
 
 

Delft University of Technology

LO
An Accountable Mempool for MEV Resistance
Nasrulin, Bulat; Ishmaev, Georgy; Decouchant, Jérémie; Pouwelse, Johan

DOI
10.1145/3590140.3629108
Publication date
2023
Document Version
Final published version
Published in
Middleware 2023 - Proceedings of the 24th ACM/IFIP International Middleware Conference

Citation (APA)
Nasrulin, B., Ishmaev, G., Decouchant, J., & Pouwelse, J. (2023). LO: An Accountable Mempool for MEV
Resistance. In Middleware 2023 - Proceedings of the 24th ACM/IFIP International Middleware Conference
(pp. 98–110). (Middleware 2023 - Proceedings of the 24th ACM/IFIP International Middleware Conference).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3590140.3629108
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3590140.3629108
https://doi.org/10.1145/3590140.3629108


LØ: An Accountable Mempool for MEV Resistance
Bulat Nasrulin

b.nasrulin@tudelft.nl

Delft University of

Technology

Delft, Netherlands

Georgy Ishmaev

g.ishmaev@tudelft.nl

Delft University of

Technology

Delft, Netherlands

Jérémie Decouchant

j.decouchant@tudelft.nl

Delft University of

Technology

Delft, Netherlands

Johan Pouwelse

j.a.pouwelse@tudelft.nl

Delft University of

Technology

Delft, Netherlands

ABSTRACT
Manipulation of user transactions by miners in permissionless

blockchain systems is a growing concern. This problem is a per-

vasive and systemic issue that incurs high costs for users of de-

centralised applications and is known as Miner Extractable Value

(MEV). Furthermore, transaction manipulations create other issues

such as congestion, higher fees, and system instability. Detecting

transaction manipulations is difficult, even though it is known that

they originate from the pre-consensus phase of transaction selec-

tion for building blocks, at the base layer of blockchain protocols. In

this paper, we summarize known transaction manipulation attacks.

We present LØ, an accountable base layer protocol designed to de-

tect and mitigate transaction manipulations. LØ is built around the

accurate detection of transaction manipulations and assignment of

blame at the granularity of a single mining node. LØ forces miners

to log all the transactions they receive into a secure mempool data

structure and to process them in a verifiable manner. Overall, LØ

quickly and efficiently detects censorship, injection or re-ordering

attempts. Our performance evaluation shows that LØ is also practi-

cal and only introduces a marginal performance overhead.

CCS CONCEPTS
• Security and privacy→Distributed systems security; •Com-
puting methodologies→ Distributed algorithms.

KEYWORDS
Blockchain, Mempool, Accountability, Transaction reordering.
ACM Reference Format:
Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse.
2023. LØ: An Accountable Mempool for MEV Resistance. In 24th Inter-
national Middleware Conference (Middleware ’23), December 11–15, 2023,
Bologna, Italy. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3590140.3629108

1 INTRODUCTION
Enabled by blockchain technologies, Decentralised Finance (DeFi)
tools and mechanisms have generated a lot of interest as building
blocks for novel digital markets, both in terms of practical appli-
cations amounting to over 80 billion USD in total value locked at

This work is licensed under a Creative Commons Attribution International 4.0 
License.
Middleware ’23, December 11–15, 2023, Bologna, Italy
© 2023 Association for Computing Machinery.

ACM ISBN 979-8-4007-0177-1/23/12. 
https://doi.org/10.1145/3590140.3629108

the moment of writing, and in terms of significant research inter-

est [43]. Furthermore, these tools enable monetization mechanisms

for the new paradigm of Web3 development, providing alterna-

tives to monopolistic centralised digital platforms. Decentralised

exchanges, lendingmarkets, derivatives, and other products built on

permissionless blockchains are just some examples of these novel fi-

nancial applications. However, these developments are undermined

by unresolved issues of transaction manipulations, such as censor-
ship, injection, and re-ordering of transactions, at the expense of

application users at underlying layers of blockchain protocols

This problem led to the notion ofMiner Extractable Value (MEV)
1
,

which refers to the maximum revenue a miner can obtain from

benign or manipulative transaction selection for block produc-

tion [13, 34]. It is a pervasive and systemic issue at a large scale as

exemplified by the Ethereum blockchain, where MEV transaction

manipulations have generated over 320 USD million of revenue

for bots and miners [40]. Furthermore, over 90% of the blocks pro-

duced on Ethereum contain MEV transaction manipulations [34].

Such manipulations not only undermine users’ trust but also induce

systemic issues like congestion, inflated fees, and system instabil-

ity [27].

We argue that the root cause of MEV is a lack of accountability

at the base layer of permissionless blockchain protocols, some-

times referred to as ’dark forest’ [34]. By base layer, we refer to the

processing steps that happen before consensus has to be reached

on a block, such as sharing pending transactions (recorded in the

mempool) with other miners and assembling them into blocks. In

contrast to what happens at the consensus layer, at the base layer,

miners are expected to act as trusted parties. As such, a miner that

creates a new block can arbitrarily select the transactions from its

mempool. In practice, miners can therefore arbitrarily censor, inject

or reorder transactions [18].

The issue of transaction manipulations, while addressed by some

MEVmitigation tools, remainswithout comprehensive solutions [32].

Many current methods primarily target the application and consen-

sus layers [45]. Rather than preventing MEV attacks, they often just

aim to mitigate their effects. Notably, the Proposer Builder Separa-

tion (PBS) approach, deployed in Ethereum’s Flashbots middleware,

doesn’t eliminate MEV but rather redistributes its revenues [3].

Some theoretical models, like fair ordering consensus protocols [22],

do prevent manipulations. Yet, they are tailored for permissioned

environments, smaller network sizes, and entail significant changes

to the blockchain consensus layer.

As transaction manipulations arise from the lack of account-

ability at the base layer of blockchain protocols, we argue that

1
Sometimes also referred to as Blockchain Extractable Value, or Maximum Extractable

Value.

98

https://orcid.org/0000-0002-7205-2913
https://orcid.org/0000-0002-9797-5140
https://orcid.org/0000-0001-9143-3984
https://orcid.org/0000-0002-9882-1506
https://doi.org/10.1145/3590140.3629108
https://doi.org/10.1145/3590140.3629108
https://doi.org/10.1145/3590140.3629108
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3590140.3629108&domain=pdf&date_stamp=2023-11-27


Middleware ’23, December 11–15, 2023, Bologna, Italy Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse

comprehensive mitigation of MEV requires addressing trust as-

sumptions at this particular layer. To address them, we design LØ,

an accountable mempool protocol.
In LØ miners become accountable for the process of transaction

selection and ordering. As new transactions are propagated among

miners, they exchange and record commitments on the content

of their mempools with each other. New transactions are shared

in bundles, and commitment is recorded on a whole transaction

bundle. This provides a local partial ordering of transactions. Our

system is based on pairwise commitments that are exchanged dur-

ing a mempool reconciliation phase, which is executed before the

consensus protocol. This allows miners to witness each others’

transaction selection and commit to a particular order and set of

transactions that they will use for block generation. Therefore, LØ

ensures that any transaction manipulation, such as transaction cen-

sorship, injection and reordering, can be detected and proven by a

correct node.

Our system is agnostic to the specific type of consensus protocol

used in a permissionless blockchain system. It can be seamlessly

integrated with existing blockchain solutions, as a relatively simple

modification of Peer-to-Peer (P2P) protocol that propagate transac-

tions and blocks. It does not require any additional cryptographic

setups, and it does not impose a significant performance overhead.

We leverage the Minisketch data structure for the reconciliation of

mempools to implement bandwidth-efficient commitments [29].

Overall, this paper makes the following contributions:

• We categorize transaction manipulation primitives behind

any potential MEV attack, correlating them with the transaction

processing stages susceptible to miner manipulations (Sec. 2).

• We outline our system model in (Sec. 3) and introduce LØ,

a protocol engineered to mitigate transaction manipulations by

detecting and attributing them to individual mining nodes. Sec. 4

delves into its unique policies that enable the detection.

• We detail how LØ detects transaction manipulation attacks

and potential mechanisms for the enforcement of these policies

(Sec. 5), and possible attacks against accountability in LØ.

•We present our performance evaluation, which demonstrates

that LØ is practical. It is both bandwidth and memory-efficient.

For example, it only requires up to 10 MB of additional storage for

a network of 10,000 nodes and a workload of 20 transactions per

second. At the same time, it is at least four times more efficient

than the classical flooding-based mempool exchanges (Sec. 6).

2 TRANSACTION MANIPULATIONS AT THE
BASE LAYER

This section explores the layers and stages of blockchain transac-

tions, with a focus on manipulation primitives, illustrated in Fig. 1.

The figure demonstrates the functional modules of a permissionless

blockchain, separated into two essential layers, base and consensus,

and further broken down into four specific transaction processing

stages.

