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Abstract
In this paper, we study the dynamics of a small rigid body in a viscous incompressible
fluid in dimension two and three. More precisely we investigate the trajectory of the
rigid body in the limit when its mass and its size tend to zero.We show that the velocity
of the center of mass of the rigid body coincides with the background fluid velocity
in the limit. We are able to consider the limit when the volume of the rigid bodies
converges to zero while their densities are a fixed constant.

Keywords PDEs · Fluid-structure interaction · Asymptotic limit · Navier-Stokes ·
Rigid body

Mathematics Subject Classification 35Q30 · 35Q70 · 70E15

1 Introduction

In this paper, we study the interaction of a “small light” rigid body with an incom-
pressible viscous fluid in dimension two and three. The system fluid plus rigid body
occupies the domain R

d for d = 2, 3. The unknowns of the problem are the position
of the rigid body S(t), an open, bounded, connected, simply connected subset of R

d

with smooth boundary, and the velocity of the fluid uF which is defined on the fluid
domainF(t) = R

d \S(t)with values inR
d . Moreover, the equations that uF satisfies

are the incompressible Navier–Stokes equations
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∂t uF + div (uF ⊗ uF ) − ν�uF − ∇ pF = 0 for x ∈ F(t),

div (uF ) = 0 for x ∈ F(t),

uF = uS for x ∈ ∂S(t),

|uF | −→ 0 as |x | −→ +∞, (1)

where uS is the velocity of the rigid body and ν > 0 is the viscosity coefficient. We
assume that the rigid body has constant density ρS ∈ R with ρS > 0 and it occupies
the volume S in at initial time. S in is an open, bounded, connected, simply connected
subset of R

d with smooth boundary.
The motion of the rigid body is completely determined by the dynamics of the

center of mass and of the angular rotation. Recall that the mass and the center of mass
of the rigid body are defined, respectively, by

m =
∫
S in

ρS dx and hin = 1

m

∫
S in

ρS x dx .

We denote by h(t) the position of the center of mass at time t and by Q(t) the special
orthogonal matrix that characterizes the rotation around the center of mass from the
initial configuration. Then, the volume occupied by the rigid body at time t is

S(t) =
{

y such that QT (t)(y − h(t)) ∈ S in
}

.

In dimension d = 3, its velocity is

uS = d

dt
(h(t) + Q(t)x)

∣∣∣
x=QT (t)(y−h(t))

= h′(t) + Q′(t)QT (t)(y − h(t))

= �(t) + ω(t) × (y − h(t)) (2)

where we denote �(t) = h′(t). Moreover, from the fact that Q(t) is a rotation matrix,
Q′(t)QT (t) is skew symmetric and it can be identifiedwith a vectorω(t) ∈ R

3 through
the relation

Q′(t)QT (t)x = ω(t) × x

where x ∈ R
3. The evolution of � and ω follows Newton’s laws that read

m�′(t) = −
∮

∂S(t)
�(uF , pF )n ds

J (t)ω′(t) =J (t)ω(t) × ω(t) −
∮

∂S(t)
(x − h(t)) × �(uF , ρF )n ds. (3)

In the above equations, � is the stress tensor

�(u, p) = 2νD(u) − pI where D(u) = ∇u + (∇u)T

2
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and J is the inertia momentum, which is given through the formula

J (t) =
∫
S(t)

ρS
[
|x − h(t)|2I − (x − h(t)) ⊗ (x − h(t))

]
dx = Q(t)J (0)QT (t).

Finally the initial conditions are

uF (0) = uin
F , �(0) = �in and ω(0) = ωin, (4)

such that they satisfy the compatibility conditions

div (uin
F ) = 0 in F in and uin

F = �in + ωin × (x − hin) in ∂S in . (5)

Moreover, without loss of generality we have h(0) = 0 and Q(0) = I.
In the case of dimension d = 2, Eqs. (2) and (3) simplify, in fact Q′(t)QT (t) is

skew symmetric and it can be identify with a scalar quantity ω(t) through the relation

Q′(t)QT (t)x = ω(t)x⊥

where x = (x1, x2) ∈ R
2 and x⊥ = (−x2, x1)T . In particular, (2) becomes

uS = �(t) + ω(t)(x − h(t))⊥.

Newton’s laws read

m�′(t) = −
∮

∂S(t)
�(uF , pF )n ds

Jω′(t) = −
∮

∂S(t)
(x − h(t))⊥ · �(uF , ρF )n ds

and J is time independent.
System (1)–(3)–(4) has been widely studied. The first works on the existence of

Hopf–Leray-type weak solutions are Judakov (1974) and Serre (1987) where the fluid
plus rigid body occupies R

3; in other words, F(t) ∪ S(t) = R
3. These results were

then extended in Gunzburger et al. (2000), Conca et al. (1999), Desjardins and Esteban
(1999), Feireisl (2002, 2003). Uniqueness was shown in Glass and Sueur (2015)
in dimension two and in Muha et al. (2021) in dimension three under Prodi–Serrin
conditions. Regularity was studied in dimension three under Prodi–Serrin conditions
in Muha et al. (2022). Well-posedness of strong solutions in Hilbert space setting was
proved in Grandmont and Maday (2000), Takahashi (2003), Takahashi and Tucsnak
(2004) and in the Banach space setting in Geissert et al. (2013), Maity and Tucsnak
(2018). Notice that similar results hold in the case the Navier slip boundary conditions
are prescribed on ∂S, and see Planas and Sueur (2014), Gérard-Varet and Hillairet
(2014), Bravin (2019), Al Baba et al. (2021), Chemetov et al. (2019).

Let us now introduce a small parameter ε > 0, and for x̄ ∈ R
d , let S in

ε ⊂ Bε(x̄)

be a sequence of initial configurations of the rigid bodies. In this paper, we study

123
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the dynamics of the rigid body when ε converges to zero. Let us recall that it has
already been shown that the fluid is not influenced by the presence of a “small” rigid
body. In fact, in Lacave and Takahashi (2017), He and Iftimie (2019), He and Iftimie
(2021) and Feireisl et al. (2022), the authors showed that given a sequence of solutions
(uF ,ε, �ε, ωε) to system (1)–(3)–(4), then there exists a subsequence of fluid velocity
uF ,ε that converges, in some appropriate weak norms, to u that satisfies the Navier–
Stokes system

∂t u + div (u ⊗ u) − ν�u − ∇ p = 0 forx ∈ R
d ,

div (u) = 0 for x ∈ R
d ,

|u| −→ 0 as |x | −→ +∞. (6)

These results hold under some mild assumptions on mε, S in
ε and on the convergence

of the initial data.
Similar results are available also for compressible fluid see Bravin and Nečasová

(2023), Feireisl et al. (2022) and Section 6 of Feireisl et al. (2022). Moreover, we
proved in Bravin and Nečasová (2022) that under some lower bounds on the masses

mε/ε
1/2 −→ +∞ for d = 3 and mε ≥ C > 0 for d = 2

the “small” rigid body will move with constant initial velocity. In this paper, we show
that under the assumptions

mε/|S in
ε |1/3 −→ 0 and |S in

ε |/ε9/2 −→ +∞ if d = 3,

mε/|S in
ε |δ −→ 0 and |S in

ε |δ/εδ̃ −→ +∞ for some δ > 0 and 0 < δ̃ < 1 if d = 2
(7)

and appropriate convergence of the initial data, the “small” rigid body follows the fluid
flow. The assumptions (7) are used in a crucial way in (24) and (27).

