

Table
6.6:M

ean
(±

standard
deviations)ofevaluation

m
etricsacrosshigh

know
ledge

participantsin
each

condition.†
denotesthe

tw
o-w

ay
A
N
O
VA

significance,w
hile

𝒩
,𝒮

,ℛ
,𝒯

indicate
post-hocsignificance

(TukeyH
SD

pairw
ise

test,p<0.05)overthe
fourconditionsQ

none ,Q
synthesis ,Q

random ,and
Q

term ,respectively.

M
easure

Q
none

Q
synthesis

Q
random

Q
term

I.
N
um

ber
ofparticipant

15
18

18
20

II.
Search

Phase
20m

16s(±1𝑚17𝑠)
21m

14s(±3𝑚43𝑠)
20m

22s(±2𝑚57𝑠)
20m

37s(±3𝑚7𝑠)
III.

Post-TestR
PL

0.28(±0.19) ℛ
0.16(±0.14)

0.12(±0.13) 𝒩
𝒯

0.26(±0.19) ℛ
IV.

D
elay-TestR

PL
0.22(±0.23)

0.15(±0.14)
0.11(±0.14)

0.20(±0.23)
V.

Flesch
Score

46.19(±12.63)
53.63(±13.88)

52.08(±13.30)
52.33(±14.11)

V
I.

T-D
epth

0.90(±0.39)
0.90(±0.62)

0.73(±0.46)
0.80(±0.38)

V
II.

F-Fact
14.80(±9.57)

11.70(±7.57)
10.39(±7.06)

13.69(±10.48)
V
III.

Fraction
oftopicalterm

s
used

by
essays

0.05(±0.04)
0.03(±0.03)

0.03(±0.03)
0.03(±0.02)

IX
.

N
um

ber
ofqueries

6.20(±3.97)
4.56(±3.38)

3.61(±3.47)
3.75(±4.00)

X
.

N
um

ber
ofunique

docum
ents

view
ed

13.60(±6.29) 𝒮𝒯
8.22(±2.92) 𝒩

9.44(±4.73)
9.35(±4.30) 𝒩

X
I.

N
um

ber
ofsnippets

42.67(±20.80 )
39.06( ±18.88)

33.44(±16.99 )
28.80(±18.39 )

X
II.

A
verage

tim
e
betw

een
queries

(secs.):
423.18(±402.17)

578.17(±364.89)
721.10(±393.01)

686.01(±432.83)
X
III.

A
verage

tim
e
betw

een
docum

ents
(secs.)

15.65(±12.74)
23.70(±15.50)

17.10(±10.60)
17.97(±18.64)

X
IV.

A
verage

docum
entdw

elltim
e
(secs.)

72.51(±36.42) 𝒮ℛ
𝒯

142.61(±59.97) 𝒩
133.29(±60.57) 𝒩

132.24(±58.27) 𝒩
X
V.

N
um

ber
ofscrolls

14.63(±15.73) 𝒮
80.37(±58.53) 𝒩

𝒯
52.12(±56.65)

41.20(±34.34) 𝒮

X
V
I.

A
verage

reading
tim

e
before

answ
ering

(secs.)
–

84.62(±49.31)
104.48(±50.04)

80.89(±37.46)
X
V
II.

A
verage

num
ber

ofnon-stopw
ords

in
answ

ers
–

5.59(±2.08)
1.06(±1.24)

1.17(±1.37)
X
V
III.

A
verage

tim
e
to

create
answ

ers
(secs.)

–
33.80(±18.89) ℛ

𝒯
10.42(±9.38) 𝒮

17.52(±20.71) 𝒮
X
IX

.
F1

score
–

–
0.54(±0.21)

0.40(±0.21)
X
X
.

EM
score

–
–

0.45(±0.27)
0.32(±0.24)



6.5 Results

6

103

Pre-Test Post-Test Delay-Test
0.0

0.2

0.4

0.6

0.8

1.0

Level 1+2

Level 2

Level 3

(a)
Qnone Qsynthesis Qrandom Qterm

0.0

0.2

0.4

0.6

0.8

1.0
1 . 2

1, 2 . 3

1, 2 . 4

3 . 4

Others

(b)

Figure 6.3: (a) Distributions of vocabulary knowledge levels in the pre-test, post-test, and delay-test. (b) The
fraction of vocabulary knowledge changes from pre-test to post-test.

ticipants who received adjunct questions was significantly longer than Qnone (𝑝 < 0.05).
As a consequence of the longer dwell time, we also observed the number of queries (Row
IX, 𝐹(3,116) = 6.70,𝑝 = 3 × 10−4), the number of unique documents (Row X, 𝑝 = 2 × 10−6
), and the number of unique snippets (Row XI, 𝑝 = 0.001) that participants viewed to be
significantly lower than participants inQnone. The average time between queries of partic-
ipants with adjunct questions (ranging from 636 s to 741 s) was significantly longer than
Qnone participants (Row XII, 𝑝 = 3.7 × 10−4). In addition, we also measured participants’
in-documentmouse activities, i.e., the number of scrolls while reading one document (Row
XV). We observed that participants had more scrolls when presented with adjunct ques-
tions, indicating more concentrated reading behaviour. These results confirm that adjunct
questions significantly impact participants’ behaviour, which is consistent with findings from
[80].