2.1 The Base Layer versus the Consensus Layer
We distinguish the base layer of a blockchain system from its con-

sensus layer. In the complete life-cycle of a transaction, the base

layer corresponds to the steps that precede the block consensus

phase as illustrated in Fig. 1. These steps include the creation of the

transaction and its initial sharing, its inclusion in the mempools, the

reconciliation of the mempools between miners, and the inclusion

of the transaction in a candidate block.

We emphasize that the block-building stage, where a miner se-

lects transactions that it includes in a candidate block is a pre-

consensus phase. Indeed, while sometimes block building is de-

scribed as part of blockchain protocols, it is strictly speaking not a

part of the consensus mechanism as blocks can be produced offline,

as illustrated by PBS in Ethereum and selfish mining in Bitcoin [17].

We further distinguish the base layer from the network layer of

blockchain protocols, as the latter is required in all transaction

processing stages, including during consensus.

The base layer typically provides much lower guarantees against

misbehaving nodes than the consensus layer. In the base layer, min-

ers only conduct checks on the validity and priority of transactions

(which is related to miner’s fee) and add them to a local pool of

unconfirmed transactions referred to as the ’mempool’ [41]. How-

ever, miners are considered to be trusted parties with regard to the

selection, withholding, and ordering of transactions [18]. Therefore,

all stages of the transaction life-cycle that precede consensus allow

transaction manipulations.

2.2 Transaction Manipulation Primitives
We consider practical attacks that include reordering of transactions

by miners. These attacks have been observed in practical settings

and described in academic works that relate to MEV [45]. In prac-

tice, these attacks combine different types of transaction ordering

manipulations. A common taxonomy of MEV attacks is application-

specific and depends on the source of attack revenue. Well-known

attack types include sandwich-attacks, front running, and back run-
ning, which are associated with decentralized exchanges, sniping,
which is associated with Non Fungible Token auctions, and liquida-
tions, which are associated with collateralized loan protocols. This

taxonomy evolves as new MEV attacks rapidly emerge with new

applications.

In this paper, we consider a different taxonomy focusing on spe-

cific attack primitives on the base layer. These primitives allow a

broad range of MEV techniques, either on their own or in combina-

tion, are censorship, injection, and re-ordering of transactions.

Censorship. Censorship is the ability of a miner to delay or

ignore new transactions. Censorship can enable different finan-

cially motivated MEV attacks, such as sniping, executed alone or in

combination with other primitives. For example, when receiving

transactions for a bid in Non Fungible Token auctions, a faulty

miner can censor competing transactions to become the auction

winner. This censorship mechanism can take place during the di-

rect communication with the client (Stage I), during the mempool

exchange (Stage II) or during the block building stage (Stage III).

Mempool Censorship. Faulty miners can ignore transactions re-

ceived from some other nodes, and exclude their valid transactions

from their mempool. We assume that a faulty miner either pro-

vides a fake transaction reception acknowledgement, or does not

acknowledge it at all. This type of attack enables censorship at the

99



LØ: An Accountable Mempool for MEV Resistance Middleware ’23, December 11–15, 2023, Bologna, Italy

Figure 1: Three types of transaction manipulation primitives that occur accross the functional modules of a permissionless
blockchain divided into two layers (base and consensus) and four stages.

level of a mempool [45], and facilitates transaction manipulation

based on front-running.

Blockspace censorship. Faulty miners can exclude valid transac-

tions from blocks, even after acknowledging their reception and

including them in their mempool.

Injection. We assume that honest miners include transactions

received from other nodes in new blocks following a deterministic

order. Honest miners can also add their own new transactions,

under the assumption that updated mempool commitment is shared

with other nodes and acknowledged. Faulty miners inject new

transactions in blocks in an arbitrary manner, without prior sharing

of the updated mempool and without acknowledgements. This type

of attack can result in certain types of transaction manipulations

such as front-running, sandwich, and back-running [13].

Re-ordering. Upon successfully mining a block, faulty miners

can attempt to populate it with transactions in an order that devi-

ates from a protocol specification and that can be detrimental to

other nodes. In a reordering attack a faulty miner processes trans-

actions in an order that differs from the one they were received

with. Contrary to injection attacks, a faulty node that executes a

re-ordering attack does not add new transactions.

2.3 Transaction Processing Stages
Attacks can happen at different stages of the transaction life-cycle.

We model the processing of a transaction in a generic blockchain

system in Fig. 1. This processing happens in four stages: (I) initial

transaction sharing, (II) mempool reconciliation, (III) block build-

ing and (IV) block settlement. In the following, we describe each

stage and discuss the corresponding attacks that enable transaction

manipulations such as MEV.

Stage I. Initial transaction sharing. A transaction is first cre-

ated on the client side. The client signs the transaction with its

private key. The transaction contains all the required context to be

processed by miners, such as signature, wallet address, execution

commands, transaction fee, etc. The client shares the transaction

with a subset of peers that it personally knows or whose identity

is publicly known (step 1 ). The peers receive the transaction and

attempt to prevalidate it (step 2 ). Our system is agnostic with

respect to specific the requirements for transaction prevalidation.

For example, successful prevalidation of a transaction may require:

a valid signature from a client, sufficient amount of funds in a client

account, and the inclusion of a sufficient transaction processing fee.

Miners that successfully prevalidate a transaction insert it in

their local mempool storage. Optionally, miners might respond to

the client with the transaction status, to acknowledge inclusion of

a transaction in a mempool (step 3 ). Also optionally, a client can

query a miner to get an acknowledging of transaction inclusion in a

mempool. A malicious peer can censor the transaction at the point

of prevalidation, without adding it to the mempool. For example,

a peer can exclude a client based on its id, e.g. all transactions

originating from a specific address. At the same time, the client and

peer can collude to include an invalid transaction into a mempool.

Stage II. Mempool reconciliation. At this stage, peers share
their transaction mempools (step 1 ). Typically, a mempool ex-

change is implemented to first share the transaction IDs, and only

later selectively share the transaction content of the corresponding

IDs. Once a miner receives the transaction content, it prevalidates

the transaction (step 2 ), similarly to stage I. In theory, this stage al-

lows the miner to converge to the same transaction set for any peer-

to-peer network. Unfortunately, in practice, there is no guarantee

that miners will converge. A client can be partially or completely

excluded from learning particular transactions when communi-

cating with malicious peers. Moreover, miners can inconsistently

exchange their mempools. Finally, without a requirement for the

mempool reconciliation, a malicious miner can exclude or include

any transaction without being detected by other miners. Different

types of injection and censorship can be performed by faulty miners

at that stage. For example, a malicious miner receiving a high-fee

transaction can withhold it from sharing with other nodes in order

to include its in own block later.

100



Middleware ’23, December 11–15, 2023, Bologna, Italy Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse

Stage III. Block building. Upon creating a block, a miner pop-

ulates it based on information stored in its local mempool data

(step 1 ). For each block, the miner selects a subset of transactions

to fill up the blockspace (step 2 ). The selected transactions are in-

cluded in the block in a specific order chosen by the miner (step 3 ).

A final block contains additional metadata, like signature, nonce, or

timestamp (step 4 ). Most of the reported MEV is happening at the

stage of block building. Indeed, miners can freely inject, exclude,

or order transactions to maximize their profit, performing injection,
reordering and blockspace censorship.

Stage IV. Block settlement. LØ is agnostic to the specific con-

sensus process to finalize the blocks. We model miner selection

as a random process, where a selected miner builds its block and

sends it to other miners. The attacks on this stage are extensively

discussed in previous works. The most discussed manipulations

include block withholding, block reordering and equivocation at-

tacks. We consider the accountability on this stage out of scope.

Our solution can be combined with other solutions addressing the

manipulations at this stage, such as Polygraph [11].

3 SYSTEM MODEL
This section describes our system model, which is the common one

for permissonless blockchain protocols, such as Bitcoin, Ethereum,

etc.

The mining nodes (miners) belong in a set Π = {𝑝1, 𝑝2, . . . } and
communicate with each other by exchanging messages over the

network. We assume that each miner is equipped with a crypto-

graphic key pair, and is uniquely identified by its public key. Nodes

have access to a cryptographic signature scheme and messages are

authenticated.

Communication Overlay. Nodes are connected in an undirected

communication graph. Nodes are free to unilaterally add or drop

local connections, and they can leave and later rejoin the network

at any time. Nodes exchange messages with their overlay neighbors

through a direct connection. We use the notation 𝑁𝑖 to refer to the

neighbors of a node 𝑝𝑖 , i.e., the nodes that are currently directly

connected with it.

Bootstrap and Peer Discovery.We assume that nodes that join

the system are able to contact bootstrap nodes that facilitate node

discovery.When (re)joining the network, each correct node requests

a set of known active nodes from the bootstrap nodes. The bootstrap

nodes are correct, i.e., they don’t bias the peer introduction process.

As a result, the nodes operate in a single connected network.

Continuous Sampling: Correct nodes persistently sample the

network using a node discovery procedure. LØ employs a Byzantine-

resilient uniform sampling algorithm, such as those detailed in [4, 7].

