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On spaces of finite signed Borel measures on a metric space one has introduced 
the Fortet-Mourier and Dudley norms, by embedding the measures into the dual 
space of the Banach space of bounded Lipschitz functions, equipped with different 
– but equivalent – norms: the FM-norm and the BL-norm, respectively. The norm 
of such a measure is then obtained by maximising the value of the measure when 
applied by integration to extremal functions of the unit ball. We introduce Lipschitz 
extension operators, essentially based on those defined by McShane, and investigate 
their properties. A remarkable one is that non-trivial extreme points are mapped 
to non-trivial extreme points of FM- and BL-norm unit balls. Using these extension 
operators, we define suitable ‘small’ subsets of extremal functions that are weak-star 
dense in the full set of extreme points of the unit ball, for any underlying metric 
space. For connected metric spaces, we additionally find a larger set of extremal 
functions for the BL-norm, similar to such a set that was defined previously by 
J. Johnson for the FM-norm. This set is then also weak-star dense in the extremal 
functions. These results may open an avenue to obtaining computational approaches 
for the Dudley norm on signed Borel measures.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Consider a metric space (S, d) and the vector space Lip(S, d) of Lipschitz functions for the metric d. 
We shall fix the metric throughout this study, so it will be omitted in notation. The Lipschitz constant of 
f ∈ Lip(S) is denoted by |f |L. Banach spaces of Lipschitz functions are of interest, for example because they 
induce norms on finite signed measures on S, by viewing measures as functionals on theses Banach spaces 
by integration (see e.g. [15,16,20]). The norm is then the restriction of the dual norm to the embedded space 
of measures.
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Here, we are interested in the Banach space of bounded Lipschitz functions BL(S), with the norm

‖f‖BL := ‖f‖∞ + |f |L. (1)

In particular, subsets of extreme points of its closed unit ball BS
BL will be of interest that are norming for 

measures in M(S), the vector space of finite signed Borel measures on S, for the associated dual norm. 
That is, if (S, d) is a complete separable metric space, then embedding of μ ∈ M(S) in the dual space 
(BL(S), ‖ · ‖BL)∗ results in the Dudley norm or dual bounded Lipschitz norm on M(S):

‖μ‖∗BL := sup
{∫
S

f dμ : f ∈ BS
BL

}
(2)

The associated metric, also called the flat metric [16], metrizes the weak topology on the finite positive 
measures M+(S), which is defined by pairing with bounded continuous functions by integration (cf. e.g. 
[11,12,15] and also [16]). It is an alternative for metrics from the Wasserstein family that also have this 
property (see [33]), but which are originally defined as distance between measures with equal mass only and 
with finite first moments if the metric space has infinite diameter. Generalisations of these metrics have been 
introduced (see e.g. [21,25,26,31] and also [6]). Recently, interesting applications in image processing and 
analysis have been examined based on such generalized Wasserstein metrics, enabled by their interpretation 
in terms of optimal transport (see [21,31]). In a setting of measure-valued differential equations, flat metric 
and Wasserstein-1-type metric have been combined [1].

Sums of ‘dipoles’, T =
∑

i(δpi
− δni

) (possibly infinitely many), taken in the space of distributions on the 
boundary Ω of a domain in R3, play a role in Ginzburg-Landau theory. Such T are connected to the location 
and topological degree of singularities of function in H1/2(Ω, S1) (see [5]). A Kantorovich-Rubinstein-like 
norm of T – which relates to the Wasserstein-1 metric, but generally differs from the Dudley norm – turns 
out to be equal to the length of the minimal connection associated to the point configuration defined by (pi)
and (ni) (see [5], Lemma 2, p.3). Generalisations have been made to compact convex subsets of Rn, e.g. in 
[3], or – even more general – to metrics spaces (S, d), where T is viewed as a continuous linear functional 
on the Banach space (Lip(S, d)/R, | · |L) consisting of classes of Lipschitz functions that differ by a constant 
[27].

In mathematical theory, norm estimates are often sufficient. In various applications though, e.g. numerical 
analysis, one wants to be able to compute arbitrarily good approximations of the selected norm to estimate 
error. For measure-valued equations in which total mass is not conserved, one often prefers the use of 
the Dudley norm ‖ · ‖∗BL, because of its dual description. The Wasserstein-1 metric shares this property 
through the Kantorovich-Rubinstein formula [33]. Not all generalized metrics have such nice dual expression. 
However, see [25] for a relation to the so-called Fortet-Mourier norm on M(S) (see e.g. [20]):

‖μ‖∗FM := sup{
∫
S

f dμ : f ∈ BL(S), ‖f‖∞ ≤ 1, |f |L ≤ 1}, (3)

for any Polish space S.
To that end of computing norms, one can show that the supremum in (2) is actually attained at an 

extreme point of BS
BL (see Proposition 2.2). Therefore, it is of interest to determine a set of extreme points 

of BS
BL to which the suppremum in (2) can be restricted for determining the ‖ · ‖∗BL norm of measures 

μ ∈ M(S). We call such a set ‘norming’.
In [14], we achieved the objective of deriving particular explicit expressions and computational approaches 

for the Fortet-Mourier norm on M(S). This norm is associated to the norm

‖f‖FM := max
(
‖f‖∞, |f |L

)
,
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on BL(S), which is equivalent to ‖ · ‖BL. Hence, ‖ · ‖∗FM is equivalent to ‖ · ‖∗BL. Previously, a computational 
approach for determining ‖μ‖∗FM was available only for very particular cases, e.g. S = [0, 1] and μ finitely 
supported, see [17].

We could do so, because a characterisation of the extreme points of the unit ball BS
FM of (BL(S), ‖ · ‖FM)

had been provided by Farmer [13] in general (though for the seemingly different metric dual space (Lip0(S), | ·
|L) introduced by Lindenstrauss [22], that turned out to be isometrically isomorphic to (BL(S), ‖ · ‖FM), 
see Appendix B), while a few particular cases had been covered before by Roy [30], Rao & Roy [28], and 
Rolewicz [29], in particular S = [0, 1]. See also [7,32]. Moreover, Johnson [18] had described a dense subset 
of the extreme points of BS

FM for compact and connected S that suffices to compute the norm (3). In 
particular the latter provided the inspiration for the results obtained in [14]. The techniques of proof that 
were employed do not work for ‖ · ‖BL though, essentially because one cannot change the ‖ · ‖∞-norm of a 
function in the boundary of BS

BL while staying within BS
BL, without changing also its Lipschitz constant. 

For BS
FM these can be changed independently.

To our knowledge, no results existed in the literature regarding the characterisation of the extreme points 
of BS

BL or the description of a dense subset of such points, similar to Johnson’s, suitable for computing the 
norm ‖ · ‖∗BL. Here we provide two dense and norming sets: a ‘small’ set ES

BL, constructed through Lipschitz 
extension operators and a ‘Johnson-like’ set JS

BL that consists of extreme points when S is connected. Our 
main results are Theorem 5.1 and its corollaries, Corollary 5.1 and Corollary 5.2, all for general metrics 
spaces (S, d). No connectedness, nor compactness condition needs to be imposed on S for the ‘small’ set 
ES

BL to consist of extreme points. The set JS
FM and the new set JS

BL do consist of extreme points if S is 
connected. No compactness of S is required (cf. Proposition 5.2).

The description of ES
BL and the proof of the theorem requires revisiting the classical McShane extension 

operator (cf. [23], Theorem 1) that extends Lipschitz functions defined on a subset P of S (with induced 
metric) to the whole space S without increasing its Lipschitz constant. Upon further inspection, this non-
linear operator, denoted by ES,0

P , turns out to preserve the Lipschitz constant. We give an overview of 
its properties and that of a slightly modified Lipschitz extension operator ES

P that plays a pivotal role in 
the Metric Tietze Extension Theorem (Theorem 4.1), which is central in the argumentation in this paper. 
Because of this centrality and because a full proof of this results is not readily available in the literature 
(although reference and a sketch of proof is found in [34], Theorem 1.5.6), we provide a full proof in 
Appendix A.

A particular result that is worth noting in this context, is Theorem 4.2, that states that the extension 
operator ES

P maps non-trivial extreme points of BP
BL into non-trivial extreme points of BS

BL (non-triviality 
will be specified in Section 3). This was known for (Lip0(S), | · |L) – hence, in disguise for (BL(S), ‖ · ‖FM)
– by Farmer [13] (see Proposition 3). His proof relied on his characterisation of extreme points. Our proof 
for (BL(S), ‖ · ‖BL) can be modified slightly, then covering also the case of ‖ · ‖FM, without the need of a 
characterisation of the extreme points. This proof is sketched in Appendix C.

Moreover, on our way towards the main result, we established various auxiliary results on extreme points 
of BS

BL and BS
FM. We found several of these of sufficiently general interest to collect them in Section 3.

2. Notation and preliminary results

Throughout, (S, d) will be a metric space. The main object of interest in this paper are the unit balls in 
BL(S) and their convex structure, mainly for the norm ‖ · ‖BL, but occasionally also for ‖ · ‖FM, which will 
be denoted by

BS
• :=

{
f ∈ BL(S) : ‖f‖• ≤ 1

}
with • = BL,FM.
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A measure μ ∈ M(S) is called (strictly) separable if there exists a separable set S0 ⊂ S, such that μ is 
concentrated on S0, i.e. |μ|(S0) = |μ|(S), where |μ| = μ+ + μ− is the total variation measure associated 
to μ. We denote the linear subspace of separable measures in M(S) by Ms(S). If S is separable, then 
M(S) = Ms(S). The map μ �→ Iμ : M(S) → BL(S)∗, defined by

Iμ(f) := 〈μ, f〉 :=
∫
S

f dμ, f ∈ BL(S), (4)

is injective, because on a metric space, any μ ∈ M(S) is regular (cf. [2], Theorem 7.7.1, p.70). This embedding 
makes it natural to equip M(S) with the restriction of the dual norm ‖ · ‖∗FM or ‖ · ‖∗BL on BL(S)∗. This 
is the idea behind the introduction of the Dudley norm (2) or the Fortet-Mourier norm (3) on measures. 
Thus,

‖μ‖∗• := sup
f∈BS

•

∣∣〈μ, f〉∣∣ = sup
f∈BS

•

〈μ, f〉, • = FM,BL. (5)

These two norms on measures are equivalent. M(S)BL denotes the space M(S) equipped with the ‖ · ‖∗•-
norm topology. M(S)BL and Ms(S)BL are the completions of M(S) and Ms(S), viewed as closure in 
(BL(S)∗, ‖ · ‖∗BL).

