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A Cost-Sensitive Machine Learning Model With
Multitask Learning for Intrusion Detection in IoT

Akbar Telikani , Graduate Student Member, IEEE,
Nima Esmi Rudbardeh , Graduate Student Member, IEEE, Shiva Soleymanpour ,
Asadollah Shahbahrami , Jun Shen , Senior Member, IEEE, Georgi Gaydadjiev ,

and Reza Hassanpour

Abstract—A problem with machine learning (ML) tech-
niques for detecting intrusions in the Internet of Things
(IoT) is that they are ineffective in the detection of low-
frequency intrusions. In addition, as ML models are trained
using specific attack categories, they cannot recognize un-
known attacks. This article integrates strategies of cost-
sensitive learning and multitask learning into a hybrid ML
model to address these two challenges. The hybrid model
consists of an autoencoder for feature extraction and a
support vector machine (SVM) for detecting intrusions. In
the cost-sensitive learning phase for the class imbalance
problem, the hinge loss layer is enhanced to make a classi-
fier strong against low-distributed intrusions. Moreover, to
detect unknown attacks, we formulate the SVM as a multi-
task problem. Experiments on the UNSW-NB15 and BoT-IoT
datasets demonstrate the superiority of our model in terms
of recall, precision, and F1-score averagely 92.2%, 96.2%,
and 94.3%, respectively, over other approaches.

Index Terms—Deep learning (DL), Internet of things (IoT),
intrusion detection, multitask learning, support vector ma-
chine (SVM).

NOMENCLATURE

AE Autoencoder.
CNN Convolutional neural networks.
CSHL Cost-sensitive hinge loss.
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DBN Deep belief network.
DFR Deep-full-range.
DL Deep learning.
DNN Deep neural network.
FN False negative.
FNN Feedforward neural network.
FP False positive.
GAN Generative adversarial network.
IDS Intrusion detection system.
IoT Internet of Things.
LSTM Long short-term memory.
ML Machine learning.
ReLU Rectified linear unit.
RNN Recurrent neural network.
SAE Stacked autoencoder.
SMOTE Synthetic minority oversampling technique.
SNN Self-normalizing neural network.
SVM Support vector machine.
x Value in the dataset.
xnorm Normalized value.
xmin Minimum value for a variable.
xmax Maximum value for a variable.
α Distribution of a class.
γ Cost matrix.
C Number of classes in the dataset.
ytrain Set of target label.
X Input vector in autoencoder.
k Number of samples in a batch.
h Number of layers in autoencoder.
�X Reconstructed vector in autoencoder.
Y Vector in the encoding layer of autoencoder.
Z Vector in the decoding layer of autoencoder.
W Weights in the encoding layer of autoencoder.
�W Weights in the decoding layer of autoencoder.
b Bias in the encoding layer of autoencoder.
b̄ Bias in the decoding layer of autoencoder.
L(.) Loss function in autoencoder.
K(.) Radial basis function in SVM.
m Number of features in a dataset.
∅ (.) Nonlinear mapping function.
�b Bias value in SVM.
�w Weight vector in SVM.
�X Feature vector in SVM.
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�ξ Slack variable.
η Regularization parameter.
ρ Penalty factor.
D( �X) Decision for �X .
sign(.) Sign function.
L Loss value.
d̄ Predicted output.
d Desired output.
O Output layer.
∂ Partial derivative.
l(·) Misclassification error.
exp(.) Exponential function.
λ Control parameter for new features in SVM.
n Number of data points.
q Scalar quantity in SVM.
n Number of data points in the dataset.
f(.) Decision function for two classes.

I. INTRODUCTION

INTRUSIONS are indeed a significant concern in the IoT
environments, which are carried out for different reasons,

such as obtaining private or sensitive data, disrupting data in-
tegrity, and damaging IoT devices and services [1]. Recognizing
intrusion attacks is a critical component of a secure IoT network
against cyberattacks . The components of an IDS in the IoT can
be placed in the hierarchical architecture so that the analyzed
data are moved up through the layers.