It presumes that the peer sampling algorithm ensures interaction

between any correct node within a finite time frame, a premise

vital to LØ’s detection assurances. Malicious nodes can delay the

node discovery procedure, however, it is guaranteed that correct

nodes will eventually be able to communicate with each other.

Types of Nodes. In different consensus protocols nodes participat-

ing in block creation can be called validators, proposers, builders,

etc. Here we only consider the role of block creator and refer to the

nodes that create blocks as miners. For the sake of simplicity, we do

not consider light clients, which our model can nonetheless cover

without modifications. Miners can create new transactions, and

they can also propose new blocks with ordered transactions to be

included in the blockchain. All nodes maintain a list of unconfirmed

transactions (mempool) and exchange it with other nodes in the

network through messages.

3.1 Attacker Model
In our network, each node is either correct or faulty. Correct nodes

adhere to the reference protocol without data tampering and gen-

erate valid messages. Faulty nodes, on the other hand, can deviate

arbitrarily from the reference protocol.

We assume that a faulty miner can execute any of the transaction

manipulations we previously described: censoring transactions, in-

jecting new transactions out-of-order, or deviating from the canon-

ical transaction order [51]. These attacks can be carried out by a

faulty miner in a naive way by sending the same message (e.g., a

reordered set of transactions) to all neighbouring nodes, or they

can attempt to evade detection of manipulations by equivocating,
i.e., sending conflicting messages to different nodes. We elaborate

further on the security model in Sec. 5. We also assume that faulty

nodes might avoid interacting with some other nodes.

3.2 Accountability
We consider the standard accountability property for distributed

systems and protocols [20]. We define accountability as the ability

for honest nodes to detect transaction manipulations and assign

blame at the granularity of a single mining node. Here, a blame
refers to a message that captures the identity of the miner and

its operational state, but also includes evidence that justifies or

supports that stated status. This operational state, which we term

"status," provides insights into whether the miner is functioning

correctly, or exhibits malicious behavior.

Effective accountability relies on the premise of nodes’ interac-

tion, typically involving requests sent to and responses received

from other nodes. In asynchronous networks, an adversary can

try to evade detection as it is challenging to distinguish between

a misbehaving node that deliberately ignores requests and a slow

node. To circumvent this difficulty, we divide blames into two types:

suspicions and exposures. An exposure is a verifiable proof of mis-

behavior, while a suspicion is a lack of response to a request.

We consider two desirable properties of accountability:

Accuracy: (1) Temporal.No correct node is perpetually suspected
by a correct node, and (2) No false positives. No correct node is

exposed as misbehaving by any other nodes.

Completeness: (1) Suspicion completeness. Every misbehaving

node that ignores requests is perpetually suspected by all correct

nodes. (2) Exposure completeness.When a node is exposed as mis-

behaving by a node, it will eventually be exposed by every correct

node.

4 LØ: ACCOUNTABLE BASE LAYER

In this section, we present LØ which achieves accountability at

the base layer. Specifically, LØ is implemented as a modification

of mempool reconciliation and block building stages as defined in

Sec. 2.3.

101



LØ: An Accountable Mempool for MEV Resistance Middleware ’23, December 11–15, 2023, Bologna, Italy

Addressed Manipulation Current implicit policies New explicit policies
Censorship Unreliable Transaction Gossip Inclusion of All Transactions

Injection Out-Of-Order Transaction Selection Transaction Selection in Received Order

Reordering Arbitrary Order in a Block Verifiable Canonical Order in a Block

Table 1: Implicit policies in the base layer of typical permissonless blockchain and the new explicit policies we replace them
with to detect transaction manipulations.

Our solution at a glance: We address transaction manipulation

at the mempool layer. Through pairwise interactions, we design

a protocol that makes it infeasible for users to misrepresent the

transactions they have observed and the precise times at which

they observed them. Using a deterministic block-building protocol,

we can reorder transactions. Our accountability protocol enables

many ways for effective anti-abuse enforcement.

4.1 New Explicit Policies at the Base Layer
This section introduces LØ, our accountable base layer protocol for

permissionless blockchains. LØ improves over the ‘vanilla’ mem-

pool reconciliation and block-building protocols of permissionless

blockchains (stages II and III of Fig. 1).

To enable accountability we require to modify some currently im-

plicit or ill-defined policies at the base layer. Our observation is that

current implementations of blockchain systems use implicit policies

that significantly complicate the detection of transaction manipu-

lations. First, transaction censorship is not possible to attribute to

a miner given an unreliable transaction relay. Every miner has its

own relaying policy and even perfectly correctly behaving nodes

may choose not to relay anything at all. Second, miners can build a

block with any transactions from the mempool, or even inject new

transactions during the block creation. Third, there is no ‘canonical

order’ inside a block, allowing for any type of reordering [2].

Instead of these ill-defined policies, we propose three alternative

explicit policies to enable the detection of any transaction manipu-

lations, as presented in Table 1. In a nutshell, LØ introduces three

new explicit policies: Inclusion of All Transactions, Transaction Se-
lection in Received Order, and Verifiable Canonical Order in a Block.
Transaction manipulations are detected as violations of our explicit

policies during the mempool reconciliation, or when inspecting the

content of a block.

Inclusion of All Transactions. Eachminer includes all valid trans-

actions it encountered during the system run in its locally main-

tained append-only transactions set. Once two nodes are connected

they directly exchange their known transactions. The transaction

exchange is implemented as a sequence of set reconciliations. The

miners exchange multiple transactions in one transaction bundle.

This allows two nodes to efficiently obtain the transactions they

are missing and as a result, end up with the same transaction sets.

The key ability of LØ is that after a successful round of recon-

ciliation both correct nodes are ensured to have a common set of

observed transactions. To ensure that none of the transactions is

censored and all processed in the same way miners keep all valid

transactions they encounter. Miners commit to be able to reveal all

transactions they know about, if necessary.

Transaction Selection in Received Order. During the recon-

ciliation process, each miner commits to the order it received a

transaction bundle from another miner. To mitigate any out-of-

order injections, the miners are required to process the transactions

following their insertion order in their mempool. As miners learn

and commit on their mempool transactions, the transactions are

then naturally ordered according to the order in which they were

received.

Verifiable Canonical Order in a Block. Transactions that are
inserted into a newly created block are selected according to a de-

terministic process. In more detail, committed transaction bundles

are first assembled following a sequential order. The order inside

a bundle is then pseudo-random: transactions are shuffled using a

known shuffling algorithm and an order seed value. The order seed

value is based on the hash of the last created block.

4.2 Mempool Reconciliation
The mempool reconciliation process (cf. Sec. 2.3) forces miners to

correctly share the transactions they accepted into their mempool.

In practice, LØ’s mempool reconciliation uses two techniques: (i)

anti-entropy gossip reconciliations [16, 39]; and (ii) signed commit-

ments [15, 29].

Nodes maintain a mempool of all pending transactions and keep

a record of all transactions they have ever received. Nodes reconcile

their mempools to disseminate transactions throughout the system

and generate commitments that are exchanged during mempool

reconciliations. These commitments cover not only the transactions

in the current mempool, but all valid transactions ever received by

a node at the time of reconciliation.

Mempool reconciliation serves two purposes: (1) it allows min-

ers to learn about new transactions from their neighbours; and

(2) it ensures that miners commit to a specific transaction partial

order during reconciliation. This partial order must be maintained

during block creation. Miners mutually commit to the order by first

exchanging a commitment. Miners are inherently motivated to re-

ceive transactions from other miners. However, they only disclose

the transactions after their counterpart has committed to a specific

order of transactions.

Transaction Flow. Alg. 1 provides LØ’s pseudocode for a node
𝑝𝑖 ∈ Π.

A transaction is generated at a node 𝑝𝑖 (lines 6-9). Once created,

this transaction is stored locally at 𝑝𝑖 . The transaction’s id is then

incorporated into the commitment𝐶𝑖 of node 𝑝𝑖 . We describe𝐶𝑖 as a

commitment to the sequence of transactions introduced byminer 𝑝𝑖 .

Concurrently, this commitment acts as a cryptographic verification

of the incorporated mempool transactions. The transaction’s id is

determined using a hash algorithm, represented as 𝐻 (𝑡𝑥).
At regular intervals, miners prompt their neighbors to commit to

fresh transactions by dispatching a new commitment request (lines

11-18). The reconciliation of our mempool between nodes 𝑝𝑖 and

102



Middleware ’23, December 11–15, 2023, Bologna, Italy Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse

Figure 2: Example of a mempool reconciliation in LØ between node 𝐵 and nodes 𝐴, 𝐶. Node 𝐵 preserves the transaction order
for the block it eventually creates.

Algorithm 1 LØ on node 𝑝𝑖 .

