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A B S T R A C T

Photoplethysmography (PPG) signals, typically acquired from wearable devices, hold significant potential for
continuous fitness-health monitoring. In particular, heart conditions that manifest in rare and subtle deviating
heart patterns may be interesting. However, robust and reliable anomaly detection within these data remains
a challenge due to the scarcity of labeled data and high inter-subject variability. This paper introduces a
two-stage framework leveraging representation learning and personalization to improve anomaly detection
performance in PPG data. The proposed framework first employs representation learning to transform the
original PPG signals into a more discriminative and compact representation. We then apply three different
unsupervised anomaly detection methods for movement detection and biometric identification. We validate our
approach using two different datasets in both generalized and personalized scenarios. Our results demonstrate
significant improvements: for movement detection, in the generalized scenario, AUCs improved from barely
0.5 to above 0.9 with representation learning. Importantly, inter-subject variability was substantially reduced,
from around 0.4 to below 0.1. In the personalized scenario, AUCs became close to 1.0, with variability further
reduced to below 0.05, indicating the effectiveness of both representation learning and personalization for
anomaly detection in PPG data. Similar enhancements were observed in biometric identification, emphasizing
how our approach can minimize inter-subject variability and enhance PPG-based health monitoring systems.
1. Introduction

Photoplethysmography (PPG) data is a non-invasive, low-cost, op-
tical physiological signal that measures the volume of blood flowing
through the blood vessels and can be measured by a variety of wearable
devices and smartwatches [1]. PPG data enables remote health moni-
toring and fitness tracking, which presents opportunities for identifying
unusual patterns in the user data that may indicate potential health
issues, like abnormal heart rate or irregular movement patterns [2].

The effectiveness of detecting anomalies largely depends on the
availability of enough labeled data. Supervised machine learning meth-
ods, such as k-Nearest Neighbors (kNN), Random Forest, and Artificial
Neural Networks (ANN), have been widely used in previous research
to interpret PPG signals [3–7]. However, the process of data labeling is
tedious, time-consuming, and costly, especially for anomaly detection
problems, since anomalies seldomly occur in real-world applications.
Furthermore, these supervised learning methods may be prone to bias
and overfitting if the labeled dataset does not adequately represent the
full range of normal and anomalous PPG signals. Moreover, these meth-
ods may not be adaptable to unknown or unexpected anomalies, as they
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learn to recognize patterns based on the examples provided in the train-
ing dataset, and may fail to effectively detect anomalies not represented
in the dataset. To address these limitations, unsupervised anomaly
detection methods can offer advantages over supervised approaches, as
they do not rely on explicitly labeled examples of anomalous behavior
and can be more adaptable to unknown or unexpected anomalies [8,9].

Anomaly detection in PPG data can also be challenging due to other
various factors that contribute to noise and inter-subject variability.
These are factors like physical activity, stress, illness, measurement
noise, age, gender, body composition, and genetic differences, as well
as external factors such as sensor placement, sensor quality, and en-
vironmental conditions. This makes it difficult to develop generalized
models that perform consistently across different individuals since each
person’s PPG signal may exhibit unique characteristics [10]. These
complexities necessitate strategies to account for individual-specific
characteristics.

Personalization can be a potential solution to help overcome the
limitations of generalization by tailoring models to individual users
[11]. However, the effectiveness of personalization hinges on accurate
biometric identification. Inaccurate identification of individuals can
vailable online 20 March 2024
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lead to personalized models being trained on or applied to the wrong
user’s data, resulting in poor performance and potentially harmful
outcomes. Hence, accurate biometric identification can enhance the
reliability of personalized models, as it ensures that the models are
based on the specific characteristics of each user.

In addition to unsupervised anomaly detection methods and person-
alization, representation learning can be particularly useful in enhanc-
ing performance [12]. Representation learning models are typically
trained to learn from large amounts of unlabeled data, enabling them
to extract a more compact, informative, and expressive representation
of the data without the need for expensive and time-consuming man-
ual labeling. By learning a lower-dimensional representation of the
PPG data that captures its inherent structure and discriminative fea-
tures, representation learning can help overcome challenges posed by
inter-subject variability, noise, and other factors affecting PPG signals.
AutoEncoders, for example, are a type of self-supervised representa-
tion learning model that learns representations by encoding inputs
into lower dimensions and then decoding them back to their original
form, focusing on reconstructing the input [13]. Other representation
learning models have been proposed with different tasks, such as
contrastive learning or classification of augmented transformations of
the original data [14,15]. Representation learning has been increas-
ingly used for anomaly detection in various domains, including image
analysis [16–20], and time series data, such as bio-signals sensor data
like EEG or ECG [21–24]. These studies have shown how representation
learning can successfully extract meaningful features from complex bio-
signals sensor data, leading to improved performance in classification
tasks such as emotion detection or sleep stage classification. However,
its application to PPG data for unsupervised anomaly detection and
biometric identification remains underexplored, despite PPG being a
commonly used bio-signal in health-monitoring applications.

