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1 Introduction 

Shells have become too expensive; can precasting be a solution? 

The construction of monolithic concrete shell structures has become expensive, outpricing 

these shells in Western countries, when compared to other structural options [Mungan and 

Abel, 2011]. Monolithic shells, due to their double-curved shape and large spans, require 

labour-intensive formwork and falsework, placement of curved reinforcement and in-situ 

casting under a slope [Bösiger, 2011]. Although the use of precast technology is common 

for many other types of concrete structures, for shells, precasting has not been applied very 

often. Could precasting revive concrete shells again? This article will address a necessary 

step towards technical and economic feasibility of precasting: the application of a reusable 

and adaptive formwork. More specifically, the article will outline a parametric, associative 

approach to describe the kinematics of the mould deformation and position of mould 

contours. 

 

 



 

 212 

Recent studies on precasting with a flexible formwork 

Intuitively, the distribution of a monolithic shell into smaller precast elements seems to 

result in many challenges, among which are: 1) potential deterioration of buckling 

behaviour as a result of stiffness reduction in the connections, 2) introduction of a large 

number of connections between precast shell elements, 3) no change in the need for a 

temporary support structure, and finally 4) a large number of expensive moulds to precast 

the double-curved shapes, generally moulds with an low repetition factor, due to the 

irregular shape of shells. 

Some of these challenges have been studied [Moiralis, 2013; Witterholt, 2016] in recent 

years, promising solutions for the first three issues mentioned. Therefore, the present 

article will specifically address the fourth issue: how to economically manufacture many 

double-curved precast shell elements with varying shape and curvature, solving the mould 

challenge? This will be elaborated around the concept of a flexible mould. 

Figure 1 illustrates the concept of deformation after casting in an open, adaptive, and 

reusable flexible mould. This flexible mould concept was investigated in detail during the 

PhD study of the first author [Schipper, 2015]. In this PhD study, various aspects such as 

concrete rheology, reinforcement, and cracking risk were researched in detail. Ideas where 

 

 

Figure 1: Principle of deforming concrete after casting, using a (1) flexible mould: a self-compacting 

concrete element is cast (2) in the mould, and after an brief period of initial stabilisation of the 

mixture (3), the element is deformed by changing the height of the vertical supports, the so-called 

actuators, (4) into its final shape. After approx. 24 hours of hardening (5), the element can be 

demoulded (6), after which the flexible mould can be reconfigured and reused, possibly with different 

element contours and curvature. 
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developed as to how an industrial production line could be designed with the concept of a 

flexible mould. 

2 Large deformations 

Kinematic and elastic difficulties 

A particular challenge that was not solved completely during the above-mentioned PhD 

study, was the kinematic and elastic behaviour of the mould surface. Accurate deformation of a 

reusable mould surface into the desired double-curved shape appeared less trivial than 

one might think at first glance: for non-stretchable materials it even is fundamentally 

impossible. For most elastic materials, that could potentially be used as a flexible 

formwork, the forces needed for deformation can become very large if a continuous mould 

surface is used. This is caused by the fact that the thickness of this surface is bound to a 

certain minimum: deflections between the actuators due to the concrete weight might 

otherwise become visible in the final concrete element (so called ponding) or buckling due 

to in-plane compressive stresses could occur. These effects can be prevented in two ways: 

1) using a denser grid of actuators - thus reducing the buckling length and distributing the 

forces over more actuators, or 2) using a thicker mould surface - thus reducing buckling 

risk and ponding, but requiring more powerful actuators. However, economic and 

industrial arguments speak against this approach. For any large project, typically 

hundreds to even thousands of concrete elements will have to be cast. Multiple flexible 

moulds will be needed to obtain a sufficiently quick production time. The use of light 

gravity-driven actuators to deform the mould is much less expensive than the use of 

powerful pneumatically, hydraulically or electrically actuated support points. In Schipper 

[2015], a hybrid solution of automated pin set-up in combination with gravity-driven 

deformation (see Figure 2) was proposed. For this, limited elastic resistance of the mould 

surface is required. The second author of the present article, already touched on a possible 

solution for this, namely a mould based on the principle of shear deformation [Eigenraam, 

2013]. 