In recent years, studies on intrusion detection in the IoT have
increasingly turned to ML and DL techniques and have been de-
veloped in different applications, such as traffic management [2]
and autonomous vehicles [3]. However, IoT-related datasets are
imbalanced in nature, in which some classes include far more
instances (i.e., majority classes) compared to other classes (i.e.,
minority classes). In this situation, intrusion classifiers are biased
toward the high-frequency classes so that low-frequency classes
are wrongly detected as the high-frequency classes. These mis-
classifications can be harmful in critical IoT-related applications
because the wrongful defense mechanisms lead to the waste
of time, effort, and resources. For example, the occurrence of
equipment failures is relatively rare compared to normal oper-
ations in manufacturing plants. If the system wrongly detects
this low-frequency class as normal or benign, it may overlook
the actual machine failure, leading to prolonged operation in
a faulty state. As a result, the malfunctioning machine could
cause further damage, production delays, and safety hazards or
even compromise the integrity of the entire manufacturing pro-
cess [4]. On the other hand, attackers can exploit vulnerabilities
that have not yet been discovered or patched in security-critical
applications to develop and deploy unknown attacks, posing a
significant threat to privacy and security. ML models are built
on datasets including only specific attacks, leading to the failure
of the model in diagnosing new and unknown attacks.

Most papers on intrusion detection for the IoT used deep
neural network models without the consideration of the class
imbalance problem and unknown attack detection. Some
recent studies have focused on handling these two problems

Fig. 1. Block diagram of the application of the proposed method in IoT
network intrusion detection.

separately. However, no paper has ever touched on both
the issues of unknown attack detection and class imbalance
problems simultaneously.

Our main motivation with this article is to develop an intrusion
detection framework, namely, CostDeepIoT, for IoT security
to address both the class imbalance problem and the unknown
attack detection simultaneously using cost-sensitive learning
and multitask learning, respectively. Our main contributions, for
such a motivation, are as follows.

1) We develop a framework consisting of three main com-
ponents: a) a hybrid ML model; b) cost-sensitive learn-
ing; and c) multitask learning. The hybrid ML model
integrates an SVM classifier into a stacked autoencoder
(SAE) network. In this model, the SAE extracts essential
features from raw network data and feeds them into the
SVM-based shallow classifier.

2) A multitask learning schema is designed by formulating
a multiclass problem as multiple independent tasks to
mine the shared information among tasks. Using mul-
titask learning, features are learnt concurrently for all the
tasks. For each task, the hinge loss function, which is
a loss function for the SVM, is improved through the
cost-sensitive learning strategy, in which costs related
to misclassifications are considered when computing the
loss value. With these two strategies, we can fully exploit
their advantages to significantly improve the detection
accuracy of both the low-frequency and unknown attacks.

3) We perform a comparative analysis to evaluate the effec-
tiveness of our proposed framework in comparison to the
existing state-of-the-art DL methods. These evaluations
are conducted on two datasets, namely, UNSW-NB15 and
BoT-IoT, using various metrics to assess performance and
effectiveness.

Fig. 1 depicts how our proposed model can contribute to
securing IoT networks against intrusion attacks. The model is
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employed at the gateway of IoT different applications, where
input data traffic is monitored. This can optimize bandwidth,
latency, and response time. Network requests are intercepted and
processed and fed into the proposed model to detect anomalies
and reject threatening requests. Based on the corresponding
information, a server offers guidelines to IoT devices for en-
hancing service quality and denies suspicious access from the
Internet. Our proposed approach can be employed in all the
classification-related IoT applications, such as smart fire detec-
tion, homes, transportation, and health, with the class imbalance
problem. In addition, our framework is suitable for security-
critical applications, where the probability of generating new
attacks is high [5].

The rest of this article is organized as follows. Section II
presents related studies on IDSs for the IoT. Section III in-
troduces our framework for addressing two problems of class
imbalance and unknown intrusions detection in the IoT us-
ing cost-sensitive learning and multitask learning. Section IV
compares and evaluates the proposed framework with a series
of comprehensive experiments. Finally, Section V concludes
this article. In addition, a list of abbreviations and notations is
depicted in the Nomenclature.

II. RELATED WORK

A considerable number of papers have subjected intrusion
detection for the IoT using DL techniques. We have classified
these studies into three categories: 1) papers that provide generic
DL models for intrusion detection (see Section II-A); 2) papers
that consider the class imbalance problem (see Section II-B);
and 3) papers that have focused on unknown attack detection
(see Section II-C).