In this paper, we present a two-stage framework for unsupervised
movement detection and biometric identification in PPG data using rep-
resentation learning. In the first stage, we train a deep neural network
to obtain a lower-dimensional and informative data representation. In
the second stage, we construct separate unsupervised anomaly detec-
tors for both tasks using the learned representations from the first stage.
Our approach not only investigates the effectiveness of representation
learning in this context, but also explores the potential of personal-
ization in enhancing anomaly detection performance. Additionally, we
delve into biometric identification, aiming to improve the reliability of
personalized anomaly detectors. To the best of our knowledge, this is
the first study to jointly address these aspects for anomaly detection in
PPG data. Summarizing, our contributions are:

1. We propose a two-stage framework for unsupervised anomaly
detection and biometric identification in PPG data using repre-
sentation learning.

2. We demonstrate the effectiveness of using the learned repre-
sentations compared to the original representations in detect-
ing difficult real-world anomalies and mitigating the subject
variability.

3. We compare the effectiveness of generalization and person-
alization in anomaly detection, discussing the impact of tai-
loring models to individual users for enhancing the detection
performance.

4. We investigate the unsupervised biometric identification task in
PPG data to increase the reliability of personalized models.

5. We explore the impact of the dimensionality of the learned rep-
resentation on the performance of our anomaly detection frame-
work, demonstrating the robustness of representation learning
across a wide range of dimensionalities.
2

2. Proposed framework

An overview of the proposed anomaly detection framework is
shown in Fig. 1. In the first step, we focus on obtaining a representation
of the PPG data that captures the underlying structure of the data.
Recent research shows that the task of classifying the original data
and augmented transformed versions of the same data can outperform
AutoEncoders and contrastive learning methods in learning better
representation for the downstream task of interest [15]. Accordingly,
we learn the representation by distinguishing original data from aug-
mented transformed versions of the same data. This task is what we
refer to as ‘‘Signal Transformation Classification’’.

Given the original signal 𝑆(𝑙), where 𝑙 = (1, 2,… , 𝐿) and 𝐿 is the
length of the time series, the augmented transformations of the data
are described as:

– Time reversal: A time inverted version of the signal: 𝑆′(𝑙), where
𝑙 = (𝐿,𝐿 − 1,… , 1).

– Amplitude reversal: A amplitude inverted version of the signal: as
𝑆′(𝑙) = −𝑆(𝑙), where 𝑙 = (1, 2,… , 𝐿).

– Both Time and Amplitude reversal: We first perform the time rever-
sal as described and then perform the amplitude reversal to obtain
a time and amplitude inverted version of the signal: 𝑆′(𝑙) = −𝑆(𝑙),
where 𝑙 = (𝐿,𝐿 − 1,… , 1).

To train the representations, we use a CNN model to classify PPG
egments into four categories: Time reversal, Amplitude reversal, Both
ime and amplitude reversal, and the original signal. Given an unla-
eled PPG dataset 𝐷𝑈 =

{

𝐱𝑖
}𝑁𝑢
𝑖=1 where 𝐱𝑖 ∈ R1×𝑇 is a vector of length

and 𝑁𝑢 is the number of vectors (samples). 𝑦𝑖 ∈ {1, 2, 3, 4} is the class
abel for the 𝑖th vector, where 𝑦𝑖 = 1, 2, 3 represents the augmented data
btained by reversing the original PPG signal and 𝑦𝑖 = 4 represents the
riginal PPG signal. The CNN model consists of an encoder component
hat maps each input vector into a latent space representation 𝐡𝑖 =
𝜙(𝐱𝑖) where 𝐡𝑖 ∈ R1×𝑑 and 𝑑 < 𝑇 . After that, 𝐡𝑖 is fed into the classifier
omponent of the model to predict the class label �̂�𝑖 = 𝐶𝜃(𝐡𝑖). The model
s trained to minimize the cross-entropy loss between the predicted
lass label �̂�𝑖 and the true class label 𝑦𝑖. The final learned representation
s obtained by taking the latent space representation 𝐡𝑖 outputted by
he encoder component. This learned representation is then used in the
econd stage of our proposed framework for anomaly detection.

