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ABSTRACT: This paper presents a two-stage simheuristics-based framework for optimizing bridge
maintenance scheduling strategies in a highway transportation network under uncertainty considering
bridge life-cycle reliability and the effects of different maintenance interventions. The design variables
of the optimal bridge maintenance scheduling problem are the preventive maintenance schedules for all
bridges in the network, with the conflicting objectives of minimizing total maintenance cost and total
travel time over the life cycle of bridges. The outcome of the first stage of the framework is a Pareto
front of deterministic optimal solutions, which are then tested in the second stage to measure their
performance under uncertainty.

1. INTRODUCTION

The importance of bridges as critical infrastruc-
ture assets in transportation networks cannot be
overlooked, as their breakdown and hence trans-
portation disruptions have a catastrophic impact on
facilitating a country’s economy and societal devel-
opment. Unfortunately, the extension of the service
life of bridges coupled with other factors such as
increasingly heavier truck traffic, more harsh envi-
ronmental conditions, and natural hazards can lead
to deterioration and thus their partial or complete
failures over time.

To mitigate deterioration, it is crucial to estab-
lish effective asset maintenance and management
policies for bridges within transportation networks.
However, these networks are complex systems and
are subject to a wide range of uncertainties, such as
bridge degradation patterns, traffic behaviours, and
the extent of reliability improvement after mainte-
nance interventions. These stochastic factors can
significantly influence structures’ performance and
the decision-making process for maintenance poli-
cies. Therefore, uncertainties must be taken into
account to provide a more robust and realistic ap-
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proach to bridge maintenance scheduling.

In recent years, the field of bridge maintenance
scheduling has seen a growing interest in meth-
ods for addressing the inherent uncertainty involved
in these activities. One notable approach is a
probability-based framework proposed by Bocchini
and Frangopol (2011), which utilizes a combina-
tion of genetic algorithms, Monte Carlo simulation,
and various probability models in order to effec-
tively deal with uncertainty. The authors incor-
porate previously established bridge life-cycle re-
liability models, as presented by Frangopol et al.
(2001), into their framework. They propose an
optimization-based approach to identify the optimal
schedule associated with the minimum total cost of
maintenance activities while guaranteeing the over-
all network performance based on total travel time
and total distance travelled. An alternative frame-
work was presented by Zhang et al. (2015), which
focused on optimizing the maintenance scheduling
policies based on travel-time reliability as the key
metric. These studies highlight the need for com-
prehensive frameworks to account for uncertainty
and multiple performance indicators in optimizing
bridge maintenance schedules. Given that meta-
heuristics (e.g., genetic algorithms) are often uti-
lized to tackle real-world optimization problems, it
makes sense to combine them with simulation tech-
niques to handle the uncertain variants of the prob-
lems. Simheuristics algorithms, first introduced
by Juan et al. (2014), are a type of simulation-
optimization method that is effective in addressing
combinatorial optimization problems including el-
ements of uncertainty. Simheuristics can be used to
replicate real-world systems with a high level of ac-
curacy. Additionally, they provide valuable insights
into the system’s behaviour by offering direct meth-
ods to interpret results through visual and statistical
means (Chica et al., 2020).

In this paper, we propose a simulation-based
optimization methodology for bridge maintenance
scheduling policies considering total maintenance
costs and network performance in terms of total
travel time. The proposed method optimizes bridge
maintenance scheduling strategies under mone-
tary constraints using the NSGA-II algorithm (Deb

et al., 2002) and then tests the performance of de-
terministic solutions under uncertainty employing
a simheuristic approach. The proposed framework
presents a novel simheuristic approach for opti-
mal bridge maintenance scheduling under stochas-
tic conditions. Additionally, this study makes con-
tributions not only to optimal bridge maintenance
scheduling but also to the state of the art on the
simheuristics concept since it provides a deeper un-
derstanding of the overall benefits and limitations
of using simheuristics by introducing the concept
into a new field.