Using the fact that mε = ρS,ε|S in
ε |, assumption (7) rewrites

ρS,ε|S in
ε |2/3 −→ 0 and |S in

ε |/ε9/2 −→ +∞ if d = 3,

ρS,ε|S in
ε |1−δ −→ 0 and |S in

ε |δ/εδ̃ −→ +∞for some δ > 0 and 0 < δ̃ < 1 if d = 2.

The main result of this work shows a different behavior of the “small light” rigid
body respect to the case where the fluid is assumed to be inviscid, i.e., the viscosity
coefficient ν = 0. In fact, a “small” rigid body is not accelerated by an inviscid
incompressible fluid, see Section 1.4 of Glass et al. (2014b). In a series of works, Glass
et al. (2014a, b, 2016, 2018, 2019), Glass and Sueur (2019), the authors studied the
interaction of a two-dimensional incompressible inviscid fluid modeled by the Euler
equations with a rigid body that shrinks to point particle. In particular, they showed
that the dynamics of the point particle is characterized either by a point vortex-type
equation if the mass of the rigid body converges to zero or by a second-order equation
involving the Kutta–Joukowski-type force if the mass of the rigid body converges to
a positive real number.

123
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In the above results, the authors prescribe a nonzero circulation γ �= 0 around the
rigid body at initial time. This assumption implies that the initial velocity field behaves
like a point vortex

γ
(x − hin)⊥

2π |x − hin|2 (8)

closed to the point particle, where hin is the initial position of the point particle. The
sequence of initial data that have been considered inGlass et al. (2014a, b, 2016, 2018,
2019), Glass and Sueur (2019), does not converge in L2, which is the classical energy
space for the initial data of the Navier–Stokes system.

To compare, Glass et al. (2014a, b, 2016, 2018, 2019), Glass and Sueur (2019),
with our result where the initial data converge in L2, we have to consider only the case
γ = 0. In this case, the point particle is not influence by the fluid in the sense that it
move with constant velocity, see Section 1.4 of Glass et al. (2014b).

Let us recall that someworks have been done to studywell-posedness for the system
(1)–(3)–(4) where it is possible to consider initial fluid velocity of the form (8), see
Bravin (2020) and Ferriere and Hillairet (2023).

In contrast to the works (Glass et al. 2014a, b, 2016, 2018, 2019; Glass and Sueur
2019), we take advantage of the viscous term in an essential way to show our result.
This partially explains why it is expected that the point particle behaves differently in
the case the external fluid is viscous or inviscid. The key idea in our result is to notice
that the L2-norm of the velocity of the center of mass of a rigid body is bounded by

∫ T

0

∫
Rd

|∇uF |2 dx, (9)

in the case the rigid body has constant density. See for more details (20). Moreover, the
quantity (9) appears naturally in the Leray-type energy estimate for the system (1)–
(3)–(4). We then compare the solutions of system (1)–(3)–(4) with a regular solution
of the Navier–Stokes system via a relative energy estimate. The result then follows if
we assume “well-prepared” initial data.

Let us notice that this result can be extended to the case of finitely many “small”
rigid bodies following the same strategy and using a restriction operator introduced
in Feireisl et al. (2022). In the case of infinite many “small” rigid bodies, the problem
is open and it is not clear how to extend the approach presented here. Finally, in the
case where the fluid has density not constant, not even the well-posedness issue for
the couple system fluid plus rigid body is studied in the literature.

To conclude, we present a short outlook of the remaining part of the paper. In
Sect. 2, we introduce the definition of weak solution for system (1)–(3)–(4) and the
main result. In Sect. 3, we introduce a restriction operator, we state a relative energy
inequality and we use these tools to show the main result. In Sect. 4, we present the
proof of the relative energy inequality. Finally we introduce appropriate Bogovskiı̆
operators that follow the rigid bodies in “Appendix A” and we present an appropriate
extension of the Sobolev embedding to our setting in “Appendix B.”
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2 Definition of Weak Solutions andMain Result

In this section, we recall the concept of finite energy weak solutions for the system
(1)–(3)–(4). Then we state the main result of the paper.

We start with some notations. For an open subset O ⊂ R
n with smooth boundary,

where n ∈ N\{0}, for p ∈ [1,+∞] and for k ∈ N\{0}, we denote by L p(O),
W k,p(O) the classical Lebesque and Sobolev spaces. In the special case of p = 2,
we use the notation Hk(O) to denote W k,2(O). To short the notation in the estimates,
we use L p

x , W k,p
x , L p

t , W k,p
t instead of L p(Rd), W k,p(Rd), L p(0, T ), W k,p(0, T ),

respectively, where T > 0 is a fixed time. The symbols Lq
t (L p

x ), Lq
t (W k,p

x ) denote
the Bochner spaces Lq(0, T , L p(Rd)), Lq(0, T , W k,p(Rd)) for q ∈ [1,∞] and p ∈
[1,+∞), while for q = +∞ we use the notations ‖.‖Lq

t (L∞
x ), ‖.‖Lq

t (W k,∞
x )

to denote
the corresponding norms. Following (He and Iftimie 2021), let us denote by

ρ = χF(t) + ρSχS(t)

the extension by 1 of the density of the rigid body. Here, for a set A ⊂ R
d , we denote by

χA the indicator function of A, more precisely χA(x) = 1 for x ∈ A and 0 elsewhere.
Similarly we define the global velocity

u = uFχF(t) + uSχS(t) = uχF(t) + (�(t) + ω × (x − h(t))) χS(t).

Notice that if uin ∈ L2(F(0)), then the compatibility conditions (5) on the initial data
imply that div (uin) = 0 in an appropriate weak sense.

After all this preliminary, we introduce the definitions of regular solution to the
Navier–Stokes system (6) and of Hopf–Leray-type weak solution for system (1)–(3)–
(4).

Theorem 1 Let k ≥ d/2 + 1 be an odd number and let uin ∈ Hk(Rd) be such that
div (uin) = 0. Then, for some T > 0, there exists a unique regular solution (u, p) to
the Navier–Stokes system (6) in the sense that

u ∈
k+1
2⋂

l=0

Hl(0, T ; Hk+1−2l(Rd)) ∩ L∞(0, T ; Hk(Rd)),

p ∈ L2
loc(R

d) such that ∇ p ∈
k−1
2⋂

l=0

Hl(0, T ; Hk−1−2l(Rd)),

and (u, p) satisfies (6) pointwise. Moreover, in dimension two T can be chosen arbi-
trarily big. In dimension three, T can be chosen arbitrarily big if the initial datum uin

is sufficiently small in the norm Hk(Rd).

The proof of the above result is classical and it is a consequence of the parabolic
structure of the Stokes system plus the fact that the nonlinearity is a small perturbation
for short times. We move to the definition of weak solutions for system (1)–(3)–(4).

123
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Definition 1 Let S in and ρin
S be the initial position and density of the rigid body, let

(uin
F , �in, ωin) satisfying the hypothesis (5) and such that uin ∈ L2(Rd). Then a triple

(uF , �, ω) is a Hopf–Leray weak solution for the system(1)–(3)–(4) associated with
the initial data S in , ρin

S , uin
F , �in and ωin , if

• the functions uF , � and ω satisfy

� ∈ L∞(R+; R
d), ω ∈ L∞(R+; R

2d−3)

uF ∈ L∞(R+; L2(F(t))) ∩ L2
loc(R

+; H1(F(t))), and u ∈Cw(R+; L2(Rd));

• the vector field u is divergence free in R
d with D(u) = 0 in S(t);

• the vector field u satisfies the equation in the following sense:

−
∫
R+

∫
Rd

ρu · (∂tϕ + (u · ∇)ϕ) − 2νD(u) : D(ϕ) dxdt =
∫
Rd

ρinuin · ϕ(0, .) dx,

(10)

for any test function ϕ ∈ C∞
c (R+ × R

d) such that div (ϕ) = 0 and D(ϕ) = 0 in
S(t).