In Eigenraam and Schipper [2015], a prototype using the shear deformation principle was 

elaborated in more detail, including the under laying equation of Gauss. The present article 

will discuss a parametric-associative approach to solve the geometrical complexity of 

deforming a flat mesh into a double-curved one, using shear deformation. Let’s first have a 

look at where actually the difficulties are. 
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Figure 2: hybrid solution of automated pin set-up (station 2) in combination with gravity-driven 

deformation (station 5) [Schipper, 2015] 

 

2D situation  

To clarify the difficulties, we will now first restrict ourselves to a two-dimensional 

example. Assume that the principle illustrated in Figure 1 will be elaborated in an 

imaginary machine with six actuators at a mutual spacing of 180 mm, supporting a flexible 

mould surface. This flexible mould surface, shown in Figure 3, is deformed from flat to 

single-curved. In the figure two possible deformations are shown, namely into a circle 

segment with a radius of 5000 mm and one into a circle segment with 1200 mm radius, 

respectively. 

Assume now, that one wants to manufacture a concrete element with exactly the same 

shape as the circle segment with the 1200 mm radius shown in the lowest image in Figure 

3. For deformation of the mould, the actuator heights need to be adjusted to the correct 

heights. It is important to notice that the mould surface is not stretched in-plane, but only 

bent. Hence, the tips of the actuators remain equi-distant, provided that one measures  
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Figure 3: With increasing deformation of the mould, the horizontal displacements of actuator tips 

become relatively large and non-negligible. 

 

along the mould surface. In the example of Figure 3, a 180 mm spacing was chosen for the 

actuators, like in the prototype that will be discussed later in this article. As can be seen, 

the horizontal displacements that accompany the large vertical displacements are not 

negligible, and need to be taken into account. This requires a smart actuator mechanism, in 

which the large displacements in both vertical and horizontal direction are accommodated 

and taken into account, so that the actuator tips, after deformation, will end in exactly 

those positions that lead to the exact shape of the concrete element. Inclusion of hinges or a 

flexible actuator could enable these required degrees of freedom. 

 

3D situation 

Now that we have examined this simple example in 2D, the three-dimensional situation is 

easier to explain. In a 3D situation, the mould surface will - like the actuators - need to 

accommodate relatively large horizontal displacements in two directions: it has to stretch 

or shrink. The Kine-Mould prototype, shown in Figure 4, was especially designed to allow 

= 1200 mmR

= 5000 mmR

= ∞ (flat)R

180.0 180.0 180.0 180.0 180.0

180.0
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these large deformations in an accurate manner. The actuators allow horizontal 

displacements, as visible in the figure. The mould surface uses a specific deformation 

mechanism that will be discussed in more detail now. 

  

 

 

 

Figure 4: A prototype built in the project Kine-Mould funded by STW (Dutch Technology 

Foundation). In this prototype the tips of the actuators can sway in one or two directions to allow 

for the necessary horizontal displacements [Eigenraam and Schipper, 2015; Schipper et al., 2015b]. 

Here a hyperbolic paraboloid is formed. In the leftmost line of actuators, the varying horizontal 

displacement is clearly visible. 
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Kine-Mould projects for STW and 4TU.Bouw Lighthouse 

The deformable surface of the first Kine-Mould prototype, shown in Figure 4, consisted of 

two layers of mutually perpendicularly arranged strips, offering bending stiffness in two 

directions, but also allowing shear deformation. This shear principle was developed 

according to the ideas set out first by Eigenraam [2013]. A further improvement was done 

with the prototype shown in Figure 5, developed by TU Eindhoven in the 4TU.Bouw 

Lighthouse project, also named Kine-Mould. This mould was successfully used to hot-

bend glass panels that were arranged into a glass shell-like structure [Schipper et al., 

2015a]. The prediction of the kinematics of the Kine-Mould, however, appears to be rather 

challenging. The following sections will work out this challenge in further detail. 
  

  

Figure 5: A mould surface from Omnimesh steel mesh. The main feature of the mesh is that it is 

woven and not welded, allowing the wires to shear undisturbed. This allows the mesh to take many 

shapes [Schipper et al., 2015a] (images: courtesy of Arno Pronk, TU Eindhoven). 

