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Abstract: Climate variability poses great challenges to food security in West Africa, a region heavily
dependent on rainfall for farming. Identifying sowing strategies that minimize yield losses for
farmers in the region is crucial to securing their livelihood. In this paper, we investigate three sowing
strategies to assess their ability to identify safe sowing windows for smallholder farmers in the
Sudanian region of West Africa (WA) in the context of a changing climate. The GIS version of the
FAO crop model, AquaCrop-GIS, is used to simulate the yield response of maize (Zea mays L.) to
varying sowing dates throughout the rainy season across WA. Based on an average of 38 years of data
per grid cell, we identify safe sowing windows across the Sudanian region that secure at least 90% of
maximal yield. We find that current sowing strategies, based on minimum thresholds for rainfall
accumulated over a period that are widely applied in the region, carry a higher risk of yield failure,
especially at the beginning of the rainy season. This analysis shows that delaying sowing for a month
to mid-June in the central region (east of Lon 8.5◦W), and to early August in the semi-arid areas
is a safer strategy that ensures optimal yields. A comparison between the periods 1982–1991 and
1992–2019 shows a negative shift for LO10 mm and LO20 mm, suggesting a wetter regime compared
to the dry periods of the 1970s and 1980s. On the contrary, we observe a positive shift in the safe
window strategy, highlighting the need for precautions due to erratic rainfall at the beginning of the
season. The precipitation-based strategies hold a high risk, while the safe sowing window strategy,
easily accessible to smallholder farmers, is more fitting, given the current climate.

Keywords: climate variability; false start; sowing strategy; West Africa; AquaCrop; sowing window

1. Introduction

There is growing pressure on water resources to sustain food production and to reduce
the food security gap in several parts of the world [1–3]. In particular in West Africa, rapid
population growth and the central role of rain-fed agriculture for food production have
exacerbated food insecurity [4]. Climate change may increase threats to the already vulner-
able communities. With more and more vulnerable regions being affected by increasingly
extreme climatological conditions, such as drought and flooding, many vital sectors are
impacted, and adaptation measures are of paramount importance [5–7]. Climate variability
in West Africa and the subsequent uncertainties in the context of a changing climate have
been the focus of several studies [8–12]. This has led to providing remarkable insights and
knowledge about the characteristics of the rainy season (onset, duration, and cessation)
and its implication for local farmers to support adaptation measures.

In the farming systems of West Africa, more than 90% of farmers depend on seasonal
rainfall, which guides the planning of farming and the selection of crop types (drought-
resistant/tolerant) and varieties (long/short maturation) [13,14]. As a result, the success
(or failure) of a growing season strongly rests on identifying the right (or wrong) planting
date. However, due to the lack of accurate climate information services, the sector is
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becoming more vulnerable, and farmers have been reporting the phenomenon of the so-
called “false start” of the rainy season [15]. The false start or “false onset” is a consequence
of the unpredictable rainfall pattern and is characterized by erratic rain events at the
beginning of the season followed by intermittent dry spells of various lengths [16,17].

The issue of the false start of the rainy season in the savanna region has not only
challenged local knowledge but also alarmed agro-meteorologists. As a result, two ap-
proaches to safe sowing strategies at a local scale are available in the region, each with its
uncertainties: a precipitation-based strategy and a crop water requirement-based strategy.
The precipitation-based strategies consider empirical thresholds of accumulated rainfall
totals over a period of time (control period) to identify the start of the rainfall season and
ensure sufficient water availability for crop development [18–20]. Crop water requirement-
based strategies use crop simulation modeling to evaluate expected yields to determine
appropriate sowing windows that minimize stresses and optimize crop yield [21].

How well do these sowing strategies determine realistic sowing dates, and are they
able to identify the false starts of the rainy season? Which strategy results in optimal yields,
and what are the associated risks attached? This paper investigates these crucial questions
and provides several suggestions as to how farmers can apply them most effectively. Using
38 years of weather information across the WA region, we evaluated the yield responses
based on three sowing strategies: two strategies based on rainfall amounts in a certain
period and a so-called safe sowing window strategy based on predicted yields through
crop modeling. The safe sowing window method is more sensitive to dry spells during
the growing season. To calculate yield predictions in response to rainfall variability, we
used AquaCrop-GIS, the GIS version of the FAO crop model. After an overview of the
methodology used, we analyze the inter-annual as well as spatial variability of each strategy,
the impact of climate change on their ability to determine realistic sowing dates, and the
risk of using any of these strategies.

