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Abstract
We introduce a successive approximations method to study one fractional periodic boundary
value problem of the Hilfer-Prabhakar type. The problem is associated to the corresponding
Cauchy problem, whose solution depends on an unknown initial value. To find this value we
numerically solve the so-called ’determining system’ of algebraic or transcendental equations.
As a result, we determine an approximate solution of the studied problem, written in a closed
form. Finally, we evaluate efficiency of our method on a nonlinear numerical example.

Keywords Hilfer–Prabhakar fractional derivative · Periodic boundary conditions ·
Successive approximations · Determining system · Cauchy problem

1 Introduction

Differential equations of fractional order have recently proved to be valuable tools inmodeling
of complex phenomena in various fields of science and engineering. Indeed, we can find
numerous applications in viscoelasticity, electrochemistry, porous media, electromagnetic
and stochastic processes, finance, inverse problems etc. Diethelm and Freed (1999); Gaul
et al. (1991); Glockle and Nonnenmacher (1995); Hilfer (2000); Mainardi (1997); Metzler
et al. (1995); Garra et al. (2014); Al-Abedeen (1976); Javed and Malik (2023). But these
applicationswould not have been possiblewithout breakthrough contributions to fundamental
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study of fractional differential equations (fDEs), published in monographs of Miller and
Ross (1993); Oldham and Spanier (1974); Podlubny (1999); Kilbas et al. (2006); Samko
et al. (1993); Sandev and Tomovski (2019); Mainardi (2022); Zhou (2014); Gorenflo et al.
(2014) and the references therein. In these works authors obtained new results in analysis of
existence of solutions to nonlinear fDEs using techniques of nonlinear analysis, such as the
fixed-point theorems, Leray-Schauder theory, the upper and lower solutionmethod, Adomian
decomposition method, etc. (see also discussions in Delbosco and Rodino (1996); Li et al.
(2010, ?)). However, these results are still not complete, and there is a great deal of work
which needs to be done.
A particular interest of experts in fractional dynamical systems is paid to study of the frac-
tional order initial value problems (IVPs), which in contrary to more traditional integer order
systems depend on the type of a fractional operator we choose. Most of the known results
in this direction involve solvability analysis of fDEs with the Riemann–Liouvile operator
(Dμ

a+y)(x) on some finite interval [a, b], written as

(Dμ
a+y)(x) = f [x, y(x)] (1)

and subject to initial conditions of the form:

(Dμ−k
a+ y)(a+) = bk, bk ∈ C, k = 1, 2, 3, .., n, (2)

where n = �(μ) + 1, μ /∈ N and μ = n, if μ ∈ N. Note, that when 0 < �(μ) < 1
conditions (2) reduce to

(I 1−μ
a+ y)(a+) = b.

Such Cauchy type problems (1), (2) were studied by Pitcher and Sewell (1938), (Al-Bassam
(1965), Theorems 2, 4, 5, 6), Al-Abedeen (1976); Al-Abedeen and Arora (1978); Arora and
Alshamani (1980); Tazali (1982); Tazali and Karim (1994); El-Sayed (1988, 1992, 1993,
1996); El-Sayed and Ibrahim (1995); Hadid (1995); Lakshmikantham and Vatsala (2008a,
2007, 2008b) etc.. To our best knowledge most results, that were obtained up to now, concern
analysis not of the IVPs directly, but of the corresponding Volterra integral equations. In
some papers authors considered only particular cases of IVPs that underwent their robust
qualitative analysis. Moreover, lately also more generalized types of fractional derivatives
were introduced, among which we would like to name the Hilfer and Prabhakar operators
and their regularized sub-types (see discussions in Prabhakar (1971); Hilfer (2000, 2008)).
One of the known results for such kinds of dynamical systems was obtained by Tomovski in
Tomovski (2012). He considered an IVP for nonlinear fDEs with Hilfer differential operator
and proved existence and uniqueness of solution to this problem in the space L[a, b] of
Lebesgue integrable functions. In a different paper, by Furati et al. (2012), authors showed
existence and uniqueness of global solutions of an IVP for a class of nonlinear fDEs involving
Hilfer fractional derivative in the space of weighted continuous functions.
Another contribution to the theory of fDEs is analysis of and approximation theory for non-
linear fractional boundary value problems (fBVPs). Here we would like to mention papers
by Fečkan, Marynets, Pantova and Wang (see Fečkan and Marynets (2023, 2018); Fečkan
et al. (2019); Marynets and Pantova (2023, 2022)). Authors associate the studied problems
with the corresponding Cauchy problems and introduce successive iterations techniques
for approximation of their solutions. Moreover, they demonstrate efficiency of the devel-
oped methods on numerical examples that generalize mathematical models of the Antarctic
Circumpolar Current, preditor-prey models with prey refuge and development of GDPs of
multiple economies.
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Motivated by the research above, we present our novel existence and uniqueness results in
analysis of an even more complex fundamental problem – periodic BVP with regularized
Hilfer-Prabhakar (HP) differential operator. We give two significant results: one of them is
based on the Picard theorem (Theorem 2), and another one contains remarks about nonlinear
higher order fractional IVP of the HP type with n-initial conditions (Proposition 7). Finally,
we present a numerical example illustrating efficiency of the suggested iteration technique
by applying it to a nonlinear periodic BVP. Note, that recent results of Javed and Malik in
Javed and Malik (2023) show applicability of these types of operators in analysis of inverse
problems, arising in image processing.