3 Shear deformation 

Gauss and Calladine 

Gauss [1827] made a study of the mathematical description and physical behaviour of 

surfaces. The Gaussian curvature is an important local parameter for points on curved 

surfaces, defined as the product of the principal curvatures κ1 and κ2 at the given point, 

where curvature is defined as κ = 1/R. The implications of Gauss’ work for the design of 

concrete shells were described in a very clear manner in Calladine [1983] and Calladine 

[1986]. In Eigenraam and Schipper [2015] the work of Gauss and Calladine was applied to 

the flexible mould surface: to deform a surface from flat to double-curved, it needs to 

stretch or shrink in x and/or y-direction, or it needs to shear in xy-direction. The most 

successful moulds were the ones that made use of the latter form of deformation: shear 

deformation. 
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Figure 6 clearly illustrates how this principle is already used in a familiar kitchen utensil. 

The shear angle appears to be a function of the Gaussian curvature and the area of the 

curved surface over which this Gaussian curvature applies. Calladine introduced the term 

angular defect with the symbol β as a useful property of deformation. 

 

 

Figure 6: A kitchen sieve clearly shows the principle of shear-deformation: a flat steel mesh can be 

formed into a double-curved surface, by allowing shear angles between the woven wires of the sieve. 

Although it cannot be completely ruled out that also stretching of the wires has occurred, shear 

deformation will result in the required shape with limited force. 

 

Angular defect 

The hat-liked shape on the left in Figure 7 can be folded from a flat piece of paper (middle), 

cut in the pattern as shown. The right image shows a representation of the hat surface on a 

unit sphere: each of the 5 planes in the hat surface has a different normal vector, all 5 

normal vectors are scaled to unity length, and then put with their starting vertex on the 

center vertex of a unity sphere. The dots on the unity sphere in the right image are the 

ending vertices of the 5 vectors. The area β appears to be equal to the angle β shown in the 

middle image Calladine [1986]. This angle β was called the angular defect by Calladine, and  

 

 

Figure 7: Calladine [1983] described the principle of a Gaussian sphere. 

S

T

P Q RP
Q

S

β s
βarea = 

RT
r

qp

t



 

 219 

appears to be a varying, but always purely geometrical property of any non-planar surface. 

As we will see later, it can be used to describe the kinematics of the flexible mould, using 

shear deformation. 

4 Algorithm to locate the actuator tips on a flexible mould surface 

Attempt to describe actuator forces is abandoned 

In all earlier publications on the Kine-Mould, the authors have focused on describing both 

deformations and actuator forces. This leads to a quite large system of equations with many 

degrees of freedom, in which the full elastic behaviour of the mould surface needs to be 

taken into account. Since the system of equations is non-linear due to the large 

deformations, direct solution linked to a CAD-modeller is not straightforward. In the 

present article, we will abandon the attempt to describe any forces. This is only possible 

under the assumption that the deformation does not depend on the elasticity of the mould 

surface. We believe that, if only shear deformation and bending is possible in the surface of 

the mould, a good approximation can be found. Comparison between model and 

measurements in Section 5 will later demonstrate that this assumption is appropriate. 

 

Parametric-associative approach 

We will now introduce a parametric-associative algorithm, which was developed to 

describe the deformation of a mould surface from flat to double-curved, using shear 

deformation. We will call this the mapping algorithm: it maps a one-to-one geometrical 

relation between the flat and the deformed situation. The algorithm is inspired by the 

draping-algorithm developed by Bergsma [1995] and applied by Woodington et al. [2015]. 

Furthermore, a quite comparable method was develop by Toussaint [2007] for determining 

grids with equal rib lengths for freeform timber grid shells. The present algorithm is used 

to construct all important coordinates in 3D-space. This is necessary for both the height 

adjustment of the actuators and the correct positioning of the mould edge. Both are needed 

for an accurate computer-aided manufacturing (CAM) process. The mapping algorithm 

was developed in GrassHopper (GH), a plug-in allowing parametric design in the 

geometric modeller Rhinoceros 3D (together further abbreviated here as Rhino-GH). The 

advantage of the Rhino-GH environment is the direct interaction between architectural 

model (CAD) and concrete element manufacturing solutions (CAM). 
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Step 1: choosing a base grid of actuator distances 

A square base grid of ΔX· ΔY mm2 is first chosen as the centre lines for the feet of all 

actuators. In the prototype earlier shown in Figure 4, ΔX = ΔY = c = 180 mm. c is a user-

chosen value, of which the choice is affected by the stiffness of the mould surface and the 

thickness of the concrete; the stiffer the mould surface, the thinner the concrete and the 

smaller this grid size, the less deflection the mould will exhibit between the actuator tips 

(so called ’ponding’). As assumed earlier, we will abandon any attempt to describe 

stiffness here. For the proper choice of c, a trial-and-error strategy is followed. 