1: Ĉ1, . . . , Ĉ𝑁 ← ∅, . . . , ∅ ⊲ Last observed commitments

2: E ← ∅ ⊲ Set of exposed miners

3: S ← ∅ ⊲ Set of suspected miners

4: 𝑡𝑥𝑠 ← ∅
5:

6: procedure TransactionCreate(𝑡𝑥 )
7: 𝑡𝑥𝑠 ← 𝑡𝑥𝑠 ∪ {𝑡𝑥}
8: 𝑡𝑥𝑖𝑑 ← 𝐻 (𝑡𝑥) ⊲ Hash of 𝑡𝑥

9: 𝐶𝑖 ← 𝐶𝑖 ∪ {𝑡𝑥𝑖𝑑}
10:

11: procedure NeighborsSync
12: for 𝑝 𝑗 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑖) do
13: if C𝑖 \ Ĉ𝑗 ≠ ∅ then ⊲ Peer j is outdated

14: S ← S ∪ {𝑝 𝑗 }
15: ΔC𝑖 𝑗 ← 𝐶𝑖 \ Ĉ𝑗

16: send request ΔC𝑖 𝑗 from 𝑝 𝑗
17: else
18: S ← S \ {𝑝 𝑗 }
19: on Receive request ΔC𝑗𝑖

20: 𝑅𝑒𝑞 ← ∅
21: for 𝑡𝑥𝑖𝑑 ∈ ΔC𝑗𝑖 |𝑡𝑥𝑖𝑑 ∉ 𝐶𝑖 do
22: 𝐶𝑖 ← 𝐶𝑖 ∪ {𝑡𝑥𝑖𝑑} ⊲ Commit for tx id

23: 𝑅𝑒𝑞 ← 𝑅𝑒𝑞 ∪ {𝑡𝑥𝑖𝑑}
24: send 𝐶𝑖 , 𝑅𝑒𝑞 to 𝑝 𝑗
25:

26: on Receive C𝑗 , 𝑅𝑒𝑞

27: if Ĉ𝑗 ⊂ C𝑗 then
28: Ĉ𝑗 ← C𝑗

29: send txs with ids ∈ 𝑅𝑒𝑞 to 𝑝 𝑗

30: if (C𝑗 \ Ĉ𝑗 ≠ ∅ & Ĉ𝑗 \ C𝑗 ≠ ∅) then
31: E ← E ∪ {𝑝 𝑗 } ⊲ Expose

32: Broadcast C𝑗 , Ĉ𝑗

33:

𝑝 𝑗 transpires in two stages. Initially, node 𝑝𝑖 directs a commitment

request to node 𝑝 𝑗 , signifying the new set of transactions possessed

by 𝑝𝑖 (lines 15-16). As long as the request is outstanding, node 𝑝 𝑗
remains under suspicion (line 14).

Upon receiving a request from 𝑝 𝑗 (lines 19-24), node 𝑝𝑖 recipro-

cates with its updated 𝐶𝑖 encompassing all the new transaction ids

previously requested by node 𝑝𝑖 (line 24). In other words, it’s an

assurance to process them immediately following all known local

transactions. Along with this commitment, node 𝑝𝑖 also sends out

a request for any unacquainted new transactions.

After receiving the commitments of their neighbours, nodes cal-

culate their transaction set differences with them (lines 27 and 30).

Since the commitment is signed, it can later be used as a proof of in-

clusion of transactions—any receiver can use the commitment𝐶 𝑗 as

verifiable evidence that node 𝑝 𝑗 should have included transactions

in its mempool.

All miners store at least the last received commitments from

their overlay neighbours (line 28). On receiving a checksum 𝐶 it is

first validated against previously received set 𝐶 (lines 27-32). The

set 𝐶 is grow-only and keeps all the transactions committed by the

node. If 𝐶 is inconsistent with the previously reported messages 𝐶 ,

the evidence of the faulty behaviour is shared with other nodes (line

32). This inconsistency could happen for example when a faulty

node is trying to hide a previously reported message or does not

report a message received from other nodes.

Example. Fig. 2 illustrates a possible mempool reconciliation.

Nodes 𝐴, 𝐵, and 𝐶 first exchange transaction commitments. Note

that commitments can also be received indirectly, but this scenario

is not included in Fig. 2 for simplicity. Node𝐴 sends a request, along

with the mempool commitment 𝐶𝐴 , to node 𝐵. Node 𝐵 reconciles

commitment 𝐶𝐴 with its own 𝐶𝐵 and promises to include node 𝐴’s

missing transactions immediately after all transactions 𝐶𝐵 . Node

𝐴 promptly sends the missing transaction 2 to node 𝐵. Shortly

afterwards, node 𝐶 reconciles with node 𝐵 in a similar manner.

However, this time, node 𝐵 promises to include transactions of

node 𝐶 only after the transactions 1,3,4,2. Let’s assume that later,

node 𝐵 creates a new block, possibly because it is elected as a

103



LØ: An Accountable Mempool for MEV Resistance Middleware ’23, December 11–15, 2023, Bologna, Italy

consensus leader. Node 𝐵 must then select all transactions in the

order of the commitment it made, which is 1,3,4,2,5,6.

Implementation Details. LØ utilizes Minisketch and Bloom
Clocks to efficiently orchestrate the mempool reconciliation proto-

col. In this framework, a commitment comprises both the miner’s

Bloom Clock and Minisketch. These data structures have dual core

functionalities: (1) they detect discrepancies in the digests shared

during prior rounds, and (2) they aid set reconciliation to pinpoint a

miner’s unknown transactions. Collectively, these structures under-

pin the commitments C employed in Alg. 1. In particular, Minisketch

executes the set reconciliation algorithm used in lines 13 and 30.

To expedite inconsistency identification, Bloom Clocks facilitate

the consistency verification at line 30.

AMinisketch [29] implements the PinSketch [15] algorithm for

creating and decoding set sketches based on linear error-correcting

codes. Sets of items are portrayed as polynomials with roots equat-

ing to the 32-bit integer representation of transaction hashes. The

algorithm computes a "sketch" by evaluating this polynomial at spe-

cific points, with polynomial coefficients forming the sketch. If you

have two sketches (from two different sets), they can be combined

by performing a bitwise XOR operation on the coefficients. The

result is a new polynomial whose roots represent the symmetric

difference between the two original sets. A critical parameter when

creating a sketch is the "capacity," which signifies the estimated

maximum difference between the two sets. If the actual difference

between the sets exceeds this capacity, reconciliation using the

sketch fails. When the reconciliation fails we divide the data into

two subsets and attempt the reconciliation process on each subset.

The Bloom Clock is a space-efficient probabilistic data struc-

ture used to order events in distributed systems [35]. It is imple-

mented as a counting Bloom filter, where each item signifies a

mempool transaction. Items are hashed and placed into one of the

𝑚 cells, each containing an integer counter of number of values

mapped. This structure quickly highlights discrepancies between

nodes based on cell values. We integrate the Bloom Clock with

Minisketch to bolster reconciliation efficiency. The process starts

with a bloom filter comparison, detecting inconsistencies between

sets. Later, nodes construct a Minisketch specific to their transac-

tion set, corresponding to the cells that the bloom filter has flagged

as inconsistent. The Bloom Clock’s strength is in its preliminary

estimation of differences between two sets, significantly reducing

Minisketch reconciliation failures.

Summary. The pairwise commitment scheme ensures that miners
are committed to all transactions they discover according to the order
in which they are received.

4.3 Block Building
To avoid manipulations during the block-building stage, we slightly

modify the ‘vanilla’ block-building process with our new policies.

The modified block-building process is shown in Fig. 3.

Transaction Selection. Peers select all transactions they en-

counter during the mempool reconciliation phase and that are

included in the mempool (step 1). Miners must verify these trans-

actions. The transactions that are not valid are not included in the

block. The transactions that have fees lower than some threshold

are not included in the block, and are rejected (step 2).

Figure 3: Block building and inspection in LØ.

Transaction Ordering. The selected transactions are ordered

in a verifiable canonical way (step 3). Recall from the mempool rec-

onciliation process that transactions are partially ordered with the

commitments order as the commitments define the order between

transaction bundles. We also define a deterministic pseudo-random

order function inside each of the bundle. We use a hash of previous

block as a seed for the intra-bundle order function.

Block Inspection. Next, a block is created (step 4) and shared

with the network. Given the mempool commitments, any node can

verify the produced block by inspecting its content with respect to

the LØ reference protocol (step 5). Note that block inspection is a

separate process from block validation, and does not affect the block

inclusion into the chain. Any violation exposes the block creator

(step 6), by comparing the block content with the known commit-

ments. This is achieved by comparing the transaction order in the

block to the declared mempool commitments. Each commitment

and block has an incremental counter for appropriate comparison.

This means that a correct node can expose a malicious node upon

detecting any inconsistent commitment.

Summary. During the block-building process, miners select and
order transactions deterministically.

5 DEALINGWITH ATTACKS
This section delves into potential attacks and the countermeasures

facilitated by detection mechanisms and enforcement tools. LØ fo-

cuses on reliably detecting MEV attacks on transaction ordering, ad-

dressing manipulations such as censorship, injection, and re-ordering
in Sec. 5.2. We also discuss threats to our detection mechanism in

Sec. 5.3. While LØ emphasizes detection and is consensus-agnostic,

we briefly touch upon enforcement mechanisms enabled by L0 in

Sec. 5.4.

