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Genome-wide characterization of circulating 
metabolic biomarkers

Genome-wide association analyses using high-throughput metabolomics platforms 
have led to novel insights into the biology of human metabolism1–7. This detailed 
knowledge of the genetic determinants of systemic metabolism has been pivotal for 
uncovering how genetic pathways influence biological mechanisms and complex 
diseases8–11. Here we present a genome-wide association study for 233 circulating 
metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 
136,016 participants from 33 cohorts. We identify more than 400 independent loci 
and assign probable causal genes at two-thirds of these using manual curation of 
plausible biological candidates. We highlight the importance of sample and 
participant characteristics that can have significant effects on genetic associations. 
We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to 
better characterize how known lipid loci and novel loci affect lipoprotein metabolism 
at a granular level. We demonstrate the translational utility of comprehensively 
phenotyped molecular data, characterizing the metabolic associations of intrahepatic 
cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for 
multiple metabolic pathways and illustrate the importance of careful instrument 
selection in Mendelian randomization analysis, revealing a putative causal relationship 
between acetone and hypertension. Our publicly available results provide a 
foundational resource for the community to examine the role of metabolism across 
diverse diseases.

Large genome-wide association studies (GWASs) coupled with met-
abolic profiling platforms have successfully identified many loci 
associated with circulating metabolic traits1–7,12–16. For example, stud-
ies combining genomics with detailed metabolic profiling from a 
high-throughput metabolomics platform based on nuclear magnetic 
resonance spectroscopy17 have enabled the identification of dozens of 
loci for traits associated with circulating lipid, lipoprotein and fatty acid 
and small molecules such as amino acids2,4,5,9,18,19. These studies have 
provided novel insights into the biology of human metabolism and 
have guided large-scale epidemiological studies, such as Mendelian 
randomization analyses to infer causal relationships17. Here, using 
the same NMR metabolomics platform from Nightingale Health with 
an updated quantification version, we considerably extend our previ-
ous GWAS4 of 123 circulating metabolic traits in up to around 25,000 
participants to study 233 traits in more than 135,000 participants.

Genetic discovery
GWAS was performed under the additive model separately in each of 33 
cohorts (Supplementary Table 1). Subsequent meta-analysis involved 
233 metabolic traits (Supplementary Table 2), including 213 lipid and 
lipoprotein parameters or fatty acids and 20 non-lipid traits (amino 
acids, ketone bodies and glycolysis/gluconeogenesis, fluid balance 
and inflammation-related metabolites). After variant filtering and 
quality control, up to 13,389,637 imputed autosomal single-nucleotide 
polymorphisms (SNPs) were included in the meta-analysis for up to 
136,016 participants.

In the meta-analysis, we detected genome-wide significant associa-
tions for all 233 metabolic traits (Supplementary Data Figs. 1–3 and Sup-
plementary Tables 4 and 5) with extensive pleiotropy and polygenicity. 
We detected 276 broad regions (defined as a ±500-kb region around 
the set of genome-wide significant SNPs) associated with at least one 
metabolic trait (Fig. 1a and Supplementary Table 4). Eighty-six of these 
regions were associated with just a single metabolic trait, whereas 
most regions harboured associations with multiple traits (Fig. 1b,c) 
up to a maximum of 214 associated traits at the well-characterized 
lipid-associated APOE region. The lipid, lipoprotein and fatty acid traits 
were mostly demonstrably polygenic, with 60 traits having associa-
tions at more than 50 loci, 137 traits (64.3%) having associations at 
20–50 loci, and 16 traits (7.5%) having associations at fewer than 20 loci 
(Supplementary Tables 5 and 6). Most non-lipid traits had substantially 
fewer associated loci (13 with fewer than 20 associated traits; 65% of 
all 20 non-lipid traits), including 3 glucose metabolism-related traits 
(lactate, pyruvate and glycerol) having fewer than 5 associated loci, 
whereas glycoprotein A and some amino acids had associations at 
20–33 loci and creatine had associations at 49 loci (Supplementary 
Tables 5 and 6). The non-lipid traits accounted for most of the regions 
with a single associated trait (n = 67; 78%), and the majority (n = 163; 
57%) of the regions with non-lipid trait associations had fewer than 5 
associated metabolic traits in total. By contrast, the lipid, lipoprotein 
and fatty acid trait-associated regions (n = 186) were generally more 
pleiotropic with 75% (n = 140) of the regions being associated with 5 
or more traits. The pleiotropy difference is owing to the fact that lipo-
protein metabolism is a continuum, with genes often affecting several 
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particle categories, whereas the non-lipid traits are often affected by 
more distinct processes and enzymatic modifications, thus leading 
to less pleiotropy3,9,20. Within the 276 regions, we found 8,795 lead 
SNP–lead trait associations corresponding to 1,447 unique lead SNPs 
(Supplementary Table 5). After resolving independent signals on the 
basis of pairwise linkage disequilibrium (LD), we concluded that the 276 
broad regions involved at least 443 independent loci. We estimated the 
genome-wide common variant heritability for 223 traits also available 
in UK Biobank (Supplementary Table 6). Median trait heritability was 
0.29, of which only around a quarter was explained by the lead SNPs, 
supporting the high polygenicity of many of the traits.

Ancestry-stratified analyses
To investigate the generalizability of our associations across ethnic 
groups and search for additional ancestry-specific association signals, 
we conducted ancestry-stratified analyses of South Asian (five cohorts, 
11,340 participants), East Asian (one cohort, 4,435 participants), Finn-
ish (six cohorts, 27,577 participants) and non-Finnish European (21 
cohorts, 92,664 participants) cohorts (Supplementary Table 7). To 
investigate the generalizability further, we additionally performed 
a post hoc comparison of the associations to a small population with 
African ancestry (n = 1,405). Associations were strongly positively 
correlated across ancestry groups (Extended Data Fig. 1), suggesting 
that associations are broadly transferable across ancestries. Stronger 
correlations were seen between Finnish and non-Finnish Europeans 
(r = 0.96) compared with East Asians and South Asians (r ≈ 0.7) and 
Africans (r ≈ 0.4). For some loci, effect estimates were notably stronger 
in one ancestry than another. The number of genome-wide significant 
associations was strongly related to sample size, ranging from 7,002 
associations in the non-Finnish Europeans to 331 in the East Asian and 
97 in the African participants. We did not detect any novel genomic 
regions in any of the ancestry groups beyond the 276 discovered in 
the ancestry-combined meta-analysis, suggesting that substantially 
larger sample sizes of participants with non-European ancestry will 
be required in future studies.