2. Data Description

2.1. Study Area

The study area covers the Sudanian agro-climatological region of West Africa located
between latitudes 8◦N and 15◦N, which is characterized by a unimodal rainy season per
year (see [21]). The study area covers the savanna region of West Africa extending into the
Sahel region. Rainfall is convective and is associated with a northward latitudinal gradient
associated with the Inter-Tropical Convergence Zone (ITCZ) [22]. The area covers locations
between Chad (to the east) and Senegal (to the west).

2.2. Data Sources

The data sources required to run the model simulations in AquaCrop-GIS include
rainfall, temperature, humidity, surface radiation, and wind speed (to calculate reference
evapotranspiration), soil information (depth, texture, and physical properties), and in-
formation on management practices (sowing windows, soil fertility level, application of
mulches, etc.). Rainfall information is extracted from the Global Precipitation Climatol-
ogy Centre (GPCC), version 2020, and covers a period of 38 years (1982 to 2019) with
a resolution of 1◦ [23]. The dataset is operated by the German Weather Service (DWD),
which collects meteorological data from across the globe, and it comprises daily in situ
precipitation information. Taking stock of the water, energy, and climate change (WATCH)
Forcing Data methodology applied to ERA5 (WFDE5), the WFDE5 provides daily temper-
ature, humidity, wind speed, as well as surface downwelling short/long-wave radiation
necessary to compute reference evaporation, Ere f . The Makkink equation ([24]) is used
to compute reference evapotranspiration with satellite data and is validated against the
evapotranspiration computed using ground measurements from the TAHMO database
(https://tahmo.org/ (accessed on 22 June 2021)) [25].

Soil information is derived from the Africa SoilGrids-Texture database (https://data.
isric.org/geonetwork/srv/api/records/2a7d2fb8-e0db-4a4b-9661-4809865aaccf (accessed

https://tahmo.org/
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on 20 April 2023)), which comprises the textural class at six depth intervals up to 200 cm
over the African continent at a resolution of 250 m. The information from the gridded
product is combined with the AquaCrop default soil dataset for several soil classes to
generate the soil profile of each grid cell. Information on management practices in the
savanna region is the same as the details used in [21] following interviews and discussions
with farmers and expert agronomists in the northern regions of Benin and Ghana, including
the current practice with respect to sowing timing.

2.3. Seasonal Variability of Climate Indices in the Study Area

Annual rainfall in the region is highly influenced by the West African Monsoon
(WAM) [26]. After the collision of dry air masses from the Sahara and the warm and humid
air from the Atlantic Ocean, rainfall is triggered along the West African coast, i.e., the Gulf
of Guinea [27]. Following a shift of the ITCZ at latitude 5◦ N, the rainfall maximum moves
to the Savanna zone to 10◦ N [28,29]. Figure 1 shows the distribution of the mean seasonal
rainfall across the region over the period of 1982–2019. Spatially, mean seasonal rainfall
varies from about 1000 mm in the south of the region to less than 500 mm in the Sahel,
reflecting the spatial and latitudinal variation of rainfall in the Sudanian region of West
Africa [30]. The southwestern part of the study area, however, shows higher seasonal
rainfall (±2000 mm), which is associated with the highlands and the topography of the
Fouta Djallon region in Guinea [31] and the mountains of Sierra Leone. Figure 2 shows
the average seasonal rainfall and evapotranspiration. The unimodal pattern of the rainfall
season varies from May to October. Most of the rain falls between June and September
(80% and 91% on average for the savanna and the semi-arid zones, respectively) [12].

Figure 1. Gridded map of the study area in West Africa and mean seasonal rainfall (1 May to
31 October) of each grid cell. The grid represents the latitude and the longitude. The yellow dots
represent the location of the TAHMO weather stations (see [21]).
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Figure 2. Rainfall and evapotranspiration distribution at Lat 10.5◦ N, Lon 3.5◦ W: (a) average monthly
variation; (b) mean regional seasonal (May to October) variation; (c) long-term seasonal variation
between 1982 and 2019.

We observe that seasonal rainfall can meet evaporative demand in most locations
across the region. In part of the region, the average monthly Ere f equals or exceeds monthly
rainfall even during the rainfall season.