 

Step 2: choosing an origin and orientation in the global coordinate system 

As a next step, the concrete panel that will be manufactured is now placed with its centre 

in the origin of an orthogonal coordinate system x-y-z (Fig. 8a). The centre of the concrete 

element does not necessarily need to be the centre of gravity, it can basically be any user-

chosen centre. This choice, however, will affect the necessary shear deformation, as we will 

see later. Two perpendicular cutting planes are placed parallel to the vertical z-axis. These 

planes divide the concrete panel in roughly four ’quarters’. The mechanism of the flexible 

mould will be designed such, that all actuators that are in these two planes can only rotate 

in-plane. This is an important starting point for the further algorithm. In other words: the 

swaying of the actuator tips is facilitated by a mechanism that only allows rotation in one 

direction, according to the prototype shown in Figure 4 on page 357. 

 

 

Figure 8a: Perpendicular planes in the x-z plane and y-z plane and an example of a double-curved 

element that could be manufactured using the flexible mould. Here, the element is only represented 

as the surface facing the mould. In reality, the element has an offset (thickness). 
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Step 3: construct position of actuator tips in two perpendicular planes x-z and y-z 

By constructing circles with radius c, starting from the origin, the intersections between the 

curved surface and the two cutting planes can be divided in equal distances c (compare the  

180 mm distance measured along the curved line in Figure 3, lower image). This step is 

illustrated in Figure 8b. It is important to realise that this equi-distant distribution takes 

into account that no in-plane elongation of the mould surface occurs, which is correct. 

 

 

Figure 8b: The first tips of the actuators are constructed by measuring a distance c along the surface 

in the x-z and y-z plane. The thus constructed points represent the tips of those actuators that are in 

the x-z and y-z plane. 
 

 

Figure 8c: Then, by drawing two spheres with a radius R = c around the first axis points, the next 

intersection point with the double-curved mould surface is constructed. This intersection point is 

connected with the axis points constructed earlier, and the first actuator tip outside of the 

perpendicular planes is found. 
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Step 4: construct first actuator tip outside the cutting planes 

Now that all actuator tips in the cutting plates are found, the actuator tips outside of these 

planes can be constructed. This is done by constructing two spheres with the earlier found 

actuator tips as origins (Fig. 8c), both spheres again having a radius c. This radius implies 

that no elongation (stretching) in-plane of the mould surface is occurring. 

 

Step 5: construct remaining actuator tips 

Finally, by repeating step 4 as many times as there are actuator tips, the whole grid of 

actuator tips on the curved surface can be ’rolled out’ or draped (Fig. 8d). By combining 

two earlier found actuator tips, every time a third one can be found, and so on. 

 

 

Figure 8d: Consequently, using the same sphere construction method, the other actuator tips are 

found. The length of all mesh edges is c. All shown points are exactly on the double-curved surface. 

The method actually is similar to draping a wire mesh over a curved surface. 

5 Investigating the resulting shear angles 

Introduction: no stretching, only shear 

The kitchen sieve in Figure 6 illustrated that the deformation of an (almost) non-stretchable 

steel mesh into a double curved surface is possible, by the means of shear deformation 

only. It can be observed that in Figure 8d, the quadrilaterals that were drawn by 

connecting the actuator tips, have equal rib length c (= no stretching), but do not have 90 

degree angles (= shear deformation). Let’s now look in more detail at these shear angles 

and their relation to the curvature of the surface. 