• The following energy inequality holds

∫
Rd

ρ(t, .)|u(t, .)|2 dx + 4ν
∫ t

0

∫
Rd

|D(u)|2 dxdt ≤
∫
Rd

ρ|uin|2 dx, (11)

for almost any time t ∈ R
+.

The existence of weak solutions for the system (1)–(3)–(4) is now classical and can
be found, for example, in Feireisl (2002).

Theorem 2 For initial data S in , ρin
S , uin

F , �in and ωin satisfying the hypothesis (5)
and such that uin ∈ L2(Rd), there exist a Hopf–Leray weak solution (uF , �, ω) of the
system (1)–(3)–(4).

Now let us introduce a small parameter ε > 0 that “controls” the size of the rigid
body in the sense that S in

ε ⊂ Bε(0). We study the dynamics of the rigid body as ε

goes to zero for solutions of the system (1)–(3)–(4) under some assumptions on the
initial data ρS,ε, uin

F ,ε
, �in

ε and ωin
ε . In particular, we show that the “small” rigid body

follows the fluid flow in the limit. This result can be resumed as follows.

Theorem 3 Let (uFε, �ε, ωε) be a sequence of Hopf–Leray weak solutions in the sense
of Definition 1, corresponding to the initial data S in

ε , ρin
S,ε

, uin
F ,ε

, �in
ε , ωin

ε satisfying

the hypothesis (5) and such that uin
Fε,ε

∈ L2(F in). Let (u, p) be a regular solution,

in the sense of Theorem 1, to the Navier–Stokes equations in [0, T ] × R
d with initial

data uin ∈ Hk(Rd) for an odd k > d/2 + 1. If we assume that

• the rigid body S in
ε ⊂ Bε(0);

• mε and S in
ε satisfy (7);

123
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• for d = 3, ‖uin
ε −uin‖2

L2(Fε)
/|S in

ε |1/3 −→ 0, mε|�in
ε −uin(hε(0))|2/|S in

ε |1/3 −→
0 and ωin

ε · J in
ε ωin

ε /|S in
ε |1/3 −→ 0;

• for d = 2, ‖uin
ε − uin‖2

L2(Fε)
/|S in

ε |δ −→ 0, mε|�in
ε − uin(hε(0))|2/|S in

ε |δ −→ 0

and J in
ε |ωin

ε |2/|S in
ε |δ −→ 0 where δ > 0 is the same of condition (7),

then up to subsequence

hε
w−⇀ h in H1(0, T ) and �ε −→ u(t, h(t)) in L2(0, T ),

where hε is the center of mass of the rigid body Sε. Moreover,

h(t) = h(0) +
∫ t

0
u(τ, h(τ )) dτ.

Let us notice that in dimension two the time of existence of regular solutions is
arbitrarily big. In this case, the convergence of hε and �ε holds in any compact interval.
In dimension three, the existence of global regular solutions is an open problem but
there exist local in time solutions and they are global in time for small initial data.

3 Proof of theMain Result

The proof of Theorem 3 is based on a relative energy inequality that is stated in Lemma
2. We present the proof of Lemma 2 in a separate section because it is technical. The
plan for this section is to recall the definition of the restriction operator Rε, to state
Lemma 2 and to prove Theorem 3. In the remaining part of the paper, we set ν = 1 to
simplify the notation.

3.1 The Restriction Operator

Let us introduce a restriction operator introduced in Feireisl et al. (2022). Consider a
cutoff η ∈ C∞(Rd) such that 0 ≤ η ≤ 1, η = 0 in B1(0) and η = 1 in R

d \ B2(0),
moreover we introduce ηε(x) = η(x/ε). The restriction operator is defined as

Rε[ϕ](t, x) = ηε(x − hε(t))ϕ(t, x) + (1 − ηε(x − hε(t)))ϕ(t, hε(t))

+ Bε[div (ηε(x − hε(t))ϕ(t, x) + (1 − ηε(x − hε(t)))ϕ(t, hε(t)))],

where Bε[ f ](x) = εB1[ f (εy)](x/ε) and B1 is a Bogovskiı̆ operator in B2(0)\B1(0).
See “Appendix A” for more details.

To simplify the notation for any regular enough function ϕ, we denote by ϕ̄ε(t) =
ϕ(t, hε(t)). This allows us to rewrite the restriction operator in the more compact form

Rε[ϕ] = ηεϕ + (1 − ηε)ϕ̄
ε + Bε[div (ηεϕ + (1 − ηε)ϕ̄

ε)].

In the following lemma, we resume some properties of Rε.

123
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Lemma 1 The restriction operator Rε satisfies the following properties. For any ϕ ∈
C0(Rd) such that div (ϕ) = 0,

div (Rε[ϕ]) = 0 in R
d , Rε[ϕ] = ϕ(t, hε(t)) in Sε(t).

Moreover, for p ∈ [1,+∞), it holds

‖Rε[ϕ] − ϕ‖L p(Rd ) ≤ Cεd/p‖ϕ‖L∞(Rd ) and ‖Rε[ϕ] − ϕ‖L∞(Rd ) ≤ C‖ϕ‖L∞(Rd ).

(12)

Finally, if ϕ ∈ W 1,∞
x (Rd) such that div (ϕ) = 0 and if p ∈ (1,+∞),

‖∇ Rε[ϕ] − ∇ϕ‖L p(Rd ) ≤ C pε
d/p‖ϕ‖W 1,∞(Rd ). (13)

Proof Let us show estimates (12)–(13). We have

‖Rε[ϕ] − ϕ‖L p
x

≤ ‖Rε[ϕ] − ηεϕ‖L p
x

+ ‖ηεϕ − ϕ‖L p
x

≤ ‖Rε[ϕ] − ηεϕ‖L p
x

+ Cεd/p‖ϕ‖L∞
x

.

It is then enough to show

‖Rε[ϕ] − ηεϕ‖L p
x

≤ Cεd/p‖ϕ‖L∞
x

. (14)

Using the definition of Rε and the fact that 1 − ηε and Bε are supported in a ball of
radius 2ε, we have

‖Rε[ϕ] − ηεϕ‖L1
x

= ‖(1 − ηε)ϕ̄
ε + Bε[div (ηεϕ + (1 − ηε)ϕ̄

ε)]‖L1
x

≤ Cεd‖ϕ‖L∞
x

+ Cε‖Bε[div (ηεϕ + (1 − ηε)ϕ̄
ε)]‖

Ld/(d−1)
x

≤ Cεd‖ϕ‖L∞
x

+ Cε‖div (ηεϕ + (1 − ηε)ϕ̄
ε)‖L1

x
.

Using the fact that ϕ is divergence free, we rewrite

div (ηεϕ + (1 − ηε)ϕ̄
ε) = ∇ηε · (ϕ − ϕ̄ε).