Effects of Adjunct Questions on Participants’ Learning Gains
Recall that we evaluated participants’ learning outcomes with RPL. Figure 6.4a shows that
in both the post- and delay-test, the RPL of Qnone participants was higher than that of
participants who received adjunct questions (Qsynthesis, Qrandom, and Qterm) (Post-test:
𝑀. = 0.23 vs. 𝑀 = 0.17,𝑝 = 0.026, Delay-test: 𝑀. = 0.17 vs. 𝑀. = 0.12,𝑝 = 0.14, where𝑀. rep-
resents the Mean value). Figure 6.4b shows a detailed comparison broken down to all con-
ditions. The Qnone and the Qterm participants had similar short-term retention (𝑀. = 0.23
vs. 𝑀. = 0.23). Both were significantly higher than the Qrandom condition (𝑀. = 0.23 vs
𝑀. = 0.13,𝑝 = 0.02) and higher than Qsynthesis (𝑀. = 0.24 vs 𝑀. = 0.14,𝑝 = 0.06). The delay-
test RPL (Row IV) reflects the long-term learning outcomes. Qrandom exhibited the worst
results; Qterm was close to Qnone. Previous work like [80] showed that participants spent
substantially more time reading the same reading materials when presented with adjunct
questions. Recall that participants had limited task time, and in the adjunct question con-
ditions, participants read significantly fewer documents, which can partly explain the neg-
ative effects of adjunct questions. This is also aligned with an earlier classroom study of
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Figure 6.4: Distribution of post-test and delay-test RPL scores (a) w/ vs. w/o adjunct questions, (b) with all
conditions.

adjunct questions [3], where the length of the task time is an essential factor in learning
outcomes.

To sum up, our study revealed that participants who received adjunct questions ex-
hibited more fine-grained reading behavior but had lower retention. However, when ap-
propriate questions were posed, these participants achieved comparable short-term and
long-term learning gains while reading significantly fewer documents. This highlights the
importance of understanding learners’ knowledge requirements and time constraints for
presenting adjunct questions.

6.5.2 Factors that Influence Automatically Generated Adjunct Ques-
tions’ Effects

Impacts of Question Types
Syed et al. [80] found that participants spent more time reading with additional synthesis
questions while having similar learning gains with those who received only factoid ques-
tions. As shown in RowXIV of Table 6.4, compared to participants in factoid question con-
ditions (Qrandom and Qterm), Qsynthesis participants had significantly longer average doc-
ument dwell time (183s, 𝑝 < 0.05). Similarly, Qsynthesis participants executed significantly
more scrolls (RowXV,𝑀. = 98, 𝑝 < 10−4) and spentmore time reading before answering the
adjunct question (RowXVII,𝑀. = 116𝑠 vs. 𝑀. = 98𝑠 and 90s respectively) than participants
who received factoid questions. Additionally, participants in the Qsynthesis condition pro-
duced significantly longer answers for adjunct questions (Row XVI, 𝑝 < 10−18) and spent
the longest time writing their answers (Row XVIII, 𝑝 < 10−9). These results indicate that
compared to factoid questions, the generated synthesis questions cause more cognitive
burden. Qsynthesis participants have to spend more time reading, rewinding, and writing
answers, which aligns with the previous work [80].

Regarding the learning outcomes,Qsynthesis participants had similar RPL toQrandom in
both post-test (𝑀. = 0.14 vs. 𝑀. = 0.13) and delay-test (𝑀. = 0.11 vs. 𝑀. = 0.10). In addition,
we also measured participants’ learning with essay writing (at least 100 words) in the post-
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Figure 6.5: Distribution of post-test (a) and delay-test (b) RPL scores of HK and LK participantswith all conditions.

test. Specifically, we consider T-Depth (measuring the number of subtopics covered) and
F-Fact (measuring the number of atomic facts). As seen in Table 6.4 (RowVI and RowVII),
Qsynthesis participants exhibited the highest T-Depth and F-Fact scores among all adjunct
question conditions. These results showed that although essays created by participants
in Qsynthesis were the most difficult to read (with the lowest Flesch reading ease score of
49.67), they covered a comparable fraction of assigned topic terms and provided better
topic coverage and a greater number of facts. Thus, we conclude that compared with
factoid questions, synthesis questions may cause a higher cognitive burden and higher
performance on tests (i.e., essay writing) that require higher cognitive complexity than
factoid questions regarding random text spans.