The long-term variation is shown in Figure 2c at Lat 10.5◦ N, Lon 3.5◦ W. The dataset
captures very well the drought period that the region experienced between the 1970s and
1980s in West Africa, followed by a recovery to varying degrees across the region at the
beginning of the 21st century [11,15].

3. Methods

3.1. Sowing Strategies of the Growing Season

Three sowing strategies are evaluated in this study following a previous investigation
on the onset of the growing season in West Africa: two rainfall-based sowing strategies
widely recommended in the literature and the safe sowing window strategy suggested
in [21], based on predicted yields through crop modeling, and thereby more sensitive to dry
spells occurring during the growth season. Regarding the safe sowing window, for every
specific location, the maximal achievable yield is evaluated using a crop simulation model
(here, the FAO model AquaCrop). The “safe window” is thereafter determined by finding
those sowing dates within the season that result in a yield that equals at least 90% of
the maximum achievable yield of that location. The idea is to identify safe windows for
sowing that ensure low yield losses for farmers, who have no or limited access to local
rainfall information as is required for the rainfall-based approaches. The first rainfall-
based approach, also referred to as the Local Onset (of the rainfall season, LO) approach,
LO20 mm hereafter, defines the onset as one or two consecutive rainy days accumulating
at least 20 mm with no 7-day dry spell occurring during the next 30 days counted from the
onset [19]. This sowing strategy approach prioritizes sufficient water availability and limits
the occurrence of long dry spells at the early stages of crop development but requires a
long control period (30 days) before farmers can start planting. The second rainfall-based
approach also referred to as agronomic onset, LO10 mm hereafter, is defined as an average
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of four consecutive rainy days exceeding 10 mm daily [32]. The focus of this approach is
to identify the earliest moment that still ensures sufficient soil humidity to sustain seed
germination after sowing [17,33,34].

Based on field surveys and rainfall patterns in the WA region, we observed that the
earliest possible time for farmers to sow their crops is the beginning of May. Knowing that
the season runs until October/November and that various soil types have different water-
holding capacities, our goal was to assess how the crop would respond to any planting
date in that range. We chose to run the simulations at 5-day intervals for computational
efficiency as we ran the model simulations for the entire WA region. In a previous study
for a selected number of locations, we used 1-day time intervals and found that the time
response of maize crops to rainfall variability and dry spells is about 1 week. This is
confirmed by another study for this region [19].

3.2. The FAO Crop Model AquaCrop

Crop development and yield response are computed using AquaCrop, the FAO crop
simulation model [35]. The sowing window is evaluated by computing crop response to
sowing dates ranging from 1 May to 30 November at five-day intervals at any location
throughout the growing season.

Description of the Model: AquaCrop-GIS

AquaCrop, the FAO crop model, is a water-driven model that simulates daily crop
biomass, which is associated with the transpired water through biomass water productiv-
ity [36]. Hence, the water-driven growth engine of AquaCrop simulates the crop green
Canopy Cover (CC in %) on daily time steps from crop emergence through the development
and senescence of the canopy, while the root system develops from the minimum effective
rooting depth Zn and increases to the maximum rooting depth [36]. Transpiration (1) is then
converted into biomass accumulated every day, using a crop-specific water productivity
parameter WP∗ (2) normalized for Ere f :

Trx = CC∗ × Kctr,x × Ere f , (1)

where CC∗ is the adjusted canopy cover, and Kctr,x is the coefficient for maximum crop
transpiration. Further:

Bi = WP∗ × ∑
(

Tri
Ere f ,i

)
, (2)

where, at day i, Bi is the above-ground biomass (g), WP∗ is the normalized crop water
productivity (g of biomass per m2), Tri is transpiration, and Ere f ,i is the evaporative demand
of the atmosphere (mm).