Following Pachl [24], any finite real linear combination of Dirac measures is called a molecular measure:

Mol(S) := spanR
{
δx : x ∈ S

}
. (6)

Clearly, Mol(S) ⊂ Ms(S). It is dense for ‖ · ‖∗• (• = FM, BL).

Proposition 2.1. The map φ �→ fφ :
(
Mol(S), ‖ · ‖∗•

)∗ →
(
BL(S), ‖ · ‖•

)
, with fφ(x) := φ(δx), x ∈ S, is a 

linear isometric isomorphism for • = FM, BL.

BL(S) is a Banach algebra for the norm ‖ · ‖BL ([11], Lemma 3). We denote by 1 its multiplicative unit, 
i.e. the constant function 1. Moreover, BL(S) is a vector lattice (or Riesz space) for the usual point-wise 
partial ordering ‘≤’ of functions. The lattice operations are given pointwise:

sup(f, g)(x) = (f ∨ g)(x) = max
(
f(x), g(x)

)
,

inf(f, g)(x) = (f ∧ g)(x) = min
(
f(x), g(x)

)
,

for any f, g ∈ BL(S). In particular, for f ∈ BL(S), f+ = f ∨ 0 and f− = −(f ∧ 0) are in BL(S). One has

|f ∨ g|L, |f ∧ g|L ≤ max
(
|f |L, |g|L

)
(cf. [11]), Lemma 4). ‖ · ‖BL is not a Riesz norm.

Let C be a convex set in a vector space V . e ∈ C is an extreme point if there is no open line segment 
that contains e and lies entirely in C. Equivalently, (see [10], p.101), e ∈ C is an extreme point if and only 
if:

e = 1
2(x + y), x, y ∈ C if and only if x = y = e. (7)

The set of extreme points of C is denoted by ext(C).
Proposition 2.1 has the following consequence:
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Proposition 2.2. Let (S, d) be a metric space and μ ∈ Ms(S). Let • = FM or BL. Then there exists 
f•
μ ∈ ext(BS

• ) such that ‖μ‖∗• = 〈μ, f•
μ〉.

Proof. According to Proposition 2.1 and the Banach-Alaoglu Theorem (cf. [9], Theorem V.3.1, p.130), BS
•

is compact for the σ(BL(S), Mol(S)BL)-topology. [4], Proposition 1, p. II.54 yields that the convex function 
f �→ 〈μ, f〉 attains a maximum value at some f•

μ ∈ ext(BS
• ) of the weak*-compact convex set BS

• . Expression 
(5) completes the argument. �

The following alternative characterisation of extreme points will be the ‘workhorse’ in our argumentation 
in proofs later on:

Lemma 2.1. Let C be a convex set in a vector space V . e ∈ ext(C) if and only if

{
x ∈ V : e + x ∈ C and e− x ∈ C

}
= {0}. (8)

Proof. If e ∈ C is not an extreme point, then e = 1
2 (x + y) for some x, y ∈ C, x �= y. Put z = 1

2 (x − y). 
Then z �= 0, while e + z = x ∈ C and e − z = y ∈ C. On the other hand, if (8) does not hold, then there 
exists z �= 0 in V such that x := e + z and y := e − z are in C. Then x �= y, while e = 1

2 (x + y). Therefore, 
e cannot be an extreme point of C. �

Two immediate consequences of this lemma can be observed.

Corollary 2.1. Let (X, ‖ · ‖) be a normed space, R > 0 and put BR := {x ∈ X : ‖x‖ ≤ R}. Then ext(BR) ⊂
{x ∈ X : ‖x‖ = R}.

Proof. If e ∈ ext(BR) and ‖e‖ < R, take x ∈ X with 0 < ‖x‖ ≤ R−‖e‖. Then x �= 0, while e + x and e −x

are in BR. This contradicts Lemma 2.1. �
A set C in a vector space V is called symmetric around 0, if x ∈ C implies −x ∈ C. That is, C = −C.

Corollary 2.2. Let C be a convex set in a vector space V . If C is symmetric around 0, then ext(C) is 
symmetric around 0.

For various parts of the overall result, we will need the following two functional analytic results, of which 
the second is called the K2-M3-R Theorem in [10] for the contributions of Krein, Klee, Milman, Mazur, 
Minkowski and Rutman, see [10], p.104 and also [19], Theorem 1.1. It summarizes various characterisations 
on a subset of the extreme points of a compact convex set, such that this subset still ‘generates’ this compact 
set as its closed convex hull.

Lemma 2.2. Let X be a Banach space and F a dense subset of X. Let B∗ be the closed unit ball in X∗ and 
A ⊂ B∗. If ‖x‖X = sup

{
φ(x) : φ ∈ A

}
for all x ∈ F , then the weak∗-closed convex hull of A is B∗.

Proof. See Lemma 1.1 in [18]. �
Theorem 2.1. (K2-M3-R Theorem) Let K be a convex compact set in a locally convex Hausdorff topological 
vector space X. Put E = ext(K) and A ⊂ K. Then the following are equivalent:

(i) The closed convex hull of A is K;
(ii) The closure of A contains E;
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(iii) The closure of A contains at least one point of each minimal facet of K;
(iv) For each continuous linear functional φ on X, supφ(A) = supφ(K).

Proof. See [10], Section V.1. �
3. Basic properties of extreme points of balls of Lipschitz functions

Let (S, d) be a metric space, without further assumptions (like completeness or separability). The ge-
ometry of the unit ball in BL(S) depends on the chosen norm. Hence, so does the set of extreme points. 
The FM-norm and BL-norm, though equivalent, introduce quite a different geometry. The argumentation 
required to exhibit extreme points in their unit balls differs substantially at points. However, some basic 
properties of the extreme points of the balls BS

FM and BS
BL are worth exhibiting now, as these partially 

direct the lines of argumentation later.
We start with an observation (cf. [28], Proposition 2.2, for complex-valued functions on [0, 1]). The 

function constantly equal to 1 is denoted by 1.

Lemma 3.1. Let • = FM, BL. If f ∈ BS
• is such that |f | = 1, then f ∈ ext(BS

• ). In particular, if • = BL, 
then f = ±1.

Proof. Define S± := {x ∈ S : f(x) = ±1}. Let g ∈ BL(S) such that both f + g and f − g are in BS
• . 

Suppose g �= 0 (i.e. f were not extreme). Let x ∈ S such that g(x) �= 0. If g(x) > 0 and x ∈ S+, then 
f(x) + g(x) > 1; if x ∈ S−, then f(x) − g(x) < −1. Similar reasoning applies to the case g(x) < 0, resulting 
in the conclusion that either ‖f + g‖∞ > 1 or ‖f − g‖∞ > 1, contradicting that both f + g and f − g are 
in BS

• . So, f is extreme.
If • = BL and |f | = 1, then ‖f‖∞ = 1 and |f |L = 0. So, f = ±1. �

A continuous function f on S that satisfies |f | = 1 must be constant on each connected component of 
S, taking the value either +1 or −1. That is, such f is locally constant. These constitute what we will call 
trivial extreme points of BS

• . We shall now be concerned with the non-trivial extreme points:

ext∗(BS
• ) := ext(BS

• ) \
{
f ∈ BS

• : |f | = 1
}
, (• = FM,BL). (9)

Note that ext∗(BS
• ) = ∅ if S is a trivial space consisting of a singleton. We shall assume that the space S

contains at least two elements.
For the FM-norm the conclusion of Corollary 2.1 (i.e., for an extreme point f of BS

FM one has 
max(‖f‖∞, |f |L) = 1) can be strengthened:

Lemma 3.2. If f ∈ ext(BS
FM), then ‖f‖∞ = 1. If f ∈ ext∗(BS

FM), then also |f |L = 1.

Proof. In view of Corollary 2.1, ‖f‖∞ ≤ 1. Suppose, that ‖f‖∞ < 1. Let δ := 1 − ‖f‖∞ > 0. Then

‖f ± δ1‖∞ ≤ 1 and |f ± δ1|L ≤ |f |L + δ|1|L = |f |L ≤ 1.

Thus, both f + δ1 and f − δ1 ∈ BS
FM. According to Lemma 2.1, this contradicts that f is an extreme point. 

Hence, ‖f‖∞ = 1.
According to the first part, either |f(x)| = 1 for all x, or there exists x0 ∈ S such that |f(x0)| < 1. In 

the latter case, suppose |f |L < 1. Pick L such that 0 < L ≤ 1 − |f |L. Let δ > 0 such that |f(x0)| + δ ≤ 1. 
Take h > 0 sufficiently small, such that (2 + |f |L )h < δ. Define
L
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g(x) :=
[
h− Ld(x, x0)

]+
.

Then g ∈ BL(S), g �= 0 and |g|L ≤ L. Moreover, g(x) = 0 when d(x, x0) ≥ h/L and for x ∈ S such that 
d(x, x0) < h/L one has

|f(x) ± g(x)| ≤ |f(x) − f(x0)| + |f(x0) ± (h− Ld(x, x0))|

≤ |f |Ld(x, x0) + |f(x0)| + h + Ld(x, x0)

< |f |L
h

L
+ |f(x0)| + 2h < |f(x0)| + δ ≤ 1.

Thus,

‖f ± g‖∞ ≤ 1 and |f ± g|L ≤ |f |L + |g|L ≤ |f |L + L ≤ 1.

So, both f + g and f − g are in BS
FM, contradicting that f is an extreme point according to Lemma 2.1. �

Remark 3.1. In [30], Theorem 3.1, it has been shown that extreme functions f in the unit ball of Lip([0, 1])
for the FM-norm must have |f ′(x)| = 1 almost everywhere with respect to Lebesgue measure, whereas for 
extreme functions f in the unit ball of Lip([0, 1] × [0, 1]) for the FM-norm this no longer holds: the set on 
which |f ′(x)| = 1 can have arbitrary (but positive) Lebesque measure (less than 1; cf. [29], Theorem 1). 
This does not violate Lemma 3.2, since |f |L = ess supx∈S |f ′(x)|.