The rest of the document is organized as follows.
Section 2 provides an introduction to bridge main-
tenance components and insights into uncertainty,
as well as a detailed explanation of the life-cycle
bridge reliability model. In Section 3, the proposed
simheuristic framework for optimal bridge mainte-
nance scheduling is explained. In Section 4, the
framework is applied to a case study, and some con-
clusions are drawn in Section 5.

2. BRIDGE RELIABILITY AND MAINTE-
NANCE INTERVENTIONS

2.1. Life-cycle Reliability of Bridges
Determining the reliability of existing bridges

can be challenging because it requires a compre-
hensive evaluation of the bridge’s structural in-
tegrity and ability to withstand various loads and
environmental factors. Therefore, the reliability of
bridges in a network is not always certain and may
only be studied in detail for critical bridges. To ac-
count for this uncertainty, analytical models can be
used to assess the time-dependent reliability of in-
dividual bridges. Different models have been sug-
gested in the literature for assessing the reliability
of bridges, such as the bi-linear, quadratic, square-
root and exponential models (Frangopol et al.,
2001; Bocchini and Frangopol, 2011). In this study,
the bi-linear model is used to reflect bridge life-
cycle reliability;

βb(t) =

{
β 0

b for 0 ≤ t ≤ T ′
b

β 0
b − (t −T ′

b)rb for t > T ′
b

(1)

where βb(t) is the reliability index of bridge b at
any time instant t, β 0

b is the initial value of the re-
liability index, rb is the degradation rate of bridge
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b, and T ′
b is the time instant where degradation of

bridge b starts at. Uncertainty plays a critical role
in the reliability index of bridges since it is highly
dependent on the construction process, the quality
of materials used as well as external factors such as
heavy traffic and aggressive environmental condi-
tions. To reflect the uncertainty in this case, vari-
ables of the bridge life-cycle reliability model β0,
rb, and T ′

b are modelled as random variables, whose
parameters are shown in Table 1.

2.2. Maintenance Interventions
Bridge maintenance interventions are crucial in

maintaining the safety and functionality of bridges
for public use. The necessary interventions vary
based on the condition and intended use of each
bridge. Bridge maintenance interventions can be
classified into preventive and corrective mainte-
nance. Preventive Maintenance (PM) interventions
are planned in advance to maintain the good con-
dition of bridges and prevent collapse, whereas
Corrective Maintenance (CM) interventions are not
scheduled ahead of time and are implemented when
a bridge is out of service due to failure. Interven-
tions within the PM can be: (i) predetermined; (ii)
based on the observed condition of the bridge; and
(iii) predicted based on degradation models. For
the sake of simplicity and without loss of general-
ity, the predetermined PM and CM are taken into
consideration in the proposed framework.

The effect of PM interventions on the bridge’s re-
liability can be modelled by assuming an increase
in the reliability index following different trends or
a delay in the degradation process (Bocchini and
Frangopol, 2011). A sudden increase in the reli-
ability index, λPM, and a delay in the degradation
process, δPM, are considered in this paper. Since
these components are subjected to uncertainty, their
effects on the bridge reliability index are modelled
as random variables whose parameters are shown
in Table 1. CM interventions have similar effects
on bridges. Regarding its impact on reliability, it is
assumed that CM interventions are not perfect and
hence, cannot fully recover the reliability index of
bridges. Therefore, the obtained reliability after a
CM intervention will be β 0

b −∆. Additionally, no
degradation occurs for T ′

b years after a CM inter-

vention is applied. In regard to the degradation of
bridges, since CM interventions are also subjected
to uncertainty, ∆ is modelled as a random variable
as shown in Table 1. The effects of PM and CM
on the reliability and service life are illustrated in
Figure 1.

Figure 1: Behaviour of Reliability Index of a bridge
over time without maintenance and with PM and CM
interventions.

3. SIMHEURISTICS FRAMEWORK
Simheuristics enables decision-makers to test de-

terministic optimal or near-optimal solutions in a
stochastic environment. As a part of the proposed
framework, simheuristics, therefore, entail a de-
terministic optimal bridge maintenance scheduling
problem as well as a stochastic simulation as illus-
trated in Figure 2. The main structure of Stage 1 in-
volving the deterministic problem is explained first,
and then, the implementation of the stochastic part,
Stage 2 is presented.