This allows us to deduce

‖Rε[ϕ] − ηεϕ‖L1
x

≤ Cεd‖ϕ‖L∞
x

+ Cε‖∇ηε(ϕ − ϕ̄ε)‖L1
x

≤ Cεd‖ϕ‖L∞
x

+ Cε‖∇ηε‖L1‖ϕ‖L∞
x

≤ Cεd‖ϕ‖L∞
x

. (15)

Similarly

‖Rε[ϕ] − ηεϕ‖L∞
x

= ‖(1 − ηε)ϕ̄
ε + Bε[div (ηεϕ + (1 − ηε)ϕ̄

ε)]‖L∞
x

≤ C‖ϕ‖L∞
x

+ C‖Bε[div (ηεϕ + (1 − ηε)ϕ̄
ε)]‖L∞

x
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≤ C‖ϕ‖L∞
x

+ C‖div (ηεϕ + (1 − ηε)ϕ̄
ε)‖Ld

x

≤ C‖ϕ‖L∞
x

+ C‖∇ηε‖Ld ‖ϕ‖L∞
x

≤ C‖ϕ‖L∞
x

. (16)

From (15)–(16) and interpolation inequality, we deduce (14).
To show estimate (13), it is enough to show

‖∇ Rε[ϕ] − ηε∇ϕ‖L p
x

≤ C pε
d/p‖ϕ‖L∞

x
. (17)

Notice that

∇ Rε[ϕ] − ηε∇ϕ = ∇ηε(ϕ − ϕ̄ε) + ∇Bε[∇ηε(ϕ − ϕ̄ε)]

and

‖∇ηε(ϕ − ϕ̄ε)‖L p
x

≤
∥∥∥∥|. − hε(t)|ηε(.)

ϕ(.) − ϕ̄ε

|. − hε(t)|
∥∥∥∥

L p
x

≤‖|. − hε(t)|ηε(.)‖L p
x

∥∥∥∥ ϕ(.) − ϕ̄ε

|. − hε(t)|
∥∥∥∥

L∞
x

≤ Cεd/p‖ϕ‖W 1,∞
x

.

The above computations and estimates allow us to deduce

‖∇ Rε[ϕ] − ηε∇ϕ‖L p
x

≤ ‖∇ηε(ϕ − ϕ̄ε)‖L p
x

+ ‖∇Bε[∇ηε(ϕ − ϕ̄ε)]‖L p
x

≤ C p‖∇ηε(ϕ − ϕ̄ε)‖L p
x

≤ C pε
d/p‖ϕ‖W 1,∞

x
.

��
Remark 1 Let us notice that in the proof of the above lemma we show also inequality
(14) that reads

‖Rε[ϕ] − ηεϕ‖L p(Rd ) ≤ Cεd/p‖ϕ‖L∞
x

(18)

for any ϕ ∈ C0(Rd) such that div (ϕ) = 0 and for p ∈ [1,+∞] and estimate (17) that
reads

‖∇ Rε[ϕ] − ηε∇ϕ‖L p(Rd ) ≤ Cεd/p‖ϕ‖W 1,∞
x

. (19)

for any ϕ ∈ W 1,∞
x (Rd) such that div (ϕ) = 0 and if p ∈ (1,+∞).

We will now present the relative energy inequality.
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3.2 Relative Energy Inequality

We will use the restriction operator introduced in the previous section to deduce a
relative energy inequality.

Lemma 2 Under the hypothesis of Theorem 3, we have

∫
Rd

ρε|uε(t, .) − Rε[u(t, .)]|2 dx + 4
∫ T

0

∫
Rd

|D(uε − Rε[u])|2 dxdt

≤
∫
Rd

ρin
ε |uin

ε − Rε[uin]|2 dx + C
∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt + Restε,

where

|Restε| ≤ C(mε + |Sε| + ε3/2 + ε3|S in
ε |−1/3), for d = 3,

|Restε| ≤ C(mε + |Sε| + εδ̃ + ε1+δ̃|S in
ε |−δ), for d = 2,

with C independent of ε.

The above lemma is the key estimate to deduce Theorem 3. We will prove Lemma
2 in Sect. 4.

3.3 Proof of Theorem 3

Let us show Theorem 3 with the help of Lemma 2.

Proof of Theorem 3 Let us show Theorem 3 in dimension three and explain at the end
how to adapt the proof in dimension two. First of all, let us notice that

∫
Sε(t)

|uε(t, x) − Rε[u](t, x)|2 dx =
∫
Sε(t)

|�ε(t) + ωε(t) × (x − hε(t)) − u(t, hε(t))|2 dx

= |Sε||�ε(t) − u(t, hε(t))|2 + 1

ρS,ε

ωε(t) · Jε(t)ωε(t) ≥ |Sε||�ε(t) − u(t, hε(t))|2,
(20)

where we used in an essential manner the fact that ρS,ε is constant in Sε in the second
equality and the fact that Jε is semi-positive definite in the last inequality. This allows
us to estimate

|S in
ε |1/2‖�ε − u(t, hε(t))‖L2

t
≤ ‖uε − Rε[u]‖L2

t (L2(Sε(t)))

≤ |S in
ε |1/3‖uε − Rε[u]‖L2

t (L6(Sε(t)))

≤ C |S in
ε |1/3‖D(uε − Rε[u])‖L2

t (L2(R3)).

We can rewrite the above inequality as

|S in
ε |1/3‖�ε − u(t, hε(t))‖2L2

t
≤ C‖D(uε − Rε[u])‖2

L2
t (L2(R3))

. (21)
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From Lemma 2,

|S in
ε |−1/3

∫
R3

ρε|uε(t, .) − Rε[u(t, .)]|2 dx + C−1‖�ε − u(t, hε(t))‖2L2
t

≤ |S in
ε |−1/3

∫
R3

ρε|uε(t, .) − Rε[u(t, .)]|2 dx + 4|S in
ε |−1/3

∫ T

0

∫
R3

|D(uε − Rε[u])|2 dxdt

≤ |S in
ε |−1/3

∫
R3

ρin
ε |uin

ε − Rε[uin]|2 dx + C |S in
ε |−1/3

∫ T

0

∫
R3

ρε|uε − Rε[u]|2 dxdt + |S in
ε |−1/3Restε.

Grömwall’s inequality implies that

‖�ε − u(t, hε(t))‖2L2
t

≤
(

|S in
ε |−1/3

∫
R3

ρε|uin
ε − Rε[uin]|2 dx + |S in

ε |−1/3|Restε|
)

eT C .

(22)

Notice that

∫
Fε(t)

|uin
ε − Rε[uin]|2 dx ≤

∫
Fε(t)

|uin
ε − uin |2 dx + 2

∫
Fε(t)

uin
ε · (uin − Rε[uin]) dx

−
∫
Fε(t)

(uin − Rε[uin]) · Rε[uin] dx

−
∫
Fε(t)

uin · (uin − Rε[uin]) dx

≤
∫
Fε(t)

|uin
ε − uin |2 dx + Cε3/2,

where we used some Hölder inequalities and (12) for d = 3, p = 2 and ϕ = uin .
The above inequality implies

1

|S in
ε |1/3

∫
R3

ρin
ε |uin

ε − Rε[uin]|2 dx ≤ 1

|S in
ε |1/3

∫
Fε(t)

|uin
ε − uin|2 dx

+ mε

|S in
ε |1/3 |�in

ε − uin(hε(0))|2

+ 1

|S in
ε |1/3ωin

ε · J in
ε ωin

ε + C
ε3/2

|S in
ε |1/3 −→ 0,

(23)

as ε −→ 0, where we used the assumptions

‖uin
ε − uin‖2L2(Fε)

/|S in
ε |1/3 −→ 0, mε|�in

ε − uin(hε(0))|2/|S in
ε |1/3 −→ 0
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and ωin
ε · J in

ε ωin
ε /|S in

ε |1/3 −→ 0.

Lemma 2 ensures that

|S in
ε |−1/3|Restε| ≤ |S in

ε |−1/3|C(mε + |Sε| + ε3/2 + ε3|S in
ε |−1/3) −→ 0, (24)

as ε −→ 0, from hypothesis

mε

|S in
ε |1/3 −→ 0 and

|S in
ε |

ε9/2
−→ +∞.