Impacts of Question Target Selection
As target selection is an essential procedure for generating questions, especially factoid
questions, we investigate the effects of question target selection via the conditionsQrandom
and Qterm. Recall that the answers (for which to generate questions) in Qrandom were text
spans extracted from the document and the answers for Qterm were the vocabulary terms
of the assigned topic. To this end, we collected 377 document viewings in conditionQterm,
63.4% of which targeted the assigned topic’s terms. 58.8% of all topic terms were cov-
ered. As seen in rows from IX to XV of Table 6.4, participants in Qrandom and Qterm did
not show significant differences in the activity measures, although Qrandom spent more
time between queries on average. When it came to answering the questions, we found
Qterm participants spent less time reading before writing answers (Row XVII, 𝑀. = 89.73
vs. 𝑀. = 98.32, 𝑝 = 0.89) and spent longer time writing answers (Row XVIII,𝑀. = 13.49 vs.
𝑀. = 9.82, 𝑝 = 0.64) than Qrandom, but these differences were also not statistically signifi-
cant. In contrast, Qterm participants’ answers to adjunct questions showed significantly
lower quality in terms of the F1 score (Row XIX, 𝑀. = 0.39 vs. 𝑀. = 0.58, 𝑝 < 10−4) and
EM score (Row XX, 𝑀. = 0.3 vs. 𝑀. = 0.58, 𝑝 < 10−4). This may be due to the different
complexity of the target answers. Vocabulary terms of the assigned topic tend to be more
complex than the randomly chosen answer spans, such as named entities in the document.
Notably, Qterm participants had better short-term learning outcomes (Row III, Post-test
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Figure 6.6: The Pearson correlation values between RPL and the average pre-test score in post-test and delay-test.

RPL, 𝑀. = 0.23 vs. 𝑀. = 0.13, 𝑝 = 0.02) and long-term retention (Row IV, Delay-test RPL,
𝑀 = 0.16 vs. 𝑀 = 0.10, 𝑝 = 0.06) thanQrandom participants. We also found thatQterm partic-
ipants had better yet not significant essay quality in all evaluated measures compared to
Qrandom participants. These observations suggest that compared with random target an-
swer selection, guiding the users according to their learning goals achieves significantly
better learning gains despite similar observed search behaviour, indicating the importance
of learning goal-aware adaptive AQG for adjunct questions.

Impacts of Prior-Knowledge
Participants’ prior knowledge may influence their behaviour, like the reading time [268]
and their ability to identify the answer without reading. Thus, the effects of adjunct ques-
tions are sensitive to participants’ prior knowledge levels [80] and may cause contrasting
effects. In this chapter, we considered a participant as high-knowledge (HK) for a topic if
her average pre-test score was higher than the median and otherwise low-knowledge (LK).
We classified 71 participants as HK participants and 73 as LK participants. Table 6.5 reports
the results and statistics along the evaluation metrics of the LK participants, and Table 6.6
the HK participants. Figure 6.5 compares the RPL of HK and LK participants in each con-
dition in post-test (Figure 6.5a) and delay-test (Figure 6.5b). On average, HK participants
exhibited higher RPL scores in all conditions during both the post-test and delay-test ex-
ceptQrandom in the post-test. Specifically, in the delay-test, Qsynthesis HK participants had
significantly higher RPL than the LK group (𝑀. = 0.15 vs. 𝑀. = 0.06, 𝑝 = 0.044). Moreover,
compared with the RPL decrease from the post-test to the delay-test in other conditions,
Qsynthesis HK participants show a slighter RPL decrease ( 0.16⇒ 0.15). These results indi-
cate that synthetic questions that require higher-level cognition lead to better long-term
retention for more knowledgeable learners than other conditions.

We further investigated the correlation between the learning outcomes (both short-
term and long-term) measured by RPL and participants’ prior-knowledge measured by
the pre-test vocabulary knowledge evaluation. Figure 6.6 shows the Pearson correlation
scores. First, across all conditions, both post- and delay-test RPL scores were positively
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related to participants’ prior knowledge. Furthermore, we found that Qnone participants’
post-test RPL was strongly correlated with their prior-knowledge. However, adjunct ques-
tions mitigated the correlation, particularly in Qsynthesis condition, where there was no
correlation between the post-test RPL and prior-knowledge. Lastly, we noted that the cor-
relation with prior-knowledge was generally weaker in the delay-test than in the post-test,
except in theQsynthesis condition, where in contrast participants exhibited amuch stronger
correlation in the delay-test than in the post-test. These findings indicate the importance
of adapting different AQG strategies based on learners’ prior-knowledge levels.

6.6 Limitations
The experiment setup of the study on the automatically generated questions’ effects on
human learning behaviour and learning outcomes is constrained by specific learning re-
sources and a limited time frame. This experiment setup may impede the generalizability
of the results to informal learning by search contexts, where learners have access to a
plethora of web resources and the duration of learning varies.

6.7 Conclusions
This chapter explored the effects of automatically generated adjunct questions in the com-
plex search as the learning scenario through a user study on the customized open-source
searching system. The empirical results confirm previous findings adjunct questions sig-
nificantly influence participants’ behaviour and learning outcomes, though in our study
these effects vary across different conditions. We found evidence that with adjunct ques-
tions, participants were more engaged with the search results than those without adjunct
questions. As a potential consequence of longer reading time, adjunct questions may neg-
atively affect learning gains if the learning time is the same across all conditions. Fur-
thermore, our results demonstrate the importance of adopting different types of adjunct
questions for learning tasks with different cognitive complexity. Selecting targeting an-
swers for adjunct questions according to participants’ learning goals can significantly im-
prove participants’ learning outcomes. Lastly, we found participants’ prior-knowledge
had essential impacts on their learning gains, especially when they were posed with ad-
junct questions that required higher cognitive levels. Adjunct questions may mitigate the
correlation between learning outcomes and the prior-knowledge. In future work, we aim
to move beyond vocabulary knowledge tests and incorporate a wider variety of adjunct
questions.
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7
Conclusion

In this thesis, we examined automatic question generation from three aspects: (i) the
transformers-based question generation methods, evaluation metrics, and domain adap-
tation, (ii) the noise reduction problem in dataset creation for question generation, and
(iii) the effects of automatically generated questions on human learning. In this conclu-
sion chapter, we first revisit the main research questions introduced in Chapter 1, and
summarize the main findings. The main research questions we have addressed in this
thesis are:

RQ1: What metrics should be used for evaluating the quality of generated ques-
tions? How to compare the effectiveness of these metrics?