In the second step of our proposed framework, we use the learned
epresentation 𝐡𝑖 to detect anomalies. Specifically, we use three differ-
nt methods to detect whether an input signal is an anomaly: Multi-
ariate Normal distribution (MVN) [25], Isolation Forest (IF) [26],
nd PCA-Reconstruction [25]. For the MVN, the mean and covariance
atrix are estimated on normal training samples. Given a test sample
𝑡𝑒𝑠𝑡, we can then calculate the probability density function (PDF) of
he test sample using the fitted Gaussian distribution as:

(𝐡𝑡𝑒𝑠𝑡) =
1

(2𝝅)𝑑∕2|𝜮|

1∕2
exp

(

−1
2
(𝐡𝑡𝑒𝑠𝑡 − 𝝁)𝑇𝜮−1(𝐡𝑡𝑒𝑠𝑡 − 𝝁)

)

(1)

here 𝑑 is the dimension of the learned representation. It is expected
hat anomalous test samples have a lower probability compared to nor-
al samples. Therefore, these points can be detected if the probability

s below a set threshold.
For the Isolation Forest (IF) method, we first train an ensemble of

ecision trees on normal training samples. Given a test sample 𝐡𝑡𝑒𝑠𝑡,
the IF algorithm isolates the test sample from the others by recursively
splitting the data with randomly selected features and split values. The
number of splits, or the path length, required to isolate a sample is
an indication of its anomaly score. Anomalous samples are expected to
have shorter path lengths compared to normal samples. The anomaly
score of a test sample 𝐡𝑡𝑒𝑠𝑡 using the IF algorithm is calculated as:

−
𝐸[𝐿(𝐡𝑡𝑒𝑠𝑡)]

𝑐(𝑁) (2)
𝑠(𝐡𝑡𝑒𝑠𝑡) = 2
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Fig. 1. Proposed framework for anomaly detection using Representation Learning (RL). The framework consists of two steps: (1) A representation learning phase, where the model
(consisting of an encoder and classifier component) is trained to discriminate between augmented transformations and the original data. The weights of the encoder are then
frozen for the next step. (2) A anomaly detection phase, where the frozen encoder is used to extract features from the input data, which are then fed into an anomaly detector.
The scatter plot illustrates an example of the distribution of points in a 2-dimensional feature space. The anomaly detector separates the normal and anomalous samples with the
decision boundary (threshold) based on their anomaly scores.
where 𝐸[𝐿(𝐡𝑡𝑒𝑠𝑡)] is the average path length of the test sample over all
trees in the ensemble, 𝑐(𝑁) is the average path length of an unsuccessful
search in a Binary Search Tree with 𝑁 external nodes, and 𝑁 is the
number of samples in the training data. The anomaly score 𝑠(𝐡𝑡𝑒𝑠𝑡)
ranges from 0 to 1, with higher scores indicating a higher likelihood
of being anomalous. Anomalous test samples can be detected if the
anomaly score is above a set threshold.

The PCA-Reconstruction method is a technique for detecting anoma-
lies in high-dimensional data by reconstructing the original data from
its principal components and evaluating the reconstruction error. Given
a test sample 𝐡𝑡𝑒𝑠𝑡, the reconstruction error can be calculated as the
squared distance between the original sample and its reconstructed
version (𝐡𝑟𝑒𝑐𝑜𝑛) after mapping to a reduced PCA space. This is achieved
by projecting the test sample 𝐡𝑡𝑒𝑠𝑡 onto the orthogonal basis vectors
represented by the matrix describing the PCA mapping, 𝑊 , and then
transforming it back to the original space. The reconstruction error can
then be expressed as:

𝑒(𝐡𝑡𝑒𝑠𝑡) = ‖𝐡𝑡𝑒𝑠𝑡 − (𝑊𝑊 𝑇 )𝐡𝑟𝑒𝑐𝑜𝑛‖2 (3)

Note that anomalous test samples can be detected if the reconstruction
error is above a set threshold.