The estimate (22), together with (23) and (24), ensures that

‖�ε‖L2
t

≤ C,

which implies that hε is uniformly bounded in W 1,2
t . Up to subsequence

hε
w−⇀ h in W 1,2

t ,

in particular, it converges strongly in C0
t . To show the convergence of �ε, we rewrite

�ε(t) − u(t, h(t)) = uε(t, hε(t)) − u(t, hε(t)) + u(t, hε(t)) − u(t, h(t)).

Inequality (22), together with (23), implies that

�ε − u(t, hε(t)) → 0 in L2
t . (25)

Using that u ∈ L∞(0, T ; W 1,∞
x ) and hε → h in C0

t , we have

|u(t, hε(t)) − u(t, h(t))| ≤ ‖∇u‖L∞(0,T ;L∞
x )|hε(t) − h(t)| −→ 0, (26)

for almost any t ∈ [0, T ]. The convergence (25) and (26) imply

�ε −→ u(t, h(t)) in L2
t .

Finally we pass to the limit in the equation

hε(t) = hε(0) +
∫ t

0
�ε(τ ) dτ

to deduce

h(t) = h(0) +
∫ t

0
u(τ, h(τ )) dτ.
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Let us now move to the case of dimension two. First of all, let us notice that

|S in
ε |1/2‖�ε − u(t, hε(t))‖L2

t
≤ ‖uε − Rε[u]‖L2

t (L2(Sε(t)))

≤ |S in
ε |1/q‖uε − Rε[u]‖L2

t (L p(Sε(t)))

≤ C p|S in
ε |1/q(‖uε − Rε[u]‖L2

t (L2(Fε(t)))
+ ‖∇(uε − Rε[u])‖L2

t (L2(R2)))

≤ C p|S in
ε |1/q(‖uε − Rε[u]‖L2

t (L2(Fε(t)))
+ √

2‖D(uε − Rε[u])‖L2
t (L2(R2))),

where 1/p + 1/q = 1/2. We used Lemma 4 in the third inequality, and in the last
one, we apply the Korn’s identity

∫
R2

|∇v|2 dx = 2
∫
R2

|Dv|2 dx,

which holds for any v ∈ H1(R2) such that div(v) = 0. The Korn’s equality can be
verified using the density of C∞

c (R2) functions in H1(R2). We deduce that

|S in
ε |1/p‖�ε − u(t, hε(t))‖L2

t
≤ C p(‖uε − Rε[u]‖L2

t (L2(Fε(t)))

+ √
2‖D(uε − Rε[u])‖L2

t (L2(R2))),

for any p < ∞.
Choose now 1/p = δ. Using Lemma 2, we deduce that

|S in
ε |−δ

∫
R2

ρε|uε(t, .) − Rε[u(t, .)]|2 dx + 2

CP
‖�ε − u(t, hε(t))‖L2

t

≤ |S in
ε |−δ

∫
R2

ρε|uε(t, .) − Rε[u(t, .)]|2 dx + 4|S in
ε |−δ

∫ T

0

∫
R2

|D(uε − Rε[u])|2 dxdt

+ 2
∫ T

0

∫
Fε(t)

|uε − Rε[u]|2 dxdt

≤ |S in
ε |−δ

∫
R2

ρin
ε |uin

ε − Rε[uin]|2 dx + (C + 2) |S in
ε |−δ

∫ T

0

∫
R2

ρε|uε − Rε[u]|2 dxdt

+ |S in
ε |−δ Restε.

Grömwall’s inequality implies that

‖�ε − u(t, hε(t))‖2L2
t

≤ C̃

(
|S in

ε |−δ

∫
R2

ρin
ε |uin

ε − Rε[uin]|2 dx + |S in
ε |−δ|Restε|

)
eT (C+2).

(27)

Using the assumptions (7) and following the same strategy as in the case of dimension
three, we prove the theorem. ��
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4 Proof of Lemma 2

Let us now show Lemma 2.

Proof of Lemma 2 By Definition 1, any solution (uF ,ε, �ε, ωε) satisfies the energy
inequality (11) that reads

mε|�ε(t)|2 + ωε(t) · Jε(t)ωε(t) +
∫
Fε(t)

|uε|2 dx + 4ν
∫ t

0

∫
Rd

|D(uε)|2 dxdt

≤ mε|�in
ε |2 + ωin

ε · J in
ε ωin

ε +
∫
F in

ε

|uin
ε |2 dx ≤ C .

(28)

Moreover, the right-hand side of the above inequality is bounded uniformly in ε due
to the assumptions on the initial data stated on points two and three in Theorem 3. In
the same spirit as estimate (21), we deduce in dimension three that

|S in
ε |1/6‖�ε‖L2

t
≤ C‖D(uε)‖L2

t (L2(R3)) ≤ C . (29)

By the hypothesis of Theorem 3 that uin ∈ Hk for k > d/2 + 1, there exist a
unique local solution in dimension three and a global solution in dimension two of the
Navier–Stokes equations such that

u ∈ L∞(0, T ; Hk(Rd)) ∩ L2(0, T ; Hk+1(Rd)).

This solution satisfies the energy equality

∫
Rd

|u|2 dx + ν

∫ t

0
|∇u|2 dxdt =

∫
Rd

∣∣∣uin
∣∣∣2 dx . (30)

With this choice of k, we have also the bounds

‖∂t u‖L2
t (L∞

x ) + ‖u‖L∞
t (W 1,∞

x )
+ ‖∇ p‖L2

t (L∞
x ) ≤ C . (31)

The above bound will be implicitly used in many of the estimates to prove this lemma.
To deduce the relative energy inequality, let us start by computing

∫
Rd

ρε|uε(t, .) − Rε[u(t, .)]|2 dx =
∫
Rd

ρε|uε(t, .)|2 dx − 2
∫
Rd

ρεuε(t, .) · Rε[(u(t, .)] dx

+
∫
Rd

ρε|Rε[u(t, .)]|2 dx

≤
∫
Rd

ρin
ε |uin

ε |2 dx − 4
∫ T

0

∫
Rd

|Duε|2 dxdt − 2
∫ T

0

∫
Rd

ρεuε(t, .) · ∂t Rε[u] dxdt

− 2
∫ T

0

∫
Fε(t)

uε ⊗ uε : ∇ Rε[u] dxdt + 4
∫ T

0

∫
Rd

Duε : DRε[u] dxdt
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− 2
∫
Rd

ρin
ε uin

ε · Rε[uin] dx +
∫
Rd

ρin
ε |Rε[uin]|2 dx − 4

∫ T

0

∫
Rd

|DRε[u]|2 dxdt

+
∫
Rd

ρε|Rε[u(t, .)]|2 dx −
∫
Rd

|u(t, .)|2 dx +
∫
Rd

|uin |2 dx −
∫
Rd

ρin
ε |Rε[uin]|2 dx

+ 4
∫ T

0

∫
Rd

|DRε[u]|2 dxdt − 4
∫
Rd

|Du|2 dx,

where in the inequality we use (28), (10) and (30) that are, respectively, the energy
inequality for uε, the weak formulation satisfied by uε and the energy equality satisfied
by u. After bringing on the left-hand side some terms involving Duε and DRε[u], we
deduce

∫
Rd

ρε|uε(t, .) − Rε[u(t, .)]|2 dx + 4
∫ T

0

∫
Rd

|D(uε − Rε[u])|2 dxdt

≤
∫
Rd

ρin
ε |uin

ε − Rε[uin]|2 dx + R̃estε

where

R̃estε = −2
∫ T

0

∫
Rd

ρεuε(t, .) · ∂t Rε[u] dxdt − 2
∫ T

0

∫
Fε(t)

uε ⊗ uε : ∇ Rε[u] dxdt

− 4
∫ T

0

∫
Rd

Duε : DRε[u] dxdt +
∫
Rd

ρε|Rε[u(t, .)]|2 dx −
∫
Rd

|u(t, .)|2 dx

+
∫
Rd

|uin|2 dx −
∫
Rd

ρin
ε |Rε[uin]|2 dx + 4

∫ T

0

∫
Rd

|DRε[u]|2 dxdt

− 4
∫
Rd

|Du|2 dx .