RQ2: How to use deep neural models to facilitate dataset creation for question
generation and reduce the noise of created datasets?

RQ3: How does domain shift in context affect AQG and how to improve AQG
performance on out-of-distribution unlabeled target domains?

RQ4: How do automatically generated questions impact learners’ behaviour and
learning outcomes?

Then, later in this chapter, we discuss the recent progress in question generation research
and future research directions in question generation and its applications in Section 7.2.

7.1 Main Findings
In this section, we summarize the main research findings.

7.1.1 Question Quality Evaluation Metrics and The Effects on Ques-
tion Generation

In order to answer RQ1, in Chapter 2, we evaluated the question evaluation metrics by
using them as rewards for RL-based AQG model training and comparing their effects on
training the question generation model. We designed a common framework that provides
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a fair testbed that consisted of a Seq2Seq question generation model for paragraph-level
question generation and a reward evaluator. We systematically categorized existing re-
wards into four categories, namely Fluency, Similarity, Answerability, and Relevance, and
further proposed three novel evaluation metrics. We then implemented all metrics based
on the same base model and directly optimized the AQG model with these metrics as the
rewards. We performed a thorough empirical evaluation of their effects on model quality.
We first confirmed the effectiveness of applying reinforcement learning with the evalua-
tion metrics as rewards on AQG model training. We then showed that optimizing on one
metric always led to the improvement of the corresponding evaluation metric, and that
the magnitude of improvement differed significantly. We then examined the correlation
of the rewards’ effects and found that rewards within the same category were strongly cor-
related, and the fluency reward was not correlated with others. These results can guide
the selection of rewards since adopting different uncorrelated rewards could evaluate the
generations from diverse aspects and provide comprehensive feedback. This study also
showed that the lexical method Meteor was strongly correlated with the BERT-based sim-
ilarity metrics, especially BERTScore, and achieved the best human evaluation score on
syntax, implying that the learned similarity metrics like BERTScore may focus on lexical
similarity. Their effects need further examination in future research. In addition, using
answerability evaluation metrics as rewards performed best, highlighting the importance
of considering both the context and the target answer for evaluation question quality eval-
uation.

7.1.2 Dataset Creation
In order to answerRQ2, we provided two studies to investigate automatic noise reduction
in dataset creation, in Chapter 3 and Chapter 4.

We began by examining the noise reduction in datasets created by collecting discus-
sions in MOOC forums, with a particular case on video clip recommendations for MOOC
forum questions in Chapter 3. Discussion forums serve as the principal communication
medium amongMOOC learners and instructors, compensating for the absence of physical
interaction inherent in MOOCs. Despite the importance, MOOC discussion forums suf-
fered from the information overload issue because of unuseful questions and unstructured
and unorganized discussions with context scattering in the videos.

We first classified useful questions from noisy, unuseful questions. Then, we created a
novel dataset of about 274K MOOC forum discussions and video transcripts from 6 topics
to address the lack of training data issue. Unlike the previous research, we introduced
dense retrieval-based methods to the MOOC forum video clip recommendation research
problem and systematically compared their performance in extracting related video clips.
We found that the pre-trained dense rankers achieve good effectiveness by fine-tuning
with limited labeled data, and cross-encoders perform best. We further developed a dis-
tant supervision method and showed that the effectiveness of the video clip recommenda-
tion improved by 2.9% by fine-tuning with weakly labeled data created by cross-encoders
over fine-tuning only with labeled data. This research demonstrated the framework for
data preparation, useful question classification, clip recommendation, and distant super-
vision for creating datasets from MOOC forums. The results can be further used in future
research on extracting context for creating discussion questions and thread recommenda-
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tions for learners, providing a base for further research over MOOC forums.

Besides questions and answers created by learners and instructors in MOOC discus-
sion forums, another prevalent method for creating QA datasets is crowdsourcing which
employs crowd workers instead of domain experts for data annotation following specific
instructions. However, crowdsourced data often contain a substantial amount of noise,
and it is critical to infer the true label from crowd workers’ noisy labels. Therefore, we
then studied the QA dataset creation by crowdsourcing in Chapter 4. Answers are es-
sential for training and evaluating both QA and AQG models. Previous research has
shown the difficulty and adopted a multi-stage paradigm in aggregating crowdsourced
answers. Therefore, we focused on aggregating multiple answer annotations for extrac-
tive question-answering datasets. We proposed a novel answer aggregation method that
considered both the answer annotations’ contextual representations and the quality of in-
dividual answers. Instead of treating the answer annotations as free text, we encoded the
passage containing the answer with transformers-based PLM. We then used the mean
of answer tokens’ embeddings as the answer annotation’s contextual representation. We
then inferred the true answer annotation in two ways: (i) the annotation’s similarity to
themean contextual representation of all answer annotations and (ii) the annotation’s sum
of similarity with other answer annotations. The effectiveness of these methods implies
the crowdsourced answers contained common knowledge or contextual information that
can be further explored. In addition to the relative similarity among the answer annota-
tions, the quality of each answer annotation can also be evaluated based on whether it
can answer the question. Therefore, we further evaluated the answer annotations using
the Natural Language Inference (NLI) model and the QA model and proposed the algo-
rithm to perform answer aggregation by joint consideration of the answer quality and
the contextual representation. We evaluated the proposed method on several QA datasets.
We showed that the automatic answer aggregation method can effectively infer the cor-
rect answer annotation compared to multi-stage human selection. The QA model trained
on the automatically inferred answer annotation achieved similar performance with the
human-selected answer annotations. We used the automatic answer aggregation method
as a voter in addition to human experts for answer aggregation. The cleaned crowdsourced
data led to 1.15% higher QA F1 performance than the crowdsourced data.