For the BL-norm, the situation is different. If f is an extreme point of BS
BL, then Corollary 2.1 immediate 

yields that |f |L = 1 − ‖f‖∞. Interestingly, the following result holds, for which the main inspiration came 
from [28], Lemma 2.7. It will be used in the proof of Proposition 5.2, which itself is auxiliary to a main result 
in this paper, namely the generalisation to the BL-norm setting of Johnson’s description of a weak-star dense 
subset of the set of extreme points for the FM-norm, see Corollary 5.2.

Lemma 3.3. If f ∈ ext∗(BS
BL), then infx∈S f(x) = − supx∈S f(x). In particular, if S is compact, then f

attains both ‖f‖∞ and −‖f‖∞.

Proof. Put M := supx∈S f(x), m := infx∈S f(x) and let μ := |M + m| ≥ 0. Since f is non-trivial, i.e. 
|f | �= 1, |f |L > 0 and 0 < γ := ‖f‖∞ = 1 − |f |L < 1. Consequently, −1 < m ≤ M < 1 and μ < 2. Consider, 
for −1 < a < 1 and b ∈ R the functions

ga,b := af + b1 ∈ BL(S).

We shall show that if μ > 0, then one can find (a, b) �= 0 such that both f+ga,b and f−ga,b are in BS
BL, while 

ga,b �= 0. Then Lemma 2.1 yields that f cannot be an extreme point of BS
BL, contradicting the assumption. 

Hence one must have M = −m.
To that end, assume μ > 0 and consider the region of interest

Rμ :=
{
(a, b) ∈ R2 : −1 < a < 1, |b| < 1

2μmin(1 + a, 1 − a)
}

(10)

for the parameters a and b. Rμ is defined in such a way that −|M + m| ≤ 2b
1±a ≤ |M + m| whenever 

(a, b) ∈ Rμ. It is an open set containing (0, 0). In fact, it is the interior of the closed polyhedral set that is 
the convex hull of the four points ±(1, 0), ±(0, 1μ).
2
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Write g instead of ga,b for notational convenience. Then

(1 + a)m + b ≤ f + g ≤ (1 + a)M + b,

(1 − a)m− b ≤ f − g ≤ (1 − a)M − b.

Hence, given the particular form of g,

‖f + g‖∞ = max
[
(1 + a)M + b,−(1 + a)m− b

]
,

‖f − g‖∞ = max
[
(1 − a)M − b,−(1 − a)m + b

]
,

|f ± g|L = (1 ± a)|f |L = (1 ± a)(1 − ‖f‖∞) = (1 ± a)
(
1 − max(M,−m)

)
.

Then

‖f + g‖BL = 1 + a + (1 + a)
(

max
[
M + b

1 + a
,−m− b

1 + a

]
− max

(
M,−m

))

= 1 + a + (1 + a)
(

max
[

2b
1 + a

,−m−M

]
− b

1 + a
+ M − max

(
M,−m

))

= 1 + a− b + (1 + a)
(

max
[ 2b
1 + a

,−(M + m)
]
− max

(
−(M + m), 0

))
. (11)

Similarly, one computes that

‖f − g‖BL = (1 − a) + (1 − a)
(

max
[ 2b
1 − a

,M + m
]
− b

1 − a
−m− max(M,−m)

)

= 1 − a− b + (1 − a)
(

max
[ 2b
1 − a

,M + m
]
− max

(
M + m, 0

))
. (12)

Rμ has been chosen such that if (a, b) ∈ Rμ, then

‖f − g‖BL =
{

1 − a− b, if M + m > 0,
1 − a + b, if M + m < 0

(13)

and

‖f + g‖BL =
{

1 + a + b, if M + m > 0,
1 + a− b, if M + m < 0

. (14)

Thus, if M + m > 0 and we require that both ‖f + g‖BL ≤ 1 and ‖f − g‖BL ≤ 1, then a = −b. If 
M +m < 0, the same conditions yield a = b. Since Rμ is open and contains (0, 0), in either case Rμ contains 
an (a, −a) �= 0 or (a, a) �= 0.
The statement for S compact immediately follows from the general case, since the continuous function f
attains its supremum and infimum on the compact set S. �
4. Extension of general Lipschitz functions and extreme points

The following (elementary) extension result allows limiting our attention to complete spaces (S, d). Let 
(Ŝ, d̂) be the completion of (S, d) and view S as a dense subset of Ŝ.
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Proposition 4.1. Every f ∈ Lip(S, d) has a unique extension f̂ ∈ Lip(Ŝ, d̂), such that |f̂ |L = |f |L. If f is 
bounded, then f̂ is bounded and ‖f̂‖∞ = ‖f‖∞.

The proof is left to the reader. According to this result, BL(S, d) is linearly isometrically isomorphic to 
BL(Ŝ, d̂). Their respective unit balls and sets of extreme points can hence be identified.

Central in our description of subsets of extreme points BS
BL (and BS

FM) will be the extension to S of a 
bounded Lipschitz function on a (finite) subset P – with the restricted metric. Extension operators for real 
and vector valued Lipschitz functions have been extensively studied (cf. overviews provided in e.g. [8,34], 
among others). Crucial is what we call the ‘Metric Tietze’s Extension Theorem’, which is stronger than 
the well-known result by McShane [23], Theorem 1, that states that any Lipschitz function f on P has an 
extension F to S that has Lipschitz constant that is not greater than that of f .

Theorem 4.1 (Metric Tietze’s Extension Theorem). Let (S, d) be a metric space and P ⊂ S a non-empty 
subset, equipped with the restriction of d to P . If f ∈ BL(P ), then there exists F ∈ BL(S) such that F |P = f , 
‖F‖∞ = ‖f‖∞ and |F |L = |f |L.

For a full proof, see Appendix A. One should be aware that extension with preservation of Lipschitz 
constant is delicate for vector-valued Lipschitz functions. Theorem 4.1 then does not hold for a general 
codomain (e.g. see [8], Section 4.2): there exists spaces S and subsets P , such that a Lipschitz function 
f : P → R2 cannot be extended to S with preservation of the Lipschitz constant. However, in specific cases 
it may, see e.g. the Kirszbraun-Valentine Theorem, (cf. [8], Theorem 4.2.3, p.221), but then by a different 
extension method. The McShane-type of Lipschitz extension is given by the operator

ES,0
P f(x) := sup

p∈P

[
f(p) − |f |L d(p, x)

]
, x ∈ S. (15)

We take the convention that for P a singleton, |f |L = 0 for any f ∈ BL(P ), for the Lipschitz constant is 
then the supremum in R+ of the empty set. Thus, extension from singletons P = {x0} leads to constant 
functions on S.

The extension operator involved in Theorem 4.1 has particularly nice properties with regard to extreme 
points as we shall show below. It is defined by

ES
P : BL(P ) → BL(S) : f �→ F := max

(
ES,0
P (f),−‖f‖∞

)
. (16)

We start with exhibiting basic properties of the McShane extension operator ES,0
P .

Proposition 4.2. Let P be a non-empty subset of S, with the metric induced by S, and let f, g ∈ BL(P ), 
then:

(i) ES,0
P (f) ≤ ‖f‖∞1.

(ii) ES,0
P (c1) = c1 for every c ∈ R.

(iii) If f ≤ g and |f |L ≥ |g|L, then ES,0
P (f) ≤ ES,0

P (g).
(iv) If |f ∨ g|L ≥ |f |L and |f ∨ g|L ≥ |g|L, then ES,0

P (f ∨ g) ≤ ES,0
P (f) ∨ ES,0

P (g).

Proof. Statements (i), (ii) and (iii) can be derived easily from the definition of the extension operator. For 
(iv), let x ∈ S. Then

ES,0
P (f ∨ g)(x)

= max
(

sup
[
f(p) − |f ∨ g|Ld(x, p)

]
, sup

[
g(p) − |f ∨ g|Ld(x, p)

])

p∈P :f(p)≥g(p) p∈P :f(p)<g(p)
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≤ max
(

sup
p∈P :f(p)≥g(p)

[
f(p) − |f |Ld(x, p)

]
, sup
p∈P :f(p)<g(p)

[
g(p) − |g|Ld(x, p)

])

≤ max
(
ES,0
P (f)(x), ES,0

P (g)(x)
)
. �

Note that if the condition in Proposition 4.2 (iv) holds then equality of Lipschitz constants must hold in 
at least one of the two inequalities, because in general |f ∨ g|L ≤ max(|f |L, |g|L). This observation yields 
the following

Corollary 4.1. Let P be a non-empty subset of S, with the metric induced by S. If f ∈ BL(P ) and g ∈ BL(S)
are such that 

∣∣f ∨ g|P
∣∣
L

= |f |L and 
∣∣f ∨ g|P

∣∣
L
≥ |g|L, then

ES,0
P

(
f ∨ g|P

)
∨ g = ES,0

P (f) ∨ g. (17)

Proof. Since ES,0
P (g|P ) ≤ g, we derive from Proposition 4.2 (iv) that

ES,0
P

(
f ∨ g|P

)
∨ g ≤ ES,0

P (f) ∨ g. (18)

Because 
∣∣f ∨ g|P

∣∣
L
≤ |f |L and f ∨ g|P ≥ f , obviously, Proposition 4.2 (iii) yields

ES,0
P

(
f ∨ g|P

)
≥ ES,0

P (f).

Taking the maximum with g on both sides in the last inequality gives the inequality opposite to (18). �
Note the following special case of this corollary that is relevant to the extension operator ES

P :

Corollary 4.2. Let P be a non-empty subset of S, with the metric induced by S. If f ∈ BL(P ) and c ∈ R

are such that |f ∨ c1|L = |f |L, then

ES,0
P

(
f ∨ c1) ∨ c1 = ES,0

P (f) ∨ c1.

Remark 4.1. If P is the closure of P in S (not necessarily complete), then EP
P (f) is the restriction to P of 

the extension f̂ to the completion P̂ from Proposition 4.1.

