

Delft University of Technology

Mapping the CityGML Energy ADE to CityGML 3.0 Using a Model-Driven Approach

Bachert, Carolin; León-Sánchez, Camilo; Kutzner, Tatjana; Agugiaro, Giorgio

DOI
10.3390/ijgi13040121
Publication date
2024
Document Version
Final published version
Published in
ISPRS International Journal of Geo-Information

Citation (APA)
Bachert, C., León-Sánchez, C., Kutzner, T., & Agugiaro, G. (2024). Mapping the CityGML Energy ADE to
CityGML 3.0 Using a Model-Driven Approach. ISPRS International Journal of Geo-Information, 13(4), Article
121. https://doi.org/10.3390/ijgi13040121

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3390/ijgi13040121
https://doi.org/10.3390/ijgi13040121

ISPRS Int. J. Geo-Inf. 2024, 13, 121. https://doi.org/10.3390/ijgi13040121 www.mdpi.com/journal/ijgi

Article

Mapping the CityGML Energy ADE to CityGML 3.0 Using a

Model-Driven Approach

Carolin Bachert 1, Camilo León-Sánchez 2, Tatjana Kutzner 3 and Giorgio Agugiaro 2,*

1 con terra GmbH, Martin-Luther-King-Weg 20, 48155 Münster, Germany; c.bachert@conterra.de
2 3D Geoinformation Group, Department of Urbanism, Faculty of Architecture and the Built

Environment, Delft University of Technology, Julianalaan 134, 2628BL Delft, The Netherlands;

c.a.leonsanchez@tudelft.nl
3 Chair of Geoinformatics, Technical University of Munich, Arcisstr. 21, 80333 München, Germany;

kutzner@tum.de

* Correspondence: g.agugiaro@tudelft.nl

Abstract: With the increasing adoption of semantic 3D city models, the relevance of applications in

the field of Urban Building Energy Modelling (UBEM) has rapidly grown, as the building sector

accounts for a large part of the total energy consumption. UBEM allows us to better understand the

energy performance of the building stock and can contribute to defining refurbishment strategies.

However, UBEM applications require lots of heterogeneous data, eventually advocating for stand-

ards for data interoperability. The Energy Application Domain Extension has been created to cope

with UBEM data requirements and offers a standardised data model that builds upon the CityGML

standard. The Energy ADE 1.0, released in 2018, creates new classes and adds new properties to

existing classes of the CityGML 2.0 Core and Building modules. CityGML 3.0, released in 2021, has

introduced several changes to the data model and its ADE mechanism. These changes render the

Energy ADE incompatible with CityGML 3.0. This article presents how the Energy ADE has been

ported to CityGML 3.0 to allow, on the one hand, for a lossless data conversion and, on the other

hand, to exploit the new characteristics of CityGML 3.0 while keeping a logical symmetry between

the ADE classes of both CityGML versions. The article describes the chosen methodology, the map-

ping strategies, the implementation steps, as well as the data conversion tests to check the validity

of the “new” Energy ADE for CityGML 3.0.

Keywords: CityGML; Energy ADE; model-driven mapping; data modelling; UBEM

1. Introduction

Standardised data models can play a vital role in areas where complex information

is handled by various stakeholders coming from different backgrounds as they ensure

lossless data exchange, facilitate the development of reliable software solutions and,

therefore, enhance the overall data interoperability.

Urban Building Energy Modelling (UBEM) represents a good example in this regard.

In UBEM, different scenarios of the energy demand and supply of a city can be simulated

at the individual building level [1]. As such, UBEM serves as a valuable set of approaches,

methods, and tools to support decision-makers in detecting energy-saving potentials and

in subsequently allocating required resources for retrofitting purposes [2]. However,

UBEM requires large and heterogeneous quantities of information, such as data regarding

energy consumption, local climate, occupant behaviour, physical properties of the build-

ings and their geometries [3,4].

The international standard City Geography Markup Language (CityGML), issued by

the Open Geospatial Consortium (OGC), offers the possibility to model urban environ-

ments, including buildings, in a 3D space. CityGML defines “basic entities, attributes, and

Citation: Bachert, C.; León-Sánchez,

C.; Kutzner, T.; Agugiaro, G.

Mapping the CityGML Energy ADE

to CityGML 3.0 Using a

Model-Driven Approach. ISPRS Int.

J. Geo-Inf. 2024, 13, 121. https://

doi.org/10.3390/ijgi13040121

Academic Editors: Sisi Zlatanova

and Wolfgang Kainz

Received: 5 February 2024

Revised: 19 March 2024

Accepted: 30 March 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

ISPRS Int. J. Geo-Inf. 2024, 13, 121 2 of 40

relations” of relevant urban objects, functioning both as a conceptual data model for se-

mantically enriched 3D city models and as a storage and exchange format [5]. Currently,

the most widely used version is CityGML 2.0, which was released in 2012.

CityGML is intentionally designed to be application-independent. Nevertheless, in

certain cases, additional classes or attributes may be needed for specific domains. For this

reason, CityGML can be extended following two approaches. The first one allows for the

definition of so-called generic attributes and generic city objects without the need to ex-

tend the conceptual data model. The second one, on the other hand, offers more modelling

capabilities but demands an extension of the data model. This second approach is referred

to as the Application Domain Extension (ADE) mechanism.

The Energy ADE version 1.0 is such an extension for CityGML. It builds upon the

CityGML 2.0 Core and Building modules and extends them by means of additional classes

and properties. As such, it has been conceived and designed as a solution to model and

store relevant data needed for UBEM. It offers the possibility to model both data serving

as input for energy-related applications and data storing the application results, in order

to facilitate further building or city-wide energy assessments. The ultimate goal is to pro-

mote data interoperability between different UBEM stakeholders by means of a standard-

ised data model [6]. The Energy ADE 1.0 was released in 2018 through a joint effort of

various international parties and stakeholders (familiar/expert with/in either CityGML or

UBEM). It is mentioned in the literature as a best-practice example when it comes to ADE

development due to its technical maturity and available documentation. As a result, the

Energy ADE has already been used in several national and international projects [7,8].

In September 2021, version 3.0 of the CityGML standard was released by the OGC.

The new version introduces considerable changes to the Core module with a revised ge-

ometry concept and a newly established space concept. Furthermore, new modules for

time-dependent properties and man-made constructions have been added. Moreover, it

is now possible to include several ADEs at once thanks to an improved ADE mechanism

[7].

These changes directly affect the portability of the Energy ADE to CityGML 3.0. First,

the Energy ADE is not compatible with the revised ADE mechanism. Second, some classes

have been changed in terms of name, attributes, or overall hierarchical position in the data

model. Thus, they do not link seamlessly to the existing Energy ADE data model anymore.

Furthermore, some classes and properties in the Energy ADE are now already natively

incorporated in CityGML 3.0. This makes certain Energy ADE classes obsolete or redun-

dant—which is against the main raison d’être of an ADE, i.e., to extend the data model

only where necessary. Finally, CityGML 3.0 introduces many additional classes, which

potentially represent a better semantic fit from which to derive ADE classes.

The Energy ADE covers a variety of technical aspects and is a good example of how

ADEs can incorporate and take advantage of new functionalities of CityGML 3.0. Addi-

tionally, there are currently no well-documented and published examples of existing ADEs

being ported from CityGML 2.0 to CityGML 3.0. For this reason, this article presents the

work carried out to map the Energy ADE to CityGML 3.0. The challenge and the goal have

been to map the Energy ADE classes, wherever and whenever necessary, to the CityGML

3.0 data model, without any losses in terms of semantics and functional modelling capa-

bilities. Eventually, data modelled according to CityGML 2.0 and Energy ADE 1.0 must

fulfil the requirement to be convertible to CityGML 3.0 extended with the “new” Energy

ADE and without any data losses. The conceptual work carried out in this process and the

main implementation steps will be presented, including the data conversion and tests car-

ried out to evaluate the mapping. Particular attention is paid to establishing a uniform,

rule-based mapping and its reasoning.

Keeping these overall goals in mind, the core of the investigation has been dedicated

to understanding to which extent the Energy ADE for CityGML 2.0 needs to be adapted

in order to be conformant with the newly released CityGML 3.0 standard. Throughout

this process, the Energy ADE 1.0 classes that become obsolete, those that need to be

ISPRS Int. J. Geo-Inf. 2024, 13, 121 3 of 40

adapted, and those that can be mostly taken over have been identified. The resulting

“new” Energy ADE for CityGML 3.0 is available both as a UML class diagram and as an

XML schema definition (XSD) file. Lastly, data conversion tests are carried out using Safe

Software’s FME.