7.1.3 Domain Adaptation for Question Generation
We studied the domain adaptation problem of AQG models in Chapter 5 for answering
RQ3. Our results first showed that the AQG performance degraded by half due to the
domain shifts between the inputs to the neural AQG model and the training data, which
prevented applying AQG models to low-resource domains. Then, we demonstrated that
BERT-based context representation can be used for robust domain data clustering. We
proposed an answer-type (including time, location, numeric, person, and noun, etc. based
on the NER and POS tagger.) aware pseudo-in-domain data selection method based on
their distance to the domain clustering center. Then, we proposed to re-train the AQG
model with the pseudo-in-domain data and pseudo-labeled data with self-training. Our
results showed that pseudo-in-domain data selection and self-training with filtering can
effectively help improve and generalize the AQG model on out-of-distribution domains.
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7.1.4 Effects ofAutomaticallyGeneratedQuestions onHumanLearn-
ing

Finally, we presented one study in Chapter 6 to better understand the effects of automati-
cally generated questions on users’ learning behaviour and learning outcomes in order to
answer RQ4. Specifically, we investigated the impacts of automatically generated ques-
tions that were adjunct to the snippets users clicked and read. We implemented the search
and reading interface, the AQG pipeline for generating factoid and synthesis types of ques-
tions, and then performed a user study that involved 144 participants. In contrast to prior
research [80] which showed adjunct questions’ potential long-term benefit for low prior-
knowledge learners in the reading comprehension scenario, we found participants who
did not receive questions achieved better learning outcomes than those with random or
synthesis questions. Our study showed that the search phase has critical impacts on learn-
ing outcomes, and the conclusion in prior research cannot translate to the scenario with
the search phase. The results further revealed questions’ significant influence on learn-
ers’ behaviour. Specifically, receiving adjunct questions resulted in longer dwell time
and the number of mouse scrolls over the opened documents than participants who did
not receive adjunct questions. In addition, we investigated the impacts of the questions’
characteristics, including question types (factoid or synthesis) and the selection of ques-
tioning targets. The results showed that synthesis questions can cause a higher cognitive
burden and higher performance on tests that require higher cognitive complexity, such
as easy writing. However, synthesis questions cannot improve learning gains concerning
vocabulary knowledge. Compared to random factoid questions and synthesis questions,
questions targeting the learning goals can significantly improve learning gains. Besides,
our study found participants’ prior knowledge has critical impacts on learning gains. On
average, participants with high prior knowledge had higher learning gains. The results of
this study showed that it is arguable whether to pose adjunct questions for learners in the
SAL scenario, especially with limited learning time, and it is important to jointly consider
both the learning goals and users’ prior knowledge to decide when and what to ask with
the adjunct questions.

7.2 Future Directions
Currently, with hundreds of billions of parameters and pre-trained with massive amounts
of data, the LLMs such as GPT-3 [43], GPT-4 [269], and LLaMA [270], have demonstrated
not only the ability to produce semantically correct and coherent texts but also the abil-
ity to follow humans instructions after being fine-tuned with humans feedbacks towards
aligning the model’s responses to human’s preferences [271]. Despite the advantages,
LLMs are still prone to limitations such as the tendency to generate outputs that are not
faithful to the source context [272], or producing hallucinated content that deviates from
factual accuracy [273].

The progress in LLMs has brought both great opportunities and challenges for question
generation research and application. For example, as shown in Figure 7.1, we ask GPT-
3.5/4 to create assessment questions for the lesson “Water on Earth” about the vocabulary
term Earth. It is notable that this example demonstrates a simple reading comprehension
problem instead of complex problems that require multiple reasoning steps or mathemat-
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(a)

(b)

Figure 7.1: An illustration of creating questions for the course materials with GPT-3.5 and GPT-4. We use Ope-
nAI’s playground interface¹ with results obtained on 18-10-2023 for illustration. In the system prompt, we specify
the guidelines for creating multiple-choice questions and the option items [274]. The lesson content and vocab-
ulary terms are taken from a textbook QA dataset [275].
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ical reasoning. Both GPT-3.5 and GPT-4 can correctly follow the instructions and create
two clear and concise multiple-choice questions to assess learners’ understanding of wa-
ter on Earth. On the one hand, they can create correct questions with suitable options for
users to choose from, even without any in-context examples, like the second question in
Figure 7.1a and the second question in Figure 7.1b. On the other hand, we can observe the
factual inconsistency in the first question in Figure 7.1a where 3% of Earth’s water should
be fresh instead of salt water. We can also observe the inaccurate answer option in the
first question in Figure 7.1b where the correct explanation should be ”oceans cover much
of Earth’s surface”.