 

Figure 9 shows how the same algorithm was repeated on four sphere-like surfaces, with 

the sphere radius decreasing stepwise from 5.0 m to 1.2 m. Additionally, the shear angles 

where measured and plotted, using Rhino-GH. For a sphere radius of 5.0 m, a shear angle  
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(a) sphere R = 5.00 m; angle 89.54° 

 

(b) sphere R = 2.00 m; angle 87.10° 

 

(c) sphere R = 1.50 m; angle 84.84° 

 

(d) sphere R = 1.20 m; angle 81.95° 
 

Figure 9: Choosing a sphere-shaped element as basis for the draping clearly illustrates the shear-

effect. A decreasing radius of the sphere results in a sharper shear-angle, here measured over 9 grid 

cells. Meanwhile, the edge length of the mesh remains c in all four cases. 



 

 224 

in the quadrilateral on the third row and the third column of 89.54° was measured (Figure 

9a). Repeating the same for a radius of 1.2 m leads to a shear angle of 81.95° for the same 

quadrilateral. In all four cases, the edge length remains c = 180 mm. 

 

Intermediate conclusion on shear deformation 

From this exercise, it hopefully becomes clear that, without stretching of the mould surface 

in x- or y-direction, only using shear deformation, a double-curved surface can be draped 

with an originally flat mesh. Furthermore there appears to be a relation between the 

Gaussian curvature and the resulting shear angle. 

 

Comparison between model and prototype measurements 

Before investigating this relation in more detail, let’s first do a check of the calculated shear 

angles: the values found with the Rhino-GH model are compared to the shear angles 

measured in the real prototype of the Kine-Mould. Figure 10 and 11 show this comparison 

for spheres with a radius of 1.5 and 1.2 m, respectively. 

 

                                                                           

Figure 10: The shear-angle in the Rhino-GH model compared to that in the prototype, R = 1500 

mm. Good correspondence (error below 1%) is found between the values calculated using the model 

and the average values determined by measuring the diagonals over four mould corners of the 

prototype set-up. The angle is calculated from the diagonal lengths as follows: 

γ = 180° – 2 arctan long diag

short diag

l

l
= 180° – 2 arctan

265.74
242.85

= 84.84° 
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Figure 11: The shear angle in the Rhino-GH model compared to that in the prototype, R = 1200 

mm. Fairly good correspondence (error below 2%) is found between the values calculated using the 

model and the average values measured over four mould corners of the prototype set-up. 

 

The actuator heights of the prototype where first installed in such a way, that the mould 

surface would describe a spherical surface segment with the pre-defined radius. Since the 

strips of the mould surface were connected in such a way, that only shear deformation was 

possible, the deformation mechanism was similar to the way it is modelled now in Rhino-

GH. By measuring the diagonals of each quadrilateral, the shear angle can be calculated 

with simple trigonometry. For the 1.5 m radius, the Rhino-GH model yields a shear angle 

for the specified quadrilateral of 84.84°, whereas the prototype measurements yield 85.27°. 

For the 1.2 m radius, the Rhino-GH model yields a shear angle of 81.95°, whereas the 

prototype measurements yield 82.61°. It is concluded that for these two examples fairly 

good correspondence is found. 
 

Relation between Gaussian curvature and shear angle 

As already introduced in Section 3 above, Calladine [1986] discussed the relation between 

the angular defect β, the Gaussian curvature K and mesh size c for various configurations. 

In Figure 12, the shear angles measured in the Rhino-GH model, for an example sphere 

with radius R = 1.50 m, are expressed as a factor of K and c. A constant pattern is visible. 

Following the method described by Calladine, the angular defect β is calculated from 

steradians SR (solid angle) to degrees as follows: 
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β = = =
π π

o o
2 2 o

2
360 1 360

12.5 12.5 0.18 5.16
4 41.50

K c  (1) 

 

Subsequently, the shear angle γ = 90° – β = 84.84°, which corresponds with the value 

measured in Rhino-GH, demonstrating that the factor 12.5 was chosen correctly. As can be 

observed, the shear angle, draping a mesh over a sphere, increases when further removed 

from x- and y-axis. 

 

In Table 1 below, the coefficients to calculate the shear angle are shown. It becomes clear 

that the shear angle increases rapidly when moving away from the origin (in case K = 

constant). Example: for a sphere with a radius R = 2.5 m and a grid size c = 0.18 m the 

shear angle in cell (i = 10, j = 10) the coefficient 
 

= − − = − − + =1
2

0.5(2 1)(2 1) 2 180.5n i j i j i j  (2) 

and 

β = =
π

o
2 o

2
1 360

180.5 0.18 26.8
42.5

 (3) 

 

then γ = 90° – β = 63.2°. 

