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ABSTRACT: This research focuses on investigating the relative performance of a range of machine
learning algorithms, namely the artificial neural network, support vector machine, Gaussian process
regression, random forest, and XGBoost, for predicting the undrained shear strength from cone
penetration test data. This is to assess how machine learning could help us lower the need for laboratory
test data. The training dataset compiles 526 data from 12 regions and the testing dataset consists of 20
data from a polder located close to Leiden in the Netherlands. In addition, k-fold and group k-fold
cross-validation strategies are both applied to validate the models. The poor performance of the models
during group k-fold cross-validation suggests that, while machine learning techniques can perform well
when site-specific data are included during training, they struggle to generalize without site-specific
data. This highlights the difficulty of capturing soil heterogeneity and suggests that either machine
learning methods should be trained on specific sites for which some data are already available, or much
larger training datasets are needed.

1. INTRODUCTION
Soil shear strength, defined as the capability of soils
to withstand internal movement or slippage when
subjected to an imposed load, has always been one
of the most important parameters in soil mechanics
studies. It plays a crucial role in the design phase
of various infrastructures, such as foundations, em-
bankments, earthen dams, and retaining walls.

In general, shear strength parameters can be esti-
mated in the field as well as in a laboratory. In-situ
tests include cone penetration tests, standard pene-
tration tests, piezo-cone, field vane shear tests and

pressure meter tests. In the laboratory, the parame-
ters of soil shear strength are generally determined
through the direct shear test or various forms of tri-
axial shear test, namely unconsolidated undrained
triaxial test, consolidated undrained triaxial test and
consolidated drained triaxial test.

As machine learning (ML) techniques have be-
come increasingly popular, there has been an in-
creasing number of applications of ML in diverse
areas of science, especially in the last decade. In
the context of soil research, the availability of an
increasing number of large datasets of soil together
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with open-source ML techniques has contributed to
the increasing use of ML techniques in soil stud-
ies, such as in the prediction of soil properties
via soil data using ML techniques (Padarian et al.,
2020). For instance, Kanungo et al. (2014) assessed
the effectiveness of artificial neural network (ANN)
and regression tree techniques in predicting shear
strength parameters. Ly and Pham (2020) studied
the prediction of soil shear strength by applying a
support vector machine (SVM) based on six input
parameters, namely clay content, moisture content,
specific gravity, void ratio, liquid limit, and plas-
tic limit. It is worth mentioning that the datasets
used in those studies are large for the soil mechan-
ics community, but still considered very small in the
ML community.

The cone penetration test (CPT) is a powerful
and cost-effective tool for investigating subsoil con-
ditions, and various empirical correlations are avail-
able for interpreting CPT data. These correlations,
however, are not universally applicable to all soils
and subsurface conditions. Therefore, in practice,
CPT test data are usually complemented by labora-
tory test data to verify the applicability of the corre-
lations. For large projects involving large amounts
of data, however, laboratory-based studies of the
subsoil can not only be more complex and tedious,
but also more expensive. Instead, ML models based
on, for example, random forest (RF) or ANN al-
gorithms can be used, which makes the task much
more efficient and economical. Thus, the motiva-
tion of this paper is to review and investigate the rel-
ative performance of a range of ML algorithms for
predicting undrained shear strength through CPT
data and provide a reference for selecting an effec-
tive ML algorithm.

2. MACHINE LEARNING METHODS

2.1. Nonlinear regression

From linear regression to nonlinear regression, dif-
ferent models apply various techniques to introduce
nonlinearity. ANN can be regarded as introducing
nonlinearity through a combination of generalized
linear models. SVM and Gaussian process regres-
sion (GPR) are both kernel-function (i.e. covari-
ance function) -based algorithms. GPR differs from

SVM in that it is also able to provide uncertainty es-
timates for its predictions.