This normalization of WP∗ for evaporative demand of the atmosphere and air car-
bon dioxide concentration makes the parameter approximately constant for a given crop
species and applies to a wide range of climates [35,37]. Once the biomass is calculated
by accumulation, yield (Y) is partitioned from flowering using (3) via the harvest index
(HI in %). We obtain the following:

Y = HI × B. (3)

As a water-driven model, AquaCrop introduces the effects of water stress, which
affects biomass development (slows canopy expansion and accelerates senescence), reduces
yield build-up, and reduces root deepening in extreme cases [38]. The water stress response
is expressed as a stress coefficient Ks that modifies the simulated component and varies
in value from 1 (no stress) to 0 (full stress) as a function of the total available water (TAW,
the volume of water the soil can hold between field capacity and permanent wilting
point) [36].
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AquaCrop-GIS version 2.1, the multi-spatial version of the FAO crop simulation model
AquaCrop [35], was used to assess the regional level. It has been designed to facilitate the
use of the model when a high number of simulations is needed, simplifying the task of
generating input and project files and the management of output files [39]. The software
generates the necessary input files, executes AquaCrop at each pixel/grid, elaborates on
the results, and displays them in a geographic information system format. This simulation
module of the software, however, uses AquaCrop version 4.1, which is less suitable for our
study, since many upgraded functionalities in version 6.1 are missing, such as simulating
calendar days and soil fertility levels. Therefore, AquaCrop-GIS version 2.1 was used to
generate the simulation files, which were then modified and updated with the required
region-specific parameters and run using AquaCrop version 6.1 (only the non-conservative
parameters are presented here in Table 1). The parameterization of the model follows [21].

Table 1. Non-conservative parameters adjusted (*) based on [40] for 90 days’ maturation of maize
and [41,42].

Parameter Descriptions Value Units or Source ValuesMeaning

Time from sowing to maturity 90 (Fixed) Day 97 [40]

Time from sowing to emergence 6 Day 6
Time from sowing to start of canopy senescence 70 * Day 72
Time from sowing to flowering 48 * Day 52 [40]
Duration of flowering 10 Day 10

Time from sowing to maximum rooting depth 80 * Day -
Maximum effective rooting depth, Z 1.0 Meter 1.0
Reference harvest index, HI 40 % 40 [41]
WP∗ reduction 54 * % 53
CCx under soil fertility stress 45 * % 40–77

Time to maximum canopy cover 56 Day Automated or
Building up of HI 25 Day recommended by
Minimum effective rooting depth, Zn 0.3 Meter AquaCrop (FAO)Plant population 40,000 Plant/ha

N fertilizer levels 0 (No input) N kg/ha Expert
Weeds management 12 % coverage knowledge

The simulations require as input weather data (precipitation, maximum and minimum
temperature, Ere f , and CO2 concentration), soil information (soil profile, textures, and hy-
draulic properties of each layer), crop information (phenology, plant density, canopy cover,
and max root depth) and management data (irrigation schedule, application of mulches,
and water table).

4. Results and Discussion

4.1. Inter-Annual Variation of the Onset Approaches

We explore the inter-annual yield response to varying sowing dates and evaluate the
year-to-year changes of the onset to identify any particular features. Figure 3a shows the
inter-annual variation of crop response to the three sowing strategies during the growing
season at Lat 11.5◦ N, Lon 3.5◦ W (southern Burkina Faso). Grey vertical bars represent the
safe sowing window for each season estimated using AquaCrop. Red stars and black crosses
show recommended sowing dates for strategies LO10 mm and LO20 mm, respectively.
They range from the first week of May (Day 121) to the fourth week of July (Day 205),
where LO10 mm tends to be conservative and recommends later sowing dates (up to
20 days on average) compared to LO20 mm. The safe sowing window, i.e., all dates
yielding at least 90% of the maximum achievable yield, varies from as early as the first
week of May to the last week of June, while cessation of the safe sowing window may be
up to mid-November. The two purple horizontal lines delineate the intersection between
all yearly safe sowing windows that are at least 2 weeks long, a period which is required
by a smallholder farmer to sow an average farm of 2 ha.
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Figure 3. Inter-annual variation of yield response to sowing dates between 1 May and 30 November
at: (a) Lat 10.5◦ N, Lon 3.5◦ W, and (b) Lat 14.5◦ N, Lon 9.5◦ W. Grey bars represent yearly safe
sowing window. Red stars and black crosses correspond to the estimated sowing dates for sowing
strategies LO10 mm and LO20 mm, respectively. The two purple horizontal dashed lines represent
the intersection of all safe windows for all years in the dataset.