Associations in UK Biobank
The availability of NMR data from the UK Biobank resource21 (March 
2021 release) enabled us to check for associations of the lead variants 
in an independent population and to assess the effects of participant 
characteristics and sample-related factors on our associations. Of 
the 8,502 lead SNP–metabolic trait pairs that could be tested in up to 
115,078 UK Biobank participants with European ancestry, 5,442 (64.0%) 
associated at P < 5 × 10−8, and a further 772 (9.1%; 328 unique SNPs) 
associated at P < 1 × 10−5 (Supplementary Table 8). When we performed 
further stratified analyses in cohorts with different sample types 
(serum, n = 90,223; plasma, n = 45,793), and in fasted (n = 68,559) and 
non-fasted (n = 58,112) cohorts, we detected that, in addition to subtle 
differences in population ancestry between the studies, sample type 
and fasting status were probably the major drivers of non-replication. 
The UK Biobank NMR measurements were performed on EDTA plasma 
samples, whereas the current meta-analysis involved predominantly 
serum samples. For example, several of the non-replicating associa-
tions with phenylalanine were in coagulation-related loci (for example, 
KLKB1, F12, KNG1 and FGB) but these signals were absent in UK Biobank 
(Extended Data Fig. 2 and Supplementary Table 8)—therefore we specu-
late that the removal of clotting factors in the preparation of serum 
could reveal associations with phenylalanine via coagulation. Two loci 
(NHLRC1, lead SNP rs73726535; TXNRD1, lead SNP rs191631370) also had 
associations for phenylalanine in UK Biobank that were absent in the 
current meta-analysis. Similarly, we found associations with glucose 
that did not replicate in the UK Biobank, including a well-known asso-
ciation at the melatonin receptor 1B gene22 (MTNR1B), a key regulator 

in glucose metabolism (rs10830963; meta-analysis P value = 1.5 × 10−60; 
UK Biobank P value = 0.60). The UK Biobank predominantly includes 
non-fasted samples, but the current meta-analysis mainly consists of 
cohorts (26 cohorts) with fasted samples (Supplementary Table 1), 
and our fasting-stratified meta-analysis suggested that some of the 
glucose associations were driven by cohorts with predominantly fasted 
samples (Fig. 1d and Extended Data Fig. 3) and are thus absent in UK 
Biobank. In addition to MTNR1B rs10830963 (P values 2.9 × 10−89 and 
0.57 in meta-analysis of fasted and non-fasted cohorts, respectively), 
the association of which was also previously shown to be absent in 
non-fasting samples23, GLIS family zinc finger 3 (GLIS3; a known diabe-
tes risk gene24 with a role in pancreatic beta cell biology) rs10974438 
represents another example of an association that was not robustly 
replicated in UK Biobank (meta-analysis P value = 4.0 × 10−14; UK Biobank 
P value = 0.001) and was characterized by the absence of signals in the 
non-fasted cohorts (P values 1.1 × 10−15 and 0.14 in meta-analysis of 
fasted and non-fasted cohorts; Extended Data Fig. 3).

Many of the metabolic trait associations differed by sample type 
and fasting status, although comparisons with the overall associa-
tions are complicated by the reduced power of the stratified analyses. 
For example, associations of several lipoprotein subclass measures 
were substantially affected by fasting status at loci with central roles 
in lipid biology, such as LPA and ANGPTL3 (Supplementary Table 9). 
Similarly, multiple loci had greater than twofold higher or lower effect 
estimates in cohorts using serum compared to those using plasma (Sup-
plementary Table 9). These differences were detected both for lipid and 
non-lipid traits, with some associations being notably augmented by 
removal of plasma samples. However, only 7 additional loci (beyond 
the 276 initially associated genomic regions) were detected in analyses 
stratified by sample type and 10 were detected in fasting-stratified 
analyses (Supplementary Tables 10 and 11)—for example, C2CD4A 
rs10083587 for glucose and KAT5 rs12787843 for creatinine, both of 
which showed associations only in fasting cohorts (P values 1.3 × 10−10 
and 7.6 × 10−10, respectively). We note that the effects of the sample type 
and fasting status require careful consideration when interpreting the 
results of GWAS of metabolic traits and conducting downstream analy-
ses, such as Mendelian randomization studies using trait-associated 
variants as instruments.

Novel loci and candidate genes
We conducted extensive manual curation to prioritize 231 likely causal 
genes with clear biological relevance to the associated traits at 297 
(67.0%) of the 443 loci (Methods). As some regions were extremely com-
plex and pleiotropic owing to overlapping genetic associations of up to 
11 independent lead variants with heterogeneous associations across 
the metabolic traits, we characterized these loci in detail to pinpoint 
potential multiple probable causal genes within each locus (Supple-
mentary Table 5). For example, in a 7.6-Mb region on chromosome 16 
with 139 associated metabolic traits, we identified 6 distinct biologically 
relevant potential causal genes: lecithin-cholesterol acyltransferase 
(LCAT; associated with multiple lipoprotein subclass measures), sol-
ute carrier family 7 member 6 (SLC7A6; associated with acetate and 
creatinine), pyruvate dehydrogenase phosphatase regulatory subunit 
(PDPR; associated with pyruvate and amino acids), alanyl-tRNA syn-
thetase 1 (AARS; associated with pyruvate and amino acids), tyrosine 
aminotransferase (TAT; associated with tyrosine) and haptoglobin (HP; 
associated with a range of lipoprotein subclass measures, fatty acids, 
cholesterol, apolipoprotein B (apoB) and glycoprotein acetylation). 
This locus exemplifies the complexity of the metabolic trait-associated 
loci. For additional loci without an obvious biological candidate, we 
assigned a further 39 probable causal genes on the basis of SNP func-
tion or the presence of probable functional (missense, stop gained 
or splice region) variants in strong LD (r2 ≥ 0.8) with the lead variant 
(Supplementary Table 5).
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We performed an extensive comparison of the discovered associa-
tions to previously reported genetic associations of metabolic traits 
and traditional clinical lipids (high density lipoprotein C (HDL-C), low 
density lipoprotein C (LDL-C), triglycerides and total cholesterol; 
Supplementary Table 5). In comparison to previous large-scale NMR 
metabolomics GWASs4,5, we identified 212 additional associated 
genomic regions (Supplementary Table 4). These included 138 novel 
genomic regions for the lipoprotein, lipid and fatty acid traits, and 
113 novel regions associated with the non-lipid traits. New associa-
tions for several lipoprotein subclass measures were detected in loci 
previously associated with clinical lipids, such as the locus contain-
ing low density lipoprotein receptor adapter protein 1 gene (LDL-
RAP1), which is involved in cholesterol metabolism. This locus was 
previously known to be associated with LDL-C, triglycerides and 
total cholesterol25–27, and we found associations at this locus with 
several lipoprotein subclass measures, lipids and fatty acids (Sup-
plementary Table 5). Locus containing the sterol O-acyltransferase 2 
gene (SOAT2; which functions in cholesterol metabolism) represents 
another example of a novel biologically plausible locus associated with 
the lipoprotein and lipid traits. Our analyses also identified genetic 
associations with detailed lipoprotein subclass measures in loci that 
have not previously been reported to be associated with traditional 
clinical lipids. Compared with the largest trans-ancestry study of 
clinical lipids to date27, we detected associations at twelve additional 

loci (Supplementary Table 5) for the lipid and lipoprotein traits (corre-
sponding to 6.5% of all lipoprotein and lipid trait-associated regions): 
gene encoding type 2 lactosamine α-2,3-sialyltransferase (ST3GAL6; 
which functions in glycolipid metabolism) represents an example 
of a biologically plausible gene associated with multiple lipoprotein 
subclass measures and lipids.