The extension operators behave as expected under composition:

Proposition 4.3. Let P ′ ⊂ S and P ⊂ P ′ be non-empty subsets, each equipped with the metric induced by S. 
Then ES,0

P ′ ◦ EP ′,0
P = ES,0

P and also ES
P ′ ◦ EP ′

P = ES
P .

Proof. First consider the extension without truncation, defined by ES,0
P . Let f ∈ BL(P ) and x ∈ S. Then, 

using that 
∣∣EP ′,0

P (f)
∣∣
L

= |f |L according to Theorem 4.1 and the triangle inequality, one obtains:

(
ES,0
P ′ ◦ EP ′,0

P

)
(f)(x) = sup

p′∈P ′

[(
sup
p∈P

[
f(p) − |f |Ld(p′, p)

])
− |f |Ld(x, p′)

]

= sup
p′∈P ′

sup
p∈P

[
f(p) − |f |L

(
d(p′, p) + d(x, p′)

)]
(19)

≤ sup
p′∈P

sup
p∈P

[
f(p) − |f |Ld(x, p)

]
= ES,0

P (f)(x).

On the other hand, equality (19) can be reformulated, and using P ⊂ P ′ one arrives at
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(
ES,0
P ′ ◦ EP ′,0

P

)
(f)(x) = sup

(p,p′)∈P×P ′

[
f(p) − |f |L

(
d(p′, p) + d(x, p′)

)]
≥ sup

(p,p′): p′=p

[
f(p) − |f |L

(
d(p′, p) + d(x, p′)

)]
= ES,0

P (f)(x).

According to the Tietze Extension Theorem, ‖EP ′

P (f)‖∞ = ‖f‖∞. If P is not a singleton, because 
|EP ′

P (f)|L = |f |L, there exists a sequence 
(
(xn, yn)

)
n∈N ∈ P × P , with xn �= yn and |f(xn) −

f(yn)|/d(xn, yn) → |f |L as n → ∞. Since EP ′,0
P (f)|P = f and f ≥ −‖f‖∞1 on P , one obtains by Mc-

Shane’s Theorem that

|f |L ≤
∣∣EP ′,0

P (f) ∨
(
−‖f‖∞1

)∣∣
L
≤

∣∣EP ′,0
P (f)

∣∣
L
≤ |f |L. (20)

Thus, equality of Lipschitz constants must hold everywhere in (20). If P = {x0} is a singleton, then 
EP ′,0
P (f) = f(x0)1 and equality holds in (20) trivially. Application of Corollary 4.2 and the first part of the 

proof now yields

(
ES
P ′ ◦ EP ′

P

)
(f) =

[
ES,0
P ′

(
EP ′

P (f)
)]

∨
[
−
∥∥EP ′

P (f)
∥∥
∞1

]
=

[
ES,0
P ′

(
EP ′,0
P (f) ∨

(
−‖f‖∞1

))]
∨

[
−
∥∥f∥∥∞1]

=
[
ES,0
P ′

(
EP ′,0
P (f)

)]
∨

[
−
∥∥f∥∥∞1]

= ES,0
P (f) ∨

[
−
∥∥f∥∥∞1] = ES

P (f). �
Farmer [13] considered extreme points of the Lipschitz dual S#, i.e. the vector space Lip0(S) of Lipschitz 

functions that vanish at a fixed distinguished point e ∈ S, equipped with the | · |L seminorm, that becomes a 
norm on this subspace of Lip(S). He showed that the McShane extension operator ES,0

P maps extreme points 
of the unit ball in P# to extreme points of the unit ball in S#, for closed subsets P of S (cf. [13], Lemma 2, 
p. 810). Hidden in the techniques of proof in [18] for the case of compact and connected S, a similar result 
could be observed for BL(S) with the FM-norm (stated precisely in Appendix C). The following result 
establishes this result for the BL-norm. Its novel method of proof is applicable to the FM-norm as well 
with small modification (see Appendix C) without restricting conditions of connectedness nor compactness. 
Hence, through the identification of (BL(S), ‖ ·‖FM) with (Lip0(S), | · |L), detailed in Appendix B, it provides 
a novel proof for that result as well.

Theorem 4.2. Let P be a subset of S with at least two points, equipped with the restriction of d as metric. 
Then ES

P maps ext∗(BP
BL) into ext∗(BS

BL).

Proof. Let P be the closure of P in S. According to Remark 4.1, EP
P identifies BP

BL with BP
BL and ext∗(BP

BL)
with ext∗(BP

BL). In view of Proposition 4.3 it then suffice to show that ES
P

maps ext∗(BP
BL) into ext∗(BS

BL). 
That is, without loss of generality we can assume that P is closed.

Let f ∈ ext∗(BP
BL) and F := ES

P (f). Theorem 4.1 yields F |P = f , ‖F‖∞ = ‖f‖∞ and |F |L = |f |L. Since 
f �= ±1, F �= ±1. So, it suffices to show that F is an extreme point of BS

BL. Suppose that G ∈ BL(S) is 
such that both F + G and F −G are in BS

BL. We have to show that G = 0.
We have f ± G|P = (F ± G)|P ∈ BP

BL and f ∈ ext(BP
BL), hence by Lemma 2.1: G|P = 0. Define 

M−
F := {x ∈ S : F (x) = −‖F‖∞} and H̃(s, p) := H(p)−H(s)

d(s,p) for H ∈ BL(S), s ∈ S \ P , p ∈ P . Note that 
|H̃(s, p)| ≤ |H|L.

Let x ∈ (M−
F ∪ P )c. Then F (x) > −‖F‖∞ = −‖f‖∞, hence, by definition of ES

P : F (x) = supp∈P [f(p) −
|f |Ld(x, p)]. Pick (pn) ⊂ P with
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F (x) = lim
n→∞

[f(pn) − |f |Ld(x, pn)]. (21)

Note that the sequence (f(pn)) is bounded. Then, the sequence (d(x, pn)) is bounded by (21). Thus, there 
exists a subsequence (pnk

) of (pn) such that (d(x, pnk
)) converges, and we have limk d(x, pnk

) ≥ d(x, P ) > 0, 
since P could be assumed closed. Together with (21), this implies (recall F |P = f):

lim
k→∞

F̃ (x, pnk
) = lim

k→∞

F (pnk
) − F (x)

d(x, pnk
) = |f |L. (22)

We have (F |P = f , G|P = 0)

‖F ±G‖∞ ≥ ‖(F ±G)|P ‖∞ = ‖f‖∞

Also, f ∈ ext(BP
BL), so ‖f‖BL = 1 (otherwise ‖f‖BL < 1 so f ± ε ∈ BP

BL for some ε > 0). So for all p ∈ P , 
we have

|f |L = 1 − ‖f‖∞ ≥ 1 − ‖F ±G‖∞ ≥ |F ±G|L ≥ |F̂ (x, p) ± Ĝ(x, p)|,

thus |F̂ (x, p) + |Ĝ(x, p)|| ≤ |f |L. In particular, (recall (22) and G|P = 0)

|G(x)|
d(x, pnk

) = |Ĝ(x, pnk
)| ≤ |f |L − F̂ (x, pnk

) −→ 0 as k → ∞.

Since (d(x, pnk
)) is bounded, we conclude that G(x) = 0.

It remains to show that we have G|M−
F ∩P c = 0. Let x ∈ M−

F , i.e., F (x) = −‖F‖∞. We have

|F ±G|L ≥ |(F ±G)|P |L = |f |L,

so (recall ‖f‖BL = 1):

‖f‖∞ = 1 − |f |L ≥ 1 − |F ±G|L ≥ ‖F ±G‖∞ ≥ |F (x) ±G(x)|. (23)

Now, if G(x) > 0, then |F (x) −G(x)| = ‖F‖∞ +G(x) > ‖f‖∞, while if G(x) < 0, we have |F (x) +G(x)| =
‖F‖∞ + G(x) > ‖f‖∞, in both cases contradicting (23). Thus G(x) = 0. �
5. Norming and dense sets of extreme points

Our interest in the extreme points of the unit ball of Banach spaces of Lipschitz functions originates 
from the definition of useful norms on M(S) by means of embedding measures in the dual of such Banach 
spaces and Proposition 2.2. The latter reduces the task of computing ‖μ‖∗•, • = FM or BL, to determining 
sup

{
〈μ, f〉 : f ∈ ext(BS

• )
}
, provided μ is separable.

The full set of extreme points of BS
• cannot be conveniently described for this purpose. The K2-M3-R 

Theorem, Theorem 2.1, indicates what type of sets to look for in order to take the supremum over a smaller 
set of extreme points. Recall the natural pairing 〈·, ·〉 between M(S) and BL(S), defined by integration, as 
in (4). Proposition 2.1, which asserts that (BL(S), ‖ · ‖BL) is the dual space of Mol(S)BL = Ms(S), yields 
that the σ(BL(S), Mol(S)BL)-weak topology defined by the above pairing is the weak∗-topology on BL(S). 
According to the Banach-Alaoglu Theorem ([9], Theorem V.3.1), BS

• is compact in this locally convex 
Hausdorff vector space topology. Thus, according to Theorem 2.1 (iv), a subset A of ext(B∗

•) is norming for 
‖ · ‖∗• if and only if any of the conditions (i)-(iii) in the K2-M3-R Theorem holds.
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We provide sets ES
• of extreme points of which the weak∗-closed convex hull is BS

• , thus proving property 
(i). Lemma 2.2 provides the technique to do so. As a consequence one gets the weak∗-density in the extreme 
points (which is property (ii)). As ‘by-product’ of this approach, it is possible to reduce attention to the 
dense subset Mol(S) of M(S) of measures with finite support. This will allow to define ‘small’ norming sets 
ES

• , defined by means of the Lipschitz extension operators ES
P . Johnson, in the setting of connected and 

compact metric spaces in [18], aimed at providing a set JS
FM of extreme points in BS

FM that was ‘as large as 
possible’, possibly having a different objective in mind.

For f ∈ BL(S), define

Mf := {x ∈ S : |f(x)| = ‖f‖∞},

which is non-empty in the case that S is compact. Johnson defined

JS
FM :=

{
f ∈ BS

FM : ‖f‖∞ = 1, ∃Pf ⊂ S finite, Pf �= ∅ : (24)(
x ∈ S \Mf ⇒ ∃p ∈ Pf : |f(x) − f(p)| = d(x, p)

) }
(cf. the set A defined in [18], Proposition 1.1). Below we shall now define ‘our’ small sets ES

• , but also provide 
for the case of the BL-norm a novel ‘Johnson-like’ large set JS

BL of extreme points of BS
BL. Motivation for 

the definition of JS
BL comes from Lemma 3.3.