2 Preliminaries

In this section we give definitions of the main fractional differential and integral operators
that are used throughout the paper.

Definition 1 Prabhakar (1971) Let ρ,μ, γ ∈ C, Re(ρ), Re(μ) > 0. The three-parameter
Mittag-Leffer (ML) function is a function, defined by a power series of the form

Eγ
ρ,μ(x) =

∞∑

k=0

�(γ + k)

�(γ )�(ρk + μ)

xk

k! , (3)

where �(·) is the Gamma function.

Definition 2 Prabhakar (1971) Let f ∈ L1[0, T ], 0 < t < T ≤ ∞. The Prabhakar integral
is an operator, defined by a relation

E
γ
ρ,μ,ω,0+ f (t) =

∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s)ds = (eγ
ρ,μ,ω ∗ f )(t), (4)

where ρ,μ, ω, γ ∈ C, Re(ρ), Re(μ) > 0 and

eγ
ρ,μ,ω(t) = tμ−1Eγ

ρ,μ(ωtρ).

Definition 3 Garra et al. (2014) Let f ∈ L1[0, T ], 0 < t < T ≤ ∞ and f ∗ e−γ
ρ,μ,ω(·) ∈

W m,1[0, T ]. The Prabhakar derivative is an integral operator, defined as

(P Dγ,μ

ρ,ω,0+ f )(t) = dm

dtm

(
E

−γ

ρ,(m−μ),ω,0+ f
)

(t). (5)

For n ∈ N, we denote by ACn[a, b] a space of all real-valued functions with (n − 1)
continuous derivatives on [a, b], such that f (n−1)(t) ∈ AC[a, b], where AC[a, b] is a space
of real-valued functions f (x) which are absolutely continuous on [a, b].
Definition 4 Garra et al. (2014); Tomovski et al. (2020) Let 0 < ν ≤ 1, n−1 < μ ≤ n, n ∈
N, ω, γ ∈ C, ρ > 0 and let f ∈ L1[0, b], f ∗ e−γ

ρ,μ,ω(·) ∈ AC[0, b]. The generalized HP
derivative is defined by

(D
γ,μ,ν

ρ,ω,0+ f )(t) =
(
E

−γ ν

ρ,ν(n−μ),ω,0+
dn

dtn

(
E

−γ (1−ν)

ρ,(1−ν)(n−μ),ω,0+ f
))

(t), (6)

where (E0
ρ,0,ω,0+ f )(t) = f . In particular, for 0 < ν ≤ 1, 0 < μ ≤ 1,

(D
γ,μ,ν

ρ,ω,0+ f )(t) =
(
E

−γ ν

ρ,ν(1−μ),ω,0+
d

dt

(
E

−γ (1−ν)

ρ,(1−ν)(1−μ),ω,0+ f
))

(t). (7)

123



  130 Page 4 of 20 K. Marynets, Ž. Tomovski

A special case for n = 1 of this definition, was introduced and considered by Garra et al.
(2014). Note, that (6) reduces to the generalized Hilfer derivative for γ = 0, defined byHilfer
in Hilfer (2008).

Definition 5 Garra et al. (2014) For 0 < ν ≤ 1, n − 1 < μ≤ n and n ∈ N, the regularized
HP derivative of a function f ∈ ACn[0, b] is given by a relation:

(C Dγ,μ

ρ,ω,0+ f )(t) =
(
E

−γ ν

ρ,ν(n−μ),ω,0+E
−γ (1−ν)

ρ,ν(n−μ),ω,0+
dn

dtn
f

)
(t)

=
(
E

−γ

ρ,ν(n−μ),ω,0+
dn

dtn
f

)
(t).

(8)

In particular,

(C Dγ,μ

ρ,ω,0+ f )(t) =
(
E

−γ ν

ρ,ν(1−μ),ω,0+E
−γ (1−ν)

ρ,(1−ν)(1−μ),ω,0+
d
dt

f

)
(t) =

(
E

−γ

ρ,1−μ,ω,0+
d
dt

f

)
(t),

(9)

that for μ ∈ (0, 1) can be written as follows:

C Dγ,μ

ρ,ω,0+ f (t) = D
γ,μ,ν

ρ,ω,0+
(

f (t) − f (0+)
)
. (10)

In addition, by Definition 7 in Polito and Tomovski (2016) we get a relation between the
HP derivative and its regularized version that reads:

(P Dγ
ρ,μ,ω,0+ f )(t) = ( C Dγ

ρ,μ,ω,0+ f )(t) +
n−1∑

k=0

tk−μE−γ

ρ,k−μ+1(ωtρ) f (k)(0+).