A. General Solutions for Intrusion Detection in the IoT

Intrusion detection is often performed using supervised ML
algorithms [6], [7]. Particularly, DL techniques are broadly
employed to effectively resolve the intrusion detection problem
in IoT platforms, such as AEs [8], [9], FNN [10], DBN [11], and
dense random neural network [12]. Alkadi et al. [13] employed a
bidirectional LSTM in a deep blockchain framework to securely
exchange and migrate data between multicloud IoT services. A
two-layer architecture for handling both the flow- and packet-
based features was developed in [14]. A pipeline of classification
models was trained with the packet-based training subset and
the other with the flow-based training subset. Lu et al. [15]
integrated a memory module into an AE model to store and
locate the latent space feature representations of normal data. Li
et al. [16] combined federated learning (FL) and fog/edge com-
puting for distributed denial-of-service (DDoS) traffic detection.
A distributed policy optimization model was trained to reduce
the impact of resource constraints of IoT devices on the IDS. A
privacy-preserving FL scheme on a decentralized platform was
proposed in [17]. These models are trained on devices, and their
learning is federated.

The integration of DL models to empower the IDS has been
introduced by some publications. A framework combining a
gated recurrent unit (GRU), a multihead self-attention mecha-
nism (MHSA), and the feedforward layer was proposed in [18].

The GRU model extracts local representations from raw traffic
and sends them to the MHSA for capturing long-term infor-
mation to facilitate the distributed and paralleled execution of
the model. The feedforward layer performs a nonlinear feature
transformation.

An appropriate adjustment of hyperparameters for the DL
algorithm can effectively affect the performance of the IDS.
Evolutionary techniques can be employed to improve detection
models for intrusion attacks in IoT environments. The genetic
algorithm for the DBN [19], the particle swarm optimization for
the CNN [20], and spider monkey optimization for the stacked
deep polynomial network [21] are some of these efforts in the
literature. Chen et al. [22] modified a multiobjective evolutionary
algorithm to perform the parameter tuning process of the CNN.
Their model was executed on fog nodes for detecting intrusions
in the IoT. Detection performance and model complexity of the
CNN model were considered as two conflicting objectives.

Owing to the imbalanced nature of data in IoT environments,
classifiers are more biased toward the majority classes than
minority classes. This results in DL models that have poor
predictive performance for the minority class. Moreover, all
the abovementioned studies in IoT intrusion detection expect
classes captured by the classifier in the training phase are what
the classifier handles in the testing step. This assumption cannot
be applicable in real-world applications because adversaries
and hackers try to implement novel attacks differently from
traditional intrusions to fool an intelligent IDS [23]. Therefore,
an unknown attack is classified as one of the classes the model
knows. A few papers have focused on the class imbalance
problem and unknown intrusion detection separately, which are
described in the following subsections.

B. Solutions for the Class Imbalance Problem in
Intrusion Detection in the IoT

Gupta et al. [24] employed random oversampling, borderline-
SMOTE, and SVM-SMOTE techniques to address the class
imbalance problem. A two-layer model was then employed that
applied LSTM in the first layer to separate benign and malicious
network traffic, and it used random forest and bagging ensembles
in the second layer to classify attacks. Telikani and Gandomi [1]
integrated the cost-sensitive learning strategy into an SAE
model, where the class-dependent costs are determined using
a heuristic. They then improved the cost adjustment through an
evolutionary algorithm during the model training [25]. More-
over, they designed a fog-computing-enabled framework to ac-
celerate the IDS for big IoT data. In [26], few-shot learning with
variational feature representation was employed to handle the
out-of-distribution problem in imbalanced data.

C. Solutions for Unknown Attack Detection in Intrusion
Detection in the IoT

Lu et al. [15] integrated a memory module into an AE between
encoder and decoder layers to store and locate the latent space
feature representations of normal data, resulting in the detection
of unknown attacks. D-Sign [27] is a DL-based system for the
intrusion detection and signature generation of unknown web
attacks. First, the incoming traffic is analyzed via a Misuse
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Fig. 2. Proposed framework based on cost-sensitive learning, multitask learning, and ML for intrusion detection in the IoT platform.

Detection Engine to detect known attacks. Then, an Anomaly
Detection Engine processes the packet stream to recognize un-
known attacks and sends them to a Signature Generation Engine
to generate a signature for the malicious packet.

III. COSTDEEPIOT: AN IDS IN THE IOT

ML models for IoT intrusion detection apply multiclass
models for attack detection and can only learn a single task at
a time. Unfortunately, traffic flow contains different types of
attacks simultaneously. Owing to the particular features of each
attack type, the identification of each attack can be considered
as an independent task. Moreover, these models cannot handle
the class imbalance problem and unknown attack detection
simultaneously.