When it comes to CityGML 2.0, a lot of experience has already been reported in the

past decade regarding the creation of ADEs. Biljecki et al. [8] provide an extensive review

of many heterogeneous ADEs created for different application domains. Additionally, a

formal UML-based approach to create ADEs has been proposed by van den Brink et al.

[9] which is based on the well-established model-driven approach and has also been ap-

plied to the development of CityGML 3.0 [10].

However, due to the relatively recent publication of the CityGML 3.0 conceptual

model, not much literature has been published up to now regarding ADEs for CityGML

3.0 or the mapping of existing ADEs to the new CityGML version.

Biljecki et al. [11] propose how to extend CityGML 3.0 in order to convert data from

IFC to CityGML 3.0. Starting from the awareness that differences in the scope and intent

between IFC and CityGML lead to inevitable data losses when converting the former to

the latter, the authors identify a subset of IFC data that is beneficial to keep and convert to

CityGML by means of an ad hoc ADE.

In the context of Underground Land Administration (ULA), Seidian et al. [12,13] have

recently dealt with the modelling of underground legal boundaries, in order to tackle the

lack of a link between underground physical and legal data in current practices. As a re-

sult, they propose to extend CityGML 3.0 by means of the so-called VicULA (Victoria Un-

derground Land Administration) ADE, in which underground legal data elements can be

logically embedded into a 3D data model. The VicULA ADE has been specifically devel-

oped for Victoria, Australia, however, according to the authors, the proposed model and

approach can be used and replicated in other jurisdictions by adjusting the data require-

ments for underground legal boundaries.

The Utility Network ADE [14] represents a valuable source of inspiration for map-

ping an existing ADE from CityGML 2.0 to 3.0—which best resembles the core of the work

presented in this article. The Utility Network ADE is openly available on GitHub not only

as a UML diagram. It also includes the derived XSD schema and the accompanying con-

figuration files to carry out the conversion using ShapeChange (more details will be pro-

vided later in the article). However, unfortunately, neither scientific publications nor de-

tailed documentation of the process is currently available.

Finally, Bachert [15] has recently and specifically dealt with the conversion of the

Energy ADE from CityGML 2.0 to 3.0. This article is extracted from and extends this work.

Therefore, as a result of the relative scarcity of available publications, this article can rep-

resent a reference for other existing ADEs to be converted to CityGML 3.0.

The following sections will provide more details on each of the above-mentioned

steps. The article is structured as follows: Section 2 describes the applied method, followed

in Section 3 by some theoretical background on the Energy ADE and the description of

some updates in CityGML 3.0 that are relevant to this article. In this context, we would

like to point out that we assume that the reader is already familiar with the general con-

cepts of CityGML 2.0, CityGML 3.0, and UML modelling. The same applies to the Energy

ADE, for which we only provide an overview of its main characteristics while referencing

further existing literature for the reader who may want (or need) to read more extensively

about it.

Section 4 contains a detailed explanation of the mapping and its logic, followed by

further steps of the implementation in Section 5. Section 6 presents and discusses the result

and Section 7 contains the conclusions, as well as the outlook.

Although several UML excerpts from the Energy ADE, CityGML 2.0 and CityGML

3.0 are provided throughout the article, we nevertheless heartily advise the reader to have

the full UML class diagrams at hand. They can be retrieved at the following links:

ISPRS Int. J. Geo-Inf. 2024, 13, 121 4 of 40

• Energy ADE 1.0: https://www.citygmlwiki.org/index.php/CityGML_Energy_ADE

(accessed on 31 March 2024)

• CityGML 2.0 and 3.0: https://www.ogc.org/standard/citygml (accessed on 31 March

2024).

2. Methodology Overview

The work presented in the article follows and adapts the UML-based approach to

create ADEs by van den Brink et al. [9]. The creation of the “new” Energy ADE is comple-

mented with the actual transformation of test data from CityGML 2.0 + Energy 1.0 to

CityGML 3.0 + the “new” Energy ADE, in order to test and verify the conversion from one

data model to the other without any data losses.

Overall, the developed methodology consists of three steps which are summarised

in Figure 1. Following the above-mentioned model-driven approach, first, a data model is

defined at the conceptual level including its required classes, properties and relations. For

this purpose, UML is chosen as the formal modelling language to define the mapped ADE.

The conceptual mapping process constitutes the core of this work and is first carried out

module by module in a “pen-and-paper” approach. Only afterwards, the UML class dia-

grams are created using the modelling software Enterprise Architect v. 13. This first step

is shown in Figure 1 in dark transparent green.

In the second step, depicted in Figure 1 in light transparent green, the transfer format

is derived from the UML data model. Here, based on the GML target encoding, an XSD

schema file is derived. It specifies how to correctly read, write and validate Energy ADE

GML files for CityGML 3.0. The XSD schema is created using the Java tool ShapeChange

v. 2.11, which requires a specified configuration file and then automatically applies the

encoding rules to the UML class diagrams.

The last, third step, depicted in light transparent blue in Figure 1, consists of creating

a CityGML 2.0 + Energy ADE test dataset which is then converted to a CityGML 3.0 +

“new” Energy ADE dataset. This third step is meant to test the overall applicability of the

newly mapped ADE and to prove whether data can be indeed converted without data

losses. Therefore, the test dataset has been intentionally prepared to cover every feature

type, property and relation of the Energy ADE at least once. Both the dataset creation and

the conversion are implemented with the ETL software FME Desktop v. 2022. The conver-

sion workspace builds upon a pre-existing template available on the FME Hub, which

converts the Building module and other frequently used classes to CityGML 3.0 [16]. The

methodology briefly presented here will be described in more detail in the coming sec-

tions.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 5 of 40

Figure 1. Schematic workflow to map and convert the Energy ADE to CityGML 3.0. Image

adapted from [9].

3. Theoretical Background

This section provides the most important background knowledge regarding the En-

ergy ADE for CityGML 2.0 and the changes in CityGML 3.0 that are relevant in this con-

text. The goal is thereby not to cover every aspect of these data models, but to focus only

on those that are most important to understand the mapping process.

3.1. Energy ADE 1.0 for CityGML 2.0 in a Nutshell

The Energy ADE builds upon the CityGML 2.0 Core and Building modules. It con-

sists of six thematic modules in which either new classes or classes extending CityGML

classes are defined, together with additional data types, several codelists, and enumera-

tions. Figure 2 shows the overview of the ADE packages and depicts the dependencies

between the different modules. The thematic modules are briefly described below,

whereas a more detailed explanation is given alongside the selected examples in Section

4.

• The Energy ADE Core module (in light pink) defines additional attributes for the

CityGML Building::_AbstractBuilding and CityGML Core::_CityObject classes. It also

provides new abstract base classes for the other modules and establishes additional

data types and enumerations;

• The Occupant behaviour module (in light green) defines classes to model different

usage zones and how they are utilised by occupants and facilities such as electrical

appliances. By including schedules, it is possible to represent their behaviour over

the day, year, etc.;

• The Material and construction module (in blue) enables the modelling of the com-

position of construction surfaces through different layers and their physical proper-

ties;

ISPRS Int. J. Geo-Inf. 2024, 13, 121 6 of 40

• The Energy systems module (in orange) provides classes to model the energy stor-

age, distribution, emission, and conversion systems of a building and interrelates

them to represent the respective energy exchange;

• The Building physics module (in light yellow) defines classes for thermal zones,

thermal boundaries and thermal openings to model the thermal hull of a building (or

subparts of it);

• The Supporting classes module (in yellow) comprises classes for different schedules

and time series. They are used to add time-dependent values to the other module

parameters. Additionally, a WeatherStation class is defined herein.

A complete description of the Energy ADE, its overall structure, as well as its classes

is provided by Agugiaro et al. [6]. Please note that the colours presented in the package

diagram depicted in Figure 2 are also adopted in the remainder of the article for better

readability. Classes belonging to the ADE modules are represented using the same afore-

mentioned colours, while all classes used for CityGML (both version 2.0 and 3.0) are al-

ways depicted in cyan.

Figure 2. Package overview of the Energy ADE 1.0 for CityGML 2.0. The colours representing the

different packages will be used throughout the article.

3.2. Relevant Changes in CityGML 3.0

CityGML 3.0 comes with several changes intended to increase its suitability for vari-

ous user groups and expand its range of potential applications in fields such as urban

planning, energy and environment simulations, traffic analyses, Internet of Things, and

Smart Cities. Overall, the revisions in CityGML 3.0 can be categorised into five aspects.