Consider a Cauchy problem

C Dγ,μ

ρ,ω,0+ x(t) = g(t), t ∈ [0, T ], μ ∈ (0, 1), (11)

x(0) = x0, (12)

where C Dγ,μ

ρ,ω,0+ is the regularized HP derivative (8), x ∗ e−γ (1−ν)

ρ,(1−ν)(1−μ),ω(·) ∈ AC1[0, T ] and
g(t) is a continuous on [0, T ] function.

Then the following proposition holds.

Proposition 1 The exact solution to the Cauchy problem (11), (12) is given by

x(t) = (T x)(t) := x0 + (E
γ

ρ,μ,ω,0+ g)(t), (13)

where T is an inverse operator to the regularized HP fractional differential operator (8).

Proof By a semigroup property for the Prabhakar integral (4) and using equality (9), we get:

(C Dγ,μ

ρ,ω,0+ x)(t) =
(
E

−γ

ρ,1−μ,ω,0+
d

dt
x

)
(t) = g(t).

Applying this relation to the left and right hand-sides of equation (11) we derive that
(
E

γ

ρ,μ−1,ω,0+

(
E

−γ

ρ,1−μ,ω,0+
d

dt
x

))
(t) = (E

γ

ρ,μ−1,ω,0+ g)(t),

dx

dt
= (E

γ

ρ,μ−1,ω,0+ g)(t) =
∫ t

0
(t − s)μ−2Eγ

ρ,μ−1[ω(t − s)ρ]g(s)ds,
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x(t) = x(0) +
∫ t

0

∫ τ

0
(τ − s)μ−2Eγ

ρ,μ−1[ω(τ − s)ρ]g(s)dsdτ.

By writing the repeated integral in the last equality as a single integral we obtain that

x(t) = x(0) +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ]g(s)ds. (14)

This finishes the proof. ��
Definition 6 For any non-negative vector β ∈ R

n of the form

β := T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]M, (15)

under a componentwise β−neighbourhood of a point z0 ∈ R
n we understand a collection of

points defined as

B(z, β) := {
z0 ∈ R

n : |z0 − z| ≤ β
}
, (16)

where M ∈ R
n is a given constant vector with non-negative entries.

Definition 7 For a given bounded connected set D0 ⊂ R
n , we introduce its componentwise

β−neighborhood by

D := B(D0, β). (17)

Definition 8 For a set D ⊂ R
n , closed interval [a, b] ⊂ R, Caratheodory function

f : [a, b] × D → R
n and an n–dimensional square matrix K with non-negative entries, we

write

f ∈ Lip(K , D) (18)

if the inequality

| f (t, u) − f (t, v)| ≤ K |u − v| (19)

holds, for all {u, v} ⊂ D and a.e. t ∈ [a, b] .

3 Problem setting

In this paper we study a periodic BVP for a system of fDEs

C Dγ,μ

ρ,ω,0+ x(t) = f (t, x(t)), t ∈ [0, T ], x, f ∈ R
n, μ ∈ (0, 1), (20)

x(0) = x(T ), (21)

where C Dγ,μ
ρ,ω,0+ is the regularised HP differential operator, defined by (9), (10),

x ∗ e−γ
ρ,μ,ω(·) ∈ AC1[0, T ] and x : [0, T ] → D, with D ⊂ R

n being a closed and bounded
domain.

Let us perturb differential equation (20) by a constant vector 	:

C Dγ,μ

ρ,ω,0+ x(t) = f (t, x(t)) + 	, (22)

and consider it together with initial condition (12).

123



  130 Page 6 of 20 K. Marynets, Ž. Tomovski

From Proposition 1 we know that the Cauchy problem (22), (12) can be written in an
equivalent integral form as follows:

x(t) = x0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, x(s))ds + 	tμEγ
ρ,μ+1[ωtρ]. (23)

In order to find the perturbation term 	 we enforce x(t) in (23) to also satisfy periodic
constraints (21). Simple calculations show that

x(0) = x0,

x(T ) = x0 + ∫ T
0 (T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(s))ds + 	T μEγ
ρ,μ+1[ωT ρ],

and thus,
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(s))ds + 	T μEγ
ρ,μ+1[ωT ρ] = 0.

Using the last equality as an equation with respect to the unknown 	, we can find its
explicit form that reads

	 = −
∫ T
0 (T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(s))ds

T μEγ
ρ,μ+1[ωT ρ]

= − 1

T μEγ
ρ,μ+1[ωT ρ]

(
f ∗ e−γ

ρ,μ,ω

)
(T ).

Thus, an exact solution of the perturbed differential equation (22) under initial and periodic
boundary conditions (12), (21) is given by

x(t) = x0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, x(s))ds

−θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(s))ds, (24)

where

θ(t) =
∫ t
0 (t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ]ds
∫ T
0 (T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ]ds
=

(
t

T

)μ Eγ
ρ,μ+1[ωtρ]

Eγ
ρ,μ+1[ωT ρ] ≤ 1. (25)

Remark 1 There are two questions that arise:

(i) How to find the exact solution (24), if function f also depends on x?
(ii) What is the relation between the original BVP (20), (21) and the perturbed Cauchy

problem (22), (12).

In the following sections we will address both of these questions simultaneously.