2.1. Definition of anomalies

We define anomalies in the context of two specific tasks: activity
movement detection and biometric identification.
3

2.1.1. Activity movement detection
In this particular setting, we train an anomaly detector on the

recorded data during a specific activity (considered as the ‘‘normal’’
activity) and evaluate it on the data, which includes another activity
(considered as an ‘‘anomalous’’ activity) in addition to the ‘‘normal’’
activity. We assume that the anomalous movement activity shows a
different pattern than the normal activity and should be distinguishable
from the ‘‘normal’’ movement activity. Accurately detecting movement
can have significant practical implications in various applications, such
as fitness health tracking, where identifying irregular patterns or devia-
tions from expected behavior is crucial. By focusing on such a complex
and practical problem, we can demonstrate the effectiveness and ro-
bustness of our proposed approach in handling real-world challenges
associated with PPG data, including inter-subject variability, noise, and
other factors affecting signal quality.

2.1.2. Biometric identification
In the context of biometric identification, we aim to identify an

individual (user) as an anomaly when compared to a given group
of people or another individual as the ‘‘intended’’ user(s). We train
the anomaly detector on the recorded data from the intended group
or individual during a specific activity and evaluate the anomaly de-
tector when presenting new data, which includes another individual
(considered as an ‘‘anomaly’’) during the same activity as the data
from the intended user(s). Identifying such anomalies can be crucial
in personalized health monitoring systems, where it is important to
distinguish between users for accurate and safe health monitoring and
assessments.
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3. Experimental setup

3.1. Datasets

We use two datasets in our experiments. The first one is the Pulse
Transit Time PPG (PTT-PPG) public dataset [27], a high-resolution and
time-synchronized dataset annotated with activity labels. It contains
waveform records from multi-wavelength sensors measuring PPGs, at-
tachment pressures, and temperatures. The recordings are from 22
healthy subjects (M = 22) performing different physical activities in
andom order. We selected Sitting and Walking activities for this study.

We use the green wavelength recorded PPG from the proximal phalanx
(base segment) of the left index finger palmar side (Frequency of
500 Hz).

The second dataset is the PPG-Dalia public dataset collected by Reiss
et al. [28] to perform PPG-based heart rate estimation. It has recordings
of 15 subjects (M = 15) performing different daily activities. We have
selected Sitting and Walking activities for this study. We removed data
from subject number 6 due to incomplete data recording. The signals
are recorded with a frequency of 64 Hz.

3.2. Data preprocessing

A band-pass 2nd order Butterworth filter is applied to the whole PPG
signal of each subject individually for both datasets, but with different
frequency ranges of 0.35–20 Hz for the PTT-PPG dataset and 0.1–10 Hz
for PPG-Dalia. To create different categories of signals, we used Time
reversal, Amplitude reversal, and both Time and Amplitude reversal
augmentations. All of the signals are then normalized to zero mean and
unit variance across the whole signal per subject. The final normalized
filtered signals are segmented into windows with a length of 8 s, while
two successive windows overlap by 7.5 s (this setting is common for
PPG data [28–30]). Since the PTT-PPG dataset frequency is 500 Hz, the
input windows are resampled using the Fourier method from a size of
4000 to a fixed size of 512, which allows for more efficient processing
during model training, and it is the same input window size as the
PPG-Dalia dataset.

3.3. Implementation

3.3.1. Representation learning
The hyperparameters and the architecture of the proposed deep

learning model are determined by systematically searching through
all possible combinations to obtain the best performance on the clas-
sification task using Leave-One-Subject-Out cross-validation (LOSO).
Eventually, we used a CNN architecture deep learning model consisting
of a 1D convolutional neural network layer with a series of five-layer
blocks followed by a fully connected layer and a final classification
layer. The layer blocks are composed of two 1D convolutional layers,
each followed by the Exponential Linear Unit (ELU) activation function
and, in the end, a MaxPooling layer. After the final layer block, there
is a fully connected layer with a size of 64, which is the learned
representation size, followed by the Rectified Linear Unit (ReLU) activa-
tion function. Finally, there is a classification layer (SoftMax activation
function) with a size of 4, corresponding to the four categories. The
final implemented CNN model details are available in Appendix.

The model is optimized using categorical cross-entropy as the loss
function. The Adam optimizer is used with a learning rate of 0.00001
and a decay rate of 0.0001 for the PTT-PGG dataset and a learning
rate of 0.0001 and a decay rate of 0.001 for the PPG-Dalia dataset. The
batch size is 64, and training runs for 400 epochs for both datasets. To
assess the randomness of the deep learning framework, each training
process for each test subject is repeated five times. To evaluate the
signal transformation classification performance, we use the Area under
4

the ROC curve (AUC-ROC) metric.
3.3.2. Anomaly detection
In our PCA-based anomaly detection approach, we optimize the

number of principal components by ensuring they cumulatively ac-
count for 99% of the data variance. The Isolation Forest model was
implemented with 100 base estimators in the ensemble. The number
of base estimators was chosen based on our preliminary experiments,
which showed good performance in this setting. The Multivariate Nor-
mal Distribution-based anomaly detector was implemented utilizing a
Gaussian Mixture Model with a single component. The parameters of
this distribution, namely the mean vector and the covariance matrix,
are learned directly from the data. In the evaluation phase, we assess
the performance of our anomaly detectors by calculating the AUC-ROC.