Based on the research findings of this thesis and the recent progress in LLMs, we pro-
vide the following possible future directions towards explainable and reliable automatic
question generation and evaluation and effects of applying AQG on education.

7.2.1 Human-in-the-Loop Assessment Generation
Creating assessments for learning involves instructors, learners, and AI tools [276]. As
we show in Chapter 6, the types and targets of questions can significantly influence users’
behaviour and learning outcomes. The instructors’ expertise in the subject matter, objec-
tive design, and assessment strategies is crucial for creating effective assessments [277].
LLMs have good potential in generating assessment questions. Still, the questions may not
align with the instructional goals or may not be optimally challenging for the learners, and
there are concerns about their reliability, like the hallucination problem that may confuse
learners. Therefore, an important research area is combining human experts’ knowledge
and LLMs systems for creating questions for learners. This collaborative approach could
potentially harness the strengths of both entities, with AI systems generating a bulk of
questions swiftly and human experts selecting and editing them to ensure alignment with
learning objectives and to foster deeper understanding and critical thinking among learn-
ers. The human-AI collaboration can happen by actively involving humans in designing
proper prompts for LLMs, such as the human-in-the-loop through chain-of-thought [278].
The collaboration can also happen by evaluating the quality of questions and filtering the
potential low-quality questions with toxic, hallucinatory, fact-inconsistent text. LLMs of-
ten present long responses, making it difficult for people to comprehend, evaluate, and
interact with them [279]. It is necessary to conduct Human Computer Interaction (HCI)
research on designing new human-in-the-loop systems in this regard to explore the inter-
face and the procedures for this collaboration [280], aiming to develop a synergistic model
that maximizes the benefits of both human expertise and AI capabilities in the domain of
educational question generation.

7.2.2 Explainable Question Quality Evaluation
As mentioned in Chapter 2, automatic question quality evaluation has been extensively
studied, especially in recent years as researchers have endeavored to design metrics for
evaluating the questions’ Grammaticality, Relevance, and Answerability with pre-trained
language models. One line of research focuses on better evaluating the generations’ sim-
ilarity compared with human-curated reference questions such as BARTScore [72] and
PRISM [73]. Another line of research focuses on reference-freemetrics that use the learned
models’ ability to score the generated questions directly without references to mimic hu-
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man judgments on question quality, such asQuestEval [74], QRelScore [77] andUniEval [79].
However, these metrics are limited by the backbone language models and the data used
for training them. First, it is necessary to study whether or not the metrics computed
by cheap, smaller models like BERT can provide appropriate evaluation for the questions
generated by LLMs. Second, when the pre-trained models are fine-tuned for the evalu-
ation tasks (most are classification tasks), these models may rely on spurious attributes
that are correlated to the labels in the training data [281, 282]. The learned metrics tend to
be brittle and vulnerable to Out of Distribution (OOD) data and changes in the spurious
attributes. Despite the research on spurious attributes detection and removal for better
OOD generalization in NLP keeps attracting a lot of attention [283], such as from the data
augmentation by retrieval and counterfactual generation [284–288], the OOD problem
in question generation evaluation metrics is understudied. Therefore, it requires further
research on both the training reliable and robust evaluation metrics and evaluating the
trustworthiness of the evaluation metrics. Third, although current metrics can provide
numeric scores on dimensions such as fluency, relevance, and answerability, they rely on
black-box language models and cannot provide reasoning and explanation for the scores,
raising concerns about the credibility of the evaluation results and the ability to guide
generation selection. Therefore, in addition to quantitative metrics, future metrics should
take explainability into account. The explanations can have a direct influence on improv-
ing the AQG systems. For example, counterfactual examples to the generated questions,
which have minimum edition but higher evaluation scores, can provide rich information
on how to select the generated questions or further improve the AQG method. The most
recent research [289] discussed key properties and the latest state-of-the-art approaches
to explainable metrics based on generative LLMs for machine translation. The question
evaluation involves distinct evaluation criteria and requires further research.

7.2.3 Data Augmentation for Question Generation with LLMs
Training question generation models requires high-quality labeled data. With recent ad-
vantages, LLMs exhibit the potential to perform commonsense reasoning over texts and
the capability to generate high-quality synthetic data through in-context examples and
even zero-shot learning [290]. Recent research has explored the methods and effects of
creating synthetic augmenting datasets for downstream tasks such as NLI [287] and sen-
timent analysis [291]. The results show that the smaller classification models can bene-
fit from knowledge distilled from augmentation data and achieve better Domain Adapta-
tion (DA) performance with better generalization to OOD data. In addition to creating
synthesis data by perturbation inputs and creating soft labels, the LLMs are capable of fur-
ther creating high-quality novel context as well as question-answer pairs, which can be
critical for specific applications and domains where the unlabeled contexts are also scarce.
As Samuel et al. [292] demonstrates, the generated synthesis augment data can be used
to improve downstream smaller QA models’ performance on low-resource domains. The
previous research demonstrates great opportunities in data augmentation with LLMs for
AQG. However, on the one hand, some current methods of data augmentation question
generation, such as [293, 294] are based on smaller PLMs which lacks the emergent abil-
ities of LLMs. On the other hand, less has been investigated in the literature concerning
applying LLMs in the online learning context. It would be a promising line of research to
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explore the effective data augmentation methods with LLMs to distill LLMs’ knowledge
for downstream applications, for example, data augmentation for adapting to course do-
mains or data augmentation for personalized AQG considering learners’ profile such as
their knowledge level and education goals.