Novel loci were also detected for small molecules such as phe-
nylalanine and glutamine. For phenylalanine, we detected associa-
tions at 13 loci. Novel phenylalanine-associated loci include both a 
well-known metabolic trait-associated locus (FADS1–FADS2) and two 
novel, biologically plausible loci (GSTA2 and SLC2A4RG). For example, 
SLC2A4RG encodes SLC2A4 regulator, a transcription factor involved in 
the activation of solute carrier family 2 member 4 (SLC2A4, also known 
as GLUT4), a key regulator of glucose transport. For glutamine, we 
detected associations at 26 loci. Of note, seven of the loci were associ-
ated only with glutamine (GLS, PLCL1, SFXN1, KCNK16, MED23, SLC25A29 
and PCK1). Thus, these associations are likely to represent biology local 
to glutamine, most of the loci having biologically plausible candidate 
genes with roles in glutamine metabolism (GLS), amino acid transport 
(SFXN1 and SLC25A29) or glucose and gluconeogenesis-related path-
ways (PCK1 and KCNK16). KCNK16, a known type 2 diabetes suscepti-
bility gene that encodes the potassium channel subfamily K member 
16, a pancreatic potassium channel, represents an example of a novel 
glutamine-associated locus with a role in glucose biology28,29.
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Fig. 1 | Results of the GWAS meta-analysis of 233 metabolic traits. a, Manhattan 
plot summarizing the metabolic trait associations from inverse variance- 
weighted GWAS meta-analysis. Loci that do not overlap with those identified  
in the previous large-scale NMR metabolomics GWAS4,5 are shown in blue and 
green. Only genome-wide significant SNPs (two-sided P < 1.8 × 10−9) are shown 
and −log10(P values) were capped at 300. b,c, Numbers of associated metabolic 
traits at the 276 associated genomic regions are shown separately for genomic 

regions in which the lead trait was a lipid, lipoprotein or fatty acid trait (b; 155 
loci; median 24 traits per locus) and for those in which the lead trait was a 
non-lipid trait (c; 121 loci; median one trait per locus). d, Results of the GWAS 
for glucose for the fasted (top; total n = 68,559) and non-fasted (bottom; total 
n = 58,112) cohorts. The red line indicates the threshold for genome-wide 
significance. The 500-kb regions around lead SNPs in the fasted cohorts are 
highlighted.
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Effects of apoB variants
To provide insights into the distinct ways in which lipid loci can affect 
the continuum of lipoprotein metabolism, we characterized clus-
ters of genes with similar metabolic association profiles. The effect 
estimates were scaled by dividing all effect estimates of a given SNP 
using the strongest association effect estimate across all metabolic 
associations in each locus. In this way, the scaled effect estimates 
for all SNPs were between −1 and 1, and the statistical strength of an 
association affects the clustering less, and more emphasis is given 
to the association landscape in guiding the clustering. We concen-
trated on 134 loci with nominal evidence (P < 0.05) of an association 
with apoB, as recent studies have highlighted the predominant role 
of apoB in coronary artery disease aetiology30–32. The clustering of  
the loci produced at least seven major clusters of loci (Extended Data 
Figs. 4 and 5). The top cluster in Extended Data Fig. 4 is very simi-
lar to the previously observed epidemiological association profile 
with type 2 diabetes risk33 and adiposity34. The second cluster of loci 
(Extended Data Figs. 4 and 5) primarily shows increasing triglyceride- 
rich very low density lipoprotein (VLDL) particles and decreasing 

large HDL particles. The genes in this cluster, such as LPL, MLXIPL and 
ANGPTL4, relate to triglyceride metabolism, and glucose metabolism, 
exemplified by GCK, GCKR and INSR. The other clusters associate 
primarily with LDL particles and generally less with other lipopro-
teins. The lowest cluster includes biologically relevant genes that 
are known to affect LDL cholesterol in circulation, including APOB, 
LDLR, PCSK9, SORT1 and HMGCR. Despite the strong correlation struc-
ture within the lipid and apolipoprotein traits, we identified several 
loci with association patterns that do not follow the between-trait 
correlation structure (Fig. 2a and Extended Data Figs. 4 and 5). For 
example, some loci (APOC1 and TIMD4) are strongly associated 
with all the apoB-containing particles (VLDL, intermediate density 
lipoprotein (IDL) and LDL), whereas other loci are predominantly 
associated with IDL and LDL particles (PCSK9, HMGCR and TRIM5), 
with VLDL and the largest HDL particles (IRS1 and CD300LG), or with 
medium and small HDL particles (APOA2 and CERS2). Several SNPs 
also exhibit discordant associations within highly correlated meta-
bolic traits (for example, LPA and APOH SNPs within apoB-containing 
particles and FADS cluster SNP within both apoB-containing and HDL  
particles; Fig. 2a).
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Metabolic profiles of 84 novel loci that were not identified in the 
previous NMR GWASs2,4,5 were characterized here using the clustering 
approach (Extended Data Figs. 4 and 5). As the approach we have taken 
uses scaled effect estimates, our results are not directly comparable to 
previous studies which have used unscaled effect estimates9 or numbers 
of associations per lipoprotein type5 in clustering. Even though many 
loci, such as the master regulator genes PCSK9 and LDLR, clustered 
mostly similarly as reported previously5,9, the genetically calibrated 
approach applied here can specifically add to the understanding of 
the detailed metabolic effects of less well-known lipid-associated loci 
as their metabolic association patterns have not been previously char-
acterized. The tripartite motif-containing protein 5 gene (TRIM5) is an 
example of a poorly characterized locus associated with 42 lipoprotein 
and lipid traits (Supplementary Table 5). TRIM5 is best known for its 
role in antiviral host defence35, but variants near TRIM5 have also been 
associated with several traits related to liver biology, such as levels of 
liver enzymes36, and have recently been reported to associate with 
risk of coronary artery disease37. Notably, the metabolic effects on 
the lipoprotein and lipid traits of the lead TRIM5 variant (rs11601507, 
p.Val112Ile) appear similar to those of the HMGCR variant rs12916 
(Fig. 2b,c), the metabolic effects of which are concordant with those 
of statin therapy38–40. The mechanism by which TRIM5 affects lipid and 
lipoprotein levels and predisposes to coronary artery disease is unclear 
and it has been speculated to be related to innate immunity41. A recent 
study using a mouse model of nonalcoholic fatty liver disease suggested 
that TRIM5 may mediate degradation of DEAD-box protein 5, which 
could affect mTORC1 signalling and the LDL receptor pathway, conse-
quently affecting lipid accumulation and inflammation42. Irrespective 
of the pathophysiological mechanism, our findings raise the possibil-
ity that inhibition of TRIM5 could provide an alternative therapeutic 
pathway for reducing the risk of cardiovascular disease via lowering 

the concentrations of circulating atherosclerotic apoB-containing lipo-
protein particles similar to PCSK9-inhibition therapies that are useful 
for statin intolerant individuals or for statin users requiring further risk 
reduction. Although we specifically chose the TRIM5 association for 
further investigation, our clustering analysis suggests there are several 
other novel loci worthy of further in-depth investigation.

Metabolic trait variants and diseases
To investigate the roles of the metabolic trait-associated variants in 
disease, we scanned all the disease and trait associations of the 1,447 
lead SNPs in the (1) FinnGen study (data freeze 7, up to 309,154 par-
ticipants, 3,095 phenotypes), a dataset linking genomic information 
from Finnish participants to digital health care data43, and (2) curated 
collections of published GWASs, including PhenoScanner44,45 and GWAS 
catalog46 (Supplementary Table 5). In addition, we scanned the SNPs 
for association with gene expression and protein levels.