First, the standard applies a model-driven approach, i.e., it is now formally defined

through a platform-independent Conceptual UML Model from which various exchange

formats can automatically be derived. Second, as seen in Figure 3, new modules are intro-

duced (Construction, Versioning, Dynamizer, PointCloud) and existing ones are revised

(Generics, Core, Building, Transportation). These new modules allow the representation

of the dynamic behaviour of city models, to model the transportation infrastructure and

constructions in more detail and to represent the geometries of city objects by 3D point

clouds. Third, there is a newly introduced space concept. All geometries, including an

ISPRS Int. J. Geo-Inf. 2024, 13, 121 7 of 40

updated LOD concept, are defined now in the Core module. Fourth, a refined ADE mech-

anism allows now for the inclusion of several ADEs simultaneously and, furthermore,

supports their creation based on the model-driven approach [10]. Finally, the interopera-

bility with the European Union directive INSPIRE, as well as with various other standards

such as IndoorGML and IFC and with linked data and Semantic Web Technologies such

as RDF, was improved.

Figure 3. The modules in CityGML 3.0. Image adapted from [10].

Since the new space concept and the adapted ADE mechanism play an important role

throughout this research, they are explained here in more detail. For an in-depth intro-

duction to the other changes in CityGML 3.0 please refer to Kutzner et al. [10].

3.2.1. Space Concept

In the Core module, new abstract classes defining different notions of space are in-

troduced. All city objects now derive directly or indirectly from one of these abstract clas-

ses, adding an additional level of semantic meaning. An overview of the classes and their

relation is given in Figure 4.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 8 of 40

Figure 4. Overview of the classes making up the space concept in the CityGML 3.0 Core module.

Image adapted from [7].

First, every city object is distinguished based on whether it is of volumetric (Ab-

stractSpace) or areal extent (AbstractSpaceBoundary). With an AbstractSpace class, real-world

volumetric objects can be modelled, whereas an AbstractSpaceBoundary class describes ob-

jects which bound or delimit volumetric objects from each other, e.g., wall surfaces (Figure

5).

Figure 5. Representation of the classes AbstractSpace (orange) and AbstractSpaceBoundary (blue) us-

ing the example of a building. Image adapted from [10].

One level further, AbstractSpace is subdivided into AbstractLogicalSpace and Ab-

stractPhysicalSpace. The latter represents physically tangible objects which are “fully or

partially bounded by physical objects” such as buildings bounded by walls and a roof

[10]. On the contrary, an AbstractLogicalSpace is an entity defined by a thematic meaning

that can also have a virtual boundary. Examples can be abstract such as a traffic zone, or

more tangible such as an apartment consisting of several physical spaces (Figure 6).

ISPRS Int. J. Geo-Inf. 2024, 13, 121 9 of 40

Figure 6. Representation of the classes AbstractPhysicalSpace (green) and AbstractLogicalSpace

(brown) using the example of a building. Image adapted from [10].

Lastly, AbtractPhysicalSpace is further subclassed into AbstractUnoccupiedSpace and

AbstractOccupiedSpace. AbstractOccupiedSpace describes volumetric objects which prevent

the placement of other city objects at that place. Consequently, an AbstractUnoccupiedSpace

object models volumetric objects that are free to put other things in or to walk through

[10]. The example of a building, as seen in Figure 7, helps to illustrate this concept. The

building as a whole constitutes an AbstractOccupiedSpace as nothing else can be placed in

this specific space anymore. In turn, rooms within the building are empty volumetric ob-

jects and thus AbstractUnoccupiedSpaces. Furniture placed inside the rooms occupies space

and is therefore modelled as an AbstractOccupiedSpace.

Figure 7. Representation of the classes OccupiedSpace and UnoccupiedSpace using the example of a

building. Image taken from [10]

3.2.2. ADE Mechanism

As in previous versions of the standard, the CityGML 3.0 data model can be extended

by means of ADEs. New is that they now have to be defined through UML class diagrams

in order to be encoding-independent. Moreover, the ADE hook mechanism has been re-

designed in order to facilitate the integration of multiple ADEs at once [7].

ADEs allow the extension of the CityGML data model in two ways. Both of them are

depicted in Figure 8 using examples. The first one introduces new classes by deriving

them from AbstractFeature (or as shown in the figure, from a semantically fitting subclass

ISPRS Int. J. Geo-Inf. 2024, 13, 121 10 of 40

of AbstractFeature such as AbstractLogicalSpace). As such, the extension mechanism through

specialisation classes remains the same as in CityGML 2.0.

Using the second possibility, also referred to as the ADE hook mechanism, additional

properties can be added to existing CityGML classes. The way to do this has been updated

so that subclassing the respective CityGML classes is not necessary anymore, as was the

case in CityGML 2.0. Every CityGML class has now an attribute “adeOfFeatureTypeName”

of type “ADEOfFeatureTypeName”, with FeatureTypeName being replaced by the corre-

sponding CityGML class name (e.g., adeOfWallSurface of type ADEOfWallSurface). The new

properties are injected into the CityGML class by subclassing the corresponding data type

“ADEOfFeatureTypeName”. In the example of Figure 8, ThermalHull is defined as a new

class derived from AbstractLogicalSpace and the EnergyProperties data type defines new

properties for the class AbstractBuilding.

Figure 8. Example of extending the existing CityGML 3.0 class AbstractBuilding by means of the ADE

hook mechanism (EnergyProperties, via ADEOfAbstractBuilding) and by deriving a new class (Ther-

malHull) from the existing class AbstractLogicalSpace.

4. Mapping the Energy ADE to CityGML 3.0

As described in Section 2, the methodology to map the Energy ADE to CityGML 3.0

consists of three main steps. This section describes the first step which comprises the de-

tailed mapping process. In order to do so, rules that generally apply throughout all mod-

ules are defined beforehand. Section 5 will further elaborate on the remaining two steps,

namely the corresponding XSD file derivation and the creation of test data based on

CityGML 2.0 and Energy ADE 1.0, as well as its conversion to CityGML 3.0 + “new” En-

ergy ADE.

The goal is to perform the mapping without changing the contents of the Energy ADE

and, thus, to convey the same information as before. However, in order to ensure logical

consistency and a coherent modelling style throughout all modules, a set of mapping

guidelines has been established.

4.1. Mapping Principles

The general mapping principles provide general instructions on how classes should be

mapped, especially if there are several alternative possibilities. On the other hand, the

overarching mapping decisions are more concrete. They are distinctive mapping rules which

apply to all ADE classes and/or relations.

When it comes to the general mapping principles, they are:

• “Integrate as much as possible”: According to this principle, Energy ADE classes

should be integrated as “deep” into the CityGML 3.0 UML model as possible. This

allows for the use of the new space and geometry concept and, thus, adds another

layer of semantic meaning to the classes. In addition, the ADE classes do not need to

define their own geometries anymore and can benefit from a multiple LOD represen-

tation, inherited directly from the CityGML 3.0 Core module. An alternative would

be to keep the ADE classes closer to each other at a very high level in the UML model

ISPRS Int. J. Geo-Inf. 2024, 13, 121 11 of 40

(i.e., deriving them, for example, directly from AbstractFeature). However, as a conse-

quence, the geometry and space concept would not apply to them—which in fact

would disregard one of the main changes in CityGML 3.0.

• “Maintain logical symmetry”: This principle suggests that classes that are similar in

the Energy ADE should be mapped in a similar way to CityGML 3.0 in order to obtain

a logically consistent mapping. For example, ADE classes with a similar meaning, or

at the same conceptual level, should be mapped to the same hierarchy level or be

derived from the same parent class in the CityGML 3.0 data model.

On the individual level, the integration of an Energy ADE class into CityGML 3.0

depends on various factors. The primary factor is the compatibility between the ADE class

and its potential parent class. An ADE class might fit multiple CityGML 3.0 classes within

their specialisation path (e.g., AbstractBuilding or Building). In such cases, it has to be as-

sessed whether additional properties and relationships of the more specialised class add

value to the ADE class, or not. Additionally, a comparison is made on how similar classes

are mapped to fulfil the second general modelling principle. It is also necessary to examine

whether the decision might inadvertently impact other ADE classes, such as by introduc-

ing properties inherited by another ADE class.

While, in the first moment, these mapping principles may seem abstract, they will

become clearer through the provided examples later on. It is however essential to note

that these principles allow flexibility, sometimes offering multiple solutions in specific

scenarios. Eventually, the decision is made at the level of the individual classes. Nonethe-

less, some specific overarching mapping decisions account for all classes and are summa-

rised in the following list.

When it comes to the overarching mapping decisions, they are:

• “AbstractFeatureWithLifespan over AbstractFeature”: AbstractFeatureWithLifespan is al-

ways preferred as the parent class over AbstractFeature. This allows for the inclusion

of properties such as validFrom and validTo. Therefore, every ADE object can be de-

picted in various versions across its historical timeline;

• “Maintain abstract classes”: Abstract classes enable the modular structure of UML

class diagrams and facilitate a clear connection between the different modules. On

top of that, they are kept for symmetry reasons between the original and the “new”

Energy ADE;

• “Keep multiplicities, relations and properties”: The multiplicities, relations and prop-

erties remain as they are unless there is a specific reason to change them in the “new”

Energy ADE version.