2.1.1. Artificial neural network
ANN refers to a biologically inspired approach of
ML modeled on the brain. Similar to the hu-
man brain, which has neurons interconnected with
one another, ANNs have neurons that are intercon-
nected to one another in various layers of a net-
work. The interconnected artificial neural elements
work in unison, sharing information to develop an
awareness of the relationship between different pa-
rameters in order to learn or emulate how a system
functions (Reale et al., 2018). Neural networks are
typically arranged into an input layer, one or sev-
eral hidden layers, and an output layer. The num-
ber of input and output nodes depends on the engi-
neering problem being considered. The number of
hidden neurons is one of the hyperparameters that
needs to be tuned on a problem-by-problem basis.
In this study, a feed-forward multi-layer perceptron
using the back-propagation learning algorithm is
applied. Feed-forward Neural Networks are ANNs
where the node connections do not form a cycle.
In this way, each layer’s outputs serve as the in-
put to the next layer. This allows using the back-
propagation algorithm to efficiently train the neural
network. Here, the output values are compared with
the correct answer to compute the value of some
predefined error function. By applying the auto-
matic differentiation technique, the error is then fed
back through the network. Using this information,
the algorithm is able to adjust the weights of each
connection in order to reduce the value of the error
function by a small amount. After repeating this
process for a sufficiently large number of training
cycles, the network will usually converge to some
state where the error of the calculations is small.

2.1.2. Support vector machine
The support vector machine originated from the
concept of statistical learning theory pioneered by
Boser et al. (1992). In this study, we use the SVM
as a regression technique by introducing an error-
insensitive loss function. There are three distinct
characteristics when an SVM is used to estimate
the regression function: the type of kernel func-
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tion f , the optimum capacity factor C, and the opti-
mum error insensitive zone ε . The main aim of an
SVM is to find a function that gives a deviation of
ε from the actual output and, at the same time, is as
flat as possible. The constant C(0 < C < ∞) deter-
mines the trade-off between the flatness of f and the
amount up to which deviations larger than ε are tol-
erated (Smola and Schölkopf, 2004). When linear
regression is not appropriate, then input data have
to be mapped into a high dimensional feature space
through some nonlinear mapping technique (Boser
et al., 1992). There are two steps in this exercise:
firstly, carry out a fixed nonlinear mapping of the
data onto the feature space; and secondly, carry out
a linear regression in the high dimensional space.
The input data are mapped onto the feature space.
The concept of a kernel function has been intro-
duced to reduce the computational demand. Some
common kernels, such as homogeneous and non-
homogeneous polynomial expressions, radial basis
functions, Gaussian functions and sigmoid func-
tions, and their combinations, have been used for
nonlinear cases (Das et al., 2011).

2.1.3. Gaussian process regression
Being a probabilistic supervised ML model, the
Gaussian process model has been widely used for
both regression and classification tasks. A GPR
model can make predictions incorporating prior
knowledge through kernel functions and provide
uncertainty measures over predictions. In contrast
to the traditional nonlinear regression methods that
typically give one function that is considered to fit
the dataset best, a Gaussian process model is able
to describe a probability distribution over possible
functions that fit a set of points. Through this prob-
ability distribution over all possible functions, the
mean function can be calculated and taken as the
prediction. The prediction is updated as the num-
ber of observation points increases, and the vari-
ance can also be used to indicate how uncertain the
predictions are.

2.2. Tree-based algorithms
2.2.1. Random forest
The RF consists of a committee of decision trees.
Each individual tree is a fairly simple model that

has branches, nodes and leaves. The purpose of
building a decision tree is to create a model that
predicts the value of the target variable depending
on several input variables. Firstly, sub-samples are
generated from the training data by drawing with
replacement. This is called bootstrap sampling.
This random sampling with replacement ensures
that we are not using the same data for every tree, so
it helps our model to be less sensitive to the origi-
nal training data. Next, the models are built by con-
structing a decision tree for each sub-sample based
on a random set of features. This random selection
of features is important, since, if every feature is
used, then most of the trees will have the same de-
cision nodes and will act very similarly which de-
creases the variance.

2.2.2. XGBoost
XGBoost is a tree-based method that uses trees in
a sequential manner (so that a tree is trained to im-
prove the prediction of the previous tree), in con-
trast to RF which uses trees in parallel. It is based
on gradient boosting together with some advanced
optimizations. Gradient boosting is an iterative op-
timization algorithm used in ML to minimize the
loss function, which is a measure of how good the
prediction model does in terms of being able to pre-
dict the expected outcome. XGBoost, however, is
an optimized gradient-boosting ML library. It is
a more regularized form of gradient boosting us-
ing advanced regularization, as the loss function
in XGBoost includes two basic components, train-
ing loss, and regularization. Training loss measures
how well the model fits into the training data. Reg-
ularization measures the complexity of the model.
The regularization terms are added into the loss
function to penalize complex models to avoid over-
fitting, thereby improving the model generalization
capabilities.