Most (n = 1,279) of the 1,447 lead SNPs had previously reported asso-
ciations (P < 5 × 10−8) with traits or diseases, including directly relevant 
outcomes such as use of statin medication and hypercholesterolaemia 
(Supplementary Table 5). Most of the SNPs (n = 1,270) were also associ-
ated with messenger RNA (mRNA) or protein levels (Supplementary 
Table 5), indicating that at least some of the associations are likely medi-
ated by direct or indirect effects of SNPs on mRNA or protein levels. 
Seven metabolic trait-associated loci (GCKR, ABCG8, ABCB11, ABCB1, 
CYP7A1, SERPINA1 and HNF4A) were associated (P < 5 × 10−8) with risk 
of intrahepatic cholestasis of pregnancy (ICP) in FinnGen (Fig. 3a and 
Supplementary Table 12), of which all except ABCG8 showed robust 
evidence of colocalization or shared regional associations with the 
metabolic trait associations (Supplementary Table 13). ICP is a choles-
tatic disorder with onset in the second or third trimester of pregnancy, 
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Fig. 3 | Metabolic trait-associated variants are associated with ICP.  
a,b, Manhattan plot of the GWAS of intrahepatic cholestasis of pregnancy (ICP) 
(a) and heat map of loci associated with metabolic traits and ICP (b). Twelve loci 
were associated with ICP in the FinnGen study (1,460 cases, 172,286 controls). 
a, The 500-kb regions flanking the lead SNPs are highlighted, and the nearest 
gene is indicated for each signal. The ICP GWAS was performed with scalable 
and accurate implementation of generalized mixed model (SAIGE). Loci that 
overlap with the loci identified in the NMR meta-analysis are indicated in red.  
b, Loci that are likely to have shared causal variants with the metabolic traits  

are included. The heat map illustrates the resemblances of the association 
landscapes. Each row represents a single SNP, each column corresponds to a 
single metabolic measure, and the scaled effect estimates for the SNP–metabolite 
associations from inverse variance-weighted GWAS meta-analysis are 
represented as a colour range. The associations were scaled with respect to 
their associations with ICP (s.d. change per ICP odds ratio (OR) 1.5). Detailed 
descriptions of the metabolic traits and abbreviations are shown in 
Supplementary Table 2.
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that is characterized by pruritus and elevated concentrations of serum 
aminotransferases and bile acids. ICP increases the risk of meconium 
staining of amniotic fluid, preterm delivery, fetal bradycardia, fetal 
distress and fetal loss47. The genetic background of ICP is poorly char-
acterized with few published GWASs7,48 and the metabolic effect of the 
ICP loci has not been characterized. Compared with results of a recent 
ICP GWAS that included data from meta-analysis of an earlier FinnGen 
release (data freeze 4) and two other cohorts48, associations at nine loci 
(GCKR, ABCG8, ABCB11, ABCB1–ABCB4, CYP7A1, SERPINA1, GAPDHS–
TMEM147, SULT2A1 and HNF4A) were replicated here and three novel loci 
(UGT8, NUP153 and HKDC1) were additionally identified. Rare coding 
variants at two of the loci, within the ABCB11 and ABCB4 genes, have 
additionally been previously reported in ICP49,50. A pathway analysis of 
the ICP-associated loci showed that biological processes related to bile 
acid, glucose and lipid metabolism were enriched for ICP (Supplemen-
tary Table 14), consistent with the metabolic trait associations. For some 
loci (CYP7A1, ABCB1 and SERPINA1), the most profound associations were 
detected for IDL and LDL particles, whereas two loci (HNF4A and GCKR) 
were more pleiotropic, with effects across both apoB-containing and 
HDL particles (Fig. 3b). At three of the loci (CYP7A1, ABCB1 and SERPINA1) 
the ICP-predisposing alleles were associated with higher concentra-
tions of IDL and LDL subclass measures, whereas the direction of the 
association was reversed for others (GCKR, ABCB11 and HNF4A). This 
information may be useful when considering these genes as therapeu-
tic targets, as targets that adversely influence atherosclerotic lipids 
in pregnant women may be undesirable, despite the relatively short 
treatment period. By characterizing the associations of ICP-associated 
loci with metabolic traits in detail, we exemplify the value of combin-
ing the metabolic association information with disease associations to 
clarify the metabolic underpinnings of poorly understood conditions.

Mendelian randomization
Finally, we exploited the absence of UK Biobank from our GWAS 
meta-analysis to perform a two-sample Mendelian randomization 
analysis to investigate associations of genetically predicted levels of the 
20 non-lipid traits with 460 Phecodes and 52 quantitative traits from 

the UK Biobank. Initial Mendelian randomization analyses using all 
lead variants for each trait as genetic instruments identified 503 signifi-
cant associations (P < 4.88 × 10−6) under the inverse variance-weighted 
model, including positive associations between glucose and diabetes, 
creatinine and renal failure, and amino acids with diabetes (Supple-
mentary Tables 15 and 16), all of which represent well-known causal 
relationships. Less well-characterized relationships included a positive 
association between genetically predicted lactate levels and benign 
neoplasm of uterus. This potentially causal association is concordant 
with a recent GWAS that linked genetic tendency to gain muscle mass 
with uterine fibroids51. We also found an inverse association between 
genetically predicted circulating glycine levels and blood pressure, 
which is supported by a strong observational association with hyperten-
sion52 and by genetic data53. This finding suggests a potential mediator 
for the previously reported inverse association of glycine levels with 
myocardial infarction54. These examples highlight the value of linking 
data on genetics, metabolic traits and disease outcomes at scale to iden-
tify novel causal relationships between metabolic traits and disease.

Restricting the analyses to less pleiotropic variants (associated 
with fewer than 5 metabolic traits), the association estimates were on 
average considerably weaker with less between-variant heterogene-
ity (median absolute beta, 0.058 versus 0.152; Q-statistic, 34.2 versus 
385.6, Extended Data Fig. 6), suggesting that pleiotropy was driving 
many of the initial Mendelian randomization associations. Results 
using two alternative thresholds for variant pleiotropy (fewer than 
three metabolic trait associations and fewer than seven metabolic 
traits associations) were very similar (Supplementary Table 17), sug-
gesting that the findings are not sensitive to the choice of threshold. 
This clearly emphasizes that pleiotropy should be carefully considered 
when selecting instrument SNPs for Mendelian randomization to avoid 
false interpretations about potential causal relationships.

As an example, the Mendelian randomization results for acetone were 
substantially affected by the inclusion of more pleiotropic SNPs in the 
instrument (Fig. 4). Acetone is a ketone body that is produced primarily 
in the liver during fasting and which has been associated with several 
cardiometabolic conditions including heart failure55 and diabetes56 in 
biochemical and epidemiological studies. In the GWAS, we identified 
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Fig. 4 | Mendelian randomization suggests a causal association between 
acetone and hypertension. a, Effect estimates (betas per s.d. increase in 
acetone) from Mendelian randomization (MR) analysis performed under the 
inverse variance-weighted model are shown for the UK Biobank outcomes that 
were significant (P < 4.88 × 10−6) with the full (pleiotropic, n = 10 instrument 
SNPs, pink) or strict (non-pleiotropic, n = 4 instrument SNPs, black) set of 
instruments. Betas and P values are shown in Supplementary Table 15.  
b,c, Effect estimates (betas per s.d. increase in acetone) in Mendelian 