It remains to estimate |R̃estε|. To do that, we decompose the remainder R̃estε =
Rest1ε + Rest2ε where

Rest2ε =
∫
Rd

ρε|Rε[u(t, .)]|2 dx −
∫
Rd

|u(t, .)|2 dx +
∫
Rd

|uin |2 dx −
∫
Rd

ρin
ε |Rε[uin]|2 dx

+ 4
∫ T

0

∫
Rd

|DRε[u]|2 dxdt − 4
∫
Rd

|Du|2 dx .

We start by estimating the terms

∣∣∣∣
∫
Rd

ρε|Rε[u(t, .)]|2 dx −
∫
Rd

|u(t, .)|2 dx

∣∣∣∣ ≤ (mε + |S in
ε |)‖u‖2L∞

x

+
∣∣∣∣
∫
Fε(t)

|Rε[u(t, .)]|2 dx −
∫
Fε(t)

|u(t, .)|2 dx

∣∣∣∣ .
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To tackle the last term on the right-hand side, we notice that Rε[u(t, .)] − u(t, .) is
supported in B2ε(hε(t)) and that

‖Rε[u]‖L∞
x

≤ C‖u‖L∞
x

from (12).
The two above observations allow us to estimate

∣∣∣∣
∫
Fε(t)

|Rε[u(t, .)]|2 dx −
∫
Fε(t)

|u(t, .)|2 dx

∣∣∣∣ ≤
∣∣∣∣
∫
Fε(t)

Rε[u(t, .)](Rε[u(t, .)] − u(t, .)) dx

∣∣∣∣
+

∣∣∣∣
∫
Fε(t)

(Rε[u(t, .)] − u(t, .))u(t, .) dx

∣∣∣∣
≤ Cεd‖u‖2L∞

x
.

We deduce that
∣∣∣∣
∫
Rd

ρε|Rε[u(t, .])|2 dx −
∫
Rd

|u(t, .)|2 dx

∣∣∣∣ ≤ C(mε + |S in
ε | + εd). (32)

We estimate the third and fourth terms of Rest2ε analogously, and we deduce

∣∣∣∣
∫
Rd

|uin|2 dx −
∫
Rd

ρin
ε |Rε[uin]|2 dx

∣∣∣∣ ≤ C(mε + |S in
ε | + εd). (33)

We are left with the estimate of

∣∣∣∣
∫ T

0

∫
Rd

|DRε[u]|2 dxdt −
∫ T

0

∫
Rd

|Du|2 dxdt

∣∣∣∣ ≤
∣∣∣∣
∫ T

0

∫
Rd

DRε[u] : D(Rε[u] − u) dxdt

∣∣∣∣
+

∣∣∣∣
∫ T

0

∫
Rd

D(Rε[u] − u) : Du dxdt

∣∣∣∣

From (13), we have

‖DRε[u] − D(u)‖L2
t (L2

x ) ≤ C(‖u‖L2
t (W 1,∞

x )
)εd/2,

which also implies

‖DRε[u]‖L2
t (L2

x ) ≤ C
(
‖u‖L2

t (H1
x ) + ‖u‖L2

t (W 1,∞
x )

)
.

We deduce that

∣∣∣∣
∫ T

0

∫
Rd

|DRε[u]|2 dxdt −
∫ T

0

∫
Rd

|Du|2 dxdt

∣∣∣∣
≤ (‖DRε[u]‖L2

t (L2
x ) + ‖Du‖L2

t (L2
x ))(‖D(Rε[u] − u)‖L2

t (L2
x )) (34)

≤ Cεd/2. (35)
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Collecting (32)–(33)–(35), we have

|Rest2ε | ≤ C(mε + εd/2 + |S in
ε |). (36)

We now consider the more difficult term Rest1ε , which reads

Rest1ε = − 2
∫ T

0

∫
Rd

ρεuε(t, .) · ∂t Rε[u] dxdt − 2
∫ T

0

∫
Rd

uε ⊗ uε : ∇ Rε[u] dxdt

− 4
∫ T

0

∫
Rd

Duε : DRε[u] dxdt .

To tackle this term, we compute the time derivative of Rε[u] as follows

∂t Rε[u] = − �ε · ∇ηεu + ηε∂t u + �ε · ∇ηεūε + (1 − ηε)∂t ū
ε + (1 − ηε)�ε · ∇ūε

− �ε · ∇Bε[∇ηε(u − ūε)] + Bε[∇ηε(∂t u − ∂t ū
ε + �ε · ∇u − �ε · ∇ūε))],

where we used equations (6) satisfied by u. Let us notice that in the above expression
there is no time derivative of ηε inside Bε because Bε follows the rigid body as ηε. Let
us rewrite

∂t Rε[u] =
5∑

i=1

Ii ,

where

I1 = ηε∂t u, I2 = −�ε · ∇ηεu + �ε · ∇ηε ūε, I3 = (1 − ηε)∂t ū
ε + (1 − ηε)�ε · ∇ūε,

I4 = −�ε · ∇Bε[∇ηε(u − ūε)], and I5 = Bε[∇ηε(∂t u − ∂t ū
ε + �ε · ∇u − �ε · ∇ūε))].

To tackle the term I1, we use the equation satisfied by u. So, let us start by estimating
the other terms. From now on, the estimates depend on the dimension so let us focus
on the case of dimension three. In the last part of the proof, we explain how to adapted
the estimates in the case the dimension is two. To tackle the term involving I2, we
notice that the support of ∇ηε is included in B2ε(hε(t)). A direct application of the
Hölder inequality implies that

∣∣∣∣
∫ T

0

∫
Rd

ρεuε · I2 dxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫
Fε(t)

uε · (−�ε · ∇ηεu + �ε · ∇ηεūε) dxdt

∣∣∣∣
=

∣∣∣∣
∫ T

0

∫
B2ε(hε(t))

uε ·
(

�ε · (|x − hε(t)|∇ηε)
u(τ, x) − u(τ, hε(τ ))

|x − hε(τ )|
)

dxdt

∣∣∣∣
≤ ‖uε‖L2

t (L6
x )‖�ε‖L2

t
‖|x − hε|∇ηε‖L∞

x
‖u‖L∞

t (W 1,∞
x )

‖1‖L6/5(B2ε(hε(t)))

≤ Cε5/2|S in
ε |−1/6. (37)
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In the last inequality, we used that ‖uε‖L2
t (L6

x ) is uniformly bounded due to (28). We
used (29) to estimate ‖�ε‖L2

t
. The term ‖|x − hε|∇ηε‖L∞

x
≤ C by scaling argument.

Inequality (31) ensures that ‖u‖L∞
t (W 1,∞

x )
is finite. Finally ‖1‖L6/5(B2ε(hε(t))) ≤ Cε5/2.