In this section, a novel ML-based framework to mitigate the
impacts of the class imbalance problem and unknown attacks
on the IDS in IoT environments is proposed. This framework
is developed using three concepts: 1) ML techniques; 2) cost-
sensitive learning strategy; and 3) multitask learning. Fig. 2
shows our developed framework including five main compo-
nents: 1) preprocessing; 2) partitioning; 3) heuristic cost matrix
generation; 4) ML architecture; and 5) CSHL. First, the prepro-
cessing step is employed to provide a clean dataset for our DL
model by deleting irrelevant attributes, normalizing the data, and
dividing the dataset into training and testing sets. Then, in the
partitioning step, the training dataset is partitioned into different
parts; after that, in the heuristic cost matrix generation phase, a
cost matrix is generated for each partition using a heuristic; in
the ML architecture phase, by stacking an SAE and a multitask
SVM, a hybrid ML model is built, in which the SAE reconstructs
raw data and provides new representations with which to perform
classification tasks. In this model, the multitask SVM is used
for detecting unknown attacks. Finally, to calculate the weighted
loss value, a cost-sensitive hinge loss function takes into account
the cost values obtained in the third step. In this way, an ML
model becomes sensitive to low-frequency attacks.

A. Preprocessing

To preprocess the data, irrelevant features, such as
source/destination IP and source/destination port number, are
first removed from the dataset. Then, the traffic features are

converted into numeric features using a data conversion tech-
nique. This is because DL models require features in numerical
values. In the datasets selected in this study, there are some cat-
egorical features, such as “proto,” “state,” and “service,” which
are changed to numerical features using the ordinal encoding
method. Convergence speed and model learning are negatively
influenced by the large variations in data values. Therefore, the
min–max technique is used to normalize the dataset and convert
all the values between 0 and 1 using the following equation:

xnorm =
x− xmin

xmax − xmin
. (1)

In this equation, the terms xnorm and x refer to the normalized
and original values, respectively. In addition, xmin and xmax are
the minimum and maximum values of an attribute, respectively.

B. Partitioning

Defining appropriate class-dependent costs positively influ-
ences the performance of an ML model, particularly in training
it to be sensitive to minority classes. A single predefined cost
matrix is often used in cost-sensitive learning. In this study, we
introduce a diversity concept in determining class-dependent
costs. We accomplish this by designing a dynamic partitioning
strategy that generates diverse cost matrices in each epoch of the
training process. This strategy allows the learning of our model
with different class imbalance conditions. In this strategy, at
each epoch, the dataset is first split into a number of equal parts,
and then, a cost matrix is created for each partition. Instances
in each partition are selected randomly to provide dynamic data
distribution of each class. The cost matrix associated with each
partition is used for the DL model training.

C. Heuristic Cost Matrix Generation

After the partitioning step, a heuristic mechanism is employed
to acquire a class-dependent cost matrix (notated byγ) from each
partition, based on the distribution of classes in that partition. In
a cost matrix, each cell refers to the probability of misclassifying
a class to another class. This probability value is specified
according to the class distribution. The cost of class i in class j,
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Algorithm 1: Cost Matrix Generation.
Input: ytrain, C
Output: cost-matrix γ
1: Begin
2: γ ← Initialize with zeros
3: α← Compute frequency of classes
4: For each i ∈ labels
5: For each j ∈ labels
6: if i �= j
7: γi,j = P (j|X) = 1− αi

αj

notated as γi,j , is computed as follows:⎧⎨
⎩
γi,j = P (j|X) = 1− αi

αj
, i, j = 1, 2, . . . , C

subject to i �= j and αi, αj > 0
. (2)

The terms αi and αj are the distribution of classes i and j,
respectively, and P (j|X) is the probability over a class given a
feature vector X . If there is no sample for a class i in a partition
(i.e., αi), the costs related to the class are determined to be zero.
Indeed, all the cells in the corresponding row and column are
set to be zero. Algorithm 1 presents the pseudocode of our cost
matrix generation algorithm.