The following part demonstrates by means of examples how the Energy ADE is con-

cretely mapped to CityGML 3.0 with explanations of the reasoning behind it. Due to the

size of the Energy ADE, the given cases cover only the most important aspects and partic-

ularities of the mapping. However, the detailed full mapping can be found in [15]. The

examples are organised by modules and are always preceded by a brief explanation of

how the module is defined in the Energy ADE for CityGML 2.0.

4.2. The Core Module in the Energy ADE for CityGML 2.0

The Core module, depicted in Figure 9, extends the CityGML abstract classes

_CityObject and _AbstractBuilding. The CityGML 2.0 class _AbstractBuilding is extended by

means of the ADE hook mechanism to include properties needed for the computation of

the building energy demand. This includes attributes regarding its geometry (e.g., volume,

floorArea), construction typology (constructionWeight) and energy archetype of building

(buildingType). Additionally, information regarding WeatherData or EnergyDemand can be

associated with every _CityObject. WeatherData information is needed either to perform

accurate simulations or to store the pre-computed weather-related information (e.g., from

solar irradiation pre-processing). EnergyDemand, on the other hand, is used to describe an

object’s time-dependent energy demand, be it in terms of electricity, (natural) gas, etc.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 12 of 40

Additionally, the Core module establishes anchor points to the remaining ADE modules

by means of other abstract classes (e.g., AbstractThermalZone, AbstractUsageZone) and dis-

plays their interrelations. Finally, it defines new base classes for the remaining modules

and introduces new enumerations and codelists.

Figure 9. The Core module of the Energy ADE for CityGML 2.0.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 13 of 40

4.3. Mapping the Core Module to CityGML 3.0

4.3.1. BuildingProperties

As previously mentioned, additional properties are injected into AbstractBuilding via

the ADE hook mechanism. In CityGML 3.0, the new data type BuildingProperties is derived

from ADEOfAbstractBuilding and is used to add the corresponding Energy ADE properties

to CityGML 3.0 AbstractBuilding. The fully mapped Core module of the Energy ADE for

CityGML 3.0 is depicted in Figure 10.

Figure 10. The Core module of the Energy ADE for CityGML 3.0.

Conveniently, some Energy ADE properties can be “replaced” by equivalent ones

already provided in CityGML 3.0, i.e., volume, floorArea, and heightAboveGround. How the

ISPRS Int. J. Geo-Inf. 2024, 13, 121 14 of 40

properties are transferred is shown using the example of volume in Figure 11. Likewise,

floorArea is mapped to the area property of AbstractSpace and heightAboveGround to the

property height of AbstractConstruction in the newly added Construction module of

CityGML 3.0. Finally, as CityGML 3.0 centralises all geometries in the Core module, En-

ergy ADE geometry properties such as the referencePoint are mapped directly to the al-

ready existing lod0Point property.

Figure 11. Mapping the volume attribute of _AbstractBuilding in the Energy ADE for CityGML 2.0

(on the left) to the volume attribute of AbstractSpace in CityGML 3.0 (on the right). The correspond-

ing complex data types are matched accordingly.

4.3.2. EnergyDemand

According to the Energy ADE for CityGML 2.0 (see Figure 9) a _CityObject (including

its specialisation classes) can demand multiple EnergyDemand instances. However, associ-

ation relationships cannot be added directly to any CityGML class, as this would alter the

original data model. Consequently, the CityGML 2.0 _CityObject class itself must be ex-

tended by means of the ADE hook, from which the relation to the EnergyDemand class can

be defined. In this case, the new data type EnergyADECityObjectProperties is created for

the CityGML 3.0 class AbstractCityObject. From here, the relation to EnergyDemand is

made.

When it comes to the EnergyDemand class, the mandatory property energyAmount is

linked to a further class that is used to model time series. For CityGML 3.0, the Energy

ADE AbstractTimeSeries class (and its subclasses) is largely integrated into CityGML 3.0’s

Dynamizer module. Thus, the way how properties are modelled for time-varying proper-

ties has changed considerably. Similarly, all Energy ADE classes having a property linked

to a time-dependent class now require a relation to AbstractDynamizer. CityGML 3.0 al-

ready provides a relation from any AbstractCityObject to AbstractDynamizer (as can be seen

in the CityGML 3.0 Core module). Yet, EnergyDemand is derived from AbstractFeatureWith-

Lifespan and therefore this relation needs to be created additionally. This is achieved by a

relation from EnergyDemand to AbstractDynamizer with the role name dynamizer. The mul-

tiplicity of 1 makes it a mandatory relation. As the property energyAmount itself is obliga-

tory for EnergyDemand, the multiplicity of 1 ensures the connection to AbstractDynamizer

and, thus, serves as a security check for the modelling of time-varying property values.

Beyond this, the specifics of the Dynamizer module and the time series data are explained

in further detail later on, in Section 4.9.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 15 of 40

4.4. The Building Physics Module in the Energy ADE for CityGML 2.0

According to the Energy ADE, a building can be subdivided into one or several ther-

mal zones (corresponding to class ThermalZone), with each zone having its own thermal

behaviour. The thermal zones are delimited from each other or the exterior of the building

by thermal boundaries (class ThermalBoundary). Doors, windows or other openings within

the thermal boundary represent thermal openings (class ThermalOpening).

Each one of these three classes can be optionally associated with a geometry (a Solid

for the ThermalZone, and a MultiSurface for ThermalBoundary and ThermalOpening) to rep-

resent their explicit geometry. Please note that, by decision of the Energy ADE designers,

such properties (i.e., volumeGeometry and surfaceGeometry) allow only for a single repre-

sentation and, thus, are decoupled from the usual LOD representation typical of CityGML

[6]. ThermalZones can furthermore contain multiple UsageZone instances, the respective

abstract class AbstractUsageZone is depicted in the Core module. Beyond this, the thermal

and optical properties of ThermalOpening and ThermalBoundary can be described through

their relation to AbstractConstruction. Figure 12 depicts an overview of the Building phys-

ics module of the Energy ADE.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 16 of 40

Figure 12. The Building physics module in the Energy ADE for CityGML 2.0.

4.5. Mapping the Building Physics Module to CityGML 3.0

As already mentioned, there is usually more than one possibility to perform a map-

ping. The Building physics module is a good example thereof as it also illustrates how the

mapping principles presented in Section 4.1 come to fruition.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 17 of 40

The first mapping option is to derive the ThermalZone, ThermalBoundary and Ther-

malOpening classes directly from AbstractCityObject, shown in Figure 13. As such, the im-

plementation would be very similar to the one in the Energy ADE for CityGML 2.0. Con-

sequently, the classes stay close together at the same hierarchy level within CityGML 3.0.

All properties remain unchanged, and the geometries are explicitly defined within the

new classes.

Figure 13. Option to map the Building Physics module classes to CityGML 3.0 by deriving them all

from AbstractCityObject and, thus, keeping them closer together within the UML class diagram.

Alternatively, the ADE classes can be integrated deeper into the CityGML 3.0 data

model depending on their best semantic fit. For example, the class ThermalZone can be

subclassed from AbstractSpace, while the classes ThermalBoundary and ThermalOpening be-

come a specialisation of AbstractSpaceBoundary (see Figure 14). In this way, some of the

Energy ADE properties can be mapped to already existing CityGML 3.0 ones, as seen be-

fore in the case of AbstractBuilding. Additionally, the geometries do not need to be explic-

itly defined inside the ADE classes anymore, as they are now inherited from those existing

in the CityGML 3.0 Core module. Besides, the space concept in the Core module enriches

the ADE classes with an additional level of semantic meaning.

Due to these reasons, the latter mapping approach is the preferred one and is further

pursued. In the following, it is discussed how the three Energy ADE classes are modelled

in detail.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 18 of 40

Figure 14. Option to map the Building physics module classes to CityGML 3.0 by their best semantic

match.

4.5.1. AbstractThermalZone and ThermalZone

In CityGML 3.0, an AbstractLogicalSpace class and its subclasses are defined via the-

matic considerations and, thus, they fit the intrinsically logical concept of a ThermalZone.