4 Numerical-analytic approximations

Let us connect with the periodic BVP (20), (21) a parametrized sequence of functions
{xm(t, x0)} defined by a recursive relation:

xm(t, x0) = x0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, xm−1(t, x0))ds

123
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−θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, xm−1(t, x0))ds, m ∈ N, (26)

where t ∈ [0, T ], θ(t) is given by (25) and

x0(t, x0) = x0 (27)

is taken as a zeroth approximation, with x0 being an unknown parameter.
Note, that sequence (26), (27) is constructed in such away that it satisfies periodic boundary

conditions (21) beforehand, and it is of the form (24).

4.1 Convergence result

For the sequence of functions (26), (27) the following convergence result holds.

Theorem 2 Assume that

(i) there exists a non-negative vector β, satisfying inequality (16);
(ii) function f : G f → R

n satisfies Caratheodory and Lipschitz conditions f ∈ Lip(K , D)

in the domain D of the form (17) with matrix K ;
(iii) for a spectral radius of matrix

Q = T μEγ
ρ,μ+1[ωT ρ]
22μ−1 K (28)

an estimate

r(Q) < 1 (29)

holds.

Then, for all fixed x0 ∈ D0:

1. Functions of the sequence (26) are absolutely continuous for t ∈ [0, T ] , have values in
the domain D and satisfy periodic boundary conditions

xm(0, x0) = xm(T , x0).

2. Sequence of functions (26) converges uniformly for t ∈ [0, T ] as m → ∞ to the limit
function

x∞ (t, x0) = lim
m→∞xm(t, x0). (30)

3. The limit function satisfies initial condition

x∞ (0, x0) = x0 (31)

and periodic boundary conditions

x∞(0, x0) = x∞(T , x0).

4. Function x∞ (·, x0) is a unique absolutely continuous solution of the integral equation

x(t) = x0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, x(s))ds

−θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(s))ds, (32)

123
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where θ(t) is given by (25). In other words, x∞ (·, x0) satisfies the Cauchy problem for
a modified system of fDEs:

C Dγ,μ

ρ,ω,0+ x(t) = f (t, x(t)) + tμEγ
ρ,μ+1[ωtρ]	(x0), (33)

x (0) = x0, (34)

where 	 : D0 × � → R
n is a mapping given by formula

	(x0) := − 1

T μEγ
ρ,μ+1[ωT ρ]

∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(s))ds

= − 1

T μEγ
ρ,μ+1[ωT ρ]

(
f ∗ e−γ

ρ,μ,ω

)
(T ).

(35)

5. The following error estimate holds:

|x∞ (t, x0) − xm (t, x0)| ≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]Qm(In − Q)−1M, (36)

where Q and Eγ
ρ,μ+1[·] are given by (28) and (3) respectively, and M is such that | f (t, x)| ≤

M, for all (t, x) ∈ G f .

In order to prove Theorem 2 we first need to show some auxiliary results.

Lemma 3 Let f ∗ e−γ
ρ,μ,ω(·) ∈ AC1[0, T ]. Then for all t ∈ [0, T ] the following estimate is

true:
∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s)ds − θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s)ds

∣∣∣∣
≤ α1(t) max

t∈[a,b] | f (t)|,
(37)

where θ(t) is defined by (25) and

α1(t) = 2θ(t)(T − t)μEγ
ρ,μ+1[ω(T − t)ρ]. (38)

Proof It is obvious that
∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ ] f (s)ds − θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ] f (s)ds

∣∣∣∣

=
∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ ] f (s)ds − θ(t)
∫ t

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ] f (s)ds

− θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ] f (s)ds

∣∣∣∣

≤
∫ t

0

∣∣∣∣(t − s)μ−1Eγ
ρ,μ[ω(t − s)ρ ] − θ(t)(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ]
∣∣∣∣| f (s)|ds

+ θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ]| f (s)|ds

≤ 2θ(t)(T − t)μEγ
ρ,μ+1[ω(T − t)ρ ] max

t∈[0,T ] | f (t)| = α1(t) max
t∈[0,T ] | f (t)|.

This finishes the proof. ��
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Lemma 4 Let {αm(t)}m∈N be a sequence of continuous functions at the interval [0, T ], given
by

αm+1(t) :=
∫ t

0

{
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ ] − θ(t)(T − s)μ−1Eγ
ρ,μ[ω(T − s)ρ ]} αm(s)ds

+ θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ]αm(s)ds, m ∈ N0,

(39)

where α0(t) = 1 and α1(t) is defined by formula (38). Then the following estimate holds:

αm+1(t) ≤ T (m+1)μ

2(m+1)(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])m+1, (40)

for m ∈ N0 and ρ > 0.

Proof By setting in (39) m = 0 and using the fact that

α1(t) = 2θ(t)(T − t)μEγ
ρ,μ+1[ω(T − t)ρ]

= 2tμ
(
1 − t

T

)μ Eγ
ρ,μ+1[ωtρ]

Eγ
ρ,μ+1[ωT ρ] Eγ

ρ,μ+1[ω(T − t)ρ],

we get the following estimate:

α1(t) = 2tμ
(
1 − t

T

)μ Eγ
ρ,μ+1[ω(t)ρ ]

Eγ
ρ,μ+1[ω(T )ρ ] Eγ

ρ,μ+1[ω(T − t)ρ]

= 2T μ
( t

T

)μ (
1 − t

T

)μ Eγ
ρ,μ+1[ω(t)ρ ]

Eγ
ρ,μ+1[ω(T )ρ ] Eγ

ρ,μ+1[ω(T − t)ρ]
≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ], (41)

where we used an elementary inequality:

ab ≤ (a + b)2

4
.