D. Hybrid ML Architecture

In an unsupervised learning setting, AEs are capable of learn-
ing compact representations [28]. Furthermore, recent studies
have shown that self-supervised learning is more resilient to
imbalances in datasets [29]. In our framework, we integrate
a multitask SVM classifier into an SAE. In the first phase, a
stack of three AEs with a 1-D input layer is designed to extract
high-level representations from the raw data (see Fig. 3). In the
second step, the features are sent to a multitask SVM model to
detect intrusion classes. Owing to the higher generalization ca-
pability of SVM than that of SAE, this integration can minimize
generalization errors with global optimization.

1) Designing the SAE Model for Feature Learning: We de-
sign an SAE model with three AE models, and each of them
has two encoder and decoder layers. In this structure, at the
encoding stage, the output of the (h− 1)th layer is used for
learning kth-order features in thehth hidden layer of the SAE. In
this way, raw input is considered for learning first-order features
in the first hidden layer. These features are used in the second
hidden layer for learning second-order features. Conversely, at
the decoding stage, the output of the kth layer is utilized to
reconstruct (h− 1)th-order features in the (h− 1)th layer. This
process continues until the input is reconstructed.

An AE tries to minimize the difference between the original
input (i.e., X) and the reconstructed input (i.e., X̄) using the
following equation as the mean squared error:

L(X, X̄) =
1
k

k∑
i=1

∥∥Xi − X̄i

∥∥2
2 . (3)

where k is the number of samples in a batch.

Fig. 3. Structure of AEs in the hybrid model.

2) Multitask SVM Classification: An SVM model separates
data classes by generating a hyperplane from a high-dimensional
feature space mapped from training examples. Radial basis
function is commonly used as a kernel function for the mapping
between two objectives xi and xj , as follows:

K(xi, xj) = exp(−‖(xi, yj)‖2

2λ2
) (4)

where λ is a parameter to control the influence of new features on
the decision boundary. The main motivation is to maximize the
margin between the data classes. For this reason, an optimization
problem is formulated in an SVM to construct a maximal margin
classifier {

minimize 1
2‖�w‖2 + η

∑n
i=1 ζi

subject to yi(�wixi + q) > 1− ζi
(5)

where η is the regularization constant (i.e., slack factor) for clas-
sification errors, and ζi represents the slack variable associated
with the ith sample. The terms n, �w, and q are the number of
data points, weight vector, and a scalar quantity, respectively.

SVM models are used to solve many real-world industrial
problems, such as fault detection in the production line, car/road
detection in autonomous vehicles, and intrusion detection in
industrial control systems [30]. In our problem, we employ
the SVM for detecting IoT-related intrusions. We are dealing
with a multiclass intrusion detection task, where multiple types
of attacks may occur simultaneously within the traffic flow.
However, a learning model can only handle a single task at a
time. This limitation arises from the fact that each attack type
possesses unique features, making the identification of each
attack an independent task in itself.

As an SVM is by itself a two-class classifier, a multiclass SVM
is implemented by combining multiple two-class SVM. One
against rest and one against one are two common approaches
to build a multiclassifier. The first one generates C number of
SVM models from C classes. The second approach constructs
one SVM for each pair of classes, resulting inC(C − 1)/2 SVM
models. It has been proven that the one-against-one approach is
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substantially fast to train and is preferable for problems with a
large number of classes [31]. Thus, we use the one-against-one
method to detect different types of intrusions in IoT platforms.
The decision function for two classes i and j for a feature vector
X (fij(X)) is formulated as follows:

fij( �X) =
〈
∅( �X). �wij

〉
.�bij (6)

where ∅ ( �X) is a nonlinear function for mapping �X into a high-
dimensional space feature space, m is the number of features in
a dataset, and�b is a constant bias value.

We use L1 regularization as the optimization problem for the
decision function is formulated as follows:

min
1
2
(�wij)

2 + ρ
∑
n

(
�ξij

)
n

(7)

⎧⎨
⎩

〈
∅( �X). �wij

〉
.�bij ≥ 1− �ξij , d̄ = i〈

∅( �X). �wij

〉
.�bij ≤ −1 + �ξij , d̄ = j

(8)

where the parameters of �wij ,�bij , and �ξij are optimized in the
SVM classifier, and (8) is the constraint. �ξij is a slack variable,
ρ is a penalty factor, and d̄ is the predicted class.