Although AbstractLogicalSpace is a suitable superclass itself, it is relatively generic com-

pared to its more specialised subclasses. Moreover, the mapping principles foresee the

integration of ADE classes as deep as possible into the CityGML 3.0 data model to add

value. Hence, a closer look at BuildingUnit as a potential parent class is taken. A Build-

ingUnit is a “logical subdivision of a Building […] formed according to some homogene-

ous property” [7]. In the case of the ThermalZone class, this homogeneous property relates

to the isothermal volume making up a thermal zone. However, having BuildingUnit as the

parent class for ThermalZone results in an interrelation conflict with the Energy ADE class

BuildingUnit in the Occupant behaviour module. Anticipating some mapping decisions in

the Occupant behaviour module, the ADE BuildingUnit is merged into the CityGML 3.0

BuildingUnit by adding properties via the usual ADE hook mechanism. However, these

additional properties could then also be inherited by ThermalZone, eventually leading to a

logical inconsistency (the details of this reasoning will become more evident when de-

scribing the mapping of the Occupant behaviour module in Section 4.7). In order to avoid

such logical inconsistencies, AbstractThermalZone is subclassed from AbstractBuildingSub-

division. Figure 15 illustrates the different mapping options.

As seen before, the attributes floorArea and volume can be replaced through this map-

ping by area and volume of AbstractSpace. Furthermore, the geometry property volume-

Geometry of ThermalZone can be replaced (i.e., inherited) by the geometry defined in the

CityGML 3.0 Core module.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 19 of 40

Figure 15. Example of several options for the parent class of AbstractThermalZone. Eventually, Ab-

stractBuildingSubdivision is chosen.

4.5.2. ThermalBoundary and ThermalOpening

In order to utilise the CityGML 3.0 properties for the Energy ADE ThermalBoundary

and ThermalOpening classes, they have to be derived from the class AbstractThematicSurface

or one of its specialised thematic surface classes. For visual reference, an excerpt of the

CityGML 3.0 UML class diagram for thematic surfaces is provided in Figure 16.

Figure 16. Excerpt of the CityGML 3.0 Construction module showing the different thematic surfaces.

Again, several mapping possibilities exist. One option is to derive the class Thermal-

Boundary from AbstractConstructionSurface and the class ThermalOpening from Abstract-

FillingSurface. In this case, the relation fillingSurface between the CityGML 3.0 parent clas-

ses (see Figure 16) could replace the contained relationship between ThermalBoundary and

ThermalOpening in the Energy ADE (see Figure 12).

Although the class ThermalOpening fits semantically well with AbstractFillingSurface,

there is a slight mismatch between ThermalBoundary and AbstractConstructionSurface. The

AbstractConstructionSurface class is meant to bind CityGML 3.0 Construction features (a

subclass of AbstractOccupiedSpace). However, a ThermalZone is a logical space and does not

fall under the category of a construction. Hence, ThermalZone cannot be bound by a con-

struction surface.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 20 of 40

Technically, it is possible to model the Energy ADE classes at different “levels” in the

CityGML 3.0 UML diagram. But according to the general mapping principles, similar clas-

ses should ideally be derived from the same or comparable parent classes. As such, logical

consistency and therefore an easier understanding of the UML diagrams can be ensured.

Eventually, a semantically correct mapping, together with the principle of maintaining

logical symmetry, outweighs the deeper integration into the CityGML 3.0 UML data

model. As a result, ThermalBoundary and ThermalOpening are both mapped to the more

generic CityGML 3.0 class AbstractThematicSurface. Regarding attributes, area in Thermal-

Boundary and ThermalOpening can be replaced by the area property of AbstractThematicSur-

face. The surface geometries are also replaced by the corresponding CityGML 3.0 geome-

tries defined in its Core module.

The complete UML diagram of the resulting mapped Building Physics module is

shown in Figure 17.

Figure 17. The Building physics module in the Energy ADE for CityGML 3.0.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 21 of 40

4.6. The Occupant Behaviour Module in the Energy ADE for CityGML 2.0

In the Energy ADE, the Occupant behaviour module defines classes to model differ-

ent usage zones and how they are utilised by occupants and facilities such as electrical

appliances (see Figure 18). By including schedules, it is possible to represent their behav-

iour over the day, year, etc. Central to the module is the class UsageZone, which defines

regions of homogenous usage with regard to their occupants and included facilities. Its

properties describe factors affecting the indoor temperature (heatingSchedule, coolingSched-

ule, ventilationSchedule) and the usage type (usageZoneType). Moreover, a UsageZone may

contain several BuildingUnit instances, which specify ownership information. To further

specify internal heat gains, BuildingUnit and UsageZone both have relations to Occupants

and Facilities (LightingFacilities, DHWFacilities, ElectricalAppliances).

Similarly to what was mentioned before for the Building physics module, class Us-

ageZone can be optionally associated with a solid geometry. Also, in this case, the volume-

Geometry property allows only for a single representation and, thus, is decoupled from the

usual LOD representation of CityGML.

Figure 18. The Occupant behaviour module in the Energy ADE for CityGML 2.0.

4.7. Mapping the Occupant Behaviour Module to CityGML 3.0

4.7.1. AbstractUsageZone and UsageZone

Given the previous definition of the CityGML 3.0 BuildingUnit class, it qualifies as a

fitting parent class for the Energy ADE’s UsageZone. Since UsageZone shows similar traits

ISPRS Int. J. Geo-Inf. 2024, 13, 121 22 of 40

to ThermalZone in the Building physics module, the same issue of potentially inheriting

unwanted properties occurs when the class BuildingUnit is extended via the ADE hook

(see Figure 19). Consequently, AbstractUsageZone is also mapped to the next higher gen-

eralisation class, AbstractBuildingSubdivision. As a result, BuildingUnit does not serve as a

generalisation class for AbstractUsageZone and AbstractThermalZone and unwanted prop-

erties are not passed on to them. In addition, this solution satisfies the principle of logical

symmetry between the two similar classes ThermalZone and UsageZone.

Figure 19. Example of a problematic mapping scenario. When rigidly sticking to the mapping prin-

ciples, UsageZone and ThermalZone should both be derived from CityGML 3.0’s BuildingUnit. As

BuildingUnit is extended by the ADE properties of class BuildingUnitOccupancy, the ADE properties

would also be inherited by UsageZone and ThermalZone, which is not desired. If both classes are

derived instead from AbstractBuildingSubdivision, the mapping does not adhere to the “integrate as

much as possible” principle, however, it solves the aforementioned problem of undesired class in-

heritance.

4.7.2. BuildingUnit

The concepts of the CityGML 3.0 BuildingUnit and of the Energy ADE BuildingUnit,

which specifies ownership information, match rather well. Because the classes already

have the same name and also fit semantically, the CityGML 3.0 class is extended through

the ADE hook mechanism to include the additional properties (via the DataType Build-

ingUnitOccupancy). This eventually leads to the mapping shown in Figure 20.

A positive side-effect of this mapping solution is that BuildUnit now inherits a prop-

erty for a volumetric geometry through its integration with the CityGML 3.0 space and

geometry concept. The property floorArea is mapped to the corresponding CityGML 3.0

property and the relation to Address is also already provided.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 23 of 40

Figure 20. Excerpt of the Occupant behaviour module in the Energy ADE for CityGML 3.0. The full

module is depicted in [15].

ISPRS Int. J. Geo-Inf. 2024, 13, 121 24 of 40

4.8. The TimeSeries Classes in the Energy ADE for CityGML 2.0

In the Energy ADE, the time series classes are meant to facilitate the modelling of

time-varying attribute values. For this, properties in other modules have the property type

AbstractTimeSeries (see e.g. property energyAmount of class EnergyDemand shown in Figure

21).

Figure 21. Class EnergyDemand in the Energy ADE for CityGML 2.0 with the property energyAmount

which references a time series through its property type AbstractTimeSeries.

Figure 22 shows how the AbstractTimeSeries class is further specialised into four sub-

classes to deal with either regular or irregular time series, possibly stored in-line or in

external files. Regular time series have a given time period (temporalExtent) and time in-

terval (timeInterval) for the measurements. Irregular time series, on the other hand, pro-

vide a specific timestamp for every measurement value. Additionally, some metadata can

be provided via associated enumeration classes.

Figure 22. The time series classes in the Energy ADE for CityGML 2.0.

4.9. Mapping the TimeSeries Classes to the Dynamizer Module in CityGML 3.0

One of the major additions to CityGML 3.0 is the ability to model time-dependent

attribute values by means of the Dynamizer module. A Dynamizer object can be associ-

ated with each property of an AbstractCityObject class (and therefore all its subclasses) via

the relation to AbstractDynamizer. The details on the modelling of such properties are be-

yond the scope of this article; however, further information can be found in [17].

In the Energy ADE, the classes EnergyDemand, WeatherData and EnergyFlow have the

time-dependent properties energyAmount, values, and energyAmount, respectively. How-

ever, as these classes are derived from AbstractFeatureWithLifespan and not from Ab-

stractCityObject, they do not inherit the relation to AbstractDynamizer. Thus, a new ad hoc

ISPRS Int. J. Geo-Inf. 2024, 13, 121 25 of 40

relation must be modelled from the respective ADE class to AbstractDynamizer. Because

the time-varying properties in the Energy ADE are mandatory, they are required to be

referenced by a Dynamizer instance. This is emphasised through the multiplicity of 1 from

the respective ADE class to AbstractDynamizer. In addition, a descriptive note states in the

UML diagram which of the properties is to be referenced by Dynamizer.