Next for m = 1 from the sequence (39) and taking into account inequality (41) we obtain:

α2(t) =
∫ t

0

{
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] − θ(t)(T − s)μ−1Eγ
ρ,μ[ω(T − s)ρ]} α1(s)ds

+θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ]α1(s)ds

≤ 2θ(t)(T − t)μEγ
ρ,μ+1[ω(T − t)ρ] T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]

≤ T 2μ

22(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])2. (42)

Now we assume that for m = (n − 1) inequality (40) holds and takes the form:

αn(t) = T nμ

2n(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])n . (43)

And finally we prove (40) for m = n:

αn+1(t) =
∫ t

0

{
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] − θ(t)(T − s)μ−1Eγ
ρ,μ[ω(T − s)ρ]} αn(s)ds
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+θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ]αn(s)ds

≤
(∫ t

0

{
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] − θ(t)(T − s)μ−1Eγ
ρ,μ[ω(T − s)ρ]} ds

+θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ]ds

)
T nμ

2n(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])n

= α1(t)
T nμ

2n(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])n ≤ T (n+1)μ

2(n+1)(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])n+1. (44)

The last inequality coincides with (40) and thus, the proof is completed. ��

Proof of Theorem 2. Statement 1 of the theorem follows by direct substitution of the sequence
(26) into the periodic boundary conditions (21).

Next we show that, independently from the number of iterations, all functions xm of the
sequence (26) will remain in the domain D of their definition. To prove this we use the
mathematical induction method.

Indeed, for m = 1 we get an inequality:

|x1(t, x0) − x0(t, x0)|
=

∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ ] f (s, x0)ds − θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ] f (s, x0)ds

∣∣∣∣

≤ α1(t)| f (t, x0)| ≤ α1(t)M ≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ ]M := β, (45)

where M := max
(t,x)∈G f

| f (t, x)|.
Next, for m = 2 the following estimate holds:

|x2(t, x0) − x0(t, x0)|
=

∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, x1(s, x0))ds

− θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x1(s, x0))ds

∣∣∣∣

≤ α1(t)M ≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]M = β.

Finally, assume that for (m − 1):

|xm−1(t, x0) − x0(t, x0)| ≤ α1(t)M ≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]M,

and let us prove it for a general m:

|xm(t, x0) − x0(t, x0)|
=

∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, xm−1(s, x0))ds

− θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, xm−1(s, x0))ds

∣∣∣∣

≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]M = β.
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Indeed every function xm(t, x0) of the sequence (26) remains in the domain D for all
m ∈ N.

Let us now estimate differences of the form |xm+1(·, x0)− xm(·, x0)|. For m = 0 we have
already obtained the inequality

|x1(t, x0) − x0(t, x0)| ≤ α1(t)M ≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]M .

Then for m = 1 it is easy to derive that

|x2(t, x0) − x1(t, x0)| =
∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ ] { f (s, x1(s, x0)) − f (s, x0)} ds

− θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ ] { f (s, x1(s, x0)) − f (s, x0)} ds

∣∣∣∣

≤ Kα2(t)M ≤ T 2μ

22(2μ−1)
(Eγ

ρ,μ+1[ωT ρ ])2K M .

Under assumption that for (m − 1) an estimate

|xm(t, x0) − xm−1(t, x0)| ≤ T mμ

2m(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])m K m−1M

holds, we prove it for m. So we obtain the following result:

|xm+1(t, x0) − xm(t, x0)|
=

∣∣∣∣
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ]{ f (s, xm(s, x0)) − f (s, xm−1(s, x0))}ds

− θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ]{ f (s, xm(s, x0)) − f (s, xm−1(s, x0))}ds

∣∣∣∣

≤ K mαm+1(t)M ≤ T (m+1)μ

2(m+1)(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])m+1K m M

= T μ

22μ−1 (Eγ
ρ,μ+1[ωT ρ])Qm M,

where matrix Q is given by (28).
Summarizing, in view of (26), we get the following inequality

|xm+ j (t, x0) − xm(t, x0)| ≤
j∑

k=1

|xm+k(t, x0) − xm+k−1(t, x0)|

≤
j∑

k=1

K m+k−1αm+k(t)M ≤
j∑

k=1

T (m+k)μ

2(m+k)(2μ−1)
(Eγ

ρ,μ+1[ωT ρ])m+k K m+k−1M

≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]Qm

j−1∑

k=0

Qk M .

(46)

Since themaximumeigenvalue ofmatrixQof the form (28) is less than 1,we get the following
relations:

j−1∑

k=0

Qk ≤ (In − Q)−1, lim
m→∞ Qm = On,
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where On is the n–dimensional matrix of zeros. Letting j → ∞ in (46), we derive estimate
(36). According to theCauchy criteria, sequence of functions {xm}, defined by (40), uniformly
converges in the domain [0, T ] × D0 to the limit function x∞(·, x0).