Figure 2: The logic behind Simheuristics

3



14th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP14
Dublin, Ireland, July 9-13, 2023

Table 1: Probability distributions of the variables of the bridge life-cycle reliability model.

Variables Units Distribution Mean Standard deviation Minimum Maximum
β 0

b - Lognormal 4 1.5 0 ∞

T ′ years Lognormal 15 5 0 ∞

rb years−1 Uniform 0.102 0.056329 0.005 0.2
λPM - Uniform 0.055 0.14434 0.3 0.8
δPM years Triangular 7.667 1.0274 5 10

∆ - Triangular 0.233 0.10276 0 0.5

3.1. Stage 1: Deterministic Optimal Bridge
Maintenance Scheduling

The presented approach considers a road traffic
network consisting of A interconnected roads in-
volving B bridges. The transport network is mod-
elled by a set of nodes and edges. The nodes repre-
sent the cities within the network, while the edges,
a = 1 . . .A, represent the highway segments con-
necting these cities. Subsequently, bridges are as-
signed to the edges of the transportation network,
considering their physical location within the net-
work. The road traffic network is studied over a dis-
cretized period of time t = {0,d,2d, . . .T}. Based
on the given traffic demand/supply associated with
each node, the traffic flow has been distributed be-
tween all origin-destination (OD) pairs using the
gravity model. Then, the traffic flow between each
OD pair is assigned to each edge located on the
shortest path connecting the corresponding OD pair
following the all-or-nothing approach. This ap-
proach is based on the assumption that all users
travelling between an OD pair will use only the
shortest path available, and that other routes will be
ignored. Additionally, it assumes that there will be
no congestion, as free travel times for all vehicles
will remain the same regardless of traffic flow on
each link. The travel time on each edge at time t is
calculated as follows:

τa,t = fa va,t (2)

where fa is the free-flow travel time of edge a and
va,t is the traffic flow assigned to the corresponding
edge. The life-cycle bridge reliability model is im-
plemented by assigning the initial values of β 0

b , rb,
and T ′

b. Despite the stochastic nature of these vari-
ables, for the deterministic version of the optimiza-
tion problem, they are replaced by their mean val-

ues. The same principle applies to the parameters
of PM and CM interventions outlined in Table 1.

The deterministic optimal bridge maintenance
scheduling problem is defined as follows; The de-
sign variables are the timings of the PM interven-
tions on each bridge in the network, xb,i, i = 1 . . . I,
with I being the maximum number of possible PM
interventions per bridge during the studied time.
The main goal is to find the optimal schedules that
balance trade-offs between conflicting objectives,
namely, minimizing the total cost of maintenance,
Cost, while adhering to a budget constraint, C, and
minimizing the total travel time, T T , over the stud-
ied time period. This is mathematically formalized
as follows:

min
x
{Cost(x); T T (x)} (3)

Cost =
B

∑
b=1

I

∑
i=1

CPM

(1+ r)xb,i
+

B

∑
b=1

J

∑
j=1

CCM

(1+ r)yb, j
(4)

T T =
T

∑
t=0

A

∑
a=1

τa,t (5)

subject to
D : x →{τ, y} (6)

Cost ≤C (7)

0 ≤ xb,i ≤ T b = 1 . . .B, i = 1 . . . I (8)

where yb, j is the timing of the CM interventions on
each bridge in the network, with j = 1 . . .J, r is the
interest rate, and CPM and CCM are the constant cost
of a PM and CM intervention, respectively. Note
that there is no restriction regarding the number of
possible interventions (i.e., I and J) and time res-
olution considered beyond the available computa-
tional budget.
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The function D in Eq. (6) refers to the determin-
istic simulation, which takes x as input to calculate
the corresponding road network performance and
CM interventions over time. The pseudo-code of
the deterministic simulation algorithm is shown in
Figure 3.