With the new modelling technique of time-varying properties, their property types

also need to be updated, as they are now expressed as a static value in the respective class.

Therefore, as time series consist of values of complex type measure (i.e., value + unit of

measure), their type must be set to Measure. An example in terms of UML is shown in

Figure 23 for the classes EnergyDemand (property energyAmount) and WeatherData (prop-

erty values).

Figure 23. Excerpt of the Energy ADE for CityGML 3.0, showcasing the UML modelling of time-

varying properties.

4.9.1. IrregularTimeSeries

The class IrregularTimeSeries of the Energy ADE conceptually corresponds to the class

GenericTimeseries of the Dynamizer module. The time-value pair itself (Energy ADE: Meas-

urementPoint/CityGML 3.0: TimeValuePair) is modelled in both cases with a property for

the timestamp (time/timestamp) and one for the value (value/doubleValue) and, thus, can be

mapped directly. However, the uom attribute of the class is mapped to the uom attribute

of the class AbstractAtomicTimeseries.

4.9.2. IrregularTimeSeriesFile

In a similar way, IrregularTimeSeriesFile is mapped to TabulatedFileTimeseries. Only the

property recordSeparator cannot be mapped to any of the CityGML 3.0 properties and is

therefore added via the ADE hook mechanism through the new data type subclass Tabu-

latedFileTimeseriesExtension. In addition to the CityGML 3.0 class TabulatedFileTimeseries,

another class also handles externally stored time series: StandardFileTimeseries. It refer-

ences files in standardised formats such as the OGC Observations & Measurements Stand-

ard or OGC TimeseriesML [7]. Nevertheless, mapping IrregularTimeSeriesFile to this class

is not suitable as this would require altering the input file or losing properties.

4.9.3. RegularTimeSeries

In the Energy ADE, RegularTimeSeries stores an array of time-dependent values to-

gether with its total temporal extent, defined as start and end timestamps, and the interval

between the timestamp of each value. However, the Dynamizer module of CityGML 3.0

does not offer an equivalent class to the Energy ADE RegularTimeSeries. The closest candi-

date would be GenericTimeseries, which however requires that each time-dependent value

be stored together with its accompanying timestamp. The additional timestamps for each

value could be computed using the information provided by the original Energy ADE

RegularTimeSeries data. Choosing the GenericTimeseries as target class would, however,

lead to a far less compact representation compared to the Energy ADE RegularTimeSeries.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 26 of 40

Thus, opting for this mapping strategy—besides being rather impractical—contradicts the

purpose of a compact encoding by the RegularTimeSeries.

As a result, an alternative mapping strategy is preferred: A new class Regu-

larTimeseries (please note the small s in Timeseries to match the naming style of other Dy-

namizer classes) is derived from AbstractAtomicTimeseries. The goal is to overcome the

above-mentioned limitations. Furthermore, the attribute temporalExtent is mapped to the

properties firstTimestamp and lastTimestamp of the Dynamizer class AbstractTimeseries.

4.9.4. RegularTimeSeriesFile

Also, for the Energy ADE class RegularTimeSeriesFile there is no predefined class in

the Dynamizer module. The closest option, TabulatedFileTimeseries, requires a value for ei-

ther timeColumnNo or timeColumnName, meaning that a column containing the timestamps

must be specified. However, such a column does not exist in a regular time series file.

Several options were considered on how to best map the RegularTimeSeriesFile to the Dy-

namizer module. Among them are manually adapting the input file, creating a separate

ADE class, or creating a shared AbstractRegularTimeseries class for RegularTimeseries and

RegularTimeseriesFile. All of them are discussed in detail in [15].

Eventually, the implemented mapping uses the TabulatedFileTimeseries nonetheless,

but with a workaround for the OCL constraint. One of the required properties, which

indicates the column for the timestamps in the referenced file (timeColumnName), asks for

a CharacterString data type. When using the TabulatedFileTimeseries class for regular time

series files, this property can simply be given a NaN (Not a Number) or string value ex-

pressing that such a column is not included. Additionally, the ADE property timeInterval

is added to TabulatedFileTimeseries via the ADE hook mechanism. This solution has the

advantage of using existing classes rather than creating new ones. Therefore, the UML

model remains more compact and avoids modelling repetitive information. Last but not

least, it follows the mapping principles of logical symmetry and integrating as much as

possible. The resulting final UML class diagram, covering the mapping of the Energy ADE

classes for time series, is provided in Figure 24.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 27 of 40

Figure 24. The Dynamizer module of CityGML 3.0 (in cyan) extended with the mapped time series

of the Energy ADE (in yellow).

4.10. The Schedules Classes in the Energy ADE for CityGML 2.0

Class AbstractSchedule and its subclasses, as seen in Figure 25, are part of the Support-

ing classes module of the Energy ADE. Therefore, they are referenced by the other mod-

ules in a similar way as the AbstractTimeSeries class. Schedules are used to describe to

which extent features or appliances are operated in a certain time period.

The specialisation classes of AbstractSchedule are characterised by increasing degrees

of freedom regarding how the schedules can be designed. The most general option is Con-

stantValueSchedule which specifies one single value for average usage. Further,

DualValueSchedule differentiates between idle and operating times. The DailyPatternSched-

ule models change operation times based on the period of the year and the day. Lastly, the

ISPRS Int. J. Geo-Inf. 2024, 13, 121 28 of 40

TimeSeriesSchedule gives complete freedom by modelling the usage through a custom-de-

fined time series.

Figure 25. The Schedule classes in the Energy ADE for CityGML 2.0.

4.11. Mapping the Schedule Classes to CityGML 3.0

When it comes to mapping the Energy ADE schedules, no directly corresponding

concept exists in CityGML 3.0. Thus, they can be mapped in a simpler way than the time

series, although some adjustments are still required.

For example, in the Energy ADE, the classes have the stereotype «type». Within

CityGML 3.0, this stereotype is not used anymore for application schemas. Nevertheless,

to be able to reference the schedules via XLinks, as is very often the case in this context,

the new stereotype requires a unique identifier. Because of this reason, «DataType» cannot

be used for this purpose. Instead, the classes are given the stereotype «FeatureType».

As AbstractSchedule needs to be linked to one of the existing classes within the

CityGML 3.0 model, the parent class AbstractFeatureWithLifespan is selected. Choosing in-

stead AbstractCityObject as a parent class would not be a conceptually logical solution,

because schedules are neither a city object nor do they have a spatial extent. At a higher

level, AbstractFeature would be a possible choice, as it is more general. Still, in coherence

with the general mapping principles, this is not the preferred option. AbstractFeatureWith-

Lifespan offers instead a deeper integration into the data model and furthermore ensures

logical symmetry with AbstractDynamizer, which also derives from it. The excerpt from

the UML class diagram depicted in Figure 26 shows these relations.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 29 of 40

Figure 26. The Schedule classes of the Energy ADE for CityGML 3.0.

The properties of the mapped Energy ADE classes that are described via schedules

have now the property type AbstractSchedule. This in-line representation (in the original

Energy ADE) is de facto the same as the relation by reference from a feature type to Ab-

stractSchedule (see Figure 27) in the mapped version for CityGML 3.0.

Figure 27. The property occupancyRate represented in-line and highlighted in red (left) equals the

by-reference representation (right).

4.11.1. ConstantValueSchedule and DualValueSchedule

The classes are changed to «FeatureType» and are subclassed from AbstractSchedule.

None of their properties can be mapped to CityGML 3.0, therefore, the overall structure

remains nearly identical to the original Energy ADE.

4.11.2. TimeSeriesSchedule

The only property timeDependingValues specifies, as a ratio, how much something is

used over a given time and, as such, does not need a unit of measure. The time-dependent

values can be modelled through a connection to AbstractDynamizer. Here, the user is free

to choose which class in the Dynamizer module best describes the intended time series.

4.11.3. DailyPatternSchedule

Two options for mapping the class DailyPatternSchedule were considered. In the first

one, the original Energy ADE structure (i.e., as compositions of PeriodOfYear and Dai-

lySchedule) is simply recreated for CityGML 3.0. Alternatively, the CompositeTimeseries and

TimeseriesComponent in the Dynamizer module are used to re-model the nested structure

of the Energy ADE class DailyPatternSchedule. This second mapping choice is made possi-

ble in CityGML 3.0 because the class CompositeTimeseries can contain multiple instances of

ISPRS Int. J. Geo-Inf. 2024, 13, 121 30 of 40

the class TimeseriesComponent, which are themselves associated with any of the available

time series derived from the class AbstractTimeseries (see Figure 28).