The term I3 is the only one which is not zero in Sε. We have

∣∣∣∣
∫ T

0

∫
Rd

ρεuε · I3 dxdt

∣∣∣∣
=

∣∣∣∣mε

∫ T

0
�ε · ∂t ū

ε dt + �ε · ∇ūε +
∫ T

0

∫
Fε(t)

uε · (1 − ηε)(∂t ū
ε + �ε · ∇ūε) dxdt

∣∣∣∣ .
(38)

To tackle the right-hand side, we notice that

∣∣∣∣mε

∫ T

0
�ε · ∂t ū

ε dt

∣∣∣∣ ≤
∣∣∣∣mε

∫ T

0
(�ε − ūε) · ∂t ū

ε dt + mε

∫ T

0
ūε · ∂t ū

ε dt

∣∣∣∣
≤1

2

∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt + mε‖∂t u‖L2
t (L∞

x )(‖∂t u‖L2
t (L∞

x ) + ‖u‖L2
t (L∞

x )),

(39)

and similarly,

∣∣∣∣mε

∫ T

0
�ε · ∇ūε dt

∣∣∣∣ ≤ 1

2

∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt + mε(‖∇u‖L∞
x

+ ‖u‖L2
t (L∞

x )). (40)

Moreover,

∣∣∣∣
∫ T

0

∫
Fε(t)

uε · (1 − ηε)(∂t ū
ε + �ε · ∇ūε) dxdt

∣∣∣∣
≤ ‖uε‖L2

t (L6
x )

(
‖∂t u‖L2

t (L∞
x ) + ‖�ε‖L2

t
‖∇u‖L∞

t (L∞
x )

)
ε5/2. (41)

Equality (38) and estimates (39)–(40)–(41) imply that

∣∣∣∣
∫ T

0

∫
Rd

ρεuε · I3 dxdt

∣∣∣∣ ≤
∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt

+C
(

mε + ε5/2 + ε5/2|S in
ε |−1/6

)
. (42)

For the term I4, we proceed as follows.

∣∣∣∣
∫ T

0

∫
Rd

ρεuε · I4 dxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫
Fε(t)

uε · �ε · ∇Bε[∇ηε(u − ūε)] dxdt

∣∣∣∣
≤ ‖uε‖L2

t (L6
x )‖�ε‖L2

t
‖∇Bε[∇ηε(u − ūε)]‖

L∞
t (L6/5

x )

≤ C‖uε‖L2
t (L6

x )‖�ε‖L2
t
‖∇ηε(u − ūε)‖

L∞
t (L6/5

x )
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≤ C‖uε‖L2
t (L6

x )‖�ε‖L2
t
‖(x − hε)∇ηε‖L∞

x
‖u‖L∞

t (W 1,∞
x )

ε5/2

≤ Cε5/2|S in
ε |−1/6. (43)

Let us tackle I5 as follows

∣∣∣∣
∫ T

0

∫
Rd

ρεuε · I5 dxdt

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫
Fε(t)

uε · Bε[∇ηε(∂t u − ∂t ū
ε + �ε · ∇u − �ε · ∇ūε))] dxdt

∣∣∣∣
≤ C‖uε‖L2

t (L6
x )‖Bε[∇ηε(∂t u − ∂t ū

ε + �ε · ∇u − �ε · ∇ūε))]‖L2
t (L2

x )ε

≤ C‖uε‖L2
t (L6

x )‖∇ηε(∂t u − ∂t ū
ε + �ε · ∇u − �ε · ∇ūε))‖

L2
t (L6/5

x )
ε

≤ C‖uε‖L2
t (L6

x )‖∇ηε‖L3
x

(
‖∂t u‖L2

t (L∞
x ) + ‖�ε‖L2

t
‖∇u‖L∞

t (L∞
x )

)
ε5/2

≤ C(ε5/2 + ε5/2|S in
ε |−1/6). (44)

We will now consider I1. Recall that u is a regular solution, we rewrite

ηε∂t u = −ηεu · ∇u + ηε�u + ηε∇ p,

∫ T

0

∫
Rd

ρεuε · I1 dxdt =
∫ T

0

∫
Rd

ρεηεuε · ∂t u dxdt

= −
∫ T

0

∫
Rd

ηεuε · (u · ∇)u − ηεuε · �u + ηεuε · ∇ p dxdt

= −
∫ T

0

∫
Rd

ηεuε ⊗ u : ∇u + 2ηε Duε : Du dxdt

−
∫ T

0

∫
Rd

(uε ⊗ ∇ηε + ∇ηε ⊗ uε) : Du − uε · ∇ηε(p − p̄ε) dxdt

where p̄ε = p(t, hε(t)). We can now rewrite the remainder using the above compu-
tations and deduce

Rest1ε = − 2
5∑

i=1

∫ T

0

∫
Rd

ρεuε · Ii dxdt − 2
∫ T

0

∫
Fε(t)

uε ⊗ uε : ∇ Rε[u] dxdt

− 4
∫ T

0

∫
Rd

Duε : DRε[u] dxdt

= − 2
5∑

i=2

∫ T

0

∫
Rd

ρεuε · Ii dxdt − 2
∫ T

0

∫
Rd

ρεuε · I1 dxdt

− 2
∫ T

0

∫
Rd

uε ⊗ uε : ∇ Rε[u] dxdt − 4
∫ T

0

∫
Rd

Duε : DRε[u] dxdt

= − 2
5∑

j=1

J j (45)
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where

J1 =
5∑

i=2

∫ T

0

∫
Rd

ρεuε · Ii dxdt,

J2 =
∫ T

0

∫
Fε(t)

uε ⊗ uε : ∇ Rε[u] − ηεuε ⊗ u : ∇u dxdt,

J3 =
∫ T

0

∫
Rd

(uε ⊗ ∇ηε + ∇ηε ⊗ uε) : Du dxdt,

J4 = 2
∫ T

0

∫
Rd

Duε : DRε[u] − ηε Duε : Du dxdt and J5 = −
∫ T

0

∫
Rd

uε · ∇ηε p dxdt .

Inequalities (37)–(42)–(43)–(44) imply that

|J1| ≤ C
∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt + C(mε + ε5/2|S in
ε |−1/6). (46)

To tackled J2, we start by rewriting it as

J2 =
∫ T

0

∫
Fε(t)

uε ⊗ uε : ∇ Rε[u] − ηεuε ⊗ u : ∇u dxdt

=
∫ T

0

∫
Fε(t)

uε ⊗ uε : (∇ Rε[u] − ηε∇u) dxdt +
∫ T

0

∫
Fε(t)

ηεuε ⊗ (uε − u) : ∇u dxdt

=
∫ T

0

∫
Fε(t)

uε ⊗ uε : (∇ Rε[u] − ηε∇u) dxdt

+
∫ T

0

∫
Fε(t)

ηε(uε − u) ⊗ (uε − u) : ∇u dxdt

+ 1

2

∫ T

0

∫
Fε(t)

∇ηε · u ⊗ (uε − u) : ∇u dxdt . (47)

Before estimating the right-hand side of the above equality, let us recall from (18) and
(19) the following bounds hold

‖Rε[u] − ηεu‖L2
x

≤ Cε3/2‖u‖L∞
x

(1 + ‖∇ηε‖L3
x
),

‖∇ Rε[u] − ηε∇u‖
L3/2

x
≤ Cε2‖u‖W 1,∞

x
,

and

‖√ηε(uε − u)‖2L2(Fε(t))
≤ ‖uε‖2L2(Fε(t))

− 2
∫
Fε(t)

uε · Rε[u] dx + ‖Rε[u]‖2L2(Fε(t))

− 2
∫
Fε(t)

uε · (ηεu − Rε[u]) dx +
∫
Fε(t)

u · (ηεu − Rε[u]) dx

+
∫
Fε(t)

Rε[u] · (ηεu − Rε[u]) dx
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≤ ‖uε − Rε[u]‖2L2(Fε(t))
+ C(‖uε‖L2

x
+ ‖u‖L2

x
+ ‖Rε[u]‖L2

x
)‖Rε[u] − ηεu‖L2

x

≤ ‖uε − Rε[u]‖2L2(Fε(t))
+ Cε3/2.