Thus, we introduce the subset of BS
• :

ÊS
• :=

⋃
P⊂S, finite

ES
P

(
ext∗(BP

• )
)
, • = FM,BL. (25)

According to Theorem 4.2 (for BL-norm) and Theorem C.1 (for FM-norm), ÊS
• consists of non-trivial 

extreme points of BS
• , obtained by McShane-type Lipschitz extension. Note that ext∗(BP

• ) = ∅ when P is 
a singleton. So, the union runs over all finite sets P with at least two elements. Expand the set ÊS

BL by 
adding the trivial extreme points:

ES
BL := ÊS

BL ∪
{
±1}. (26)

For the FM-norm, there are non-trivial extreme functions that cannot be reached by the Lipschitz extension 
operators ES

P , see Appendix C, but which must be included for the norming property to hold. These need 
to be added separately, apart from the trivial extreme points. So, in this case:

ES
FM := ÊS

FM ∪
{
f ∈ BS

FM : |f | = 1} ∪
{
hP : P ⊂ S finite, P �= ∅

}
, (27)

where

hP (x) := (−1) ∨ sup
p∈P

[
1 − d(x, p)

]
, x ∈ S. (28)

Lemma C.1 shows that the functions hP are extreme points of BS
FM. Note that these functions hP cannot be 

reached by extension from a Lipschitz function on P , because (hP )|P = 1 and ES
P (1) = 1 (cf. Proposition 4.2

(ii)).
The Johnson-like set JS

BL is defined similar to (24):

ĴS
BL :=

{
f ∈ BS

BL : ‖f‖BL = 1, f(Mf ) = {‖f‖∞,−‖f‖∞}, (29)

∃Pf ⊂ S finite, Pf �= ∅ :
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(
x ∈ S \Mf ⇒ ∃p ∈ Pf : |f(x) − f(p)| = (1 − ‖f‖∞)d(x, p)

) }
JS

BL := ĴS
BL ∪

{
±1} (30)

Note that in the case of the FM-norm, the trivial extreme points, satisfying |f | = 1, are contained in JS
FM

as formulated in (24), because Mf = S for such f . Hence, the condition with Pf is trivially satisfied. For 
the BL-norm, the trivial extreme points f = ±1 also have Mf = S, but f(Mf ) does not consist of both 
two values ±‖f‖∞. It is necessary though, to have the trivial extreme points ‘on board’. Note too, that the 
functions hP , which were added to ÊS

FM to get ES
FM, are included in JS

FM.

Proposition 5.1. ES
• ⊂ JS

• for • = BL or FM.

Proof. Case of FM-norm. If f ∈ ES
• is trivial, |f | = 1 and hence Mf = S. Thus, we need to check only the 

conditions not involving Pf . One has ‖f‖∞ = 1, so f ∈ JS
FM.

If f = hP for some ∅ �= P ⊂ S finite, then ‖f‖∞ = 1 and Mf = P ∪ {x ∈ S : f(x) = −1}. One may take 
Pf = P and then the second condition in the definition is satisfied.
If f ∈ ÊS

FM is non-trivial, then ‖f‖∞ and |f |L = 1, according to Lemma 3.2. Moreover, f = ES
P (f∗) for 

some f∗ ∈ ext∗(BP
FM) and P ⊂ S finite, with |P | ≥ 2. By the Tietze Extension Theorem, |f∗|L = |f |L = 1

and it is clear from (15) and (16) that f satisfies the second condition in the definition, using Pf = P .
Case of BL-norm. If f ∈ ES

BL is trivial, |f | = 1 and hence Mf = S. Thus, again we need to check only the 
conditions not involving Pf . In this case, f = ±1, according to Lemma 3.1, which are included in JS

BL by 
construction.
If f ∈ ÊS

BL, then f = ES
P (f∗) for some f∗ ∈ ext∗(BP

BL) with P finite. From (15) and (16) it is immediate that 
ES
P (f∗) satisfies the last condition appearing in the definition of ĴS

BL with Pf := P . The other two conditions 
follow from Corollary 2.1 and Lemma 3.3 applied to f∗ ∈ ext∗(BP

BL). Hence, f = ES
P (f∗) ∈ ĴS

BL ⊂ JS
BL. �

The next result will clarify the relationship between JS
BL and ext(BS

BL). To that end we need the following 
lemma, which is a reformulation of [28], Lemma 2.1 for real numbers.

Lemma 5.1. Let x, y ∈ R and let |x| + |y| = 1. If α, β ∈ R are such that |x ± α| + |y ± β| ≤ 1, then either 
xy = α = β = 0, or

xy �= 0, |α| ≤ min{|x|, |y|} and α
|x|
x

+ β
|y|
y

= 0.

Proof. See [28], Lemma 2.1. �
We can only prove that JS

BL (and JS
FM, see Appendix C) consist of extreme points if S is connected. 

The proof for the BL-norm is remarkably more complicated than that for the FM-norm. It is unclear 
whether JS

• always contains non-extremal points when S is not connected. Example 6.2 gives an example 
of a non-extremal point when S is finite.

Proposition 5.2. If S is connected, then JS
• ⊂ ext(BS

• ) for • = FM or BL.

Proof. Assume that S is connected.
Case of FM-norm: The argument is essentially that in [18], proof of Proposition 1.1, with removal of 
the compactness condition. Suppose that f ∈ JS

FM and let Pf be the corresponding set P . Suppose that 
g ∈ BL(S) is such that both f + g and f − g are in BS

FM. We shall show that g = 0 and conclude by means 
of Lemma 8 that f is extreme.
If x ∈ Mf , then f(x) ∈ {±1} and 1 ≥ ‖f ± g‖∞ ≥ |f(x) ± g(x)|. Therefore g(x) = 0. If x ∈ S \ (Mf ∪ Pf ), 
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then there exists px ∈ Pf such that f̃(x, px) := f(px)−f(x)
d(x,px) = ±1. Define g̃(x, px) similarly. Then for both 

choices of sign,

1 ≥ ‖f ± g‖FM ≥ |f ± g|L ≥ |f̃(x, xp) ± g̃(x, xp)| = |1 ± g̃(x, xp)|.

So, g̃(x, xp) = 0 and g(x) = g(xp). Therefore,

g(S) = g(Mf ) ∪ g(S \ (Mf ∪ Pf )) ∪ g(Pf ) = g(Pf ).

In particular, g(S) is finite. Since g is continuous and S is connected, g(S) consists of a singleton.
If Mf �= ∅ (e.g. if S is compact), then 0 ∈ g(Mf ) ⊂ g(S). So g = 0. If Mf = ∅, then also {0} ⊂ g(S), by 
contradiction: suppose that 0 �∈ g(S). Pick a sequence (xn) ⊂ S such that |f(xn)| → ‖f‖∞ = 1. Then

|f | + |g| = max
(
|f + g|, |f − g|

)
≤ max

(
‖f + g‖∞, ‖f − g‖∞

)
≤ 1

Consequently,

0 ≤ |g(xn)| ≤ 1 − |f(xn)| → 0 as n → ∞.

So, |g(xn)| → 0. However, g(S) is finite. Thus, g(xn) = 0 must hold for sufficiently large n, which implies 
that 0 ∈ g(S). We arrived at a contradiction. Hence, g = 0 and we conclude that f is extreme.

Case of BL-norm: Suppose that f ∈ JS
BL and f ± g ∈ BS

BL for some g ∈ BL(S). We show that g = 0, i.e. 
f ∈ ext(BS

BL). Recall that JS
BL = ĴS

BL ∪ {±1}. If f = ±1, it is immediate that g must be zero. In the other 
case, we have f ∈ ĴS

BL. For s, t ∈ S, s �= t, define f̃(s, t) := f(s)−f(t)
d(s,t) and g̃(s, t) := g(s)−g(t)

d(s,t) . Let Pf be a 

finite subset as in the definition of ĴS
BL, and let s ∈ M c

f ∩P c
f . Set γ := ‖f‖∞ and note that γ ∈ (0, 1). Now, 

let ps ∈ Pf be such that |f̃(s, ps)| = 1 − γ. Such ps exists according to the definition of JS
BL. Then, for all 

x ∈ Mf we have

{
|f(x)| + |f̃(s, ps)| = γ + 1 − γ = 1,
|f(x) ± g(x)| + |f̃(s, ps) ± g̃(s, ps)| ≤ ‖f ± g‖∞ + |f ± g|L = ‖f ± g‖BL ≤ 1.

Note that f(x) �= 0 �= f̃(s, ps) since γ ∈ (0, 1), so Lemma 5.1 yields

g(x) |f(x)|
f(x) + g̃(s, ps)

|f̃(s, ps)|
f̃(s, ps)

= 0, for all x ∈ Mf . (31)

Keeping s (and ps) fixed and varying x, this implies

g(x) = − g̃(s, ps)|f̃(s, ps)|
γf̃(s, ps)

f(x) = cf(x), for all x ∈ Mf , (32)

where c := − g̃(s,ps)|f̃(s,ps)|
γf̃(s,ps)

= g(x)
f(x) is constant. Now, (31) becomes

cγ + g̃(s, ps)
|f̃(s, ps)|
f̃(s, ps)

= 0,

so g̃(s, ps) = −cγ f̃(s, ps) (recall that |f̃(s, ps)| = 1 − γ). Therefore,
1−γ
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g(s) − g(ps) = −cγ

1 − γ
(f(s) − f(ps)). (33)

Since f ∈ JS
BL, there exist x± ∈ Mf with f(x±) = ±‖f‖∞ = ±γ. For the moment, assume the following:

{
There exist n ∈ N and {x1, . . . , xn} ⊂ S, such that x1 = x−, xn = x+

and g(xi+1) − g(xi) = −cγ
1−γ (f(xi+1) − f(xi)) for i = 1, . . . , n− 1.