Figure 3: Pseudo-code for Deterministic Simulation.

At every time instant t, the reliability index of
each bridge, βb(t), is updated using the bi-linear
reliability index model, Eq. (1). Additionally, the
scheduled PM interventions are applied to the cor-
responding bridges. Then, the service state of every
bridge in the network is simulated considering the
current βb(t). This is achieved through the use of
the service state variable, sb(t), which is defined for
the deterministic version of the optimization prob-
lem as follows:

sb(t) =

{
0 for βb(t)≤ 1
1 for otherwise

(9)

Accordingly, reliability values less than or equal to
1 imply that the corresponding bridge becomes out-
of-service (sb = 0). For any other case, the bridge
is in service. Upon simulating the service state
of all bridges, the subsequent step is to close the
edges on which out-of-service bridges are located.
This is achieved by assigning a significantly high
value to the free-flow travel time, fa, of the corre-
sponding edge for each out-of-service bridge within
the network. As a result, these edges will not be
considered part of the shortest path for any origin-
destination pair in the network. Additionally, the
algorithm applies a penalty to τa,t of the affected
edge if there is any PM intervention scheduled at
the current time instant, as follows:

τ
updated
a,t = τa,t (1+ γ nPM

a,t ) (10)

where γ is a penalization parameter and nPM
a,t repre-

sents the number of PM intervention on edge a at
the current time step, t. For instance, if there are
two PM interventions scheduled for two bridges lo-
cated on the same edge, nPM

a,t = 2. The main pur-
pose of this penalty is to account for disruptions
in traffic caused by PM interventions and therefore,
the increase in travel time. After the traffic assign-
ment process, CM interventions are applied to the
bridges that are out-of-service. At this point, the de-
terministic simulation proceeds to the next time in-
stant, and the entire process is repeated until the end
of the time horizon T is reached. To solve the multi-
objective optimal bridge maintenance scheduling
problem, Eqs. (3)–(8), the NSGA-II is employed.
For every generated solution, NSGA-II runs the de-
terministic simulation that takes the deterministic
candidate solutions as input.

3.2. Stage 2: Evaluating uncertainty via stochas-
tic simulation

In Stage 2, the main purpose is to test the optimal
deterministic solutions under uncertainty. This is
done by introducing a stochastic simulation, S that
involves Monte Carlo Simulations. For every deter-
ministic solution obtained in Stage 1, the stochastic
simulation is run n times. Therefore,

S : xdet →{Costk, T Tk} k = 1 . . .n (11)

where xdet is a deterministic solution obtained in
Stage 1. Probabilistic analysis can be performed to
evaluate the quality of each solution when introduc-
ing uncertainty.

The main difference between the deterministic,
D and the stochastic simulation, S is that the life-
cycle bridge reliability model parameters and the
parameters of both PM and CM components are
modelled as random variables as shown in Table 1.

The approach for simulating the service state of
the bridges is also different. In contrast to the de-
terministic version, the service state of the bridges
is simulated through the use of Bernoulli’s distribu-
tion, sb(t) ∼ Bernoulli(mb(t)), with parameter

mb(t) = Φ[βb(t)] (12)
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where Φ is the standard Gaussian cumulative dis-
tribution function. The analysis allows decision-
makers to make the final decision among the deter-
ministic solutions on the basis of engineering judg-
ment considering their stochastic performance un-
der uncertainty.

4. NUMERICAL EXPERIMENTS
4.1. Case description

The benefits of using the presented approach
are exemplified by the toy infrastructure network
shown in Figure 4, consisting of 6 nodes, 16 edges
(two-direction roads) and 13 bridges. The network
and traffic data are based on Bocchini and Fran-
gopol (2011).

Figure 4: Toy infrastructure network. Cross signs refer
to bridges located on the edges.