3. DATASET
3.1. Training dataset
The Clay/6/535 database (Ching et al., 2014)
was chosen to be the preliminary dataset in this
study. It comprises 535 data points of lightly
over-consolidated clay data from 40 sites with the
following measurement information: normalized
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undrained shear strength (Su
σ ′

v
), over-consolidation

ratio (OCR), normalized cone tip resistance (qt−σv
σ ′

v
),

normalized effective cone tip resistance (qt−u2
σ ′

v
),

normalized excess pore pressure (u2−u0
σ ′

v
) and pore

pressure ratio (u2−u0
qt−σv

), together with the effective
stress (σ ′

v) and the depth of each measured point.
The 40 sites are located in the following geograph-
ical regions: Brazil, Canada, Hong Kong, Italy,
Malaysia, Norway, Singapore, Sweden, UK, USA,
the North Sea, and Venezuela.

The preliminary dataset is pre-processed by se-
lecting the input variables, handling null values, re-
moving the outliers, and scaling the features. A to-
tal of four input variables are chosen in predicting
the shear strength of the soil, including the effec-
tive stress (σ ′

v), cone tip resistance (qt −σv), effec-
tive cone tip resistance (qt − u2) and excess pore
pressure (u2 − u0). After removing 9 outliers, in
total 526 data points are compiled into the train-
ing dataset used in this research. As the train-
ing dataset is too small in an ML context, cross-
validation (CV) strategies are applied to the train-
ing dataset. The ratio of training data to validation
data is taken as 90/10.

3.2. Testing dataset

Figure 1: An aerial photograph of Leendert de Boer-
spolder, taken in 2015, indicated are: (A) and (B) loca-
tions not related to this study; (C) location where 100
CPTs were conducted and where 20 samples were col-
lected for laboratory tests (de Gast, 2020).

The testing dataset is from a polder (see Figure
1) in the Netherlands, in which 100 CPTs were
performed and 20 samples were collected from 11
boreholes (de Gast, 2020). The relative locations of
the CPTs and boreholes are illustrated in Figure 2.

The CPTs in the vicinity of the boreholes utilize
GPR to get representative inputs at the locations of

Figure 2: The locations of 11 boreholes for the labora-
tory tests and 100 CPTs at location C using Global RD
(Dutch reference) XYZ-coordinates.

the boreholes. An illustration of the application of
GPR on the prediction of representative CPT data
at the location of a borehole, through several CPTs
that are in close vicinity to it, is provided in Figure
3. (The confidence interval is not included since
multiple inputs with uncertainties are not consid-
ered.) To obtain the representative CPT data at the
location of borehole B1009, which is for provid-
ing samples for laboratory tests, CPT index 66, 88,
and 99 are selected since they are in close vicin-
ity. The raw data of these three CPTs are first in-
terpreted with a script. After the interpretation, the
corrected cone tip resistances (qt) of the three CPTs
are plotted with dotted lines in the figure. Then
GPR, which applies a Matern kernel function, is ap-
plied to these three sets of data to figure out the final
prediction which is plotted with a black solid line
in the figure. Lastly, the representative corrected
cone tip resistance value of the laboratory sample
B1009-4, which is located at a depth of 3.92 m, can
be evaluated through the prediction line.

Figure 3: An illustration of the application of Gaussian
process regression for processing CPT data.
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3.3. Comparison between training and testing
dataset

In order to investigate the applicability of the tuned
ML models to the testing dataset, Figure 4 shows
the correlations between the inputs and the out-
put for the two datasets. The figure demonstrates
that the testing dataset is sufficiently within the
Clay/6/535 database and that the correlations are
not site-specific.
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Figure 4: Correlations between the inputs and the out-
put in the training and testing dataset.