randomization analysis with hypertension as the outcome in the UK Biobank 
(b; 104,824 cases with hypertension, 367,542 controls) and FinnGen (c; 70,651 
cases with hypertension, 223,663 controls) datasets. Single-SNP Mendelian 
randomization effect estimates and 95% confidence intervals are shown, with 
the SNPs in the strict instrument coloured blue and the other SNPs coloured 
pink. Mendelian randomization effect estimates are shown with pink and  
black diamonds for the full instrument (all ten SNPs) and strict instrument  
(four non-pleiotropic SNPs), respectively.
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associations for acetone at ten loci (only one associated locus—APOA5—
was identified in the previous NMR GWAS meta-analysis4), and Men-
delian randomization yielded 20 robust associations (Fig. 4a). These 
included associations with triglycerides, HDL cholesterol and remnant 
cholesterol, probably reflecting the inclusion of well-known lipid loci 
(LPL, APOA5, TRIB1, APOC1, GALNT2 and PPP1R3B) in the instrument. 
The less pleiotropic instrument for acetone included only four loci: 
3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), 3-oxoacid 
CoA-transferase 1 (OXCT1), cytochrome P450 family 2 subfamily E 
member 1 (CYP2E1) and SLC2A4, all of which have direct roles in ketone 
body or glycaemic-related pathways. Using these 4 variants only, the 
positive association with hypertension (OR per s.d. higher genetically 
predicted acetone level = 1.41, P = 6.9 × 10−7) was robust (Fig. 4a,b) and 
was also replicated in FinnGen (OR 1.45, P = 4.5 × 10−5) (Fig. 4c). Con-
sistent with these results, acetone has recently been suggested as a 
biomarker for hypertension57. It should be noted that previous studies 
using the NMR metabolomics platform had incorrectly labelled acetone 
as acetoacetate, which was detected and corrected in 2020 and later 
versions of the platform. The discovery regarding this potential causal 
relationship between acetone and hypertension is noteworthy, since 
the data on the role of ketogenic diets in hypertension are suggestive 
but inconclusive58,59 and ketone bodies have also emerged as poten-
tial therapeutic agents for coronary disease60. This finding concords 
with preclinical and human studies that link interventions that alter 
levels of ketone bodies, such as ketogenic diets and ketone salt sup-
plementation, with changes in blood pressure61,62, leading to sugges-
tions that ketone bodies could be a promising potential therapeutic 
strategy for hypertension and other cardiovascular diseases60,63. The 
mechanisms by which ketone bodies influence risk of hypertension 
are currently unclear, with both indirect (for example, obesity and 
diabetes) and direct (for example, sympathetic nervous system activ-
ity, vasodilation and cardiac endothelial cell proliferation) pathways 
being suggested64–66. A recent study in the UK Biobank demonstrated 
that some loci and pathways associated with the non-lipid NMR traits 
are highly pleiotropic, with the less pleiotropic variants often reflect-
ing biology more proximal to the traits67. This is also in line with our 
findings as demonstrated by the identification of several pleiotropic 
triglyceride-related genes that are associated with acetone levels, as 
well as four less pleiotropic acetone-associated loci with direct links 
to pathways related to ketone biology. These results accentuate that 
genetic pleiotropy can be common for metabolic measures, even for 
some non-lipid traits, and that careful selection of variants for Mende-
lian randomization is crucial to avoid bias due to pervasive pleiotropy.

Limitations
The predominance of participants of European ancestries (27 out of 
33 cohorts) meant that we had limited power to detect associations 
in other ancestry groups. However, our ancestry-stratified compari-
sons suggested that the associations discovered were broadly trans-
ferable across ancestries. Future larger studies of diverse ancestries, 
including African ancestries, will be required to better understand 
genetic regulation of metabolism on a global scale. Our NMR-based 
study was also limited in the number of metabolic traits analysed 
compared with studies using mass spectrometry, a complementary 
method that can simultaneously measure thousands of metabolites. 
Although mass spectrometry is more sensitive, NMR is analytically 
more robust, high-throughput and low cost, thus our study includes 
more than sixfold more participants than the largest GWAS of mass 
spectrometry-based circulating metabolites68 enabling much deeper 
characterization of the genetic regulation. Furthermore, mass spec-
trometry cannot provide the detailed analysis of lipoprotein sub-
classes that is available from NMR platforms. Another limitation is that 
although we identified differences in genetic associations according 
to fasting status and sample type, the mechanisms explaining these 

differences remain suggestive and require further investigations. These 
differences suggest that caution should be used when interpreting 
heritability estimates across different studies, such as UK Biobank. 
Furthermore, we have described the detailed metabolic associations 
of genetic loci associated with ICP, and it should be noted that many 
of the ICP-associated loci are known to be associated with liver func-
tion enzymes or bilirubin, increased levels of which are included in 
diagnostic criteria for ICP. However, the presence of pruritus (itching) 
is required for ICP to be diagnosed, and the ICP cases defined through 
hospital discharge registries included in the GWAS should therefore 
represent true symptomatic cases.

Conclusion
Through this large-scale, genome-wide meta-analysis including more 
than 136,000 participants, we identified more than 8,000 genetic asso-
ciations of circulating metabolic biomarkers involving over 400 loci. 
The fivefold increase in sample size and doubling of the number of 
metabolic traits compared to our previous GWAS meta-analysis of NMR 
metabolic traits led to a marked increase in the number of significant 
associations (62 associated loci previously4), leading to a substan-
tial improvement in understanding of genetic regulation of systemic 
metabolism. Key features of our meta-analysis are the inclusion of 
participants from 33 cohorts, which enables the discovery of many new 
robust associations with evidence from independent datasets. Through 
internal comparisons across these datasets and external comparison 
with UK Biobank, we have highlighted the important role that sample 
and participant characteristics, such as sample type and fasting status, 
can have in revealing or masking genetic associations, with significant 
consequences for biological interpretation and downstream analyses. 
Our extensive manual curation to identify highly probable causal genes 
at nearly 300 associated loci provides a useful resource to further bio-
logical understanding of the associations and allows high-confidence 
identification of causal genes for disease associations that colocalize. 
For the remaining loci, our results provide a starting point for iden-
tification of genes that have so far not been known to be involved in 
metabolic regulation. Our comparison of the fine-grained metabolic 
associations across the lipoprotein measures enables the identification 
of clusters of genes with similar metabolic profiles, suggesting TRIM5 
as a potential therapeutic target for lowering pro-atherogenic lipid 
levels, and therefore cardiovascular diseases, as the metabolic profile 
of TRIM5 aligns well with genes that affect LDL cholesterol intake to 
hepatocytes through the LDL receptor. By making the summary sta-
tistics publicly available, we provide a valuable resource for Mendelian 
randomization studies and have illustrated the potential pitfalls of 
using pleiotropic variants as genetic instrumental variables. Finally, 
we have illustrated the potential to use these findings to shed light 
on inadequately characterized diseases by examining the metabolic 
effects of genetic variants associated with ICP, a disease with a largely 
unknown genetic background.
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Methods

NMR metabolomics
In this work, we expand our previous GWAS of 123 human metabolic 
traits in ~25,000 individuals4 to include additional cohorts and a 
more comprehensive panel of metabolic traits. Up to 233 serum or 
plasma metabolic traits were quantified in 33 cohorts (total sample 
size up to 136,016) using an updated quantification version of the 
same NMR metabolomics platform17 as in the previous study. The 
NMR metabolomics platform provides data of lipoprotein subclasses 
and their lipid concentrations and compositions, apoAI and apoB, 
cholesterol and triglyceride measures, albumin, various fatty acids 
and low-molecular-weight metabolites—for example, amino acids, 
glycolysis-related measures and ketone bodies. In this work, the 
metabolic traits were quantified in the following cohorts (described 
in detail in Supplementary Notes and Supplementary Table 1): Avon 
Longitudinal Study of Parents and Children (ALSPAC), China Kadoorie 
Biobank (CKB), Estonian Genome Center of University of Tartu Cohort 
(EGCUT), The Erasmus Rucphen Family study (ERF), European Genetic 
Database (EUGENDA), FINRISK 1997 (FR97), FINRISK 2007 (FR07, that 
is, DILGOM), The INTERVAL Bioresource (INTERVAL), CROATIA-Korcula 
Study (KORCULA), LifeLines-DEEP (LLD), Leiden Longevity Study (LLS), 
eight subcohorts from the London Life Sciences Prospective Population 
Study (LOLIPOP), The Metabolic Syndrome in Men study (METSIM), 
The Netherlands Epidemiology of Obesity Study (NEO), The Neth-
erlands Study of Depression and Anxiety (NESDA), Northern Finland 
Birth Cohort 1966 (NFBC1966), NFBC1986, The Netherlands Twin Reg-
ister (NTR), Oxford Biobank (OBB), Orkney Complex Disease Study 
(ORCADES), PROspective Study of Pravastatin in the Elderly at Risk 
(PROSPER), three subcohorts from the Rotterdam Study (RS), TwinsUK 
(TUK), and The Cardiovascular Risk in Young Finns Study (YFS). Most of 
the cohorts consisted of individuals of European ancestry (six Finnish 
and 21 non-Finnish), and six cohorts had individuals of Asian ancestry 
(one Han Chinese and five South Asian). All participants gave informed 
consent and all studies were approved by the ethical committees of 
the participating centres.