3.4. Anomaly detection evaluation scenarios

We consider two evaluation scenarios for anomaly detection tasks:
Generalization and Personalization.

3.4.1. Generalization scenario
In the generalization scenario, we aim to test the ability of the

anomaly detection model to generalize across different individuals. For
activity movement detection, shown in Fig. 2 (a), we train the model
using data from all subjects performing Sitting activity as the main
normal activity. This data is considered as ‘normal training samples’. In
the test phase, we introduce data from both a new activity, referred to
as the ‘anomalous activity’ (in this case, Walking), and the main activity
of a new subject (left-out) who was not part of the training data. We
repeat this process for each subject, treating them as the test set (left-
out subject), using the LOSO setting. We then calculate the mean and
standard deviation of the performance metrics across all test sets.

For biometric identification, shown in Fig. 2 (b), we train the model
on data from a group of subjects, who we refer to as the ‘intended
users’. This data forms our ‘normal training samples’. We set aside 20%
of the data from each subject for testing, using a 5-fold cross-validation
approach. During the testing phase, we introduce ‘anomalous data’
from a new subject who is not part of the training data. This subject
is referred to as the ‘left-out’ subject (user). To assess how well our
model can differentiate the new user from the intended users, we use
LOSO validation to treat each subject once as a ‘left-out’ user. We then
calculate the mean and standard deviation of the performance metrics
across all test sets.

3.4.2. Personalization scenario
In the personalization scenario, we aim to tailor the anomaly detec-

tion model to individual characteristics, both for movement detection
and biometric identification. For activity movement detection, shown
in Fig. 3 (a), we select one subject and train the model on data related to
the main activity, which is Sitting. This data forms our ‘normal training
samples’. We reserve 20% of this data for testing, using a 5-fold cross-
validation approach. During the testing phase, we introduce ‘anomalous
activity data’ from the same subject, in this case, Walking activity,
and we use 20% of this data using 5-fold cross-validation for testing.
Thereby, our test set includes 20% of ‘Walking activity’ data and 20%
of the ‘Sitting activity’ data from one selected subject. We repeat this
process for each subject. Finally, we calculate the mean performance
and standard deviation across all test sets.

For biometric identification, shown in Fig. 3 (b), we train the model
using data from a single selected subject, who we refer to as the ‘in-
tended user’. This data forms our ‘normal training samples’. We reserve
20% of this data for testing, using a 5-fold cross-validation method.
During the testing phase, we introduce ‘anomalous data’ from a new
subject who was not part of the training data, and we use 20% of its
data using 5-fold cross-validation for testing. We compare each subject
with the intended user in a pairwise manner. The average performance
of these comparisons is taken as the performance of the intended user.
We repeat this entire process for each individual, treating them as the
intended user each time. Finally, we calculate the mean performance

and standard deviation across all intended individuals.



Biomedical Signal Processing and Control 94 (2024) 106216R. Ghorbani et al.
Fig. 2. Overview of generalization scenario. (a) Generalization in movement detection task (b) Generalization in biometric identification task. Note that the distribution of the
anomalous and normal samples in training and test sets follows the same ratios as depicted in the figures.
Fig. 3. Overview of personalization scenario. (a) Personalization in movement detection task. (b) Personalization in biometric identification task. Note that the distribution of the
anomalous and normal samples in training and test sets follows the same ratios as depicted in the figures.
4. Results

4.1. Representation learning

The first step of the proposed framework is Representation Learning
(see Fig. 1). The overall performance of the signal transformation
classification task for both datasets is calculated across all test subjects.
Both datasets have a high mean AUC of 0.92±0.09 for the PTT-PPG and
0.93 ± 0.06 for the PPG-Dalia. These results indicate that the model is
able to generalize to new data (subject) and accurately classifies the
augmented and original PPG segments in both datasets.