For the bridges in the network, the bi-linear life-
cycle reliability model has been assigned with the
parameters given in Table 1. The mean values of
these parameters are used for the deterministic sim-
ulation D in Stage 1. For the stochastic simula-
tion S , all of the parameters are generated ran-
domly following the corresponding probability dis-
tributions in Stage 2. The life cycle of bridges and
the time-step are assumed T = 75 and d = 5 years,
respectively. The maximum number of PM inter-
ventions per bridge, I, is assumed to be 2. The pe-
nalization parameter γ is assumed to be 0.3 for the
network analysis. The cost of PM and CM inter-
ventions, CPM and CCM, are assumed to be 500 and
1000 monetary units, respectively, and the budget is
set equal to 3300 units for an interest rate r = 5%.

4.2. Deterministic Optimization
Following the procedure explained in Section

3.1, the deterministic Pareto optimal solutions for

Table 2: Summary of scheduling for Pareto solutions

Pareto Average Timing Average Timing
solution 1st PM (years) 2st PM (years)

X1 36.45 53.85
X12 49.95 63

the bridge maintenance scheduling problem (i.e.,
the PM schedules) are found as shown in Figure 5.
The Pareto front displays the trade-off between
conflicting objectives Cost and T T by presenting a
set of non-dominated solutions, where no other so-
lution is superior in both objectives. With no other
information about the relative importance of each
of these objectives, all the points on the Pareto front
are equally good. Table 2 provides a summary of
the scheduling obtained for the Pareto solutions X1
and X12, in which travel time and cost are respec-
tively prioritized.

Figure 5: The deterministic Pareto optimal solutions
for the bridge maintenance scheduling problem.

4.3. Stochastic Simulation
In Stage 2, the stochastic simulation has been run

n = 100 times for each of the deterministic solu-
tions of the Pareto front. The stochastic perfor-
mances of 5 selected deterministic solutions, X1,
X6, X7, X9 and X12, highlighted in Figure 5, are
further analyzed. Figure 6 provides the correspond-
ing cost and total travel time associated with each of
these points under the 100 stochastic scenarios. The
stochastic performance of the selected determinis-
tic solutions for each objective, Cost and T T , is also
represented by their marginal probability distribu-
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tions in Figures 7 and 8, respectively. The deter-
ministic values of the objective functions Cost and
total travel time, T T , and the corresponding mean
values under stochastic conditions, Cost and T T ,
for the selected deterministic solutions are shown
in Table 3.

Table 3: Cost (monetary units) and total travel time
(105 hours) for selected deterministic solutions (PM
Schedules) and the corresponding mean values under
stochastic conditions.

Pareto Point Cost T T Cost T T
X1 2934 1.80 3727 3.81
X6 2275 1.96 3180 4.03
X7 2256 5.33 3218 3.83
X9 2150 8.25 2965 3.85

X12 2098 12.41 3005 4.63

Figure 6: Stochastic performance of the deterministic
optimal solutions X1, X6, X7, X9 and X12.

4.4. Discussion
Several deterministic solutions of the Pareto

front (i.e., X1, X6, X7, X9 and X12) are investi-
gated due to their significance. Solutions X1 and
X12 represent the extreme cases, with X12 show-
casing the highest total travel time and the low-
est cost, while X1 presents the opposite scenario.
Additionally, X6 demonstrates a considerable im-
provement in T T while incurring only a slight in-
crease in cost, as compared to X7. Finally, X9 is
also included based on its stochastic performance
presented in Table 3.

Figure 7: Marginal PDF of the cost for solution X1,
X6, X7, X9 and X12.

Figure 8: MarginalPDF of the total travel time for
solution X1, X6, X7, X9 and X12.

The findings shown in Figure 8 and Table 3 indi-
cate that the expected value of the total travel time
under uncertainty for the schedules of solutions X7,
X9, and X12 exhibit better performance when com-
pared to the deterministic environment. The proba-
bility of experiencing less travel time than the ones
considered with the deterministic approach is 0.71,
0.92 and 0.92, respectively. Given that all bridges
were assigned the same initial reliability index in
the deterministic simulation and that out-of-service
conditions were assumed to occur below a specific
threshold, it is reasonable to anticipate a higher
T T in the deterministic environment as multiple
bridges may become unrealistically out-of-service
simultaneously based on the PM schedule. In con-
trast, solutions X1 and X6 were found to be only
at the 12th and 17th percentiles, respectively. This
implies that the schedules of X1 and X6 are likely
to experience more total travel time under uncer-
tainty. Although these solutions are chosen when
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travel time is the most important objective, the as-
sumed risk of experiencing larger travel times is the
largest.