5.1 Assumptions and Scope of Attacks
Given our assumption on peer discovery, LØ relies on an over-

lay that facilitates frequent neighbor shuffling. Specifically, LØ’s

underlying overlay must be resilient to Sybils, which is realistic

since previous work showed robust guarantees even in presence

of 99% of Sybils [38]. Each peer periodically rotates its neighbors,

and the peer discovery process continues until it is provided with a

sufficient number of non-suspected and non-exposed peers.

104



Middleware ’23, December 11–15, 2023, Bologna, Italy Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse

We employ a peer sampler that periodically provides each node

with a set of peers that are chosen uniformly at random [4, 7, 28].We

impose two requirements on the sampling algorithm: (i) all honest

peers in the network must eventually form a connected subgraph;

and (ii) the algorithm should achieve an unbiased uniform sampling

of network members.

5.2 Detecting Transaction Manipulation
We consider the transactionmanipulation attacks described in Sec. 2.

Every node utilizes a block inspection module to detect violations.

Nodes are required to disclose all their known transactions and

they must consistently disclose each commitment or they run the

risk of being identified as faulty. Manipulation is detected either by

comparing two commitments or by contrasting the block content

with known commitments signed by the block creator.

Manipulation detection. The ability to detect manipulation

hinges on the availability of commitments signed by the block

creator. Initially, overlay neighbors gather these commitmentswhen

connecting with each other. Nodes are mandated to timely respond

to these commitment requests. A failure will lead to suspicion of

fault by every honest miner in the network. Furthermore, nodes

inherently have an incentive to acquire new transactions from

other nodes, an action which only ensues after responding with a

commitment.

Second, to ensure that other nodes can also detect and reach

an agreement on whether transaction manipulation has occurred,

nodes periodically share their most recent commitments with their

neighbors. This sharing is triggered when establishing a new over-

lay connection during a shuffle, or when disseminating a blame

message. All commitments are retained, so when a node comes

online, it disseminates its latest known commitments triggering a

‘NeighboursSync’ as shown in Alg. 1.

Countering Attacks during Block Building. The order func-
tion ensures that order manipulation attacks can be detected, as

any block where the transaction order deviates from the canonical

one will be detected. Similarly, a block-space censorship attack is

detected as a deviation from the selection function rules. While a

block creator can add their own transactions to a newly created

block without first providing a commitment, they must first in-

clude all previously committed transactions in their block. The new

transaction can only be appended after all committed transaction

bundles.

Suspicion andMisbehavior Sharing The Accountability Mech-
anism incorporates liveness checks and requires a timely response.

If a node does not respond to transaction requests before a time-

out, it is suspected by the requester. The requester may resend

the request multiple times before suspecting the node. Correct

nodes retain all pending requests. If a node is suspected, the re-

quester broadcasts the suspected requestee’s identity to other nodes,

along with information on pending requests and the requestee’s

last known commitments. A node may retrieve pending requests

after a partition or a crash. Once it publicly responds to all pending

requests, no correct node will suspect it.

In Fig. 4, node 𝐵 has an earlier commitment (𝐶𝐴,𝑛) from node

𝐴. Node 𝐶 has the latest commitment (𝐶𝐴,𝑛+1) from node 𝐴. Node

𝐵 sends a request for a commitment on a particular transaction

Figure 4: Consistency check and suspicion mechanisms.

𝜏 from node 𝐴, but does not receive a response. After a timeout,

node 𝐵 suspects node 𝐴 and broadcasts a suspect status along with

the latest commitment (𝐶𝐴,𝑛) from 𝐴 that is available to 𝐵 to its

neighbors, in this case, to node 𝐶 . The suspicion mechanisms is

used for every request message used in Alg. 1, such as the request

of the new commitment (line 16), or the request of transactions

(line 24).

Equivocation Detection. A consistency check occurs when a

node is suspected. Commitments are append-only sets and thus

follow chronological order. When a node has two commitments,

it can easily detect any inconsistency between the previous com-

mitment 𝑛 and the latest commitment 𝑛 + 1 by reconciling two

Minisketches. Without loss of generality, consider an example of

suspicion and consistency check in. Node 𝐶 receives two commit-

ments originating from node 𝐴, i.e., commitment (𝐶𝐴, 𝑛 + 1) from
node 𝐵, and (𝐶𝐴, 𝑛 + 1) from node 𝐴. Node 𝐵 has tried to get a

commitment on transaction 𝜏 from A and suspects A because of

the high response delay. Node 𝐶 will check whether (𝐶𝐴, 𝑛) and
(𝐶𝐴, 𝑛 + 1) are consistent with each other.

• If these commitments are inconsistent, node 𝐶 exposes 𝐴 as

a misbehaving node.

• If (𝐶𝐴, 𝑛) and (𝐶𝐴, 𝑛+1) are consistent and (𝐶𝐴, 𝑛+1) already
includes a commitment on a transaction 𝜏 , then node 𝐶 will

share the latest commitment (𝐶𝐴, 𝑛 + 1) with 𝐵.

105



LØ: An Accountable Mempool for MEV Resistance Middleware ’23, December 11–15, 2023, Bologna, Italy

Figure 5: Colluding malicious miners communicating off-
channel to evade detection.

• If (𝐶𝐴, 𝑛) and (𝐶𝐴, 𝑛 + 1) are consistent but (𝐶𝐴, 𝑛 + 1) does
not include a commitment on 𝜏 , then 𝐶 will send a request

for commitment on 𝜏 to 𝐶 and suspect 𝐶 .

5.3 Attacks on LØ
In our model, we assume that miners are incentivized to learn

about more transactions. This assumption aligns with empirical

observations, as miner profitability correlates with their ability to

discover new transactions [32].

A malicious miner might opt not to share commitments with

other peers. Yet, this behavior confines the miner’s communication

strictly to other colluding miners. Suppose the originator of trans-

action 𝑡 , denoted as node 𝐴, disseminates the transaction 𝑡 after

gathering commitments from its neighbors 𝑁𝐴 . Now, if a malicious

miner 𝐶 , who is not part of 𝑁𝐴 , wishes to include the transaction

𝑡 out of order in its block, they first need to learn about trans-

action 𝑡 from another peer 𝐵. This peer 𝐵 must have directly or

indirectly interacted with node 𝐴. The malicious miner 𝐶 has two

strategies when communicating: (1) register the interaction and

commitment with a colluding node 𝐵, or (2) exchange transaction 𝑡

off-channel without making any commitments. This attack strategy

is illustrated in Fig.5.

Detection of collusion hinges on tracking the commitment chain

from the transaction’s original creator, node 𝐴, to the block creator

𝐶 . Post-block creation, node 𝐴 can obtain commitments related to

transaction 𝑡 from node𝐶 , revealing its source. If node 𝐵 reordered

transaction 𝑡 , it would be implicated; otherwise, node 𝐶 would be

exposed. If the transaction 𝑡 lacks recording, node 𝐶 faces blame

for introducing a transaction without node 𝐴’s commitment.

Additionally, colluding miners or Sybil miners must have a high

probability of becoming the consensus leader to include a specific

transaction. To increase this success rate, a substantial set of col-

luding miners or Sybils is required, which is costly considering the

initial investment and the absence of profits from honest protocol

participation.

5.4 Possible Enforcement Policies
Reliable detection and blame assignment allow for MEV mitigation

through the enforcement of policies. The choice of specific enforce-

ment mechanisms depends on the consensus protocol. Given that

LØ is agnostic to the particular consensus algorithm used, a detailed

analysis of specific enforcement mechanisms is beyond the scope

of this paper.

However, in Proof-of-Stake (PoS) consensus algorithms, various

slashing strategies can be applied to misbehaving nodes [9]. Since

validating nodes in PoS must invest a certain amount of funds to

become validators, slashing of stake incurs a financial loss. For

consensus algorithms based on the reputation of validating nodes,

slashing of reputation can equivalently serve as a penalization

mechanism [46]. Misbehaving nodes can also be penalized at the

network layer level, such as temporary disconnection from the

network [18]. In addition to penalizing misbehaving miners, detec-

tion allows the implementation of mechanisms for the rejection of

blocks that deviate from the canonical transaction order [36].

6 EVALUATION
In this evaluation section, we assess LØ’s performance and re-

silience, particularly when confronted with malicious nodes within

the network. Our examination focuses on several key metrics, in-

cluding the system’s ability to timely detect transaction manipula-

tions the time required for transaction processing, and the overall

system overhead.

6.1 Experimental setup
Unless otherwise stated, the parameters in our reported experiment

are set as follows: There are 10, 000 nodes, generating a workload of

20 transactions per second, with each transaction being 250 bytes in

size. The transactions were injected into our system based on a re-

alistic dataset of Ethereum transactions [31]. Each experiment was

repeated 10 times, and the average result of these runs is reported.