Using equality (47) and the fact that ∇ηε has support contained in the ball
B2ε(hε(t)), we deduce

|J2| ≤‖uε‖2L2
t (L6

x )
‖∇ Rε[u] − ηε∇u‖

L∞
t (L3/2

x )
+ ‖√ηε(uε − u)‖2

L2
t (L2(Fε(t)))

‖∇u‖L∞
t (L∞

x )

+ ‖1‖L2(B2ε(hε(t)))‖∇ηε‖L3
x
‖u‖L∞

t (L∞
x )(‖uε‖L2

t (L6
x ) + ‖u‖L2

t (L6
x ))‖∇u‖L2

t (L∞
x )

≤ Cε2 + C
∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt + Cε3/2. (48)

After applying some Hölder inequality, the J3 term is bounded as follows

|J3| ≤ ε3/2‖uε‖L2
t (L6

x )‖∇ηε‖L3
x
‖Du‖L2

t (L∞
x ) ≤ Cε3/2. (49)

We now tackle J4

|J4| ≤
∣∣∣∣2

∫ T

0

∫
Rd

Duε : DRε[u] − ηε Duε : Du dxdt

∣∣∣∣
≤ ‖Duε‖L2

t (L2
x )‖DRε[u] − ηε Du‖L2

t (L2
x )

≤ Cε3/2, (50)

which follows from the estimate (19) that reads ‖DRε[u] − ηε Du‖L2
x

≤
Cε3/2‖u‖W 1,∞

x
.

Finally we estimate the term J5 as follows

|J5| ≤
∣∣∣∣
∫ T

0

∫
Rd

uε · ∇ηε p dxdt

∣∣∣∣
≤ ‖uε‖L2

t (L6
x )‖1‖L2(B2ε(hε(t)))‖∇ηε‖L3

x
‖p‖L2

t (L∞)

≤ Cε3/2. (51)

If we collect estimates (46)–(48)–(49)–(50)–(51) and equality (45), we deduce

|Rest1ε | ≤ C
∫ T

0

∫
Rd

ρε|uε − Rε[u]|2 dxdt + C(mε + ε3/2 + ε5/2|S in
ε |−1/6).

(52)

Let us recall that

|R̃estε| ≤ |Rest1ε | + |Rest2ε |.

This together with estimates (52) and (36) implies the lemma.
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Let us now explain how to reproduce the above bounds in dimension two. First of
all, let us recall that |Bε(0)| ≤ Cε2 and ‖∇ηε‖L p ≤ Cε(2−p)/2, in particular the L p

norm of ∇ηε is uniformly bounded in ε only for p ∈ [1, 2]. Moreover, let us notice
that the a priori bound ‖uε‖L2

t (Lq
x ) ≤ Cq holds for any q ∈ [2,∞) by the Sobolev

embedding in dimension two, see Lemma 4. Using this information, we can estimate,
for example,

|J3| ≤ ‖uε‖L2
t (Lq

x )‖∇ηε‖L p
x
‖Du‖L2

t (L∞
x ) ≤ Cεδ̃,

where we choose p = 2/(δ̃ + 1) and 1/p + 1/q = 1.
The bounds of all the other terms follow similarly. ��
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A Bogovskiı̆ Operator

This appendix is dedicated to recall some facts about the Bogovskiı̆ operators. Let us
recall that a Bogovskiı̆ operator is a right inverse of the divergence on L̃ p which is the
space of L p functions with integral zero. Due to the non-uniqueness of this operator,
we choose B1 to satisfy the following extra property.

Theorem 4 There exists a Bogovskiı̆ operator B1 such that

B1 : L̃ p(B2(0) \ B1(0); R) −→ W 1,p
0 (B2(0) \ B1(0); R

d)

and it is linear and continuous for any 1 < p < +∞,

div (B1[ f ]) = f for any f ∈ L̃ p(B2(0) \ B1(0))

123

http://creativecommons.org/licenses/by/4.0/


   42 Page 24 of 26 Journal of Nonlinear Science            (2024) 34:42 

and ‖B1[ f ]‖L∞(B2(0)\B1(0)) ≤ C‖ f ‖L2(B2(0)\B1(0)).

Moreover, for any vector field F ∈ L p(B2(0)\B1(0)) such that F ·n = 0 on ∂ B2(0)∪
∂ B1(0), it holds

‖B1[div (F)]‖L p(B2(0)\B1(0)) ≤ C‖F‖L p(B2(0)\B1(0)).

We refer to subsection 3.3.1.2 of Novotny and Straskraba (2004) for a proof of the
above theorem and for more details.

Let us recall that Bε[ f ](x) = εB1[ f (εy)](x/ε), in particular it satisfies the fol-
lowing uniform estimates.

Lemma 3 Let 1 < p < +∞. The operator Bε is a Bogovskiı̆ operator in B2ε(0) \
Bε(0). Moreover, there exists a constant C independent of ε such that

‖Bε[ f ]‖W 1,p(B2ε(0)\B1(0)) ≤ C‖ f ‖L p(B2ε(0)\B1(0)),

for any f ∈ L̃ p(B2ε(0) \ B1(0)). And

‖Bε[div (F)]‖L p(B2ε(0)\Bε(0)) ≤ C‖F‖L p(B2ε(0)\Bε(0)),

for any vector field F ∈ L p(B2ε(0)\Bε(0)) such that F · n = 0 on ∂ Bε(0) ∪ ∂ Bε(0).

The proof of the above result is consequence of the scaling.

B A Remark on Sobolev Embeddings

In this section,we show that Sobolev embeddingsW 1,2(R2) ⊂ L p(R2) for p ∈ [2,∞)

holds when we replace W 1,2(R2) with Ḣ1(R2) ∩ L2(Fε(t)). Here Ḣ1(R2) denotes
the closure of C∞

c (R2) respect to the norm ‖ f ‖Ḣ1 = ‖∇ f ‖L2(R2).

Lemma 4 Let u ∈ H1(R2) and p ∈ [2,∞), then we have

‖u‖L p(R2) ≤ C(‖∇u‖L2(R2) + ‖u‖L2(Fε(t))).

Proof The estimate is well known if in the right-hand side we replace ‖u‖L2(Fε(t)) by‖u‖L2(R2). Let us show that

‖u‖L2(R2) ≤ C(‖∇u‖L2(R2) + ‖u‖L2(Fε(t))). (53)

To see this, let us recall that Sε(t) ⊂ Bε(hε(t)). By translation invariance of the
norms, we can assume hε(t) = 0. We introduce the space

X =
{
v ∈ H1(B2(0)) such that v̄ = 1

|B2(0) \ B1(0)|
∫

|B2(0)\B1(0)|
v dx = 0

}
.
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The Poincaré inequality in X implies the existence of a constant CX such that

‖v‖L2(B2(0)) ≤ CX‖∇v‖L2(B2(0)).

For u ∈ H1(B2(0)), let us use the notation

ū = 1

|B2(0) \ B1(0)|
∫

|B2(0)\B1(0)|
u dx .

Notice that u − ū ∈ X . We estimate

‖u‖L2(B2(0)) ≤ ‖u − ū‖L2(B2(0)) + ‖ū‖L2(B2(0)) ≤ CX‖∇u‖L2(B2(0))

+ C‖u‖L2(B2(0))\B1(0)),

which implies (53). ��
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Al Baba, H., Ghosh, A., Muha, B., Nečasová, Š: L p − Lq -strong solution to fluid-rigid body interaction
system with Navier slip boundary condition. J. Elliptic Parabol. Equ. 7(2), 439–489 (2021)
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