4. MODEL IMPLEMENTATION
4.1. Cross-validation strategies
Cross-validation is one of the techniques used to
test the effectiveness of an ML model, by testing
the model on some unseen data. It is also a resam-
pling procedure used to evaluate a model if only a
limited amount of data are available, which is the
case in this study. There are various kinds of CV
strategies. The strategy to perform CV depends on
the scenario in the future application. Starting with
the most commonly used k-fold CV, a visualization
of which is shown in Figure 5, the dataset is split
into k consecutive folds, with each fold being used
once as the validation, while the k − 1 remaining
folds form the training set. Subsequently, the model
is fitted to the training set, and evaluated on the
validation set using statistical metrics, namely R2,
mean absolute error (MAE) and root mean square
error (RMSE). Finally, the average of the scores in
k iterations is taken as the performance metric for
the model.

Figure 5: Visualization of a 4-fold CV.

Group k-fold CV is a variation of k-fold CV
which ensures that the same group is not repre-
sented in both testing and training sets. An example
visualization is shown in Figure 6, where in this pa-
per, a ’group’ corresponds to a ’site’. This strategy
best simulates the scenarios where the model will
be tested on completely unseen data, which in this
study is data from new sites. This would be an in-
valuable application for ML, allowing us to start the
exploration of a site even before gathering any data.

To sum up, k-fold CV is a typical CV strategy.
It can be regarded as an ideal CV strategy in an
ML context because the training and testing popu-
lation share the same distribution, which in essence
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Figure 6: Visualization of a 4-fold group CV.

means that the scenario it is simulating tends to
be milder, thus leading to a relatively good result.
On the contrary, the group k-fold CV simulates a
more complex scenario, in which the testing distri-
bution can be very different from the training distri-
bution. This constitutes a tougher challenge to ML
algorithms, which generally leads to a relatively
poor result. Implementing these CV strategies for
training the models and assuming k = 10, we end
up with two sets of trained models for the testing
dataset: one is relatively conservative and the other
is more radical. This assures a more objective and
comprehensive evaluation of the performance of the
ML models.

4.2. Hyperparameter tuning
In training the ML models, the hyperparameters
need to be calibrated based on their performance
on a validation set. Grid search is a powerful tool
to use for this purpose as it can exhaustively search
over specified parameter values for an estimator
(Pedregosa et al., 2011). However, grid search CV
can quickly become too computationally expensive
due to its exhaustiveness. Conversely, in random
search CV, not all parameter values are tried out,
but a fixed number of parameter settings is sampled
from specified distributions. The latter has proven
to be able to find models that are as good or even
better within a small fraction of the computation
time (Bergstra and Bengio, 2012). In this research,
grid search CV is applied to SVM and GPR, since
there are only 3 or 4 hyperparameters that require
tuning. Meanwhile, random search CV has been
applied to RF, XGBoost, and ANN, since they have
a lot more hyperparameters to tune.

5. RESULTS
The hyperparameters in each ML model are first
calibrated using grid search CV or random search
CV based on their averaged performance on the
validation sets. As mentioned in Section 3.1, the
validation dataset constitutes 10% of the traning
dataset. As an example, the XGBoost parameters
tuned with k-fold CV and group k-fold CV are
present in Table 1.

Table 1: XGBoost parameters tuned with k-fold CV and
group k-fold CV.

Parameters
Value

(k-fold)
Value

(group k-fold)
n_estimators 47 14
subsample 0.50 0.60

learning_rate 0.11 0.11
max_depth 6 2
reg_alpha 2.60 1.00

reg_lambda 0.10 1.60
gamma 4.80 3.90
booster gbtree gbtree

The CV results in the validation dataset are sum-
marized in Table 2. It is taken as the main reference
for evaluating the relative performance of the algo-
rithms in this study. The results of the k-fold CV are
close and satisfying overall. However, the results of
the group k-fold CV are rather poor.

Table 2: The CV results in the validation dataset.