We constructed a connected topology where each node had

eight outgoing connections and up to 125 incoming connections, in

line with the default Bitcoin parameters. Every node attempted to

reconcile with three random neighbors every second. The request

timeout was set to 1 second. If a request was not fulfilled within this

time, it was resent three times, after which the node was suspected

of being faulty. The Minisketch size was set to 1,000 bytes, sufficient

to reconcile a set difference of up to 100 transactions, allowing the

Minisketch to fit into a single UDP packet. If reconciliation failed,

all transactions were divided into two subsets, and the process was

repeated with two sketches. The size of Bloom-Clocks was fixed at

32 cells (i.e., 68 bytes in total).

We evaluate LØ experimentally on a national research clus-

ter [5]. Each server in the cluster is equipped with an Intel Xeon

E5-2630 CPU with 24 physical cores operating at 2.4 GHz, hyper-

threading enabled, and 128 GiB of main memory. The servers are

interconnected via a Gigabit Ethernet network. LØ is implemented

in Python, and our prototype is publicly available online [12]. We

emulate realistic network latencies using netem [30] and incorpo-

rated ping statistics from 32 cities worldwide from the WonderNet-

work dataset [42]. Every miner is assigned to a city in a round-robin

manner.

6.2 Resilience To Malicious Miners
We evaluate the influence of colluding miners engaged in censor-

ship activities within the network. Specifically, we focus on how

106



Middleware ’23, December 11–15, 2023, Bologna, Italy Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse

0.0 0.1 0.2 0.3 0.4 0.5
Fraction of malicious miners

0

5

10

15

20

25

30

35

Ti
m

e 
un

til
co

nv
er

ge
nc

e 
(s

ec
on

ds
) Suspicion

Exposure

Figure 6: Time necessary in LØ to suspect or expose a mali-
ciousminer depending on the fraction of colludingmalicious
miners in the system censoring the transactions.

they affect the convergence across correct miners. These malicious

miners aim to hinder correct nodes from receiving information

about transactions, commitments, exposure, and suspicion mes-

sages, effectively executing attack on LØ detection mechanism, as

described in Sec. 5.3 in parallel to attempting to execute MEV at-

tacks as described in Sec. 2.2. All malicious miners are assumed to

be interconnected. In these experiments, we ensure that all correct

nodes maintain connectivity, meaning that for every pair of correct

nodes, there exists at least one path between them consisting solely

of correct nodes within the network. We achieve it by first running

an unbiased sampling algorithm [4, 7].

Fig. 6 ‘Exposure’ depicts the duration needed for all correct nodes

to achieve convergence, based on the count of faulty nodes present

in the network. Notably, the introduction of faulty nodes slightly

prolongs the time for all correct nodes to become aware of the

exposure message, pushing it to a range of 6-7 seconds post the

initial detection and message creation by the first miner.

Furthermore, we show LØ capability to identify faulty nodes that

ignore requests. The duration until each correct node suspects all

faulty nodes is presented in Fig. 6 under ’Suspicion’. Predictably, the

span until all faulty nodes are suspected surpasses the time taken

for nodes to recognize an exposure message. This is attributed to

the nodes having to initiate a request and subsequently await its

timeout.

6.3 Transaction Latency
In this experiment, we document two specific types of transaction

latencies: first, the duration required for a transaction to be included

into a mempool, and second, the time necessary for its inclusion in

a block. We detail the period it takes for miners to detect a transac-

tion and assimilate it into their mempool, with the latency density

distribution illustrated in Fig. 7. The data reveals that convergence

on the transaction among nodes is achieved after an interaction

with 5 to 6 nodes. On average, a transaction is discovered by a node

in 1.14 seconds.

To demonstrate the effects of our new policies on block building,

i.e., selecting transactions in order, we simulate a block creation

0 1 2 3 4 5 6
Time to mempool inclusion (seconds)

0.00

0.01

0.02

0.03

0.04

0.05

Pr
op

or
tio

n

Figure 7: Density distribution of the time required in LØ for
a miner to include a transaction into its mempool.

process at randomly selected miners with an average block time of

12 s, which is the block time in Ethereum. We report the average

time it takes for a transaction to be included in a block in Fig.8. We

compare the policy for block creation described in Sec. 4.3 (‘FIFO’

ordering) with the policy that is currently widely used in public

blockchains, i.e., creating a block with the highest-fee transactions

of the mempool (referred to as Highest Fee’).

The average transaction latency for the ’FIFO’ ordering is 3

seconds, while it is around 7-8 seconds for the ’Highest Fee’ strategy.

Furthermore, we observe that the ’Highest Fee’ strategy exhibits a

much larger variation, withmany low-fee transactions experiencing

very high latency. LØ’s orders transactions according to the order

with which they have been received by miners, which leads to

transactions being processed sequentially.

6.4 Comparative Analysis of Bandwidth
Efficiency

We compare LØ to three baselines: ’Flood’, PeerReview [20], and

Narwhal [14]. ’Flood’ is the standard mempool exchange method

where miners relay a ’Mempool’ message listing their current trans-

action hashes. Receivers subsequently request any transactions

they don’t recognize. PeerReview is a universal accountability pro-

tocol, where each miner keeps a message log, where each miner

maintains a message log, with eight random witnesses assigned

per miner. These witnesses periodically retrieve and review miners’

logs for any indications of malicious activity, whether it be injection

(commission) or censorship (omission). Narwhal is a DAG-based

mempool protocol designed to more efficiently deliver transactions.

We implemented the Flood, PeerReview and Narwhal proto-

cols in Python and tested them in the same environment as LØ.

Specifcailly, Specifically, in Narwhal, each node creates batches of

recent transactions every 0.5 seconds and reliably broadcasts them.

A batch, upon receiving acknowledgments from over two-thirds

of the network, is then incorporated into a header. The header is

broadcast to the network. Peers who are missing any batch from

the header have the option to directly request it from the originator

of that header. In our comparison involving 200 nodes, our results

demonstrate that Narwhal outperforms LØ in terms of latency by

107



LØ: An Accountable Mempool for MEV Resistance Middleware ’23, December 11–15, 2023, Bologna, Italy

10 50 150 300 1000 10000
Number of miners

0

2

4

6

8

10

Ti
m

e 
to

 
 b

lo
ck

 in
cl

us
io

n 
(s

ec
on

ds
)

Figure 8: (Time until transaction is included in a block with two policies ’Highest Fee’ vs. ’FIFO’ ordering (Left). Time until
transaction is included in a block in LØ as a function of the system’s size (Right).

LØ Flood Narwhal PeerReview
Protocol

0

250

500

750

1000

1250

1500

B
an

dw
id

th
 o

ve
rh

ea
d

 (K
B

 p
er

 m
in

)

Figure 9: Bandwidth overhead measured for different proto-
cols.

1-2 seconds. However, this performance comes at a cost: Narwhal

incurs a substantial increase in bandwidth overhead, leading to

usage rates that are 7 to 10 times greater than those associated with

LØ. This increased overhead is primarily due to Narwhal’s need for

the swift gathering of batch approvals from at least two-thirds of

the network. Therefore, despite Narwhal’s potential latency advan-

tages, its scalability in permissionless environments is hindered by

its substantial bandwidth requirements.

The comparison of the protocols’ bandwidth overhead is depicted

in Fig. 9. Note that we omit the bandwidth overhead for sharing

transactions, as it is the same for all three protocols. Our proto-

col proves to be the most bandwidth-efficient among the three,

incurring bandwidth overhead that is 20 times less than that of

PeerReview.

6.5 Memory and CPU Overhead
The process of encoding and decoding with Minisketch involves an

overhead that increases proportionally with the magnitude of the

set difference, as documented in [19]. For instance, calculating a set

difference comprising 1, 000 items takes approximately 10 seconds

0 100 200 300 400
Transactions per minute

500

1000

1500

2000

2500

3000

N
um

be
r 

of
 r

ec
on

ci
lia

tio
ns

 
 p

er
 m

in
ut

e 
pe

r 
m

in
er

Figure 10: The average number of reconciliations in LØ per
minute depending on the workload.

using Minisketch. To circumvent this limitation, we propose an

optimization strategy for our system, LØ.

Our approach primarily involves hash-partitioning the mempool

space into multiple subsets. This method is based on the techniques

described in [19]. Specifically, when reconciliation fails, instead

of attempting to reconcile the entire mempool, the node divides

it into two partitions and generates an additional Minisketch for

each segment. This strategy significantly reduces the time required

for encoding and decoding. For a set difference of 1, 000 items,

our method completes all necessary sketches in under 100 ms, a

substantial improvement over the original 10-second duration.

The effectiveness of this optimization is further illustrated in

Fig. 10, which depicts the average number of sketch reconciliations

per minute per node under varying workloads.

Regarding memory overhead, LØ necessitates minimal extra

memory to store the commitments for each neighboring node. The

actual size of these commitments depends on the system’s workload.