Since all functions of the sequence (26) satisfy periodic conditions (21), limit function
(30) satisfies them as well. Passing in (26) to the limit as m → ∞, we get that function
x∞(·, x0) satisfies integral equation (32).

In order to show that (32) has a unique continuous solution, suppose that x1(t) and x2(t)
be two distinct solutions of (32). Then by evaluating their difference we get:

|x1(t) − x2(t)|
≤ K

[∫ t

0

(
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] − θ(t)(T − s)μ−1Eγ
ρ,μ[ω(T − s)ρ]

)
ds

+ θ(t)
∫ T

t
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ]ds

]
max

t∈[0,T ] |x1(t) − x2(t)|
= Kα1(t) max

t∈[0,T ] |x1(t) − x2(t)|

≤ T μ

22μ−1 Eγ
ρ,μ+1[ωT ρ]K max

t∈[0,T ] |x1(t) − x2(t)| = Q max
t∈[a,b] |x1(t) − x2(t)| ,

for all t ∈ [0, T ]. Hence
max

t∈[0,T ] |x1(t) − x2(t)| ≤ Q max
t∈[0,T ] |x1(t) − x2(t)| ,

which by (29) gives max
t∈[0,T ] |x1(t) − x2(t)| = 0, so x1(t) = x2(t) for all t ∈ [0, T ]. Further-

more, the IVP (33), (34) is equivalent to the integral equation

x(t) = x0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ]( f (s, x(s))ds + 	(x0)t
μEγ

ρ,μ+1[ωtρ]

= x0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, x(t))ds

− θ(t)
∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, x(t))ds,

(47)

where the perturbation term 	(x0) is given by (35) and θ(t) is defined by formula (25).
By comparing (47)with (32), and recalling that x∞(t, x0) is the unique continuous solution

of (47), we see that x(t) = x∞(t, x0) in (47), i.e., x∞(t, x0) is the unique solution of (33),
(34). This completes the proof. ��

4.2 Relation of the limit function x∞(t, x0) to solution of the fBVP (20), (21)

Let us consider a Cauchy problem for a differential equation with a constant perturbation:

C Dγ,μ

ρ,ω,0+ x(t) = f (t, x(t)) + tμEγ
ρ,μ+1[ωtρ]μ,

x (0) = x0,
(48)

where t ∈ [0, T ] and μ ∈ R
n being a parameter.

The following result holds.

Theorem 5 Let x0 ∈ D0, μ ∈ R
n be some given vectors, and suppose that all conditions of

Theorem 2 hold for the system of fDEs (20).
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Then a solution x = x(·, x0, μ) of the IVP (48) satisfies also boundary conditions (21) iff

μ := 	(x0), (49)

where 	(x0) is given by (35). In that case

x(t, x0, μ) = x∞ (t, x0) . (50)

We will skip the proof of this theorem since it is very similar to the analogous results in
Fečkan and Marynets (2023); Marynets and Pantova (2022).

Theorem 6 Let conditions of Theorem 2 hold. Then x∞(·, x∗
0 ) is a solution of the fBVP

(20),(21) iff parameter x∗
0 is a solution of the determining system:

	(x0) = 0, (51)

where 	(x0) is defined by formula (35).

Proof The result follows directly from Theorem 5 by observing that the perturbed fDS (33)
coincides with (20) if and only if the vector-parameter x∗

0 satisfies system of determining
equations (51). ��
Remark 2 Some practical issues that might hinder us from calculating the exact solution x(t)
to the original periodic fBVP (20), (21) are hidden behind finding the limit function (31) and
the exact roots x∗

0 of the determining system (51). Due to the error estimate (36) that allows
us to approximate the exact solution with high precision, one can re-consider the determining
system in its approximate form, i.e.,

	m(x0) = 0, (52)

where 	m : D0 → R
n is the m–th determining function defined by formula

	m(x0) := − 1

T μEγ
ρ,μ+1[(ωT )ρ]

∫ T

0
(T − s)μ−1Eγ

ρ,μ[ω(T − s)ρ] f (s, xm(s, x0))ds,

and xm (·, x0) is the sequence given by (26). On each iteration step m we treat solutions
x0,m of the approximate system (52) as the m-th approximation to their exact counterpart x∗

0 .
Substituting values x0,m into (26) we get the m-th approximation to the exact solution of the
fBVP (20), (21) in the form Xm(t) = xm

(
t, x0,m

)
.

5 Numerical example

Example 1 Consider a periodic BVP for a nonlinear fractional differential equation of the
HP type of the order μ = 1/2:

C Dγ,μ

ρ,ω,0+ y(t) = −
(

y(t)

2
√
2π

)2

− sin(t) + t cos2(t) (:= f (t, y)), (53)

y(0) = y(2π), (54)

where t ∈ (0, 2π), y, f ∈ R, for numerical values of parameters γ, ρ and ω to be

γ = 1, ρ = 1, ω = 0.
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We aim to construct an approximate solution of (53), (54) in a symmetric domain D,
which is given by a closed interval [−17, 17], i.e.