(34)

We will prove (34) below, but we finish the proof first, using this assumption. We have

2cγ = cf(xn) − cf(x1)
(32)= g(xn) − g(x1)

=
n−1∑
i=1

(
g(xi+1) − g(xi)

)
=

n−1∑
i=1

−cγ

1 − γ

(
f(xi+1) − f(xi)

)

= −cγ

1 − γ
(f(xn) − f(x1))

= −cγ

1 − γ
2γ.

So either c = 0 or γ = 0 or 1 = −γ
1−γ . The last two options cannot hold since γ ∈ (0, 1). We conclude that 

c = 0. Now, (32) implies that g = cf = 0 on Mf ⊃ {x+, x−} and from (33), we derive that g(s) ∈ g(Pf ) for 
all s ∈ S \Pf . Thus, {0} ⊂ g(S) ⊂ {0} ∪ g(Pf ), so g(S) is finite and contains zero. Since S is connected and 
g is continuous, g(S) is connected. Also, it is finite and 0 ∈ g(S), so g(S) = {0}, i.e. g = 0. We conclude 
that f ∈ ext(BS

BL).
It remains to prove (34). To this end, define for x ∈ S:

Mx := {s ∈ S :∃n ∈ N,∃x1, . . . , xn ∈ S such that x1 = x, xn = s,

g(xi+1) − g(xi) = −cγ

1 − γ
(f(xi+1) − f(xi)) for 1 ≤ i ≤ n− 1}. (35)

We write x ∼ y if and only if y ∈ Mx. Clearly, if x+ ∈ Mx− , we have proved (34).
We first show that ∼ is an equivalence relation. By taking n = 1 in the definition of Mx we see that 

trivially x ∈ Mx, proving reflexivity. For symmetry, suppose that y ∈ Mx, with corresponding {x1, . . . , xn}
as in the definition of Mx. Define x̄i := xn−i+1 for i = 1, . . . , n. Then x̄1 = xn = y, x̄n = x1 = x and

g(x̄i+1) − g(x̄i) = −
(
g(xn−i+1) − g(xn−i)

)
= −

( −cγ

1 − γ
(f(xn−i+1) − f(xn−i))

)

= −cγ

1 − γ
(f(x̄i+1) − f(x̄i)),

so x ∈ My. For transitivity, suppose that x ∈ My with corresponding {x1, . . . , xn} and y ∈ Mz with 
corresponding y1, . . . , ym. Define N := n +m and x̄i := xi for 1 ≤ i ≤ n, x̄i := yi−n for n +1 ≤ i ≤ N . Note 
that x̄n = x̄n+1 = y and note that all the properties are satisfied to conclude that x ∈ Mz. We conclude that 
∼ is an equivalence relation. Consequently, any two equivalence classes Mx, My are either equal or disjoint.

We show that each Mx is a closed subset of S. Suppose that (sn) ⊂ Mx and sn → s ∈ S. By continuity 
of f , we have f(sn) → f(s). Since f ∈ JS

BL, we have for each n ∈ N either sn ∈ Mf , so |f(sn)| = γ, or 
|f(sn) − f(p)| = (1 − γ)d(s, p) for some p ∈ Pf . Write Pf = {p1, . . . , pk} with pi ∈ S and k ∈ N. Define

Ii := {n ∈ N : |f(sn) − f(pi)| = (1 − γ)d(sn, pi)},
Iγ := {n ∈ N : f(sn) = γ}, I−γ := {n ∈ N : f(sn) = −γ}.
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It holds that N = ∪k
i=1Ii ∪ Iγ ∪ I−γ , so at least one of the sets on the right-hand side must be infinite. Let 

I be such an infinite set on the right-hand side and write I = {n1, n2, . . .} with nj < nj+1 for all j ∈ N, so 
that (snj

) is a subsequence of (sn).
If I = Ii for some i ∈ {1, . . . , k}, then

|f(s) − f(pi)| = lim
j→∞

|f(snj
) − f(pi)| = lim

j→∞
(1 − γ)d(snj

, pi) = (1 − γ)d(s, pi),

using that f(snj
) → f(s) and d(snj

, s) → 0. By (33), it now follows that s ∈ Mpi
(take n = 2, x1 = pi, 

x2 = s in the definition (35), note that s ∈ Mpi
trivially holds when s = pi). Moreover, snj

∈ Mpi
by 

(33), so pi ∼ s and pi ∼ snj
for all j ∈ N, implying snj

∼ s. Also, snj
∈ Mx for all j ∈ N, so x ∼ snj

. 
Consequently, x ∼ s, i.e. s ∈ Mx.

The other cases are I = I±γ . In these cases, we have f(snj
) = ±γ for all j ∈ N, so f(s) = limj→∞ f(snj

) =
±γ = f(snj

). Therefore, s, snj
∈ Mf , and (32) yields g(snj

) = g(s) = ±cγ. Now, trivially we have g(snj
) −

g(s) = −cγ
1−γ (f(snj

) − f(s)) as both sides are zero, and it follows that snj
∈ Ms. Thus, s ∼ snj

and x ∼ snj

for all j ∈ N, implying x ∼ s, i.e. s ∈ Mx. We conclude that Mx is closed.
Next, observe that

S = ∪k
i=1Mpi

∪Mx+ ∪Mx− . (36)

For any s ∈ S \ Mf , (33) holds for some ps ∈ {p1, . . . , pk} = Pf , hence s ∈ Mps
. For s ∈ Mf we have 

f(s) = ±γ = f(x±) and g(s) = ±cγ = g(x±), so taking n = 2, x1 = x±, x2 = s in the definition of Mx± , we 
see that s ∈ Mx± . So indeed, (36) holds.

Our goal was to show that x+ ∈ Mx− . Suppose that the latter is not true. Then Mx+ ∩Mx− = ∅. Let 
J := {i ∈ 1, . . . , k} : pi /∈ Mx+} and let M := ∪i∈JMpi

∪ Mx− . Then M is a finite union of closed sets, 
hence closed. Moreover, M ∩Mx+ = ∅ and x− ∈ Mx− ⊂ M , so M �= ∅. Also, Mx+ is closed, x+ ∈ Mx+ and 
S = M ∪̇Mx+ , contradicting the connectedness of S. We conclude that x+ ∈ Mx− , justifying (34). �

The following result is essential in establishing the weak∗-density of ES
• in ext(BS

• ), (• = FM or BL).

Proposition 5.3. Let (S, d) be a metric space and • = FM or BL. For every μ ∈ Mol(S), there exists 
fμ
• ∈ ES

• such that ‖μ‖∗• = 〈μ, fμ
• 〉.

Proof. Let μ ∈ Mol(S) and put P := supp(μ) = {s1, . . . , sn} with all si distinct. So, μ =
∑n

j=1 ajδsj , with 
0 �= aj ∈ R. Let P inherit the metric d from S. View μ as an element of BL(S)∗, or as an element μ|P of 
BL(P )∗, given by the same expression.

For any f ∈ BL(S) the restriction f |P ∈ BL(P ) and ‖f |P ‖∞ ≤ ‖f‖∞, |f |P |L ≤ |f |L. So, ‖f |P ‖• ≤ ‖f‖•
and consequently, {f |P : P ∈ BS

• } ⊂ BP
• . Moreover, 〈μ|P , f |P 〉 = 〈μ, f〉. Hence,

‖μ‖∗• = sup
{
〈μ|P , f |P 〉 : f ∈ BS

•
}

≤ ‖μ|P ‖∗• (37)

Since (P, d) is a finite metric space, it is Polish and Proposition 2.2 yields the existence of f∗ ∈ ext(BP
• )

such that ‖μ|P ‖∗• = 〈μ|P , f∗〉.
If f∗ is non-trivial, then F ∗ := ES

P (f∗) ∈ ES
• is such that 〈μ, F ∗〉 = 〈μ|P , F ∗|P 〉 = 〈μ|P , f∗〉 = ‖μ|P ‖∗•. 

Since ‖μ‖∗• ≥ 〈μ, F ∗〉, equation (37) yields that 〈μ, F ∗〉 = ‖μ‖∗•, so we may take fμ
• := F ∗.

If f∗ is trivial, i.e. |f∗| = 1, then in case • = BL, f∗ = ±1 and one can take fμ
BL := ±1 ∈ ES

BL. The 
case • = FM is slightly more involved. Consider P+ := {p ∈ P : f∗(p) = 1} and h := hP+ ∈ ext(BS

FM) as 
defined in Lemma C.1 as function on S. Since for any p ∈ P \ P+, f∗(p) = −1 and |f∗|L ≤ 1, one has for 
any p ∈ P \ P+ and p′ ∈ P+
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|f∗(p) − f∗(p′)|
d(p, p′) = 2

d(p, p′) ≤ 1.

So d(p, P+) ≥ 2. Lemma C.1, applied to extension from P+ to P , shows that h|P = f∗. h is included in 
ES

FM by construction. �
We can now prove the main result and its immediate consequences.

Theorem 5.1. Let (S, d) be a metric space and • = FM or BL. Then ES
• is a weak∗-dense subset of ext(BS

• ). 
If, additionally, S is compact, then ES

• is ‖ · ‖∞-dense in ext(BS
• ).

Proof. We shall employ Lemma 2.2 and Theorem 2.1 to obtain the desired result. First we apply Lemma 2.2
to the situation where X = Mol(S)• and F = Mol(S), which is dense in X for the ‖ · ‖∗•-norm. Propo-
sition 2.1 yield that X∗ = BL(S). Proposition 5.3 yields that ES

• is determining the ‖ · ‖∗•-norm on F . 
Lemma 2.2 allows to conclude that BS

• is the weak∗-closed convex hull of ES
• .

Moreover, by the Banach-Alaoglu Theorem (cf. [9]), BS
• is compact for the weak∗-topology. Apply The-

orem 2.1 to the locally convex space BL(S), equipped with the weak∗-topology. Statement (i) has been 
proven above. So, (ii) holds. That is, ES

• is weak∗-dense in ext(BS
• ).

Assume now that S is compact. Let f ∈ ext(BS
• ). By the first part, there exists a net (fα)α∈A in ES

•
such that fα → f weak∗. Thus, fα(x) → f(x) for every x ∈ S, by applying δx ∈ Mol(S). Since S is metric 
and compact, it is totally bounded. Let ε > 0. Then there exist x1, . . . xn such that S =

⋃n
i=1 B(xi, ε/3). 