All the safe sowing windows per season (38 out of 38 years) intersect with the Grid
Safe Window (GSW), which spans from 25 June (Day 176) to 25 July (Day 206). LO10 mm
achieves optimal yield (more than 90% of max yield) in 28 cases and leads to yield failure
(≤0.2 ton/ha) in only one year (1983, one of the strongest El Niño events on record [43]).
LO20 mm identifies earlier sowing dates compared to LO10 mm and, as a result, ensures
optimal yield in only 10 cases, while it leads to crop failure in nearly 20% of cases (7 years
out of 38), especially during the 21st century. It never fell within the GSW, thus pointing
out the uncertainty of using such a strategy to determine the sowing dates. Knowing
the impracticality of LO20 mm due to the control period, the safe sowing window approach
is more robust and easy to implement for the smallholder farmers who might not have
access to climate information, especially in the context of climate-induced changes in
rainfall in recent years.
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In the drier part of the study area, a different timing (onset, duration, and cessation)
occurs. Figure 3b shows the inter-annual variation of the three sowing strategies during the
growing season at a drier location, Lat 14.5◦ N, Lon 9.5◦ W (Southwest Mali). We observe
a later start of the safe sowing window compared to Figure 3a and a more pronounced
alternation between early and late safe sowing windows, with some seasons where the safe
sowing window was not identified. The safe sowing window starts as early as the first
week of June but, on average, occurs around the end of June. The intersection of the safe
sowing windows, on the other hand, spans only the last weeks of July (Day 206 to Day 213).
Regarding the rainfall-based strategies, there is an earlier estimate of the sowing dates on
average around mid-June (Day 171) and early July (Day 184) for LO20 mm and LO10 mm
strategies, respectively. However, both the LO10 mm and LO20 mm approaches achieve
optimal yield in 20 and 13, respectively, out of 38 years. They estimate sowing dates that
are in some cases too early, thereby leading to crop yield failure (≤0.2 [ton/ha]), for 10 and
14 years, respectively, for LO10 mm and LO20 mm over 38 years. It can also be concluded
that 90-day maize may not be the best crop for these areas.

4.2. Safe Sowing Window across West Africa and Risks

Figure 4 shows the regional variation of the start of a safe sowing window at each
grid cell. The safe sowing window refers to the intersection between yearly safe windows
(90%) estimated using the crop simulation model and that are at least two weeks long.
Throughout the region, the start of the safe sowing window occurs as early as 25 May
(Day 145) to 21 October (Day 295). There are two axes of progression of the safe sowing
window across the region. A first northward shift is observed from the savanna to the
semi-arid or Sahel region. The safe window varies almost at the pace of one week per
degree from the last week of June (mean = 183, std = 18 days) in the south of the savanna
to late July/early August (mean = 200, std = 16 days) in the semi-arid zone. The length of
the safe window also follows the latitudinal gradient and decreases from 36 days in the
savanna to 15 days in the Sahel. The second shift, a northwestern shift of the safe window
toward the region of the southwest of Mali and Senegal, takes place from mid-July before
the safe windows occur in late July (mean = 205, std = 20 days), for an average duration of
a couple of weeks.

Figure 4. Start date of the safe window evaluated for the period 1982–2019. The average safe window
represents the intersection of the yearly safe windows at each grid with the number of yearly windows
considered for the intersection at the center of the grid.
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Figure 5 displays the latitudinal migration of the sowing dates that is, the start and
end of the safe sowing windows using the three sowing strategies. Sowing dates grad-
ually move from around mid-May for the lower latitudes (average date Day 133 and
std = 12 days for LO20 mm; average date Day 144 and std = 22 days for LO10 mm) at
Lat 8.5◦ N, to later dates at higher latitudes (average date Day 206, std = 21 days for
LO20 mm and average date Day 220 and std = 21 days for LO10 mm) at Lat 16.5◦ N.
LO20 mm and LO10 mm generally follow the start of the safe sowing window for the
lower latitudes (Lat 8.5◦ N and 9.5◦ N). However, sowing dates for LO20 mm start about
two weeks earlier relative to the start of the safe sowing window from Lat 10.5◦ N north-
ward. LO10 mm shows a later start (about two weeks) than the safe sowing window from
Lat 12.5◦ N to Lat 16.5◦ N. The safe sowing window (mean start to mean end) is
four months long at the lower latitudes (Lat 8.5◦ N and 9.5◦ N); is shortened to
two months at mid-latitudes (Lat 12.5◦ N, 13.5◦ N, and 14.5◦ N); and to one month at
the highest latitudes (Lat 15.5◦ N). However, the safe sowing window at Lat 16.5◦ N is
wider/longer and, regarding the end of the window, shows a high uncertainty for potential
sowing until October.