Regarding the cost, none of the deterministic so-
lutions is likely to exhibit good performance un-
der uncertainty (see Figure 7). X6, X7, and X12
are at the 23rd, 20th, and 22nd percentile, respec-
tively, while X1 and X9 are at a slightly higher 26th
percentile. The main reason behind the poor cost
performance of the schedules under uncertainty is
that the bridge life-cycle reliability is stochastic in
Stage 2. This results in some bridges having a lower
initial reliability index, leading to a higher need
for CM interventions over the life-cycle of bridges
based on the simulation of their service state. In
addition, as shown in Figure 7, there is a high prob-
ability of cost overruns for the five schedules asso-
ciated with the deterministic solutions. The proba-
bility that the schedule of solution X1 is larger than
the maximum budget is 53%, followed by X6 and
X7, with 34% and 36%, respectively. X9 and X12
have a higher likelihood of staying within budget,
with a probability of exceeding the budget of 29%
and 30%, respectively. These probabilities are in-
admissible in a real situation.

5. CONCLUSIONS
The proposed framework is based on the con-

cept of simheuristics and offers decision-makers the
chance to examine the results of using deterministic
solutions under uncertainty. The numerical study
shows that considering a deterministic approach for
the optimal bridge maintenance scheduling prob-
lem can result in extra total travel times and costs
that were not foreseen, making a solution that was
believed to be optimal non-suitable to fulfilling re-
quirements such as a maximum budget.

The different objectives of the optimal bridge
maintenance scheduling problem, i.e., the total cost
of maintenance and the total travel time, are im-
pacted differently by the presence of uncertainty.
While the schedules can experience an increase or
decrease in the total travel time with respect to
the value considered in the deterministic approach,
they tend to perform poorly financially due to the
noticeable rise in the total cost of maintenance
when uncertainty is present.

Finally, the proposed framework provides a valu-
able understanding of the behaviour of determinis-
tic solutions under uncertainty, however, it also has
some limitations. The stochastic simulation is not
incorporated into the optimization process, it only
serves as an evaluator in Stage 2. This could re-
sult in a possibility that non-Pareto optimal solu-
tions perform better than the Pareto optimal solu-
tions under uncertain conditions. To address this,
integrating stochastic simulation into the optimiza-
tion process will be a focus of future work. In ad-
dition, future efforts will include incorporating ad-
ditional bridge reliability models and implementing
the user equilibrium method as a traffic assignment
algorithm to achieve more precise results in uncer-
tain conditions.
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Bektaş, T. (2014). “A simheuristic algorithm for
the single-period stochastic inventory-routing prob-
lem with stock-outs.” Simulation Modelling Practice
and Theory, 46, 40–52.

Zhang, W., Cao, M., and Wang, N. (2015). “Travel
time reliability based bridge network maintenance op-
timization under budget constraint.” Proceedings of
the 12th International Conference on Applications
of Statistics and Probability in Civil Engineering,
ICASP12, Vancouver, Canada, 1–8.

8


	INTRODUCTION
	BRIDGE RELIABILITY AND MAINTENANCE INTERVENTIONS
	Life-cycle Reliability of Bridges
	Maintenance Interventions

	SIMHEURISTICS FRAMEWORK
	Stage 1: Deterministic Optimal Bridge Maintenance Scheduling
	Stage 2: Evaluating uncertainty via stochastic simulation

	NUMERICAL EXPERIMENTS
	Case description
	Deterministic Optimization
	Stochastic Simulation
	Discussion

	CONCLUSIONS
	Refeences