For each i one can find αi ∈ A such that for all α � αi, |fα(xi) − f(x)| < ε/3. Then there also exist α0 ∈ A

such that the same inequality holds for all 1 ≤ i ≤ n and all a � α0. Pick x ∈ S. There exists xi such that 
x ∈ B(xi, ε/3). Then for all α � α0,

|fα(x) − f(x)| ≤ |fα(x) − fα(xi)| + |fα(xi) − f(xi)| + |f(xi) − f(x)|

≤ |fα|Ld(x, xi) + 1
3ε + |f |Ld(x, xi) < ε.

We conclude that ‖fα − f‖∞ → 0. �
In view of the arguments at the start of this section, we immediately obtain from the K2-M3-R Theorem 

that the sets ES
• are norming on Ms(S):

Corollary 5.1. Let μ ∈ Ms(S). Then ‖μ‖∗• = sup{〈μ, f〉 : f ∈ ES
• } (• = FM, BL).

Moreover, we obtain weak∗-density of the large set JS
BL in the extreme points, provided S is connected.

Corollary 5.2. If (S, d) is a connected metric space, then the set JS
• consists of extreme points JS

• of BS
• and 

is weak*-dense in ext(BS
• ) (• = FM, BL).

Proof. Combine Proposition 5.2 and Theorem 5.1. �
6. Considerations for the case of a finite space

In this section we take a closer look at the interpretation of the results of the previous sections for the case 
when S is a metric space with finitely many points. This seems a highly specific setting, but it is relevant for 
multiple reasons. Firstly, for a general metric space the relevant norming and dense set ES

• is obtained mostly 
by applying the Lipschitz extension operator to (non-trivial) extreme points of the unit ball of functions on 
a finite metric space P . It is then a natural question to see to what extent the latter are determined by the 
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extreme points of a ball for a space P ′ ⊂ P . Secondly, highly relevant in view of the question of computing 
FM- and BL-norms of measures, the norm of a molecular measure μ with support supp(μ) = P , which is 
finite, is determined by the integrals against μ of the functions in the finite set ext(BP

• ) (see [14], Section 
6). Below we limit attention to the relatively novel case of the BL-norm. Although S is finite, we shall keep 
talking about functions on S.

Theorem 5.1 provides density of

ES
BL =

⋃
P⊂S, finite

ES
P

(
ext∗(BP

BL)
)
∪

{
f ∈ BS

BL : |f | = 1
}

(38)

in ext(BS
BL). When S is finite, we can take P = S on the right-hand side and (38) becomes trivial (knowing 

Theorem 4.2). Still, let us study (38) a bit further. One may wonder, whether it is possible to reach any 
non-trivial extremal function by applying the extension operator to a suitable non-trivial extremal function 
defined on a proper subset P of S.

One can quickly see that this is not the case. Since BS
• is symmetric around 0, also ext(BS

• ) is symmetric 
around 0 (cf. Corollary 2.2). If f = ES

P (F ) for some F ∈ ext∗(BP
• ), then −f is not of this form, generally. 

This motivates to study yet another extension operator:

ĒS
P (f) := −ES

P (−f) = min
(

inf
p∈P

[f(p) + |f |Ld(p, ·)], ‖f‖∞
)
.

It is easily seen that ĒS
P enjoys many of the same properties as ES

P . In particular, ĒS
P maps BL(P ) into BL(S)

and preserves supremum norms and Lipschitz constants.
The properties of ES

P expressed in Proposition 4.3 and Theorem 4.2 indicate that for any P ⊂ P ′ ⊂ S:

ES
P ′ ◦ EP ′

P

(
ext∗(BP

• )
)

= ES
P

(
ext∗(BP

• ) ⊂ ext∗(BS
• ). (39)

Since ext∗(BS
• ) = −ext∗(BS

• ), (39) also holds with ES
P replaced by ĒS

P . Thus for any finite S containing at 
least two points we have

⋃
x∈S

ES
S\{x}

(
ext∗(BS\{x}

BL )
)
∪ ĒS

S\{x}
(
ext∗(BS\{x}

BL )
)
⊂ ext∗(BS

BL). (40)

A natural question is then whether equality holds in (40).
For the moment, assume that indeed we have equality in (40) and suppose that n := |S| ∈ N≥3. By 

induction, we would then have

ext∗(BS
BL) =

⋃
x,y∈S,
x
=y

⋃
{Tn ◦ . . . ◦ T3(ext∗(B{x,y}

BL )) :Ti = EPi

Pi−1
or Ti = ĒPi

Pi−1
,

{x, y} ⊂ Pi ⊂ Pi+1 ⊂ S and |Pi| = i}. (41)

Now, we could construct all extreme points explicitly, since we ‘only’ have to take all combinations of 
extensions of the extreme points for P = {x, y}, which are explicitly given by

ext∗(B{x,y}
BL ) = {(x, y) �→ ±( d(x, y)

d(x, y) + 2 ,
−d(x, y)
d(x, y) + 2)}. (42)

This can be seen easily by identifying BL(P ) ∼= R2 and drawing BP
BL. However, the next example shows that 

in general the other inclusion in (40) does NOT hold and (41) fails. Thus, one cannot obtain all extreme 
points via the inductive procedure described. In addition, the example shows that ‘P ⊂ S’ could not have 
been replaced by ‘P � S’ in (38).



20 S.C. Hille, E.S. Theewis / J. Math. Anal. Appl. 536 (2024) 128200
Example 6.1. Let S be finite with |S| ≥ 3. If equality in (40), hence (41), were true, then for all f ∈ ext∗(BS
BL)

there would exist x, y ∈ S with f(x) = ‖f‖∞, f(y) = −‖f‖∞ and 2‖f‖∞ = d(x, y)(1 − ‖f‖∞). Indeed, the 
property holds for S = P , |P | = 2 by (42) and obviously, it is preserved by ES

P and ĒS
P .

Now let S := {0, 1.5, 2.5, 4} ⊂ R and identify f ∈ BL(S) with (f(0), f(1.5), f(2.5), f(4)) ∈ R4. Using 
the expression for ext(BS

BL) in terms of linear constraints in [14], one can (numerically) verify that f :=
(0.5, −0.25, 0.25, −0.5) is an extreme point of BS

BL. However, 2‖f‖∞ = 1 �= 2 = d(0, 4)(1 − 0.5), so it does 
not satisfy the aforementioned property.

We conclude that equality in (40) does not hold and (41) is false in general.

Now we turn our attention to the ‘Johnson-like’ set JS
BL. For finite S, the property that defines JS

BL holds 
for all extreme points, not only for those in ES

BL (cf. Proposition 5.1):

Lemma 6.1. Let S be finite, f ∈ ext(BS
BL) and x ∈ S \ Mf . Then there exists y ∈ S \ {x} such that 

|f(x) − f(y)| = |f |Ld(x, y).

Proof. Suppose the claim is false. Then we have |f(x) − f(y)| < |f |Ld(x, y) for all y ∈ S \ {x}. Also, 
|f(x)| < ‖f‖∞, so

α := (‖f‖∞ − |f(x)|) ∧ min
y∈S\{x}

[|f |Ld(x, y) − |f(x) − f(y)|] > 0.

Put g := 1{x}α ∈ BL(S) (since S is finite). We show that ‖f ± g‖BL ≤ 1, contradicting the fact that 
f ∈ ext(BS

BL). We have

‖f ± g‖∞ = max{‖f‖∞, |f(x) ± α|} ≤ max{‖f‖∞, |f(x)| + α}

≤ max{‖f‖∞, |f(x)| + ‖f‖∞ − |f(x)|}

= ‖f‖∞.

Furthermore,

|f ± g|L = |f |L ∨ max
y∈S\{x}

|(f ± g)(x) − (f ± g)(y)|
d(x, y)

= |f |L ∨ max
y∈S\{x}

|f(x) − f(y) ± α|
d(x, y)

≤ |f |L ∨ max
y∈S\{x}

|f(x) − f(y)| + |f |Ld(x, y) − |f(x) − f(y)|
d(x, y)

= |f |L.

Thus ‖f ± g‖BL ≤ ‖f‖∞ + |f |L = 1, finishing the proof. �
If S is a finite metric space then it is disconnected, so the proof of JS

BL ⊂ ext(BS
BL) does not apply. Also, 

the definition of JS
BL now boils down to JS

BL = {f ∈ BS
B : ‖f‖BL = 1, f(Mf ) = {‖f‖∞, −‖f‖∞} }, since 

one can take Pf = S for the finite set Pf in the definition. However, Lemma 6.1 makes one wonder whether 
there is a variation of the defining property of JS

BL that does characterize ext(BS
BL). E.g. is the set

{f ∈ BL(S) : ‖f‖BL = 1, f(Mf ) ={±‖f‖∞},∀s ∈ M c
f ∃s ∈ S \ {s}

s.t. |f(p) − f(s)| = (1 − ‖f‖∞)d(p, s)} (43)
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contained in ext(BS
BL)? Then we would have equality by Lemma 6.1, Lemma 3.3 and Corollary 2.1, i.e. a 

full characterization of ext(BS
BL). Unfortunately, the next example proves the contrary.

Example 6.2. Let S := {0, 1.5, 2, 4} and identify f ∈ BL(S) with (f(0), f(1.5), f(2), f(4)) ∈ R4. Then 
f := (0.5, −0.25, 0, −0.5) is an element of the set (43). However, one can (numerically) verify that it is not 
an extreme point of BS

BL (e.g. as in Example 6.1 using [14]).
We conclude that for finite S, the properties from Lemma 6.1, Lemma 3.3 and Corollary 2.1 are necessary 

conditions to be in ext(BS
BL), but not sufficient conditions.

Appendix A. Proof of metric Tietze extension theorem

We could not find a reference for the Metric Tietze Extension Theorem in the literature that provides 
a full proof. See [34], Theorem 2.5.6 though, which does not provide full details. The result is fundamental 
for our results. Therefore, we include a full detailed proof here.