Detailed description of the NMR method is given in the Supplemen-
tary Notes.

Genome-wide association study
A GWAS was performed for 233 metabolic traits (Supplementary 
Table 2) in each of 33 cohorts (Supplementary Table 1), leading to 
inclusion of up to 136,016 individuals with both NMR metabolic trait 
measurements and genome-wide SNP data available. Pregnant individ-
uals or those using lipid-lowering medication were excluded from the 
study. SNPs were imputed using the Haplotype Reference Consortium 
release 1.1 or the 1000 Genomes Project phase 3 release, and GWAS 
was performed under the additive model separately in each cohort 
(details in Supplementary Table 3). Before analyses, the metabolic 
trait distributions were adjusted for age, sex, principal components 
and relevant study-specific covariates (see Supplementary Table 3), 
and inverse rank normal transformation of trait residuals was per-
formed. The cohorts were combined in fixed-effect meta-analysis with 
METAL69, and the SNPs were filtered to those present in at least seven 
cohorts. The NMR metabolic traits are highly correlated and using the 
Bonferroni correction to account for multiple testing would result 
in an overconservative threshold for genome-wide significance. We 
therefore used the number of principal components (28) explaining 
>95% variation in the metabolic traits defined in the largest cohort, 
INTERVAL, to correct for multiple testing, and our genome-wide sig-
nificance threshold was set to P < 1.8 × 10−9 (standard genome-wide 
significance level, P < 5 × 10−8, divided by 28). After the primary GWAS, 
fasting- and sample type-stratified analyses were performed for the 
233 metabolic traits. In these analyses 26 of the cohorts were classi-
fied as fasted (n = 68,559), six cohorts were classified as non-fasted 

(n = 58,112), seventeen cohorts were classified as having serum samples 
(n = 90,223) and sixteen cohorts had plasma samples (n = 45,793; see 
Supplementary Table 1). To define associated loci across the meta-
bolic traits, we defined a 500-kb window flanking each SNP meeting 
the significance threshold, pooled together these windows from all 
metabolic traits for each chromosome, and iteratively merged the 
windows. As this approach can lead to inclusion of multiple independ-
ent signals within these loci, we further defined potential independ-
ent signals that reside within the defined loci based on pairwise LD 
(r2 cut-off of 0.3, defined in INTERVAL and FINRISK97) of all the lead 
SNPs within each locus. Regional association plots were created in 
LocusZoom, v. 1.4. We assigned the associated lead SNPs to the most 
likely causal genes based on two criteria: (1) we prioritized genes with 
clear biological relevance to the associated metabolic traits; and (2) if 
no biologically plausible causal gene was detected and the lead SNP 
was a functional variant (missense, splice region or stop gained) or in 
high LD (r2 > 0.8 in INTERVAL) with such a variant, the gene with the 
functional variant was assigned as the most likely candidate gene. If 
criteria 1 and 2 were not fulfilled, the nearest gene was indicated as 
the candidate gene.

Ancestry-specific analyses
We conducted ancestry-stratified analyses within our primary discov-
ery meta-analysis for South Asian (five cohorts, 11,340 participants), 
East Asian (one cohort, 4,435 participants), all European (27 cohorts, 
120,241 participants), Finnish (six cohorts, 27,577 participants) and 
non-Finnish European (21 cohorts, 92,664 participants) participants. 
For these ancestry-specific analyses, we used the standard thresh-
old for genome-wide significance (P < 5 × 10−8). To also compare to 
participants with African ancestry, we conducted an African-specific 
subgroup analysis using the UK Biobank dataset (March 2021 release). 
Using self-reported ethnicity information (Field 21000: Ethnicity back-
ground) from the baseline questionnaire, 1,405 participants with Afri-
can ancestry were identified as having Caribbean (code 4001), African 
(code 4002), or any other Black background (code 4003). Variant QC 
was performed by excluding SNPs with minor allele frequency <1%, 
INFO score <0.4, and variants in complex LD regions. LD thinning was 
performed with r2 < 0.1, a window size of 1,000 and a step size of 80. 
Related individuals were identified and excluded using relatedness 
data provided by the UK Biobank (Field 22021: Genetic kinship to other 
participants). Outliers of the first 6 genetic principal components 
computed on the unrelated samples were removed from the analysis. 
NMR metabolic traits were adjusted for age, sex, fasting status and 10 
genetic principal components, and trait residuals were inverse rank 
normal-transformed. Associations between SNPs and metabolic traits 
were tested using PLINK 2.0.

Replication in publicly available data
UK Biobank SNP–metabolic trait summary statistics were downloaded 
(https://gwas.mrcieu.ac.uk/datasets/?gwas_id__icontains=met-d) from 
the IEU Open GWAS Project70. These summary statistics were derived 
from the publicly available March 2021 release of the UK Biobank data 
in which the metabolic traits were measured with a similar NMR tech-
nology (newer version of the Nightingale Health platform) as in our 
study. The data were used to compare the association of our lead SNP–
metabolic trait pairs within the 276 associated regions. Two thresholds 
were used to define an association in the UK Biobank data: the standard 
genome-wide significance level (P < 5 × 10−8) and the suggestive level 
of significance (p < 1 × 10−5).

Heritability and variance explained
We used GCTA-GREML71 v. 1.94 to estimate common variant heritabil-
ity for each trait using an independent dataset, specifically the UK 
Biobank phase 1 NMR release. This research was conducted using the 
UKBB Resource under application number 7439. We randomly selected 
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10,000 unrelated UK Biobank participants of European ancestry with 
available NMR data and filtered imputed variants to minor allele fre-
quency >0.005, missingness <0.1 and Hardy–Weinberg equilibrium 
P value <10−6. We removed technical variation from the traits using 
methods described previously72, and adjusted the traits for age, sex, 
lipid-lowering medication usage and the first 10 genetic principal com-
ponents of ancestry. Traits were rank inverse normal-transformed prior 
to GREML analysis. Variance explained by the lead SNPs for each trait 
was estimated as described before73.

Comparing to previous associations
We performed an extensive comparison of our metabolic trait associa-
tions to previous GWASs of metabolic traits. Our comparisons were 
divided into three groups: (1) comparison to results of previously pub-
lished large GWAS of circulating NMR traits4,5; (2) comparison with loci 
associated with clinical lipids (including those from the UK Biobank 
September 2019 version 3 release)21,25–27,74; and (3) comparison with an 
extensive list of associations from previous metabolite and metabo-
lomic studies11,13,53,75–87. The comparisons were performed by indicat-
ing: (1) co-located known variants; (2) any known associations within 
a 500-kb flank of a lead SNP; or (3) known associations in LD (r2 > 0.3, 
defined in INTERVAL) with a lead SNP. Since we used the UK Biobank 
for replication, we did not compare the associations to those from 
studies that used UK Biobank NMR metabolomics as a single cohort 
without validation cohorts67,88.

In addition to comparing to previous metabolic trait associations, 
we screened previous disease and trait associations (P value cut-off 
5 × 10−8) of the lead SNPs using PhenoScanner, v244,45, and NHGRI-EBI 
GWAS Catalog46 (associations downloaded on 30 March 2023 using 
the gwasrapidd R package, v. 0.99.1489). In addition, we screened the 
FinnGen43 data freeze 7 summary statistics of 3,095 disease endpoints 
for overlapping associations (P value cut-off 5 × 10−8). Associations with 
gene expression and protein levels were screened using PhenoScan-
ner, v244,45.