In our study, each binary SVM model is considered as a
task, and the feature weights for each model (task) are learnt
simultaneously by the relationship across all the tasks, and the
specific type for attacks is predicted. The “Max-Wins” decision
function is used to determine the output of allC(C − 1)/2 SVM
models [see (9)]. In “Max-Wins” decision, each class is fed to all
the SVM models to produce different outputs. The final decision
for �X is determined based on a voting for all classes, and the
class with the most votes is the final class

D
(
�X
)
= argmax

C∑
i�=j,j=1

sign(fij( �X)) (9)

where sign(.) is a symbolic function and sign(.) ∈ [−1, 1]. If
sign(.) =−1, samples are judged as negative samples; if sign(.)
= 1, the samples are judged as positive samples.

In the case of multiple classes with the same number of
votes, the closest class is determined via a real-valued decision
function, as described in the following equation:

D
(
�X
)
= argmax

C∑
i�=j,j=1

fij( �X). (10)

E. Cost-Sensitive Hinge Loss

Using a cost-sensitive learning strategy, the hinge loss func-
tion is enhanced to update the parameters of the hybrid model
based on class-specific costs in a way that the model prioritizes
the correct classification of minority attacks. The costs are
considered in the hinge loss function after the softmax layer.
The hinge loss function is selected due to its faster convergence
and better performance than that of other loss functions in most
cases. In addition, it can avoid the learning slowing down, which
is a typical problem of the mean squared error loss function [32].
By considering the costs assigned in the cost matrix generation

phase, a punishment value is adjusted for each misclassifica-
tion. Based on this objective, a maximum margin should be
maintained between each pair of classes using the following
equation:

L (d, d̄) = max(0, 1− d.d̄) (11)

where L is the loss value and d is the desired output. As a
result of incorporating the corresponding class-dependent cost,
the predicted class probability changes, as expressed in the
following equation:

d̄ =
1

1 + exp(−Onγd,d̄)
(12)

where γd,d̄ is the class-sensitive penalty, which depends on the
desired class of a particular training sample, and −On is the
output of ith neuron in the output layer.

At each neuron in the SAE model, the directional derivative
can be computed using the following equation:

∂l(O, d̄)

∂On
= − (2dn − 1)

∂d̄n
∂On

f
(
1 > d̄n(2dn − 1)

)
(13)

where l(·) is the misclassification error. Based on ∂d̄/ ∂On =
γd,d̄, the partial derivative of the softmax output with respect
to the penultimate layer output is obtained. As a result of
combining the two expressions mentioned above, we can express
the following derivative:

∂l(O, d̄)

∂On
= − (2dn − 1) γd,d̄f

(
1 > d̄n(2dn − 1)

)
(14)

where f(.) denotes an indicator function.

IV. EXPERIMENTS AND DISCUSSION

This section compares the performance of CostDeepIoT in
comparison with its baseline version, Deep-IFS [18], EvolCost-
Deep [25], and D-Sign [27] on the UNSW-NB15 and BoT-IoT
datasets. The Baseline is a version of the CostDeepIoT without
both the cost-sensitive learning and the task for the unknown
attack detection task.

Our model has been implemented using Python and
YAFS [33]. The machine used for all the experiments has an Intel
CPU with 32 cores at 2.2 GHz and 13-GB RAM on CentOS 7
Linux. The environment development is based on Python-3.9.7
and Tensorflow-2.9.1. We have carried out diverse experiments
by setting the number of epochs and partitions to 100 and 8
(based on our analysis shown in the next section), respectively.
The batch size and dropout ratio are chosen as 512 and 0.05,
respectively. Besides, ReLU was used as an activation function
in the SAE model. In order to eliminate the overfitting problem,
we used the early stopping technique with patience = 3. In
other words, the training process ends after three epochs of
no improvement in the validation loss value. The optimizer
algorithm was the Adam, and the loss function was our improved
hinge loss (i.e., CSHL). To adjust SVM parameters, i.e., λ and
η, we have employed the grid search technique on the training
data. The results showed that the best parameter combination is
λ= 0.3 and η= 1.0. We have considered the training, validation,
and testing sets to have 80%, 10%, and 10% ratios, respectively.
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TABLE I
STATISTICS OF UNSW-NB15 AND IOT-BOT DATASETS

A. Dataset Characteristics

In this study, two imbalanced datasets of UNSW-NB15 [34]
and BoT-IoT [35], which are widely used for the evaluation
of IoT-related intrusion systems, are utilized. Moreover, evalua-
tions of these two datasets can faithfully reflect the robustness of
the models to different level data imbalance. The UNSW-NB15
dataset has been collected during the period of January and
February 2015. Both the attack and normal traffic against servers
were created using an automatic attack generation tool (IXIA
PerfectStorm). This dataset has nine types of attacks, where the
“Normal” is the majority class with around 88%. Other attack
classes have less distributions. The BoT-IoT dataset is a collec-
tion of traffic data related to the simulation of five IoT devices
considering the traffic of various attacks. The dataset comprises
five categories, three classes of “DoS,” “DDoS,” and “Normal”
have high distribution. On the other hand, the classes “Recon.”
and “Theft” represent attack categories with a minor frequency.
These two datasets are compared statistically in Table I.