Figure 28. Excerpt of the CityGML 3.0 Dynamizer module.

To pursue this second modelling approach, the Energy ADE class DailySchedule is

mapped to the data type TimeseriesComponent. Yet, its property dayType cannot be included

in TimeseriesComponent, because the ADE hook mechanism does not apply to data types.

As a workaround dayType is added to AbstractAtomicTimeseries through an ADE hook in-

stead because every TimeseriesComponent is eventually described by the other time series.

Furthermore, the period property of the class PeriodOfYear has to be mapped to two differ-

ent classes within the Dynamizer module due to the flexibility the nested structure of Dai-

lyPatternSchedule gives. If a DailyPatternSchedule has only one time period, the property can

be added to CompositeTimeseries with the ADE hook mechanism. If a DailyPatternSchedule

has multiple time periods (PeriodOfYear), the period property is directly attached to the

time series. This is realised through a hook to the class AbstractAtomicTimeseries. The new

properties added to the Dynamizer module for the DailyPatternSchedule are summarised

in Figure 29.

With this mapping solution, even though it is rather complex, the class DailyPattern-

Schedule for CityGML 3.0 requires only the property timeDependingValues and a connection

to AbstractDynamizer. As such, it makes use of the concepts already available in CityGML

3.0 and adheres to the general mapping principles.

Figure 29. Excerpt of the CityGML 3.0 Dynamizer module (in cyan) with the added properties (in

yellow) to map the DailyPatternSchedule.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 31 of 40

5. Further Steps

Following the UML-based mapping, the data model is first derived as an XSD schema

file in order to create and validate respective data. The applicability of the final mapping

is then tested with a sample dataset which is converted to CityGML 3.0 + “new” Energy

ADE.

5.1. XSD Schema Derivation

For the XML-based encoding of CityGML (and any associated ADEs), XML Schema

Definition (XSD) files are required. They encode, in a machine-readable way, the data

model and its constraints therefore defining how data can be written and automatically

validated.

The required XSD schema for the Energy ADE for CityGML 3.0 is automatically de-

rived from the UML class diagrams by means of the software tool ShapeChange v. 2.11.In

order to do so, ShapeChange requires a custom configuration file which specifies, for ex-

ample, the UML diagrams to process, the target encoding and the output directory.

To simplify the task, an already existing configuration file from the Utility Network

ADE [14] has been adapted to match the requirements of the Energy ADE. The resulting

XSD file can be found on GitHub [18]. The generated XSD file was carefully checked also

manually to ensure the correctness of the classes and properties.

5.2. Test Data Creation and Conversion

To test the validity of the “new” Energy ADE for CityGML 3.0, a test dataset with

CityGML 2.0 and Energy ADE 1.0 data was first created and then successively converted

to a dataset with the “new” Energy ADE for CityGML 3.0. The test dataset contains every

Energy ADE class and property at least once in order to verify that the data conversion is

carried out correctly and without any loss of data. Both of these steps are implemented in

an FME Workbench and are briefly described in the following. Both the FME workbench

and the test dataset can be retrieved from the GitHub repository, too.

The test dataset builds upon an artificial CityGML 2.0 city model with 12 buildings

(as seen in Figure 30) that are already enriched with some Energy ADE properties. They

are modelled in LOD2 through their boundary surfaces WallSurface, RoofSurface and

GroundSurface. In addition, the buildings have geometries via the referencePoint and

lod0FootPrint properties. Every building has one ThermalZone and one UsageZone with ge-

ometries following the CityGML boundary surfaces. Moreover, ThermalBoundary and

ThermalOpening are defined by Constructions through Layer, LayerComponent and Material.

Additionally, each building has a set of Households, Occupants and Facilities as well as an

occupancyRate schedule and an EnergyDemand time series. Lastly, the test data have one

WeatherStation containing temperature and humidity information.

All classes and properties that are not already present in the original test dataset are

added through an FME Workspace. This mainly includes data covering the whole Energy

systems module, some additional individual properties and feature types, as well as ex-

amples of RegularTimeSeries and DailyPatternSchedule. Eventually, the created dataset co-

vers all important aspects of the Energy ADE and serves as input for the conversion to

Energy ADE for CityGML 3.0.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 32 of 40

Figure 30. Visualisation of the test dataset in the FZK ModelViewer. Upper picture: the CityModel

with its LOD2 buildings and properties. Lower picture: the UsageZone of Building “Yoda’s Hut”

with its properties and own geometry.

For the conversion, an FME template that transforms the Building module to

CityGML 3.0 is used as a starting point [16]. The data are imported with a CityGML

Reader and exported with a GML Writer which is provided with the XSD schema files (for

both CityGML 3.0 and the “new” Energy ADE). The reason for doing so is that FME did

not support CityGML 3.0 natively when the mapping was carried out (beginning of 2023).

In this context, only the main overarching concepts of the conversion are presented.

A more detailed explanation is provided in [15] and in the GitHub repository [18]. Figure

31 provides a schematic overview of the whole conversion process in FME. Large parts

are dedicated to renaming attributes according to their altered FME encoding. Moreover,

ADE geometries are transferred to the corresponding CityGML 3.0 ones wherever possi-

ble. Furthermore, Schedule, TimeSeries and WeatherData objects have now their own FME

Writer due to their stereotype being changed to «FeatureType» in the Energy ADE for

CityGML 3.0. Thus, the associated information is separated and further handled to con-

nect them to their new corresponding FME Writer. Finally, the conversion handles indi-

vidual changes of mapped properties and property values.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 33 of 40

Figure 31. Schematic overview of the data conversion from Energy ADE for CityGML 2.0 to Energy

ADE for CityGML 3.0 in FME. The “Input A” block stands for input class A, e.g., ThermalZone, and

the “Output A” block for the respective output after the conversion. Unlike in CityGML 2.0, the

Schedule and Dynamizer now have their own classes in the Energy ADE for CityGML 3.0, which is

why they also have their own blocks to write the final output.

6. Results and Discussion

In this section, the results are presented, and the implemented mapping strategy, its

implications, and the lessons learnt are discussed. The reflection will cover mainly the

chosen level of integration between the Energy ADE and the CityGML 3.0 data model, the

resulting geometry representation and how the gained insights can be beneficial for the

development (or conversion) of other ADEs in the context of CityGML 3.0.

Regarding the mapping results, an excerpt is contained in Table 1. It contains three

classes, indicating how much they have changed during the mapping process, as well as

some relevant details. The classes shown in Table 1 are chosen to provide three representa-

tive examples. For space and readability reasons, the table containing all classes is pre-

sented in Appendix A.

In the table, the status “Mostly taken over” means that only some minor changes

were necessary to fit CityGML 3.0. “Adapted” refers to some major adjustments and “Ob-

solete” tells that the Energy ADE class was completely replaced by a CityGML 3.0 one.

For example, the ADE properties for _AbstractBuilding were mapped to native CityGML

3.0 properties wherever possible and were furthermore adapted according to the restruc-

tured ADE hook mechanism. These are not structural changes, which is why this mapping

is categorised as “Mostly taken over”. On the other hand, the class AbstractEnergySystem

was mapped to a new generalisation class which integrates it into the new space and ge-

ometry concept. In the Energy ADE for CityGML 2.0, the class could not be represented

geometrically. These changes alter the structure of the Energy ADE class, which is thus

assigned the status “Adapted”.

Table 1. Selected classes representing the results of the mapping. The “Status” column refers to the

degree of change through the mapping, while the “Details” column gives condensed information

about the mapping.

Energy ADE

Module
Class Status Details

Core

_AbstractBuilding/BuildingProper

ties

Mostly taken

over

Adapted to new hook mechanism, some

properties replaced by CityGML 3.0 ones

AbstractEnergySystem Adapted

New generalisation class: AbstractOccupiedSpace,

incorporation into space and geometry concept,

property yearOfManufacture replaced by

CityGML 3.0 property

ISPRS Int. J. Geo-Inf. 2024, 13, 121 34 of 40

Time Series

AbstractTimeSeries Obsolete
Property variableProperties is mapped to

AbstractTimeseries with the ADE hook

IrregularTimeSeries/GenericTimes

eries
Obsolete

Replaced by GenericTimeseries in the Dynamizer

module

RegularTimeSeriesFile,

IrregularTimeSeriesFile/Tabulated

FileTimeseries

Obsolete,

Adapted

Both classes largely replaced by

TabulatedFileTimeseries in the Dynamizer module,

addition of properties recordSeparator and

timeInterval with the ADE hook

6.1. Level of Integration

The resulting data model of the Energy ADE for CityGML 3.0, together with the de-

veloped XSD file and FME workbench, prove that a data conversion can be successfully

carried out without any data losses. The mapping procedure has followed the guidelines

listed in Section 4.1, which allow for a uniform mapping on a logical and conceptual level.