4.2. Anomaly detection

4.2.1. Activity movement detection
The second step of the proposed framework is Anomaly Detec-

tion (see Fig. 1). Table 1 shows the results of movement detection
for both datasets. In the generalized scenario, representation learning
significantly improves the AUC performance for all three anomaly
detection methods, suggesting its effectiveness in detecting anomalies
in PPG data compared to the original data representation. For instance,
the results of all anomaly detectors with PTT-PPG reveal that the
AUC performance for anomaly detection barely reaches 0.5. However,
the performance is increased towards 0.9 when using the learned
representations.
5

Further, the original representation models demonstrate notable
instability, indicative of high inter-subject variability. For example,
the standard deviation in anomaly detectors without representation
learning is around 0.4. However, employing representation learning
substantially reduces this variability to below 0.1. These results un-
derscore the capability of representation learning to facilitate better
generalization across different individuals.

We also investigated the performance of the proposed methods
in a personalized setting (Table 1). In the personalized setting, all
methods show enhanced performance compared to the generalized
scenario, with a moderate reduction in variability among individual
performances. Notably, the integration of personalization with repre-
sentation learning yields the most significant improvements. Here, the
AUC performance approaches 1.0, and subject variability is markedly
decreased to below 0.05. This demonstrates that the combined use
of representation learning and personalization not only improves per-
formance but also ensures consistency across individuals, effectively
capturing subject-specific characteristics of PPG data.

4.2.2. Biometric identification
In light of the improved performance achieved through personaliza-

tion in activity movement detection, biometric identification ensures
that the detected anomalies are specific to the intended user. Ta-
ble 2 shows the results of biometric identification in both generalized
and personalized scenarios during Sitting Activity. In the generalized
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Table 1
Mean test AUC-ROC performance of movement detection in the generalized and person-
alized scenario. The ‘RL-’ prefix designates anomaly detectors that employ learned
representations from Representation Learning (RL) instead of the original data
representation.
Anomaly Detectors Movement detection AUC-ROC performance

PTT-PPG dataset Dalia dataset

Generalized Personalized Generalized Personalized

MVN 0.40 ± 0.39 0.74 ± 0.29 0.78 ± 0.16 0.93 ± 0.08
RL-MVN 0.92 ± 0.09 0.98 ± 0.03 0.93 ± 0.10 0.97 ± 0.03

IF 0.28 ± 0.34 0.37 ± 0.31 0.56 ± 0.14 0.87 ± 0.15
RL-IF 0.91 ± 0.11 0.97 ± 0.05 0.88 ± 0.13 0.93 ± 0.03

PCA 0.44 ± 0.37 0.81 ± 0.25 0.76 ± 0.19 0.94 ± 0.07
RL-PCA 0.91 ± 0.09 0.97 ± 0.03 0.90 ± 0.18 0.95 ± 0.03

Table 2
Mean test AUC-ROC performance of biometric identification in the generalized and per-
sonalized scenarios. Results are based on Sitting activity. The ‘RL-’ prefix designates
anomaly detectors that employ learned representations from Representation Learning
(RL) instead of the original data representation.
Anomaly Detectors Biometric identification AUC-ROC performance

PTT-PPG dataset Dalia dataset

Generalized Personalized Generalized Personalized

MVN 0.40 ± 0.26 0.76 ± 0.22 0.43 ± 0.26 0.56 ± 0.20
RL-MVN 0.60 ± 0.22 0.86 ± 0.08 0.55 ± 0.17 0.78 ± 0.09

IF 0.45 ± 0.36 0.58 ± 0.29 0.45 ± 0.29 0.56 ± 0.24
RL-IF 0.61 ± 0.24 0.86 ± 0.08 0.53 ± 0.18 0.74 ± 0.09

PCA 0.39 ± 0.34 0.67 ± 0.24 0.43 ± 0.26 0.55 ± 0.22
RL-PCA 0.59 ± 0.20 0.84 ± 0.09 0.55 ± 0.16 0.78 ± 0.09

scenario, it can be observed that using representation learning is ef-
fective, and it improves the performance of all anomaly detectors
across both datasets. While representation learning has been successful
in improving performance, it still may not be perfect. This can be
attributed to the inter-subject variability present in the data, as the
model must distinguish between multiple people considered normal,
which is challenging.

Considering the personalized scenario results, the performance of
all methods is significantly higher compared to the generalized sce-
nario, with substantially reduced variability: while in the generalized
scenario, the standard deviations of the results are often around 0.2, in
the personalized scenario, it is reduced to below 0.1. Moreover, repre-
sentation learning continues to improve performance in the personal-
ized setting, demonstrating the effectiveness of learned representations.
These results indicate that minimizing inter-subject variability allows
the model to better identify the anomalous person as it is easier to
detect the anomalous individual from only one individual compared
to a group.