As one of our framework’s objectives is to detect unknown
attacks, we have considered “Exploits” in the UNSW-NB15
dataset and “DDoS” in the BoT-IoT dataset as unknown attacks
and removed them from the training set.

B. Experimental Results

This section evaluates the results obtained from the intrusion
detection methods in terms of three measures of recall, precision,
and F1-score. Defining an appropriate number of partitions ef-
fectively influences the performance of the CostDeepIoT. Fig. 4
shows how the performance is influenced by varying the number
of partitions. The results demonstrated that a low number of
partitions cannot train a model to be strong against imbalanced
data, while a high number of partitions result in categories with
zero samples in some partitions that make the model unreliable
for the detection of these attack categories. According to these
results, we have set the number of partitions in our experiments
to eight for both the UNSW-NB15 and BoT-IoT datasets.

Table II presents the confusion matrix obtained from our
CostDeepIoT model on the UNSW-NB15 dataset. The results

Fig. 4. Performance of CostDeepIoT with different partitions. (a)
UNSW-NB15. (b) BoT-IoT.

demonstrate that the “Normal,” which is the majority class,
noticeably influences the classification accuracy of the low-
frequency intrusions (e.g., “Worms” and “Backdoor”), so that
the highest misclassification ratio is for these intrusion classes,
15.3% and 30.7% for “Backdoor” and “Worms,” respectively.
The average detection error of our proposed method for the
UNSW-NB15 dataset was 7%.

Table III compares the performance of the models compared
with the other methods on the UNSW-NB15 dataset. Cost-
sensitive learning resulted in a higher recall ratio for our model
compared with the other methods. The results have demonstrated
that the CostDeepIoT performed better than the D-Sign [27],
EvolCostDeep [25], and Deep-IFS [18], with a recall ratio of
87.4% against 81.2%, 71.9%, and 75.1%, respectively. The
reason for this tendency is that our model using cost-sensitive
learning reduces the number of false negatives for minority data.
Moreover, the ability of our model in detecting unknown attacks
results in higher performance compared to the other methods
that cannot recognize these attacks. An average precision ratio
of 97.5% was obtained for our proposed model in comparison
with the baseline, EvolCostDeep [25], and Deep-IFS [18], which
are 85.2%, 85%, and 85.6%, respectively. According to the
F1-score criterion, our model achieved the highest F1-score
compared with the other models, with an average of 92.8%.
Meanwhile, this value is 75.5%, 77.3%, and 79.6% for baseline,
EvolCostDeep [25], and Deep-IFS [18], respectively. Except
of our model, the other classifiers’ performance for unknown
attacks was zero because they could not identify unknown
attacks, and these attacks were wrongly classified as other
classes. Overall, the developed model could increase recall, pre-
cision, and F1-score by 14.2%, 12.2%, and 15.3%, respectively.

To have a better illustration of our results on the UNSW-NB15
dataset, Fig. 5 depicts the error bar plot of the methods in terms

Authorized licensed use limited to: TU Delft Library. Downloaded on April 02,2024 at 11:46:49 UTC from IEEE Xplore.  Restrictions apply. 



TELIKANI et al.: COST-SENSITIVE MACHINE LEARNING MODEL WITH MULTITASK LEARNING FOR INTRUSION DETECTION IN IOT 3887

TABLE II
CONFUSION MATRIX OF THE COSTDEEPIOT FOR THE UNSW-NB15 DATASET

TABLE III
COMPARISON BETWEEN THE PERFORMANCE OF INTRUSION DETECTION METHODS ON THE UNSW-NB15 DATASET

Fig. 5. Performance difference between the values of three measures of (a) recall, (b) precision, and (c) F1-score obtained from different methods
on the UNSW-NB15 dataset.

of three performance criteria of recall [see Fig. 5(a)], precision
[see Fig. 5(b)], and F1-score [see Fig. 5(c)]. This figure shows
how much the performance of the models for each class is
closer to their variance. The lower variance demonstrates a better
performance for a model than other models. Based on the results,
it is obvious that the CostDeepIoT model outperformed the other
three methods and had lower variances. This is more outstanding
for recall and F1-score measures that are better indicators to
show the superiority of a classification model on the imbal-
anced data and the existence of unknown attacks. The figure
explains that because of its capability in handling unknown and

low-frequency attack detection, the lowest error variance and
the highest performance have been obtained for our model.