LLMs may also suffer from limitations such as the lack of up-to-date knowledge not
seen in the training corpora and lack of correct memorization of long-tail sparse long-tail
knowledge in their parameters [295]. An active research area in language generation with
LLMs is retrieval-augmented language modeling (RALM) [296] or retrieval-augmented
generation (RAG) [297, 298], which combines the LLM and the external memory with rel-
evant documents retrieved from the exterior knowledge sources. The language models
are grounded in the relevant context of generation. These methods consist of two major
high-level components: document retrieval, which is about selecting the most relevant
documents while alleviating irrelevant noises, and document reading, which is about in-
corporating the retrieved document into the generation process. In this way, the genera-
tion results are more attributable and can achieve better results even with the frozen lan-
guage models. To this end, in the AQG research area, these two major procedures would
involve determining contexts that are question-worthy and incorporating them into the
prompts for the LLM effectively for reliable and more transparent application [299]. These
methods can also be adopted for mitigating the domain adaptation [298, 300] issue.

7.2.4 Question Generation over Heterogeneous Sources
The assessment design should be centered on supporting learners’ learning while keeping
learners engaged andmotivated, starting by understanding learners’ knowledge states and
the intrinsic difficulties in making the inferences necessary [301]. As the results in Chap-
ter 6, learners with different levels of prior knowledge demonstrates different reflection on
the generated questions. It is critical to adapt the questions posed to learners based on their
background knowledge and learning progress [7, 302]. Knowledge tracing [280, 303, 304]
is commonly used to predict learners’ knowledge mastery based on their interaction with
questions, which cannot utilize rich information in the learning environment. For ex-
ample, in MOOCs, there is rich content like video clips, related textbook materials, and
discussion forums. Beyond these contents related to knowledge, the logs of learners’ ac-
tivities also contain rich information on learners’ knowledge states, interactions among
learners, learning progress, etc. [305]. Furthermore, the social communities and social
networks that arise around the courses and the learners are also essential to understand-
ing learners’ background knowledge, fostering participation and peer support [306–308].
Therefore, it would be essential to learn from heterogeneous sources to determine when and
what questions should be posed to learners in order to help learners learn and evaluate the
knowledge within different modalities. To achieve this, future research also needs to in-
vestigate how to incorporate the knowledge tracing model with AQG in order to develop
AI systems that are capable of understanding and adapting to individual learners’ profiles,
thereby personalizing the learning experience and promoting more effective learning out-
comes. AQG based on heterogeneous sources could pave the way for more nuanced and
effective learning strategies, fostering a richer and more engaging learning environment
for students.
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7.2.5 The Effects of on-the-fly Constant Evaluation and Feedback on
Learners

The rapid progress of LLMs has great potential impacts on education. GPT-3.5 and its suc-
cessor GPT-4 are reportedly to pass qualification exams designed for humans, such as the
neurosurgery practice board exams at rates comparable to neurosurgery residents [309],
indicating traditional assessment methods could be easily cheated by LLMs, especially in
MOOCs where physical restrictions are absent to prevent students from using LLMs. The
easy access to LLM tools may have the danger of making learners less likely to learn. One
way to address this challenge is to deploy formative assessment [310], i.e., provide learners
questions periodically to help space their studying and give them feedback about what
they know and do not know [311], by taking advantage of AQG and LLMs to conduct con-
stant evaluation and feedback on-the-fly [312]. By further incorporation with fine-grained
user activity monitoring and knowledge tracing.

In order to design such systems, firstly, it is essential to investigate how to incorpo-
rate AQG tools in the education systems, such as the impacts of the position of showing
the interaction tools, the formats of assessments, and the frequency of engaging learners
with assessments. Further, it would be essential to investigate what are the LLM tools’
impacts on human learning and what are the effects of constant evaluation and feedback
in order to provide empirical guidelines for building future education systems. Despite
some most recent works have proposed to investigate some aspects of applying formative
assessments with LLMs, such as the differences in learners learning gains between Chat-
GPT and human tutor curated hints [313], the effects of applying ChatGPT for evaluating
learners’ responses and creating feedbacks automatically [314–316]. The results suggest
LLMs’ high assess accuracy and high feedback quality, and also the struggle with decimal
values and the potential over-reliance of LLMs. These results emphasize the importance
of further investigating LLMs’ effectiveness and effects.

To sum up, LLMs would play an essential role in the future systems designed for learn-
ing. It requires significant research efforts to build safe, trustworthy, intelligent, and per-
sonalized educational systems with them. These efforts are two-fold. On the one hand,
new LLMs and tools are necessary to understand knowledge and learners better. On the
other hand, it is critical to focus on the interaction and collaboration between LLMs and
humans, such as better interaction interfaces and pipelines, to take humans to the center
of learning material creation, evaluation, consumption, and effects tracking.
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Summary
Questions are critical for information-seeking and learning. Automatic Question Genera-
tion (AQG) involves the subjects of Information Retrieval (IR) and Natural Language Pro-
cessing (NLP), and focuses on automatically creating questions for various applications,
subjects which have been studied for decades. In this thesis, we study how to create a ro-
bust automatic question generation system from several aspects, including data creation,
evaluation, and effects of question generation.