D = {y ∈ R : |y| ≤ 17}.
It is easy to see that function f (t, y) in the right hand-side of equation (53) is continuous in

the domain G = [0, 2π ]×[−17, 17]. Moreover, direct computations show that f is bounded
for all (t, y) ∈ G and Lipschitz continuous in y, i.e. the following inequalities hold:

| f (t, y)| ≤ 2π, (t, y) ∈ G;
f (t, y) ∈ Lip(K , D) with K = 1

4π2 .

Additionally, based on the Mittag-Leffler function Eγ
ρ,μ+1[ω(2π)ρ] which was con-

structed using formula (3) up to the order 10, we find that constant Q in (28) is given
by

Q = 0.0716449 < 1,

and that the neighborhood B(y0, β) in (16) of the initial value y(0) = y0 of solution of the
BVP (53), (54) is non-empty for

β = 17.77154.

This means that we can apply the numerical-analytic scheme (26), (27), described in
Section 4 of the paper, to approximate solutions of the periodic BVP (53), (54). In this
particular case it will be of the form:

ym(t, y0) = y0 +
∫ t

0
(t − s)μ−1Eγ

ρ,μ[ω(t − s)ρ] f (s, ym−1(t, y0))ds

−θ(t)
∫ 2π

0
(2π − s)μ−1Eγ

ρ,μ[ω(2π − s)ρ] f (s, ym−1(t, x0))ds, m ∈ N,

(55)

where t ∈ [0, 2π], θ(t) =
√

t
2π and

y0(t, y0) = y0. (56)

Moreover, Theorem 2 guarantees the uniform convergence of the sequence (55) to the
exact solution of the studied problem, where the initial value y0 will be chosen to satisfy the
approximate determining equation:

	m(y0) = − 1

(2π)μEγ
ρ,μ+1[ω(2π)ρ]

∫ 2π

0
(2π − s)μ−1Eγ

ρ,μ[ω(2π − s)ρ]

f (s, ym(s, y0))ds = 0. (57)

On the zeroth iteration step

y0(t, y0) = y0

we obtain a quadratic determining equation

−2.833745 + 0.01266515y20 = 0
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that has two real roots:

y−
0,0 = −14.95806, y+

0,0 = 14.95806.

Note, that both values are in the domain D and thus, depending on the choice wemake, we
obtain the zeroth approximation to a positive or to a negative solution of the studied problem
(53), (54).

Continuing our computations up to the order m = 5 we obtain the following pairs of
initial values y−

0,m and y+
0,m :

y−
0,1 = −11.43829, y+

0,1 = 16.36336;
y−
0,2 = −11.15320, y+

0,2 = 16.09520;
y−
0,3 = −11.15880, y+

0,3 = 16.07233;
y−
0,4 = −11.18028, y+

0,4 = 16.09158;
y−
0,5 = −11.18925, y+

0,5 = 16.08594.

Substitution of each of those values into the approximate solution (55) on every iteration
step m = 0, 5 leads to six approximations to the positive and negative solution of the periodic
BVP (53), (54). We depict these approximations on Fig. 1.

Note, that both solutions co-exist in the domain D, never intersect the t axis and thus,
do not have any intersection points. Hence Statement 4 of Theorem 2 about uniqueness of
solution of the associated IVPs is not violated, which means that the periodic BVP (53), (54)
has two solutions: one negative and one positive.

Fig. 1 Six approximations to the negative (on the left) and to the positive (on the right) solution of the periodic
BVP (53), (54)
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6 Cauchy type problemwith n-initial conditions

The successive approximations approach of the previous sections can be also generalized to
higher order fDEs of the HP type. We have already shown how one can relate a BVP to the
corresponding IVP. In this sectionwewould like to highlight somedetails about simplification
and approximation of solutions of the Cauchy problems with n initial conditions.

In the space ACn[0, T ] we consider a nonlinear Cauchy fractional model:
(
D

γ,μ,ν

ρ,ω,0+ y
)

(t) = f (t, y(t)), t ∈ [0, T ], f ∈ R
n, 0 < ν < 1, n − 1 < μ ≤ n,

(58)

y(k)(0+) = bk, k = 0, 1, 2, ..., n − 1, (59)

where f ∈ Lip(K , D), with D being an open domain which contains a point (0, y0).
Since

(E
γ
ρ,μ,ω,0+D

γ,μ,ν

ρ,ω,0+ y)(t) = E
γ
ρ,μ,ω,0+

(
E

−γ ν

ρ,ν(n−μ),ω,0+
dn

dtn

(
E

−γ (1−ν)

ρ,(1−ν)(n−μ),ω,0+ y
))

(t)

=
(
E

γ−γ ν

ρ,μ+ν(n−μ),ω,0+
dn

dtn

(
E

−γ (1−ν)

ρ,(1−ν)(n−μ),ω,0+ y
))

(t)

=
(
E

γ−γ ν

ρ,μ+(1−ν)(n−μ),ω,0+(P Dγ−γ ν

ρ,n−(1−ν)(n−μ),ω,0+ y)
)