  

Figure 12: Angular defect β according to Calladine, left measured in the Rhino-GH model, right 

expressed as factor of the Gaussian curvature K and the grid size c (R = 1.5 m and c = 0.18 m). 
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Table 1: Coefficients n of the calculated shear-angle β = n K c2 in the specified grid cell, 

with = − − + 1
2

2n i j i j  

 i = 1 2 3 4 5 6 7 8 9 10 

j = 1 0.5          

2 1.5 4.5         

3 2.5 7.5 12.5    symmetrical   

4 3.5 10.5 17.5 24.5       

5 4.5 13.5 22.5 31.5 40.5      

6 5.5 16.5 27.5 38.5 49.5 60.5     

7 6.5 19.5 32.5 45.5 58.5 71.5 84.5    

8 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5   

9 8.5 25.5 42.5 59.5 76.5 93.5 110.5 127.5 144.5  

10 9.5 28.5 47.5 66.5 85.5 104.5 123.5 142.5 161.5 180.5 

 

The equation for the coefficients can be understood if the definition of Calladine [1986], 

page 187 is followed: 
 

angular defect at a vertex
Gaussian curvature =  

area associated with the vertex
 (4) 

where Calladine uses a triangulated version of a sphere. In a similar manner, the term 2 i j 

in the equation for n represents the area associated with the cells of our mesh; the terms –i, 

–j and + 1
2

represent a correction due to the prevention of shear in the two central cutting 

planes. 
 

What if K is not constant? 

For surfaces with varying Gaussian curvature K, such as freeform shells, the shear angle 

will increase or decrease, according to the local Gaussian curvature and the shear angle 

’received’ from adjacent cells closer to the x-y-axis. Let’s look at an example of such a 

freeform surface. Figure 13 shows a part of the inner concrete cladding of a tunnel section 

of the Crossrail project in London, that is currently under construction. The tunnel consists 

of two single-curved (circular) tubes, each with different radius, that have been connected 

by a smooth surface (’fillet’) at the intersection of both tubes. The fillet surface is clearly 

double-curved, however, the shear of the mesh for the selected concrete panel is 

surprisingly limited. This is the result of the fact that some parts are convex and others 

concave, resulting in increase and decrease of the shear angle, respectively. For a sphere,  

= − − + 1
2

2n i j i j



 

 228 

 

 

 

 

 

 

 

 

 

      

 

Figure 13: Top: exploded view of double-curved concrete elements applied in the London Crossrail 

Farringdon station interior cladding. Bottom: the Gaussian curvature of the hatched element is 

analysed (–3.70 < K < –2.06 mm–2) and the mesh is constructed. The shear angles at the diagonal 

stay close to 90° ( = no shear) and vary only between 88.7° and 91.5°. 

(Colour figures are available at www.heronjournal.nl) 
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we were able to exactly determine the coefficients for shear in each cell. It is however less 

transparent how to capture the shear angle mathematically for surfaces with varying 

curvature. This implies that the use of the parametric-associative approach, as presented 

here, can be helpful to find the optimal position of the concrete element in the flexible 

mould. The optimisation consist of translation and rotation of the element until the 

minimal amount of shear is obtained. Why would such an optimisation be needed? A 

minimum of shear assures the most accurate deformation of the mould, since by 

observation of the various prototypes it was found that large shear angles generally are 

accompanied with inaccuracy and local buckling effects of the strips that make up the 

mould surface [Janssen, 2011; Eigenraam, 2013]. Also, if a steel mesh is used instead of 

strips, minimisation of shear angles is desirable, since locking of the mesh is occurring if 

shear values become to large [Bergsma, 1995]. A further advantage of using the Rhino-GH 

approach is that the edges of the mould can be localised with the same algorithm, as we 

will see in the next section. 
 