CV Method R2 MAE RMSE

k-fold

ANN 0.76 10.87 15.49
SVM 0.76 11.13 15.32
GPR 0.73 11.74 16.34
RF 0.75 10.89 15.70

XGBoost 0.76 10.79 15.45

group k-fold

ANN 0.13 16.44 21.21
SVM -0.29 17.76 22.76
GPR -0.41 15.89 20.21
RF -0.95 17.27 22.45

XGBoost -0.12 16.61 22.03

After tuning the hyperparameters, the con-
structed ML models are applied to the whole train-
ing and testing dataset. For instance, the results of

6



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

XGBoost in the training and testing dataset are pre-
sented in Figures 7 and 8 respectively.
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Figure 7: Best XGBoost models from k-fold and group
k-fold CV on the training set.
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Figure 8: Best XGBoost models from k-fold and group
k-fold CV on the testing set.

A summary of the predictive capabilities of the
algorithms using k-fold and group k-fold CV are
presented in Tables 3 and 4 respectively. Note that
GPR shows identical performance in both tables
since the models obtained with both CV strategies
were identical.

Table 3: Summary of the prediction capabilities of the
algorithms whose hyperparameters are selected using
k-fold CV.

Part Method R2 MAE RMSE

Training

ANN 0.79 10.69 14.96
SVM 0.83 9.85 13.38
GPR 0.76 11.30 15.81
RF 0.91 6.92 9.69

XGBoost 0.96 5.17 6.67

Testing

ANN -1.85 7.30 8.77
SVM -0.31 5.09 5.94
GPR -0.38 4.43 6.09
RF 0.13 3.75 4.85

XGBoost 0.23 3.73 4.55

Table 4: Summary of the prediction capabilities of the
algorithms whose hyperparameters are selected using
group k-fold CV.

Part Method R2 MAE RMSE

Training

ANN 0.76 11.87 15.88
SVM 0.76 11.14 15.82
GPR 0.76 11.30 15.81
RF 0.71 12.49 17.60

XGBoost 0.62 13.06 20.04

Testing

ANN -1.36 6.78 7.98
SVM -2.28 7.87 9.40
GPR -0.38 4.43 6.09
RF -0.53 5.31 6.42

XGBoost 0.03 4.22 5.11

The results in the training dataset using both CV
strategies are satisfying overall, showing that the ML
models have successfully learned and captured the data
characterization in the training dataset. The results of the
testing dataset show how the models perform on com-
pletely different data, which have always been crucial
information to consider. As can be seen from the poor
prediction capabilities of the ML models on validation
and testing datasets by using group k-fold CV (see Ta-
bles 2 and 4), the models struggle to generalize without
site-specific data. On the other hand, using k-fold CV
leads to being too optimistic about the true performance
of the models (Table 2), as it assumes data to be indepen-
dent and identically distributed, whereas the predictions
are rather poor on unseen data (Table 3).
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6. CONCLUSIONS
The effectiveness of using the five ML algorithms in this
study in predicting the shear strength of the soil is vali-
dated when site-specific data are available. The perfor-
mance of the algorithms is close and satisfying overall.
However, the performance of the models during group
k-fold CV is rather poor. Meanwhile, using k-fold leads
to being too optimistic about the true performance of
the algorithms because CPT data are not independent
and identically distributed, but this is an assumption be-
hind k-fold. Therefore, the poor performance of mod-
els validated with group k-fold CV indicates that while
ML techniques can perform well when site-specific data
are included during training, they struggle to general-
ize without site-specific data. This highlights the diffi-
culty of capturing soil heterogeneity and suggests that
either ML methods should be trained and used on spe-
cific sites for which some data are already available, or
much larger training datasets are needed in order to con-
struct a model that can be applied on a global scale.

There are, of course, limitations in this study, the main
limitation being that the dataset we used is small. This
is a common problem whenever researchers apply ML
techniques to geotechnical problems, since the amount
of data in geotechnical engineering is very limited in an
ML context. To minimize the negative impact of this
limitation, an appropriate CV strategy that best simu-
lates future applications should be used to avoid overly
optimistic estimates of results.

Looking to the future, CPT data are considered less
labour-intensive and more cost-effective to obtain than
laboratory data. This leads to the idea that a wider range
of data sources that are less labour-intensive and more
cost-effective than CPT can be used in the future. For
instance, it should be possible to use geophysical data
to develop ML models that are capable of predicting the
CPT profile of the soil, thereby better characterizing site
conditions.
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