Under a workload of 120 transactions per minute, the commitment

size is approximately 1.17 KB. This size increases with the workload,

reaching around 9.36 KB under a workload of 24,000 transactions

108



Middleware ’23, December 11–15, 2023, Bologna, Italy Bulat Nasrulin, Georgy Ishmaev, Jérémie Decouchant, and Johan Pouwelse

per minute. Notably, even under extreme conditions where a miner

may need to store the commitments of all 10,000 nodes in the net-

work, the total memory required would only amount to roughly 87

MB, which is relatively insignificant considering the total process-

ing resources.

7 RELATEDWORK
The problem of MEV has attracted a considerable amount of re-

search [34, 45, 51]. Different MEV mitigation mechanisms can be

categorized according to implementation at different layers: appli-
cation, consensus, base.

7.1 MEV Mitigation at the Application Layer
Decentralized Exchange (DEX) such as Cowswap implementmecha-

nism known as Batch Auctions. In this system, instead of immediate

execution, orders are accumulated off-chain over a period, then

aggregated and executed collectively in batches [1]. However, the

utility of this approach is confined to its original context, rendering

it effective against a narrow spectrum of MEV attacks, specifically

front-running and sandwich attacks.

A
2
MM is a DEX design that atomically performs optimal rout-

ing and arbitrage among the considered integrated Automated

Market Makers (AMMs) , minimizing subsequent arbitrage transac-

tions [50].

7.2 MEV Mitigation at the Consensus Layer
Proposer-builder separation (PBS) is a proposal aiming at MEV min-

imization [8]. The latest iteration of this mechanism, MEV-Boost,

is implemented as a middleware. It enables private communication

channels between clients creating new transactions and validating

nodes. However, this approach has significant trust assumptions,

such as relays not reordering or censoring transactions, which

empirically do not hold [45].

Pre-ordering solutions aim to separate transaction ordering from

execution to ensure ’fair’ ordering. The Helix consensus proto-

col [44] guarantees the random selection and ordering of transac-

tions in blocks by relying on a randomness beacon within the con-

sensus protocol. Aequitas [23] provides guarantees on transaction

ordering within a block but assumes a permissioned environment

and introduces significant communication overhead. Pompe [49] is

a Byzantine ordered consensus (BOC) protocol that clearly sepa-

rates ordering from consensus, thus enforcing guarantees on the

total order of transactions. Wendy [24, 25] describes ordering pro-

tocols for permissioned systems. Enforcing relative order requires

building a dependency graph to prevent transactions from being

included in a block before their dependencies [10, 22, 23]. Enforc-

ing fair ordering is more resource-intensive than enforcing our

accountability properties and is not practical in a permissionless

setting.

Heimbach and Wattenhoffer suggest encrypting the content of

transactions, then ordering them, revealing the content only after

this process [21]. This method is employed by Fino, which melds

MEV protection with a BFT protocol under a partial synchrony

model, utilizing a DAG transport protocol [26]. Similarly, Lyra [47],

another Byzantine ordered consensus protocol, adopts a commit-

reveal scheme, dependent on Verifiable Secret Sharing (VSS). How-

ever, the encrypt-commit-reveal strategy demands more resources

compared to our accountability-centric method and necessitates

extra trust assumptions to guarantee the eventual revelation of

encrypted transactions.

7.3 MEV Mitigation at the Base Layer
Secret Mempools conceal transaction content to prevent censorship

or reordering. F3B represents a universal method for real-time trans-

action encryption, utilizing a commit-and-reveal structure [48],

while Ferveo offers a protocol dedicated to Mempool Privacy within

BFT consensus blockchains [6]. Both approaches, however, operate

under the assumption of permissioned environments. Conversely,

Shutter, a system designed to safeguard Ethereum smart contracts

from frontrunning, employs a threshold cryptography-based dis-

tributed key generation (DKG) protocol [37]. Despite its efficacy,

Shutter incurs additional latency and hinges on substantial trust

assumptions, given that the key generation process is entrusted

to a select committee operating on a private, Tendermint-based

blockchain.

ZeroMEV is a existing MEV mitigation solution designed for

the Ethereum network, functioning as a base-layer implementa-

tion through a Geth software fork used as a validator execution

client [33]. It prioritizes transactions using a timestamp-based sys-

tem, adhering to a local FIFO (First In, First Out) order. However,

ZeroMEV lacks accountability measures and hinges on a substantial

trust assumption, necessitating reliance on the validators’ altruism.

8 CONCLUSION
We introduced LØ, an accountable base layer for permissionless

blockchains, which provides detection guarantees against MEV

attacks. To do so, LØ mandates that miners log all the transactions

they receive into a secure mempool data structure, and exchange

commitments on theirmempool content. Any inconsistency, such as

transaction withholding or equivocation, is exposed during a mem-

pool reconciliation process with a correct miner, which happens

with high probability thanks to an underlying Byzantine-resilient

peer sampling protocol. More precisely, to ensure the exposure of

faulty miners, LØ simply requires correct miners to be eventually

interconnected with each other.

We outlined the transaction manipulation attacks associated

with MEV that miners might execute and mapped different attack

types to the relevant stages of a transaction’s lifecycle within the

protocol. Our performance evaluation demonstrates the practicality

of LØ. It is bandwidth and memory efficient, using only 10 MB

with 10,000 miners and a workload of 20 transactions per second.

Moreover, it is at least four times more bandwidth efficient than

classical flooding-based mempool exchanges.

ACKNOWLEDGMENTS
This work was funded by NWO/TKI grant BLOCK.2019.004

109



LØ: An Accountable Mempool for MEV Resistance Middleware ’23, December 11–15, 2023, Bologna, Italy

REFERENCES
[1] [n. d.]. Cowswap. https://cowswap.exchange.

[2] [n. d.]. Ethereum Documentation. https://ethereum.org/nl/developers/docs/

mev/.

[3] [n. d.]. Flashbots Blockspace Auction. https://docs.flashbots.net/flashbots-

auction/overview.

[4] Alex Auvolat, Yérom-David Bromberg, Davide Frey, and François Taïani. 2021.

BASALT: A rock-solid foundation for epidemic consensus algorithms in very

large, very open networks. arXiv preprint arXiv:2102.04063 (2021).
[5] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John Romein, Frank

Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A medium-scale distributed

system for computer science research: Infrastructure for the long term. Computer
49, 5 (2016), 54–63.

[6] Joseph Bebel and Dev Ojha. 2022. Ferveo: Threshold Decryption for Mempool

Privacy in BFT networks. Cryptology ePrint Archive, Paper 2022/898. https:

//eprint.iacr.org/2022/898 https://eprint.iacr.org/2022/898.

[7] Edward Bortnikov, Maxim Gurevich, Idit Keidar, Gabriel Kliot, and Alexander

Shraer. 2009. Brahms: Byzantine resilient random membership sampling. Com-
puter Networks 53, 13 (2009), 2340–2359.

[8] Vitalik Buterin. 2021. State of research: increasing censorship resistance of transac-
tions under proposer/builder separation (PBS).

[9] Vitalik Buterin and Virgil Griffith. 2017. Casper the friendly finality gadget.

arXiv:1710.09437 (2017).

[10] Christian Cachin, Jovana Mićić, Nathalie Steinhauer, and Luca Zanolini. 2022.

Quick order fairness. In Financial Cryptography and Data Security: 26th Inter-
national Conference, FC 2022, Grenada, May 2–6, 2022, Revised Selected Papers.
Springer, 316–333.

[11] Pierre Civit, Seth Gilbert, and Vincent Gramoli. 2021. Polygraph: Accountable

byzantine agreement. In ICDCS. IEEE, 403–413.
[12] Code for the system [n. d.]. https://github.com/tribler/bami.

[13] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2019. Flash Boys 2.0: Frontrunning, Transac-

tion Reordering, and Consensus Instability in Decentralized Exchanges. arXiv
preprint arXiv:1904.05234 (2019).

[14] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, andAlexander Spiegel-

man. 2022. Narwhal and Tusk: a DAG-based mempool and efficient BFT consen-

sus. In EuroSys. ACM, Rennes France, 34–50. https://doi.org/10.1145/3492321.

3519594

[15] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. 2008. Fuzzy

extractors: How to generate strong keys from biometrics and other noisy data.

SIAM journal on computing 38, 1 (2008), 97–139.

[16] David Eppstein, Michael T Goodrich, Frank Uyeda, and George Varghese. 2011.

What’s the difference? Efficient set reconciliation without prior context. ACM
SIGCOMM CCR 41, 4 (2011), 218–229.

[17] Ittay Eyal and Emin Gün Sirer. 2018. Majority is not enough: Bitcoin mining is

vulnerable. Commun. ACM 61, 7 (2018), 95–102.

[18] Arthur Gervais, Hubert Ritzdorf, Ghassan O. Karame, and Srdjan Capkun. 2015.