4.3. Robustness of representation dimensionality

One key aspect of our anomaly detection framework is the dimen-
sionality of the learned representation, denoted as 𝐡𝑖. Fig. 4 illustrates
the mean AUC-ROC performance of anomaly detectors with varying 𝐡𝑖
imensions ranging from 2 to 512 for both datasets in generalized and
ersonalized scenarios.

As the 𝐡𝑖 dimensionality increases, the AUC also increases up to
certain point. This trend suggests that as the dimensionality rises,

he representation captures more valuable information for anomaly
etection. However, once we reach a certain dimensionality, further
ncreases do not provide additional benefits, and the performance is
table.

In both scenarios, the learned representation improves the AUC
ompared to the original signal. Results show that using learned repre-
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entation leads to better performance when the dimensionality of 𝐡𝑖
is reduced to extremely low levels. For instance, at the low dimen-
sionality of 2 in PTT-PPG and 8 in the Dalia datasets, we can see the
improvements in using learned representation over the original signal.
Even when the dimensionality of the learned representation is the
same as the original signal’s dimensionality (512), it outperforms the
original signal. This robust performance of the representation learning
approach highlights its effectiveness in capturing the essential structure
and patterns of the data and learning useful features across a wide
range of low and high dimensionalities.

Choosing the right dimensionality depends on a balance between
model performance and computational efficiency. Based on the results,
the dimensionality of 64 for the PTT-PPG and 256 for the Dalia dataset
seems to offer an ideal balance between computational efficiency and
performance.

5. Discussion and conclusion

This paper proposes a framework for anomaly detection in PPG
data, consisting of two stages: representation learning and anomaly
detection (Activity Movement Detection and Biometric Identification).
We tested the ability of the proposed framework in generalized and
personalized scenarios. Our research demonstrates that through rep-
resentation learning and person-specific models, we can effectively
address the key challenges in analyzing PPG signals, such as inter-
subject variability, avoiding the influence of factors like color and skin
thickness, weight, bone structure, etc. This significantly enhances the
accuracy of anomaly detection, potentially allowing for the detection
of rare and subtle anomalous patterns.

The results from the activity movement detection highlight the
effectiveness of representation learning in improving AUC performance
and decreasing inter-subject variability. However, it is important to
note the variations in the extent of variability reduction between
datasets. For instance, while representation learning significantly de-
creases variability in the PTT-PPG dataset, the reduction in the Dalia
dataset is less pronounced. This difference could be attributed to vari-
ous factors, such as the inherent complexities of each dataset, differ-
ences in signal quality, sensor types, environmental conditions dur-
ing data collection, and participant demographics. Despite these chal-
lenges, representation learning not only consistently improved perfor-
mance across datasets but also effectively reduced intra-subject vari-
ability. However, for further improvements, personalization combined
with representation learning emerged as a critical factor. By customiz-
ing models to individuals, we achieve more consistent results and
effectively capture subject-specific characteristics. These findings un-
derscore the potential for further advancements in personalization to
address the challenges in variability, especially in complex datasets and
in building reliable and accurate PPG-based health monitoring systems.
Note that the original representation AUC results, which are lower
than 0.5, may indicate that flipping the label is actually beneficial. For
example, it can be seen in Table 1 that an AUC of 0.28 in the general-
ized scenario from the PTT-PPG dataset would significantly improve to
0.72 by flipping, but it still remains worse than the 0.91 obtained by
the RL representation. These results suggest that our approach may be
beneficial in real-world applications.

In addition to the findings from the Activity Movement Detection
task, our results in Biometric Identification further emphasize the key
role of representation learning and personalization. Similar to the
previous task, representation learning significantly enhanced the per-
formance in both generalized and personalized scenarios for biometric
identification. Using personalization along with representation learn-
ing shows markedly higher performance and reduced variability. This
improvement is attributed to the model’s focus on individual character-
istics. The consistency in these findings across both tasks underscores
the efficacy of these methods separately and also in combination.