Proof. (Metric Tietze Extension Theorem, Theorem 4.1).
Let F0 = ES,0

P (f) and F = ES
P (f) be as defined in (15) and (16). First, we show that F |P = F0|P = f . Let 

p0 ∈ P . For all p ∈ P , we have

f(p) − |f |Ld(p, p0) ≤ f(p) − (f(p) − f(p0)) = f(p0) = f(p0) − |f |Ld(p0, p0),

thus F0(p0) = f(p0). Moreover, f(p0) ≥ −‖f‖∞ yields F (p0) = F0(p0) = f(p0), proving that F |P = F0|P =
f .

As a consequence, we have ‖F‖∞ ≥ ‖f‖∞. For the other inequality, note that f(p) − |f |Ld(p, x) ≤ ‖f‖∞
for any x ∈ S and p ∈ P , so F0 ≤ ‖f‖∞. From the definition of F , it follows that −‖f‖∞ ≤ F ≤ ‖f‖∞, i.e. 
‖F‖∞ ≤ ‖f‖∞. Hence, ‖F‖∞ = ‖f‖∞.

We have |F |L ≥ |F |P |L = |f |L, provided that F is Lipschitz continuous. It remains to show that the 
latter holds and |F |L ≤ |f |L. Let x, y ∈ S and p ∈ P . Applying the triangle inequality twice yields

f(p) − |f |Ld(p, y) − |f |Ld(x, y) ≤ f(p) − |f |Ld(p, x) ≤ f(p) − |f |Ld(p, y) + |f |Ld(x, y).

Taking the supremum over p ∈ P , we obtain

F0(y) − |f |Ld(x, y) ≤ F0(x) ≤ F0(y) + |f |Ld(x, y).

Therefore, |F0(x) −F0(y)| ≤ |f |Ld(x, y) and F0 is Lipschitz continuous. It follows that F = max(F0, −‖f‖∞)
is Lipschitz continuous with |F |L ≤ |F0|L ≤ |f |L ([11], Lemma 4). We conclude that |F |L = |f |L. �
Appendix B. Isomorphism between (BL(S), ‖ · ‖FM) and the metric dual space

Farmer [13] considered the Lipschitz dual S# of the metric space (S, d), which was introduced by Lin-
denstrauss [22]. It consists of the vector space Lip0(S) of all functions in Lip(S) that vanish at a fixed 
chosen ‘distinguished point’ e ∈ S, equipped with | · |L as norm. We exhibit here a sequence of isomorphisms 
that identify (BL(S, d), ‖ · ‖FM,d) with such a space (Lip0(S+, d+), | · |L,d+), linearly isometrically, order 
theoretically and algebraically. These isomorphisms can be found in [34], Section 1.7.

Let (S, d) be a metric space. Define

d′(x, y) := d(x, y) ∧ 2.
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Lemma B.1. The identity map is a linear, isometric, lattice and algebraic isomorphism between (BL(S, d), ‖ ·
‖FM,d) and (BL(S, d′), ‖ · ‖FM,d′).

Proof. We leave the elementary check to the reader. See e.g. [34], Proposition 1.7.1. �
For a metric space (S, d′) of diameter at most two, i.e.

diam(S, d′) := sup
{
d′(x, y) : , x, y ∈ S } ≤ 2,

like the space in Lemma B.1, one can add a remote distinguished point e, not in S, to obtain S+ := S ∪{e}
with metric

d+(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩
d(x, y), if x, y ∈ S,

1, if x = e, or y = e, x �= y,

0, if x = e = y.

Lip0(S+, d+) is then the space of Lipschitz functions on S+ for d+ that vanish at e.

Lemma B.2. If diam(S, d′) ≤ 2, then (BL(S), ‖ · ‖FM,d′) is linearly isometrically, order theoretically and 
algebraically isomorphic to (Lip0(S+, d+), | · |L,d+ ).

Proof. The isomorphism is given by extending f ∈ BL(S) by 0 at e. See [34], Theorem 1.7.2. �
The two results show that the set BS

FM remains the same set of functions in its image in Lip0(S+, d+), 
except that each function has been trivially extended to the added distinguished point e. This unit ball 
becomes the unit ball in Lip0(S+, d+). Its convex structure does not change, so extreme points correspond.

Appendix C. An alternative proof and auxiliary result for the FM-norm

Through the sequence of isomorphisms provided above in Appendix B, the case of the FM-norm reduces 
essentially to already established results on the Lipschitz dual space, e.g. those by Farmer [13]. In his proofs 
he uses the characterisation of extreme points, [13], Theorem 1. An equivalent of this is not available for 
the BL-norm. However, the equivalent of Theorem 4.2, which is central in the construction of the small sets 
of extreme points ES

• , does hold for the FM-norm, see [13], Lemma 2. Below we shall present a proof of 
this result, without using Farmer’s characterisation theorem, but instead follow the line of reasoning in the 
proof of Theorem 4.2. It requires only minor modifications.

Recall that ext∗(BP
• ) = ∅ if P is a singleton.

Theorem C.1. Let P be a subset of S with at least two elements, equipped with the restriction of d as metric. 
Then, ES

P maps ext∗(BP
FM) into ext∗(BS

FM).

Proof. A similar argument as at the start of the proof of Theorem 4.2 shows that without loss of generality 
we may assume P to be closed.

Theorem 4.1 yields that ES
P maps BP

FM isometrically into BS
FM. Let f ∈ ext∗(BP

FM) and put F := ES
P (f). 

According to Theorem 4.1 and Lemma 3.2 one has ‖F‖∞ = ‖f‖∞ = 1 and |F |L = |f |L = 1. Since |f | �= 1

on P and F |P = f , |F | �= 1 on S. Therefore, it remains to show that F is extreme. It suffices to show that 
if F + G and F −G are both in BS

FM for some G ∈ BL(S), then G = 0 (cf. Lemma 2.1).
First, (F ±G)|P = f ±G|P ∈ BP

FM, with G|P ∈ BL(P ). f is an extreme point of BP
FM, so G|P = 0. Define 

M−
F := {x ∈ S : F (x) = −1}. For H ∈ BS

FM, define
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Ĥ(s, p) := H(p) −H(s)
d(s, p) , s ∈ S \ P, p ∈ P. (44)

Then |Ĥ(s, p)| ≤ 1. Let x ∈ (M−
F ∪ P )c. There exist pn ∈ P , n ∈ N, such that

f(pn) − d(x, pn) ↑ F0(x) = F (x) as n → ∞. (45)

Because f is bounded and (45) holds, the sequence (d(x, pn))n must be bounded. Since P is assumed to 
be closed and x �∈ P , supn d(x, pn) ≥ infn d(x, pn) > 0. Let (pnk

) be a subsequence such that (d(x, pnk
))

converges (necessarily to a non-zero limit). Then, (45) yields

F̂ (x, pnk
) → 1 as k → ∞.

Since both F + G and F −G are in BS
FM, we get

1 ≥ ‖F ±G‖FM ≥ |F ±G|L ≥ |F̂ (x, p) ± Ĝ(x, p)| for all p ∈ P,

which implies 
∣∣F̂ (x, p) + |Ĝ(x, p)|

∣∣ ≤ 1 for all p. Since G|P = 0, we find that for sufficiently large k,

|G(x)|
d(x, pnk

) = |Ĝ(x, pnk
)| ≤ 1 − F̂ (x, pnk

) → 0 as k → ∞.

Because the sequence (d(x, pnk
))k has non-zero limit, G(x) = 0. If x ∈ M−

f , then F (x) = −1 and

1 ≥ ‖F ±G‖FM ≥ ‖F ±G‖∞ ≥ |F (x) ±G(x)| = |1 ∓G(x)|.

We conclude that G(x) = 0 in this case too. So G = 0 and f is an extreme point. �
Recall the definition (28) of the functions hP . It was remarked that these cannot be reached by Lipschitz 

extension operators. The following lemma summarizes fundamental properties of these functions hP .

Lemma C.1. Let P be a closed, proper and non-empty subset of S. Then hP ∈ ext(BS
FM). If there exists 

x ∈ S \ P such that d(x, P ) < 2, then hP ∈ ext∗(BS
FM). Otherwise, hP is a trivial extreme point.

Proof. By construction, hP ∈ BS
FM and hP (p) = 1 for all p ∈ P . Let g ∈ BL(S) be such that hP + g and 

hP − g are both in BS
FM. Then g(p) = 0 for all p ∈ P . Put M−

h := {x ∈ S : hP (x) = −1}. Then g = 0 on 
M−

h too, since both hP (x) + g(x) ≥ −1 and hP (x) − g(x) ≥ −1 for x ∈ M−
h . If S \ (M−

h ∪ P ) = ∅, then 
|hP | = 1, so hP is a trivial extreme point of BS

FM.
Suppose S \ (M−

h ∪ P ) �= ∅ and pick x ∈ (M−
h ∪ P )c. Since P is closed, d(x, P ) > 0. Moreover, there 

exist pn ∈ P , n ∈ N, such that hP (x) = limn→∞ 1 − d(x, pn). Since for any p ∈ P one has g(p) = 0 and 
hP (p) = 1, and hP ± g ∈ BS

FM,

|hP (x) ± g(x) − 1|
d(x, p) ≤ |hP ± g|L ≤ 1 for all p ∈ P. (46)

Let ε > 0. There exists N ∈ N such that |hP (x) − 1 + d(x, pn)| < ε for all n ≥ N . From (46) one derives 
that

∣∣d(x, pn) ± g(x)
∣∣ ≤ ∣∣hP (x) − 1 + d(x, pn)

∣∣ +
∣∣hP (x) ∓ g(x) − 1

∣∣ < ε + d(x, p)
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for all n ≥ N and p ∈ P . Taking p = pn, we obtain |g(x)| < ε. Since ε > 0 was taken arbitrarily, g(x) = 0. 
Hence g = 0 on S and hP ∈ ext(BS

FM), according to Lemma 2.1.
Finally, assume that there exists x0 ∈ S \P such that d(x0, P ) < 2. Then −1 < hP (x0) < 1, so hP cannot 

be a trivial extreme point. If for every x ∈ S \P , d(x, p) ≥ 2 for all p ∈ P . Then hP (x) = −1 for x ∈ S \P , 
while hP (p) = 1 for every p ∈ P . Hence, hP is a trivial extreme point. �
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