Further development of Rhino-GH script 

Before moving on to the important topic of edge positioning, the status of the script 

implementation needs to be discussed: at this moment, the script that was developed in 

Rhino-GH is not particularly stable for processing the wide range of freeform shapes that 

occur in a typical building geometry. This lack of stability is the result of the fact that the 

Grasshopper script is based on finding intersection points between curves and surfaces or 

spheres and surfaces. This sometimes leads to multiple answers that need to be assessed, 

after which the proper one has to be selected. Therefore, a more robust implementation is 

still needed. The findings above, however, in our opinion, demonstrated a proof of concept 

and accuracy for all situations in which the mesh was correctly constructed.  

6 Suggestion for an algorithm to find the mould edges on a flexible mould 
surface 

One of the advantages of the flexible mould method, is that the concrete element is cast in 

flat position, and that deformation into the curved shape is carried out in a later stage. This 

greatly simplifies the casting process, since a self-compacting and self-levelling concrete 

can be applied in an open, single-sided mould. The use of such concrete leads to a much 

smoother concrete surface texture than the use of stiffer mixtures that would be needed if 

the concrete is applied after deformation, by plastering or spraying the concrete. 
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However, the choice for this procedure implies that the position of the mould edges also 

needs to be determined in the flat situation (see Figure 14). Whereas in the finally targeted 

curved surface, all coordinates can be easily found through measuring in 3D space in the 

CAD-program, finding the right coordinates is less easy for the flat situation. This problem 

was already addressed in the subsection ”Geometrical aspects of edge positioning” in 

[Schipper, 2015]. There, it was proposed to develop a projection or ’mapping’ algorithm for 

this. 

Figure 15 illustrates how in the flat situation the mould edge could be positioned correctly. 

This algorithm yet has to be developed, the present illustration is not output from Rhino- 

GH, but is meant as documentation of the following idea. First, the intersection points 

 

   

 

Figure 14: Process of edge positioning, casting and deformation 
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between the mesh and the mould edges need to be identified and registered. Since the 

intersection points can be referenced to the mesh in both curved and flat situation, then 

also the position in the flat situation becomes clear. Further work is needed on 

implementation of this algorithm, but we feel that it follows an unambiguous procedure 

that properly takes into account the shear deformation. 

 

 

Figure 15: By finding the closest point between the earlier constructed mesh and the original edge 

curve, the mapping of the edge curve from double-curved to flat can be obtained, allowing the 

projection of the edge in the flat situation. Here a freeform panel, taken from the Crossrail 

Farringdon station interior cladding (Fig. 13), is shown. The fat dots are on the edge contour of the 

mould, and can be used both in flat and deformed situation. 

7 Conclusions 

A parametric-associative approach was presented for modelling the deformation of a 

flexible mould. This flexible mould can be applied for precasting freeform concrete shell 

elements. The deformation principle used to transform from flat to double-curved is shear 

deformation. The following conclusions are drawn: 

• To abandon any attempt calculating actuator forces at the same time as shape 

transformations, simplifies the problem to a large extent. 

• The draping algorithm that was presented by Bergsma [1995] inspired the present 

algorithm in Rhino-GH. The parametric-associative algorithm has the advantage 

that it opens the possibility for real-time visual interaction and modification. 

• The shear angles calculated with the Rhino-GH algorithm show good 

correspondence (within 2%) with those measured in two configurations in a real 

mould prototype. 
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• For a regular double-curved geometry, such as a sphere, the shear angles can be 

calculated accurately using the Gaussian curvature, the mesh size and a matrix of 

predefined coefficients. 

• Also for non-regular (freeform) curved surfaces, the presented algorithm opens 

the possibility to calculate and minimize the shear angle. 

• By registering the intersection points between the mesh and the element edges in 

the deformed situation, it is possible to determine where these element edges 

should be positioned in the flat situation of the mould. This part, though, was not 

implemented yet. 

8 Further research and outlook 

In this article a number of topics were not discussed: the exact construction of the actuator 

heights from the actuator tip, the fluidity of the concrete in relation to the mould slope, 

optimisation options in the Rhino-GH environment and ways to process large numbers of 

concrete elements in an efficient manner. These topics are subject for further research. As 

discussed, the edge positioning needs implementation. We expect that, after an initial 

investment in accurate software and equipment at industrial strength and scale, the 

presented draping algorithm and mould method can be used for economically producing 

large projects in precast concrete cladding or structural concrete shell elements, but also for 

other construction materials. 
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