Metabolic effects of lipoprotein loci
To compare the metabolic effects of lipoprotein, lipid and 
apolipoprotein-associated variants, the effect estimates were visual-
ized as colour-coded heat maps. To allow comparison of SNP effects, 
the estimates were scaled relative to the highest absolute value of the 
estimate for each SNP. In this analysis, we included lead SNPs at the 276 
initially defined regions that were associated with any of the lipoprotein 
lipids or apolipoproteins at genome-wide significance and nominally 
associated (P < 0.05) with apoB. We used these criteria to restrict the 
analysis to SNPs associated with apoB, because apoB is known to be a 
causal part of lipoprotein metabolism for cardiovascular disease30–32. 
To exclude signals with similar effects across the metabolic traits due 
to the same causal gene, we included only a single SNP from the ini-
tially defined genomic regions that had multiple independent signals 
if the patterns of metabolic traits associations were similar (R > 0.5). 
In the heat maps each line represents a single SNP, each column cor-
responds to a single metabolic measure, and the scaled effect estimates 
for the SNP-metabolite associations are visualized with a colour range. 
Directions of effects are shown in relation to the allele associated with 
increased apoB. To group SNPs with similar effects together, dendro-
grams were constructed based on hierarchical clustering of the scaled 
SNP effects. Heat maps were constructed using the heatmap.2 function 
of the gplots v. 3.0.3 R package. Pearson correlations were assessed 
in R, v. 4.0.0.

Intrahepatic cholestasis of pregnancy
We assessed overlap of our metabolic trait associations with ICP using 
summary statistics from the FinnGen study43 data freeze 7 (O15_ICP; 
1,460 cases, 172,286 controls). ICP cases were defined through hospital 
discharge registry, ICD10 code O26.6 and ICD9 codes 6467A and 6467X. 

Using the nearest genes at each associated locus, we performed gene 
ontology (GO) enrichment analysis to search for enriched biologi-
cal process and molecular function GO terms90,91. We assessed colo-
calizations of association signals using the hypothesis prioritization 
for multi-trait colocalization (HyPrColoc) R library, v. 1.0, in which 
an efficient deterministic Bayesian algorithm is used to detect colo-
calization across vast numbers of traits simultaneously92. We searched 
for colocalization at single causal variants and shared regional asso-
ciations. To visualize SNP effects across lipid and lipoprotein traits, 
heat maps were constructed using the heatmap.2 function of the 
gplots v. 3.0.3 R package. The following SNPs were included in the 
heat maps: GCKR-rs1260326, ABCB11-rs10184673, ABCB1-rs17209837, 
CYP7A1-rs9297994, SERPINA1-rs28929474 and HNF4A-rs1800961. 
Effects of the metabolic trait-associated SNPs were scaled relative to 
an odds ratio of 1.5 for ICP.

Mendelian randomization
Two-sample Mendelian randomization was performed using 20 NMR 
non-lipid metabolic traits (including amino acids (alanine, glutamine, 
glycine, histidine, isoleucine, leucine, valine, phenylalanine and tyros-
ine), ketone bodies (acetate, acetone and 3-hydroxybutyrate), and 
glycolysis/gluconeogenesis (glucose, lactate, pyruvate, glycerol and 
citrate), fluid balance (albumin and creatinine) or inflammation-related 
(glycoprotein acetylation) metabolic traits) as exposures and 460 Phe-
codes and 52 quantitative traits from the UK Biobank21 as outcomes. 
We defined two sets of instruments for the analyses that are referred 
to as full and strict instruments. As initial instruments we used the 
334 lead variants (a single instrument SNP per each defined associ-
ated locus) associated with these traits (‘full instruments’). To avoid 
potential bias due to pleiotropy, we also selected a subset of 193 vari-
ants (‘strict instruments’) that had fewer than 5 associations across 
all 233 metabolic traits. Our threshold of 5 associations was based on 
empirical assessment of the distribution of per-variant trait associa-
tions. To investigate the sensitivity of the Mendelian randomization 
analyses to the choice of threshold, we also tested using fewer than 
3 associations and fewer than 7 associations. We defined disease out-
comes in UK Biobank using a curated list of major Phecodes available 
in the PheWAS R package93,94. To restrict our analysis to major disease 
outcomes, we discarded any sub-categories (that is, Phecodes with 
4 or more characters) and removed outcomes with fewer than 100 
events across up to 367,542 unrelated UK Biobank participants with  
European ancestry. The resulting 460 diseases were grouped into 15 
broad domains: circulatory system, dermatologic, digestive, endocrine/ 
metabolic, genitourinary, haematopoietic, infectious diseases, mental 
disorders, musculoskeletal, neoplasms, neurological, pregnancy com-
plications, respiratory, sense organs and symptoms. We also analysed 
52 quantitative traits available in UK Biobank, including blood pres-
sure, lung function measures, blood cell traits and clinical chemistry 
biomarkers. In our replication analysis (acetone as the exposure and 
hypertension as the outcome), we used essential hypertension from the 
FinnGen study43 data freeze 7 as the outcome (hypertension essential, 
I9_HYPTENSESS; 70,651 cases, 223,663 controls). Cases were defined 
through hospital discharge registry, ICD10 code I10, ICD9 codes 4019X 
and 4039A, ICD8 codes 40199, 40299, 40399, 40499, 40209, 40100, 
40291, 40191 and 40290.

We performed univariable Mendelian randomization using the 
inverse variance-weighted method for each instrument95. We also per-
formed sensitivity analyses using Mendelian randomization–Egger 
regression to account for unmeasured pleiotropy96 and weighted 
median regression to assess robustness to invalid genetic instru-
ments97. Our primary analyses were based on fixed-effect models, but 
as sensitivity analyses we used random-effect models to account for 
between-variant heterogeneity, which we quantified using the I-squared 
statistic. The Mendelian randomization analyses were performed using 
the MendelianRandomization package v. 0.5.198 or the TwoSampleMR 
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package v. 0.5.399. Single-SNP Mendelian randomization estimates 
were based on the Wald ratio. We considered the fixed-effects inverse 
variance-weighted method as the main Mendelian randomization 
model but report the results of all models in Supplementary Table 15. 
To account for multiple testing, associations with P < 4.88 × 10−6 were 
considered significant (Bonferroni correction to account for testing 
of 20 metabolic traits with 512 outcomes).

FinnGen study
In the present study, we used GWAS summary statistics of 3,095 disease 
endpoints from FinnGen data freeze 7. Full description of the FinnGen 
study43 and data analysis steps is provided in the Supplementary Notes. 
FinnGen contributors are listed in Supplementary Table 18.