Tampering with the Delivery of Blocks and Transactions in Bitcoin. In CCS. ACM,

Denver Colorado USA, 692–705. https://doi.org/10.1145/2810103.2813655

[19] Long Gong, Ziheng Liu, Liang Liu, Jun Xu, Mitsunori Ogihara, and Tong Yang.

2020. Space-and computationally-efficient set reconciliation via parity bitmap

sketch (PBS). Proceedings of the VLDB Endowment 14, 4 (2020), 458–470.
[20] Andreas Haeberlen et al. 2007. PeerReview: Practical accountability for dis-

tributed systems. ACM SIGOPS operating systems review 41, 6 (2007), 175–188.

[21] Lioba Heimbach and Roger Wattenhofer. 2022. SoK: Preventing Transaction

Reordering Manipulations in Decentralized Finance. In Proceedings of the 4th
ACM Conference on Advances in Financial Technologies, AFT 2022, Cambridge,
MA, USA, September 19-21, 2022, Maurice Herlihy and Neha Narula (Eds.). ACM,

47–60. https://doi.org/10.1145/3558535.3559784

[22] Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. 2021.

Themis: Fast, strong order-fairness in byzantine consensus. Cryptology ePrint
Archive (2021).

[23] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. 2020. Order-

Fairness for Byzantine Consensus. In CRYPTO. Vol. 12172. Springer International
Publishing, Cham. https://doi.org/10.1007/978-3-030-56877-1_16

[24] Klaus Kursawe. 2020. Wendy, the good little fairness widget: Achieving order

fairness for blockchains. In Proceedings of the 2nd ACM Conference on Advances
in Financial Technologies. 25–36.

[25] Klaus Kursawe. 2021. Wendy grows up: More order fairness. In Financial Cryp-
tography and Data Security. FC 2021 International Workshops: CoDecFin, DeFi,
VOTING, and WTSC, Virtual Event, March 5, 2021, Revised Selected Papers 25.
Springer, 191–196.

[26] Dahlia Malkhi and Pawel Szalachowski. 2022. Maximal Extractable Value (MEV)

Protection on a DAG. arXiv:2208.00940 (2022).
[27] BrunoMazorra, Michael Reynolds, and Vanesa Daza. 2022. Price of MEV: Towards

a Game Theoretical Approach to MEV. In ACM DeFi. ACM, Los Angeles CA USA,

15–22. https://doi.org/10.1145/3560832.3563433

[28] Bulat Nasrulin, Rowdy Chotkan, and Johan Pouwelse. 2023. Sustainable Cooper-

ation in Peer-To-Peer Networks. In 2023 IEEE 48th Conference on Local Computer
Networks (LCN). IEEE, 1–9.

[29] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra Fedorova, and

Ivan Beschastnikh. 2019. Bandwidth-efficient transaction relay for bitcoin.

arXiv:1905.10518 (2019).
[30] Netem documentation [n. d.]. https://www.linux.org/docs/man8/tc-netem.html.

[31] Giuseppe Antonio Pierro and Henrique Rocha. 2019. The influence factors on

ethereum transaction fees. In 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB). IEEE, 24–31.

[32] Julien Piet, Jaiden Fairoze, and Nicholas Weaver. 2022. Extracting godl [sic] from

the salt mines: Ethereum miners extracting value. arXiv preprint arXiv:2203.15930
(2022).

[33] pmcgoohan. [n. d.]. zeromev-geth. https://github.com/zeromev/zeromev-geth/

blob/master/README.md. Accessed: 2023-01-12.

[34] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying Blockchain Ex-

tractable Value: How dark is the forest?. In SP. IEEE, San Francisco, CA, USA,

198–214. https://doi.org/10.1109/SP46214.2022.9833734

[35] Lum Ramabaja. 2019. The bloom clock. arXiv preprint arXiv:1905.13064 (2019).
[36] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod

Viswanath. 2021. BFT protocol forensics. In CCS. 1722–1743.
[37] ShutterNetwork. [n. d.]. Global Ping Statistics. https://github.com/shutter-

network/shutter. Accessed: 2023-01-12.

[38] Quinten Stokkink, Can Umut Ileri, Dick Epema, and Johan Pouwelse. 2023. Web3

Sybil avoidance using network latency. Computer Networks 227 (2023), 109701.
[39] Robbert Van Renesse, Dan Dumitriu, Valient Gough, and Chris Thomas. 2008.

Efficient reconciliation and flow control for anti-entropy protocols. In LADIS.
1–7.

[40] Anton Wahrstätter, Liyi Zhou, Kaihua Qin, Davor Svetinovic, and Arthur

Gervais. 2023. Time to Bribe: Measuring Block Construction Market.

arXiv:2305.16468 [cs.NI]

[41] Taotao Wang, Chonghe Zhao, Qing Yang, Shengli Zhang, and Soung Chang

Liew. 2021. Ethna: Analyzing the underlying peer-to-peer network of ethereum

blockchain. IEEE Transactions on Network Science and Engineering 8, 3 (2021),

2131–2146.

[42] WonderNetwork. [n. d.]. Global Ping Statistics. https://wondernetwork.com/

pings. Accessed: 2023-01-12.

[43] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. 2023. Sok: Decen-

tralized exchanges (dex) with automated market maker (amm) protocols. Comput.
Surveys 55, 11 (2023), 1–50.

[44] David Yakira et al. 2021. Helix: A Fair Blockchain Consensus Protocol Resistant

to Ordering Manipulation. IEEE TNSM 18, 2 (2021), 1584–1597. https://doi.org/

10.1109/TNSM.2021.3052038

[45] Sen Yang, Fan Zhang, Ken Huang, Xi Chen, Youwei Yang, and Feng Zhu. 2022.

SoK: MEV Countermeasures: Theory and Practice. arXiv:2212.05111 (2022).
[46] Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Esteves-Verissimo.

2019. Repucoin: Your reputation is your power. IEEE Trans. Comput. 68, 8 (2019),
1225–1237.

[47] Pouriya Zarbafian and Vincent Gramoli. 2023. Lyra: Fast and Scalable Resilience

to Reordering Attacks in Blockchains. (2023).

[48] Haoqian Zhang, Louis-Henri Merino, Vero Estrada-Galinanes, and Bryan Ford.

2022. Flash freezing flash boys: Countering blockchain front-running. In 2022
IEEE 42nd International Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, 90–95.

[49] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. 2020.

Byzantine ordered consensus without byzantine oligarchy. In Proceedings of
the 14th USENIX Conference on Operating Systems Design and Implementation.
633–649.

[50] Liyi Zhou, Kaihua Qin, and Arthur Gervais. 2021. A2mm:Mitigating frontrunning,

transaction reordering and consensus instability in decentralized exchanges.

arXiv preprint arXiv:2106.07371v2 (2021).
[51] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang, Ye

Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. 2023.

Sok: Decentralized finance (defi) attacks. In 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2444–2461.

110

https://ethereum.org/nl/developers/docs/mev/
https://ethereum.org/nl/developers/docs/mev/
https://docs.flashbots.net/flashbots-auction/overview
https://docs.flashbots.net/flashbots-auction/overview
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/898
https://eprint.iacr.org/2022/898
https://github.com/tribler/bami
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/3492321.3519594
https://doi.org/10.1145/2810103.2813655
https://doi.org/10.1145/3558535.3559784
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1145/3560832.3563433
https://www.linux.org/docs/man8/tc-netem.html
https://github.com/zeromev/zeromev-geth/blob/master/README.md
https://github.com/zeromev/zeromev-geth/blob/master/README.md
https://doi.org/10.1109/SP46214.2022.9833734
https://github.com/shutter-network/shutter
https://github.com/shutter-network/shutter
https://arxiv.org/abs/2305.16468
https://wondernetwork.com/pings
https://wondernetwork.com/pings
https://doi.org/10.1109/TNSM.2021.3052038
https://doi.org/10.1109/TNSM.2021.3052038

	Abstract
	1 Introduction
	2 Transaction Manipulations at the Base Layer
	2.1 The Base Layer versus the Consensus Layer
	2.2 Transaction Manipulation Primitives
	2.3 Transaction Processing Stages

	3 System Model
	3.1 Attacker Model
	3.2 Accountability

	4 LØ: Accountable Base Layer 
	4.1 New Explicit Policies at the Base Layer
	4.2 Mempool Reconciliation
	4.3 Block Building

	5 Dealing with Attacks
	5.1 Assumptions and Scope of Attacks
	5.2 Detecting Transaction Manipulation
	5.3 Attacks on LØ
	5.4 Possible Enforcement Policies

	6 Evaluation
	6.1 Experimental setup
	6.2 Resilience To Malicious Miners
	6.3 Transaction Latency
	6.4 Comparative Analysis of Bandwidth Efficiency
	6.5 Memory and CPU Overhead

	7 Related Work
	7.1 MEV Mitigation at the Application Layer
	7.2 MEV Mitigation at the Consensus Layer
	7.3 MEV Mitigation at the Base Layer

	8 Conclusion
	References