To further validate the effectiveness of our approach, we conducted

a quantitative comparison with existing studies in PPG data for similar
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Fig. 4. Overview of movement detection performance in the generalized and personalized scenarios for varying dimensions of the learned representation. (a) the PTT-PPG dataset and (b)
the Dalia dataset. The crosses indicate the performance obtained with the original representation.
tasks and scenarios. For instance, in movement detection, a study [31],
employing fully supervised learning, reported an AUC of 0.89 in person-
alized and 0.78 in generalized scenarios on the Dalia dataset (although
in a more complex multi-class classification setting). Our unsupervised
approach with representation learning achieved AUCs of up to 0.93
in the generalized scenario and 0.97 in the personalized scenario,
suggesting higher overall performance. Similarly, for biometric iden-
tification, a supervised study [32] reported an AUC of 0.72 ± 0.14
in personalized scenarios (on a different dataset). Our framework,
however, achieved a higher AUC and lower inter-subject variability,
with an AUC of 0.86 ± 0.08. Although these numbers cannot be fairly
ompared, the results underscore the potential of unsupervised learning
ethods in PPG anomaly detection, particularly when combined with

epresentation learning and personalization.
Analyzing the robustness of representation dimensionality under-

cores its significance in anomaly detection frameworks. The perfor-
ance of anomaly detection in relation to the dimensionality of the

earned representation follows a pattern of initial gains followed by
plateau. This pattern suggests that while increasing dimensionality

an enhance performance, there is a threshold beyond which additional
ncreases do not yield further benefits. Interestingly, at the same di-
ensionality as the original signal, representation learning performs

etter. This suggests that learned representations can capture the (non-
inear) underlying patterns or structures in the data that may not be
mmediately apparent in the original signal. Furthermore, the fact that
he learned representation can outperform the original signal even at
xtremely low dimensionalities signifies that representation learning
an effectively extract and retain the most critical information from the
riginal signal, thereby enhancing anomaly detection.

In all experiments of our framework, the performance difference
etween anomaly detection methods was relatively small. Therefore,
e cannot draw a clear conclusion about which method performs better

han the others overall. It seems that the crucial point in anomaly
etection is not the method, but it is the representation and the
ersonalization.

Despite the promising results in using representation learning and
ersonalization, it is important to note that further research is needed
o evaluate the effectiveness of RL on a wider range of different types
f real-world anomalies in PPG. This is particularly important for prac-
ical applications, such as using smartwatches and self-monitoring for
nomaly detection in healthcare, where the complexity and variability
f real-world anomalies may be high. Exploring different algorithms or
echniques to enhance the learned representations of PPG data can also
e a future direction to further improve anomaly detection performance
nd decrease inter-subject variability.
7

In conclusion, our proposed framework provides a promising ap-
proach for different types of anomaly detection in PPG data. Combi-
nation of representation learning and personalization provides a more
effective approach for developing reliable, robust, and accurate health
monitoring systems.
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Appendix. Deep learning model architecture for representation
learning task

The Deep Learning framework is developed and evaluated in Python
(Version 3.8.8) using Keras API. It should be noted that for the param-
eters that are not mentioned in the implementation details, the Keras
default settings are used. The detailed architecture and outline of the
implemented model for the representation learning task is shown in
Table A.1 and Fig. A.1.
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Table A.1
The detailed architecture of implemented encoder-classifier deep learning model..
Layer (Type) Output shape Parameters #

Encoder:
Input layer (None, 512, 1) 0
Conv1D layer (kernel-size = 64) (None, 449, 32) 2080
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 449, 32) 65 568
Activation layer (None, 449, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 449, 32) 65 568
Activation layer (None, 449, 32) 0
Max Pooling1D layer (None, 224, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 224, 32) 65 568
Activation layer (None, 224, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 224, 32) 65 568
Activation layer (None, 224, 32) 0
Max Pooling1D layer (None, 112, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 112, 32) 65 568
Activation layer (None, 112, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 112, 32) 65 568
Activation layer (None, 112, 32) 0
Max Pooling1D layer (None, 56, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 56, 32) 65 568
Activation layer (None, 56, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 56, 32) 65 568
Activation layer (None, 56, 32) 0
Max Pooling1D layer (None, 28, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 28, 32) 65 568
Activation layer (None, 28, 32) 0
Conv1D layer (kernel-size = 64, padding = ‘‘same’’) (None, 28, 32) 65 568
Activation layer (None, 28, 32) 0
Max Pooling1D layer (None, 14, 32) 0
Flatten (None, 448) 0
Fully connected layer (None, 64) 28 736

Classifier:
Fully connected output layer - (Activation = ‘‘softmax’’) (None, 4) 260

Total Params: 686,756
Trainable Params: 686,756 & Non-Trainable Params: 0
Fig. A.1. Outline of the implemented encoder-classifier deep learning model.
8
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