Statistics and reproducibility
The meta-analyses were conducted independently by two investigators 
in two different centres (University of Oulu, Finland and University of 
Cambridge, UK), and the summary statistics were compared to verify 
consistency of results.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Full GWAS summary statistics are publicly available through the 
NHGRI-EBI GWAS catalogue (GCST90301941–GCST90302173) 
and https://www.phpc.cam.ac.uk/ceu/lipids-and-metabolites/. 
Individual-level raw metabolic data from the INTERVAL study can 
be requested as instructed in https://www.phpc.cam.ac.uk/ceu/
lipids-and-metabolites/. For access to individual-level genotype and 
phenotype data for the other studies included in this meta-analysis, 
please see Supplementary Table 1 for details of websites or references 
of the individual studies. The NMR metabolomics platform, includ-
ing the proprietary analysis software, is protected by the intellectual 
property rights of Nightingale Health, therefore the NMR spectra are 
not in the possession of the authors and cannot be made publicly avail-
able. Source data are provided with this paper.
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Extended Data Fig. 1 | Comparisons of effect sizes across ancestries.  
Scatter plots (lower left) show SNP effect sizes of the lead SNP – metabolic trait 
pairs within the 276 associated genomic regions across different ancestries 
(Europeans, n = 120,251; Finnish, n = 27,577; non-Finnish Europeans, n = 92,664; 
South Asians, n = 11,340; Han Chinese, n = 4,435; Africans, n = 1,405). Pearson 

correlation (Corr) values (r) from each comparison are shown (upper right). 
The diagonal squares show the number of the 8,795 associations that could be 
tested in each ancestry group (denominator) and the number that reached the 
traditional level of genome-wide significance (p < 5 ×10−8) (numerator).
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Extended Data Fig. 2 | Mirrored Manhattan plot showing the results of 
genome-wide association study of phenylalanine in the NMR GWAS meta- 
analysis and UK Biobank. The top panel of the mirrored Manhattan plot shows 
the NMR inverse variance weighted GWAS meta-analysis results (n = 136,016) 
and the bottom panel the UKBB results (n = 115,025). The red lines indicate the 

thresholds for genome-wide significance (top panel p < 1.8 × 10−9; bottom panel 
p < 5 × 10−8). 500-kb regions around lead SNPs in the NMR GWAS are highlighted. 
Loci indicated in red have roles in coagulation-related pathways. Loci indicated 
in blue were genome-wide significant in both NMR GWAS meta-analysis and  
UK Biobank.



Extended Data Fig. 3 | Examples of glucose associations for fasted and 
non-fasted cohorts. The forest plots in panels a and b show examples of two 
lead SNPs in which glucose associations were significant in the fasted cohorts 
(top; n = 68,559) and non-significant in the non-fasted cohorts (bottom; 
n = 58,112). The associations were analyzed by inverse variance weighted GWAS 
meta-analysis. These associations were absent in the UK Biobank. Effect sizes 
(betas and 95% confidence intervals), effect allele frequencies (EAF) and 

p-values are indicated for each cohort. Cohort acronyms can be found in 
Supplementary Table 1. Panels c and d show regional association plots of the 
MTNR1B (c) and GLIS3 (d) loci in the fasted (left) and non-fasted (center) cohorts 
and in UK Biobank (right). SNPs with p < 0.1 are shown. 500-kb flanking regions 
around each lead SNP are shown. The linkage disequilibrium values (r2) are 
based on the 1000Genomes European population.
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Extended Data Fig. 4 | Heat map of lipoprotein and lipid associations. 
Lipoprotein and lipid associated loci with similar association patterns across 
the lipoprotein measures were grouped together in a dendrogram based on 
hierarchical clustering of the SNP effects. The apolipoprotein B associated  
loci (n = 134, p < 0.05) were included since apolipoprotein B represents a causal 
part of the lipoprotein metabolism for cardiovascular disease. The heat map 
illustrates the resemblances of the association landscapes; each row represents 
a single SNP, each column corresponds to a single metabolic measure, and the 

scaled effect estimates from inverse variance weighted GWAS meta-analysis 
for the SNP-metabolite associations are visualized with a colour range. Effect 
sizes were scaled relative to the absolute maximum effect size (beta) in each 
locus. Loci that were not identified in the previous large-scale NMR metabolomics 
GWAS are indicated by red. Traits with absolute maximum effects in each locus 
are indicated by asterisks. For clarity, two of the clusters (brown and purple) are 
highlighted in Extended Data Fig. 5.



Extended Data Fig. 5 | A zoomed heat map of lipoprotein and lipid 
associations. The full heat map including all the loci and a full set of lipoprotein 
traits is shown in Extended Data Fig. 4. For clarity, two of the clusters are 
highlighted here. For details, see legend for Extended Data Fig. 4. Panels a and b 
corresponding to the brown and purple branches of the dendrogram shown in 
the full-sized heat map, respectively. Effect sizes were scaled relative to the 
absolute maximum effect size (beta) in each locus. In the heat map, each row 
represents a single SNP, each column corresponds to a single metabolic measure, 
and the effect estimates for the SNP-metabolite associations are visualized 
with a colour range. Loci highlighted in red were not identified in the previous 
NMR metabolomics GWAS.
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Extended Data Fig. 6 | Influence of pleiotropy on Mendelian randomization 
estimates. The effect estimates (absolute betas) (panel a) and heterogeneity Q 
statistics (panel b) from the Mendelian randomization (MR) analyses using  
the full (pleiotropic) and strict (non-pleiotropic) MR instruments are shown. 
MR was performed using a fixed-effects inverse-variance weighted method. 
Associations that were significant (p < 4.88 × 10−6) using either the full or strict 
instrument or both were included; some of the significant exposure-outcome 
associations are indicated. Estimates indicated in light pink and light blue were 
not significant with the strict and full instruments, respectively. For clarity, 
very large beta (>5) and Q values (>60,000) were excluded from the plots.
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and-metabolites/. For the access to individual-level genotype and phenotype data for the other studies included in this meta-analysis, please see Supplementary 
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Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender We utilized data from studies that comprised both men and women. We did not perform any sex-specific analyses. Biological 
sex was used as a covariate in the analyses as indicated in the manuscript.

Population characteristics In the principal analyses, we utilized data from 33 cohorts/subcohorts. In addition, we used data from two biobanks/biobank-
related projects. Details of the participants are summarized in the Supplementary Tables and Supplementary Notes. We used 
age, sex, population stratification and other relevant study-specific factors as covariates as indicated in the manuscript and 
Supplementary Tables.

Recruitment The studies are predominantly population-based cohorts recruited from a variety of settings, including primary care 
registries, household surveys and blood donors.

Ethics oversight The studies were approved by appropriate local ethics committees; the committees are indicated in the Supplementary 
Notes. The following committees approved the studies: Avon Longitudinal Study of Parents and Children: ALSPAC Law and 
Ethics committee; China Kadoorie Biobank: Oxford Tropical Research Ethics Committee, the Ethical Review Committees of 
the Chinese Centre for Disease Control and Prevention, Chinese Academy of Medical Sciences, and the Institutional Review 
Board (IRB) at Peking University; Estonian Genome Center, Institute of Genomics, University of Tartu: Research Ethics 
Committee of the University of Tartu; Erasmus Rucphen Family study: Medical ethics committee of the Erasmus Medical 
Center, Rotterdam, the Netherlands; European Genetic Database: Institutional review board in Radboud UMC (Commissie 
Mensgebonden Onderzoek Radboudum), ethics committees in Cologne and Nijmegen; FINRISK: The Coordinating Ethics 
Committee of the Helsinki and Uusimaa Hospital District; The INTERVAL Bioresource: the National Research Ethics Service 
Committee East of England - Cambridge East; CROATIA-Korcula: Ethics committees of the Medical School of the University of 
Zagreb, the Medical School of the University of Split and the National Health Service, Lothian, Scotland; LifeLines-DEEP: The 
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Sample size All participants with available genotype and metabolite data were included. Total sample size was up to 136,016. 

Data exclusions The quality control steps including participant/data exclusions are described in the manuscript. Pregnant individuals, statin users and data 
outliers were excluded in relevant cohorts. Genetic variants that did not meet quality control thresholds were excluded.

Replication This is a meta-analysis, and as such includes internal replication. Replication of the findings was further investigated in the UK Biobank for 
those genetic variants and metabolic traits that were available in the UK Biobank data (8,502 of 8,795 lead SNP - metabolic trait pairs). 
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Randomization This is a genome-wide association study and thus the randomization was due to genetic variants.

Blinding This was not a clinical trial so there was no requirement for blinding. Due to the sheer size of the genetic data, the investigators were blinded 
to the genotype group allocation.
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