Figure 5. Boxplot of the latitude and dates of each of the different sowing approaches for the period
1982–2019, with grid cells per latitude zone as indicated in Figure 1: (a) LO20 mm, (b) LO10 mm,
(c) Safe window: start and end. On the horizontal axis is the day number of the year, with 1 May
equal to Day 121.

The longitudinal migration (not shown) shows limited variation in sowing dates,
except for the westernmost part of the region. For LO20 mm, the mean sowing dates in
the central zone vary between mid and late May (Day 140 and 158), while on the western
side, it occurs a month later than in the central zone and varies between Days 170 and 188.
LO10 mm displays a similar feature, but overall, a later start of about one week to LO20 mm
in each of these two zones is observed. The safe sowing window strategy shows the same
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behaviors as the LO20 mm strategy, but with, on average, a two-week delay at both the
extreme west and east sides of the region. This suggests a northward and northwestern
shift of the safe sowing window from the central region of West Africa. The safe sowing
window not only varies along latitudes but also shows a western shift towards the south
of Mali.

These results confirm findings from climate analysis over the West African Monsoon
that identify the onset of the rainy season in the central area of the region around 150 to
160 Julian days [31]. It is also noticed that, despite spatial variation (geographical char-
acteristics, vegetation, topography, landscape, human activities, etc.), the safe sowing
window follows the latitudinal gradient of maximum rainfall. Safe sowing takes place
after mid-June in the savanna for about one month, while it takes place between late July
and early August in the semi-arid regions. Due to the northwestern migration of the safe
sowing window, it is also safer to plant at the end of July or the beginning of August in the
western part of the region. Such delayed sowing dates are consistent with other studies
that correlate large rainfall reduction with the pre-monsoon and mature monsoon phases
corresponding to April to June over the study area [44].

4.3. Climate Effects and Risks on the Onset of the Rainy Season Between 1982 and 2019

To assess the effect of climate variability on the different sowing strategies, we evalu-
ated the differences between the recent period 2011–2019 and a reference period 1982–1990.
Figure 6 shows how LO10 mm, LO20 mm, and the safe sowing window have changed over
time with respect to the baseline. Both LO20 mm and LO10 mm show a general backward
shift of the sowing dates to earlier dates (1 to 2 weeks) around the center of the region
(except for a few grid cells), while the most western and eastern areas of the region show
a slight shift toward later dates (see Figure 6a,b). The length of the inter-quartile range
varies between 12 and 15 days for both strategies, but both show a mean value of −1.6 days
and −3.3 days for LO10 mm and LO20 mm, respectively. Regarding the safe sowing
window strategy (see Figure 6c), apart from a couple of locations around the center of the
area, the map shows an overall difference of ±20 days from 1982–1990 to 2011–2019. We
observe, on average, a regional shift (1 to 3 weeks) of the start of the safe sowing window
to later dates for most of the region. This shift to later dates is more pronounced around
the northern parts of Ivory Coast, Ghana, and Togo, where farmers have indeed reported
high variation and increasing dry spells during the rainy season. The extreme values (dark
blue or red) represent the grids with fewer years (≤ 5) with a computed safe window
per decade. The interquartile of the safe sowing window range varies between −10 and
+10 days, and the average value is 0.4.

The analysis of the variation between the three decades (1991–2000, 2001–2010, and
2011–2019) shows, as is to be expected, a wider range of dates. For all periods, LO20 mm
and LO10 mm show more or less the same average variation, with the interquartile range
progressively increasing. These changes in recent decades could result from the uneven
distribution of the start of the rainy season, which has become more unpredictable. The safe
sowing window, however, shows a gradual shift to later dates, caused by devastating
dry spells that have become more frequent at the beginning of the season. The intra-
seasonal distribution of rainfall patterns (dry spells) could also explain such a shift.
Froidurot et al. [45] observed that the Sahel experiences an average of nearly one dry
spell per season of 7–15 days in the middle of the rainy season. Such dry spells tend to shift
the safe window to a later date to secure the maximum yield.