First, we contribute to the quality evaluation of the generated questions. Specifically,
we introduce three new evaluation metrics and compare the effects of applying the auto-
matic evaluationmetrics as rewards for reinforcement learning-based question generation
system training. Question quality evaluation is an essential part of AQG systems. It is fur-
ther used in this thesis in dataset creation, question selection for self-training, and filtering
automatically generated questions shown for learners.

Data are essential for building AQG systems. In Chapters 3 and 4, we focus on data
quality control in two main methods of dataset creation: collecting user-generated re-
sources from online platforms and from crowdsourcing. Specifically, we start by inves-
tigating the information overload issue in MOOC forum discussions caused by unuseful,
unlabeled, and unstructured data. We propose a framework for clip recommendation that
includes useful question classification and a neural ranker. We further investigate training
the neural ranker with both labeled and weakly labeled data. We then study how to infer
the true answer span frommultiple crowdsourced annotations automatically. We propose
an approach to effectively utilize the quality of each answer annotation and its relation to
other answer annotations for answer aggregation. Despite the various available methods
of collecting labeled data, there are many application domains where the labeled data is
hard or expensive to harvest. In Chapter 5, we move to automatically adapting the AQG
model trained on label-data-abundant domains to strange domains with few labeled data.

With the impressive advantages of automatic question generationmethods, it is critical
to understand how the generated questions on humans. Finally, in Chapter 6, we turn to
study the effects of automatically generated questions on the learners’ behaviours and
learning outcomes when they serve as the adjunct questions in the informal search as
learning scenario. We conduct an extensive user study to shed light on this topic.
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Samenvatting
Vragen zijn cruciaal voor zoeken van informatie en voor leren. Automatische Vraagge-
neratie (AVG) omvat de onderwerpen van Information Retrieval (IR) en Natural Langu-
age Processing (NLP), en richt zich op het automatisch creëren van vragen voor diverse
toepassingen, onderwerpen die al decennia lang worden bestudeerd. In dit proefschrift
bestuderen we hoe we een robuust automatisch vraaggeneratiesysteem kunnen creëren
vanuit verschillende aspecten, zoals datacreatie, evaluatie en effecten van vraaggeneratie.

Ten eerste dragen we bij aan de kwaliteitsevaluatie van de gegenereerde vragen. Spe-
cifiek introduceren we drie nieuwe evaluatiemetrieken en vergelijken de effecten van
het toepassen van de automatische evaluatiemetrieken als beloningen voor reinforcement
learning-gebaseerde training van het vraaggeneratiesysteem. Evaluatie van de vraagkwa-
liteit is een essentieel onderdeel van AVG-systemen. Het wordt verder in dit proefschrift
gebruikt in datasetcreatie, vraagselectie voor zelftraining en de filtering van automatisch
gegenereerde vragen die aan leerlingen worden getoond.

Data zijn essentieel voor het bouwen van AVG-systemen. In Hoofdstukken 3 en 4
concentreren we ons op de controle van datakwaliteit in twee belangrijke methoden van
datasetcreatie: het verzamelen van door gebruikers gegenereerde bronnen vanuit online
platforms en vanuit crowdsourcing. Specifiek beginnen we met het onderzoeken van het
probleem van informatieoverload in MOOC-forumdiscussies, veroorzaakt door onbruik-
bare, ongelabelde en ongestructureerde data. We stellen een raamwerk voor aanbeveling
van clips voor dat de classificatie van nuttige vragen en een neurale rangschikker omvat.
We onderzoeken verder het trainen van de neurale rangschikker met zowel gelabelde als
zwak gelabelde data. Vervolgens bestuderen we hoe we automatisch het ware antwoord-
bereik kunnen afleiden uit meerdere crowdsourced annotaties. We stellen een aanpak
voor om effectief gebruik te maken van de kwaliteit van elke antwoordannotatie en de re-
latie tot andere antwoordannotaties voor antwoordaggregatie. Ondanks de verschillende
beschikbare methoden voor het verzamelen van gelabelde data, zijn er veel toepassings-
domeinen waar gelabelde data moeilijk of duur is om te vergaren. In Hoofdstuk 5 gaan
we over tot het automatisch aanpassen van het AVG-model dat getraind is op domeinen
met veel gelabelde data, naar vreemde domeinen met weinig gelabelde data.

Met de indrukwekkende voordelen van automatische vraaggeneratiemethoden is het
cruciaal om te begrijpen wat voor effect de gegenereerde vragen op mensen hebben. Ten
slotte, in Hoofdstuk 6, keren we ons naar het bestuderen van de effecten van automatisch
gegenereerde vragen op het gedrag van leerlingen en leerresultaten, wanneer ze dienen
als toegevoegde vragen in het informele zoeken-als-leren-scenario. We voeren een uitge-
breide gebruikersstudie uit om licht te werpen op dit onderwerp.
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