The confusion matrix for the CostDeepIoT on the BoT-IoT
is shown in Table IV. The table demonstrates that the highest
error ratio is for low-frequency attacks. For instance, “Theft”
attack, which has the lowest data distribution, led to the highest
classification error (13.8%) for our model. In contrast, there is a
low proportion of detection errors attributed to the “Unknown”
attack (0.16%), which is highly distributed. On the BoT-IoT
dataset, Table V presents the results for the CostDeepIoT
in comparison with the other intrusion classifiers. Based on
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TABLE IV
ANALYSIS OF THE CONFUSION MATRIX DERIVED FROM THE BOT-IOT DATASET USING THE PROPOSED MODEL

TABLE V
COMPARISON BETWEEN PERFORMANCE OF INTRUSION DETECTION METHODS ON THE BOT-IOT DATASET

Fig. 6. Performance difference between the values of three measures of (a) recall, (b) precision, and (c) F1-score obtained from different methods
on the BoT-IoT dataset.

our findings, the CostDeepIoT method has been observed that
outperforms the other models, especially for the minority classes
(e.g., “Recon.” and “Theft”). For instance, the CostDeepIoT
model could increase the classification ratio of “Theft” class
around 11%, 13.8%, and 8.6% than that of the baseline model,
EvolCostDeep [25], and Deep-IFS [18], respectively. In overall,
the CostDeepIoT could obtain the highest detection ratio with
recall, precision, and F1-score around 23.2%, 21.3%, and
22.2%, respectively, higher than that of the other methods.

Fig. 6 illustrates the error bar plot comparison of the per-
formance between the CostDeepIoT and other DL methods in
terms of different evaluation metrics on the BoT-IoT dataset.
The experimental results showed that the CostDeepIoT outper-
formed the EvolCostDeep [25] and the Deep-IFS [18] for all
three measures of recall, precision, and F1-score. The standard
deviation of the results for the low-frequency attacks, such as
“Recon.” and “Theft,” was smaller for the CostDeepIoT than
the other three methods. Especially on F1-score, CostDeepIoT
obtained a significant performance improvement over the
others.

V. CONCLUSION

This article integrated multitask learning and cost-sensitive
learning into a hybrid ML model for handling unknown attack
detection and class imbalance problem in the IoT. The hybrid
model included a combination of stacked AEs as a feature
extractor and an SVM as an intrusion classifier. In this model,
multiclass classification was formulated as multitask learning
so that each binary SVM classifier was considered an inde-
pendent subtask. Each task employed a weighted loss function,
which was an enhancement of the hinge loss function. To have
diverse costs and train the model with datasets with different
characteristics, the costs were determined at each epoch using a
formulated heuristic based on data statistics. The results on the
UNSW-NB15 and BoT-IoT datasets proved that our model could
attain high levels of performance, achieving (88.8%, 95.6%),
(96.8%, 95.7%), and (92.8%, 95.6%) for recall, precision, and
F1-score on the UNSW-NB15 dataset, respectively. This arti-
cle can help different IoT-aided industrial applications, such
as health care, industry, and transportation, to detect attacks
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regarding obtaining financial gains, damaging equipment, and
threatening human lives through the obstruction of normal in-
dustrial operations. In the future, we aim to adapt our framework
for other applications with imbalanced nature, such as network
traffic classification. Moreover, ensemble learning can be used
by employing different DL models as the classifier. Owing to
the difficulty of using our technique for real-time systems, we
will focus on the decentralized implementation of the proposed
system using FL in the edge/fog layer to offload the training and
processing tasks from IoT devices in the future. The inability
of fog computing in supporting mobility can be handled by
using reinforcement learning techniques, such as Q-learning.
Owing to the lack of application programming interface (API)
authentication in edge devices, blockchain technology will be
employed in the future.
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