(t)

=
(
E

γ−γ ν

ρ,μ+(1−ν)(n−μ),ω,0+
C Dγ−γ ν

ρ,μ+(1−ν)(n−μ),ω,0+y
)

(t)

+
n−1∑

k=0

E
γ−γ ν

ρ,μ+ν(n−μ),ω,0+
{

tk−μ−(1−ν)(n−μ)E−γ+γ ν

ρ,k−μ−ν(n−μ)+1(ωtρ)
}

y(k)(0+)

=
(
E

γ−γ ν

ρ,μ+(1−ν)(n−μ),ω,0+E
−γ+γ ν

ρ,1−μ−(1−ν)(n−μ),ω,0+
dn y

dtn

)
(t)

+
n−1∑

k=0

E
γ−γ ν

ρ,μ+ν(n−μ),ω,0+
{

e−γ+γ ν

ρ,k−μ−ν(n−μ)+1,ω(t)
}

y(k)(0+)

= dn y

dtn
+

n−1∑

k=0

tk

k!bk,

(60)

in view of homogeneous initial conditions (59), relation (60) simplifies to

dn y

dtn
= (E

γ

ρ,μ,ω,0+ f )(t, y(t)) −
n−1∑

k=0

tk

k!bk, t ∈ [0, T ], (61)

where y(k)(0+) = bk, k = 0, 1, 2, .., n − 1. Then the following proposition holds.

Proposition 7 The nonlinear Cauchy fractional model (58) with initial conditions (59)
reduces to the ordinary integro-differential equation (61) under the same initial conditions.

Example 2 We consider a function f (t, y(t)) = λy(t), where λ �= 0. Then under initial
conditions (59), we study a Cauchy type problem

(
D

γ,μ,ν

ρ,ω,0+ y
)

(t) − λy(t) = 0,
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i.e.

dn y

dtn
− λ(E

γ

ρ,μ,ω,0+ y)(t) +
n−1∑

k=0

tk

k!bk = 0.

Applying operator I n
0+ to the left hand side of the last equation, we get

y(t) = λ(E
γ

ρ,μ+n,ω,0+ y)(t) −
n−1∑

k=0

tn+k

(n + k + 1)!bk .

Let y0(t) = −
n−1∑
k=0

tn+k

(n+k+1)! bk and consider a sequence {ym(t)}∞m=1 defined by

ym(t) = λ(E
γ

ρ,μ+n,ω,0+ ym−1)(t) + y0(t), m = 1, 2, ....

Then,

y1(t) = λ(E
γ

ρ,μ+n,ω,0+ y0)(t) + y0(t),

y2(t) = λ(E
γ

ρ,μ+n,ω,0+ y1)(t) + y0(t)

= λ2(E
γ

ρ,μ+n,ω,0+E
γ

ρ,μ+n,ω,0+ y0)(t) + λ(E
γ

ρ,μ+n,ω,0+ y0)(t) + y0(t)

= λ2(E
2γ
ρ,2(μ+n),ω,0+ y0)(t) + λ(E

γ

ρ,μ+n,ω,0+ y0)(t) + y0(t).

By mathematical induction,

ym(t) = y0(t) +
m∑

j=1

λ j (E
jγ
ρ, j(μ+n),ω,0+ y0)(t),

where (see Theorem 4 in Kilbas et al. (2002))

(E
jγ
ρ, j(μ+n),ω,0+ y0)(t) =

n−1∑

k=0

bkt j(μ+n)+n+k E jγ
ρ, j(μ+n)+n−k+1,ω,0+(ωtρ), j = 1, 2, .., m.

Hence,

ym(t) = y0(t) +
n−1∑

k=0

bktn+k
m∑

j=1

λ j t (μ+n) j E jγ
ρ, j(μ+n)+n−k+1,ω,0+(ωtρ).

Passing in the last relation to the limit as m → ∞, we obtain the following representation
for solution y(t) :

y(t) = y0(t) +
n−1∑

k=0

bktn+k
∞∑

j=1

λ j t (μ+n) j E jγ
ρ, j(μ+n)+n−k+1,ω,0+(ωtρ).

The proof of convergence of the last series is presented in Sandev et al. (2011).

7 Final remarks

We want to stress, that the HP differential operator, used in this paper, generalizes the
Riemann-Liouville and Hilfer operators for particular parameter values, and its regularized
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version contains the Caputo derivative, that is the most frequently used in modeling (see
discussions in Diethelm and Freed (1999); Gaul et al. (1991); Glockle and Nonnenmacher
(1995); Hilfer (2000); Mainardi (1997); Metzler et al. (1995); Garra et al. (2014)). An exten-
sive literature overview does not show any evidence that the Caputo derivative is the only
possible tool for description of complex phenomena in applied sciences. Thus, we believe
that our results will not only contribute to the fundamental theory of fractional boundary
value and Cauchy problems (which was our main aim in this work), but can also be used for
validation and possible improvement of the existingmathematicalmodels. One could think of
comparison of amodel with different types of fractional derivatives using datameasurements,
and defining which of them would most realistically reflect observations.
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