Overall, these results show that the safe sowing window is shifting in the Sudanian
region of West Africa to later dates in the rainy season. The two local strategies, on
the contrary, show earlier sowing dates, especially in the center of the region, while the
periphery of the Sudanian region shows a slight shift to the later dates.
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Figure 6. Climate effect for three sowing strategies, considering the difference in recommended
sowing dates and start date of the safe sowing window, between the periods 2011–2019 and 1982–1991.
(a) for the LO20 mm sowing strategy, (b) for the L10 mm sowing strategy, (c) for the safe window
sowing strategy.

Lodoun [46] (in Burkina Faso) and later Monerie [47] (over the 21st century) noticed
that the central region of West Africa will be wetter, while climate change will lead to
drier conditions elsewhere. Such a trend could explain why local strategies, LO20 mm and
LO10 mm, tend to lead to sowing dates that occur earlier in comparison to the safe sowing
strategy. In addition, the more extreme rainfall events could also induce an early estimation
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of sowing dates by the two precipitation-based strategies. These two strategies focus
on ensuring enough water at the start of the growing season and therefore get triggered
by intense rain events at the start of the growing period in May. This corroborates the
study performed across Benin, Burkina, and Niger, which exhibit intense rain events that
may lead to seasonal rainfall amounts close to normal but also extreme dry spells that
would cause false starts and early cessation of the cropping season [12]. By ignoring the
subsequent dry spells after the control period (germination) that could potentially lead
to crop failure, these strategies pose a serious risk, as observed by [21,45]. On the other
hand, by computing the onset of the wet season using global climate ensemble means,
Dunning et al. [44] observed that the onset is projected to become later across most of West
Africa. Although this study only considered rainfall without looking at crop growth, this
method avoided isolated intense rainfall followed by dry spells at the beginning of the
season [31] and therefore corroborates our results using the safe sowing window strategy.

Considering delaying sowing to later dates, as suggested by the safe sowing windows
for each specific area, is still recommended. This result could also explain why many
farmers in several locations in the region claim that the rainy season has shortened. How-
ever, since inter-annual rainfall totals have not shown high variability [12], water-saving
techniques (in the field) such as rainwater harvesting would be a valid option to conserve
water and soil moisture, preventing high evaporation from topsoil and increasing the soil’s
water holding capacity. This holds especially when other considerations, such as pest
avoidance or labor shortages, force the farmer to sow early.

5. Conclusions

We investigated different sowing strategies through crop responses to varying sowing
dates for maize across the Sudanian region of West Africa. Three strategies were evaluated
over 38 years to identify safe sowing windows that can prevent smallholder farmers from
falling into the trap of a false start of the rainy season and thus false sowing dates.

Strategies. LO20 mm and LO10 mm strategies identify two horizontal regions: the
savanna region is situated south of Lat 11.5◦ N, while the semi-arid zone is located north
of Lat 11.5◦ N. In the savanna region, LO20 mm and LO10 mm strategies identify aver-
age sowing dates around the last week of May and the first week of June, respectively,
while LO20 mm estimates average sowing dates for the semi-arid zone in early July, with
LO10 mm two weeks later. The safe sowing window strategy, on the other hand, displays a
progressive migration from the Savanna to the semi-arid region, with an average sowing
window from the last week of June to mid-July with a length of 25 days. The western area,
with more variability, displays sowing dates from the last week of July to the first week
of August.

Climate change. The long-term analysis highlights that the sowing dates are becoming
more scattered for LO20 mm, while LO10 mm and the safe sowing window strategies show
a relatively stable variance. Sowing dates estimated using the LO10 mm and LO20 mm
methods are subject to a lot of variation and tend to show an early sowing, suggesting that
the region is becoming wetter. The occurrence of early extreme weather events could be
an explanation for why the precipitation-based sowing strategies showed a shift to early
or earlier dates. Subsequent dry spells, however, affect yields, possibly leading to yield
reduction/failure. The safe sowing window approach shows a positive shift, indicating
that the safe sowing window is shifting to later dates. This suggests that, with more
unpredictable starts for the rainy season, sowing at later dates appears to be safer for
farmers. The strategy suggests that, for the wetter areas of the Sudanian region, sowing
between mid-June and mid-July is best. For the drier areas, it is safer to start sowing around
the end of July to the first week of August.

The method presented here can also be used for other crops and regions, as long as
the necessary auxiliary data are available. It would be interesting to expand the analysis to
include future climate scenarios but, presently, climate projections for West Africa show a
too large variation in magnitude and signs of future changes in rainfall [48].
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