However, sometimes there is more than one possible solution to perform the mapping.

Thus, for the sake of completeness, two possible alternative mapping strategies are briefly

outlined in the following subsections, although they were ultimately not implemented

and only the mapping strategy presented in Section 4 was used to obtain the XSD file and

the FME workbench. We have called them “minimum“ and “middle ground” mapping

strategies.

6.1.1. Minimum Mapping

The so-called “minimum mapping” approach could be seen as a sort of brute-force

mapping, in which only strictly necessary “technical” adjustments would be made for the

Energy ADE to work with CityGML 3.0. In other words, all Energy ADE classes would be

derived directly from CityGML 3.0 AbstractCityObject or AbstractFeature, without any fur-

ther reasoning on exploiting the new classes and concepts of CityGML 3.0.

Some of the strictly necessary “technical” adjustments would be required due to the

revised ADE hook mechanism of CityGML 3.0. Moreover, the generalisation class names

would need to be updated according to the new standard (e.g., from _CityObject to Ab-

stractCityObject). At last, the stereotype «type» in ServiceLife, WeatherData, the time series

and schedules classes would need to be adapted to a viable alternative. It remains open to

further investigation how time series could be dealt with in this scenario. The closest op-

tion to the original Energy ADE would be to change the classes to the stereotype «Feature-

Type» and use AbstractFeature as the parent class for AbstractTimeSeries. This solution, not

further followed in our mapping of time series, however, was used to map the Energy

ADE schedules.

The result of a “minimum mapping” approach would lead to a resulting data model

that is “closer” to the original Energy ADE for CityGML 2.0. On the one hand, it would

offer a less complex solution than the proposed one by keeping the classes closer together

and deriving them all from CityGML 3.0 classes that are rather high up in the hierarchy

(AbstractFeature, AbstractCityObject). On the other hand, it would not take into account

many of the changes in CityGML 3.0. None of the classes would be derived from classes

of a lower hierarchy level than AbstractCityObject and would thus not utilise the newly

introduced space and geometry concept. Therefore, the geometries would need to be ex-

plicitly defined, none of the properties could be replaced by CityGML 3.0 ones, and the

ADE classes would furthermore not benefit from any of the additionally provided seman-

tics. As a result, a lot of redundant information would be created through this mapping

approach, which is not the purpose of an extension of the given data model.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 35 of 40

6.1.2. Middle Ground

A second possible alternative could consist of a compromise between the “minimum

mapping” approach and its opposite one, i.e., the implemented “integrate as much as pos-

sible” approach. Here, the ADE classes could be integrated into the CityGML 3.0 space

and geometry concept where the semantic relation is evident. However, only abstract

space classes would be considered. AbstractThermalZone would then for instance either be

subclassed from AbstractSpace or AbstractLogicalSpace. Furthermore, Energy ADE classes

without geometries would remain subclassed from AbstractCityObject (i.e., Facilities). For

the remaining classes, it would remain open to discussion whether to derive them from

AbstractFeature or AbstractFeatureWithLifespan.

This middle-ground solution would utilise the CityGML 3.0 geometries where appli-

cable, while not giving new ones to ADE classes that did not have them before. Addition-

ally, it would also provide some additional contextual information. Thus, this strategy

would benefit from some of the updates in CityGML 3.0, and at the same time, keep the

Energy ADE closer to the original one.

Both herewith discussed alternative mapping approaches could probably be imple-

mented, also without any loss of information. The only major difference would consist in

the different levels of integration with CityGML 3.0 and, therefore, how much additional

context is provided. Yet, as opposed to these two mapping options, the actually imple-

mented one accounts for all changes and new features in CityGML 3.0. It adheres to the

strategy proposed in the CityGML 3.0 Conceptual Model Standard, i.e., to derive the clas-

ses according to their best semantic fit. Moreover, it also complies with the CityGML 3.0

developers’ ideal that as little as possible be derived from AbstractCityObject itself.

6.2. Geometry Representation

Several Energy ADE classes which were formerly derived from _CityObject are now

subclassed from CityGML 3.0 classes further down in the hierarchy. This tighter integra-

tion with the space and geometry concepts has several advantages.

First, the existing CityGML 3.0 geometries are now reused instead of explicitly defin-

ing them in the ADE classes themselves. Through this, a multi-geometry representation

in different LODs of the Energy ADE classes is now possible for Energy ADE classes de-

rived from AbstractCityObject or its subclasses. In the Energy ADE for CityGML 2.0, only

one geometry representation is foreseen per class. Since this restriction does not apply

anymore in the case of the Energy ADE for CityGML 3.0, guidelines should be provided

on how to best apply these new modelling possibilities. For instance, it is now possible to

model a ThermalZone in LOD2 or in LOD3. But how and when? We believe that, in general,

a good starting point is the common LOD notion as defined in CityGML 3.0, that could be

applied and adapted to the use case.

Another result of the deeper integration into the CityGML 3.0 data model is that some

Energy ADE classes can now be represented through geometries as opposed to before.

This is the case for all classes which formerly derived from _CityObject such as Facilities or

subclasses of AbstractEnergySystem. However, their geometric representation remains op-

tional, so that no additional conditions are required.

Nevertheless, some additional specific rules for the geometry representation of indi-

vidual classes should be defined, such as a maximum LOD or mandatory relations to other

classes and their geometries (i.e., geometry representation of Facilities only through

lod0Point). However, these particular definitions go beyond the scope of this research.

Seemingly, this contradicts the aim of this work to map the Energy ADE without any

changes in its content and functionalities. While this is true to some extent, the pros of the

overall logic and consistent mapping outweigh the resulting cons. The resulting issue of

the extended functionality could be circumvented by restricting the geometric modelling

of those classes as described before. This way, the CityGML 3.0 modelling style would be

respected without extending the functionalities of the Energy ADE.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 36 of 40

6.3. Considerations beyond Mapping

The goal of this research was to map the Energy ADE to CityGML 3.0 without chang-

ing its content or functionalities. However, the thorough examination of both those data

models resulted in insights/possibilities on changes beyond mere mapping. While these

options were not implemented, they are nonetheless briefly presented at this point. For a

more detailed explanation, the reader is invited to refer to [15].

First, the mandatory relation to the Dynamizer for the Energy ADE classes with time-

dependent properties could be instead modelled as optional. This way, such properties

could also be represented in a simplified way by a single static value. Second, the ADE

class RegularTimeseries, which is added to the Dynamizer module, only accepts numeric

values for its property values. Yet, the similar CityGML 3.0 class GenericTimeseries also al-

lows other data types for the values such as Booleans or strings. Allowing them in Regu-

larTimeseries as well would make the class more flexible and also more coherent to

CityGML 3.0.

These examples show that not all changes of CityGML 3.0 can be used with the ap-

plied mapping approach. One reason for this is that the original Energy ADE was devel-

oped for CityGML 2.0. A newly modelled Energy ADE specifically for CityGML 3.0 would

thus most likely lead to a different result.

On this note, we would also like to suggest the incorporation of class Regu-

larTimeseries into future releases of CityGML 3.0. The modelling solution that we propose

represents a more space-efficient encoding compared to the current GenericTimeseries.

7. Conclusions

The release of CityGML 3.0 comes with many changes, which, on the one hand, imply

that Application Domain Extensions developed for its previous version cannot function

anymore with the latest version unless some adjustments are made. On the other hand,

CityGML 3.0 opens up new opportunities for ADEs to make use of its extended function-

alities such as the centrally defined space and geometry concepts, newly introduced clas-

ses and properties, as well as the possibility to model time-dependent attribute values

using the Dynamizer.

This article has investigated the possibilities of how these changes affect ADEs using

the example of the Energy ADE, and how an ADE can be mapped to CityGML 3.0 without

reducing its modelling capabilities. The Energy ADE was chosen as it is one of the most

complex (and best documented) ADEs currently available for CityGML 2.0 and it covers

different data modelling strategies when it comes to extending CityGML, as well as dif-

ferent simple and complex data types, including codelists and enumerations.

The mapping of the Energy ADE from CityGML 2.0 to 3.0 was carried out following

a model-driven approach, as it is the suggested approach for CityGML 2.0 ADEs and upon

which CityGML 3.0 was developed, too. To test the validity of the mapping and the actual

data transformation, a CityGML 2.0 + Energy ADE sample dataset was created and suc-

cessfully converted to CityGML 3.0 + “new” Energy ADE in FME. The resulting FME

workbench, as well as the generated XSD schema file for the Energy ADE, are publicly

available via a GitHub repository.

The results show that a mapping of the Energy ADE to CityGML 3.0 is indeed possi-

ble. When performing the mapping, the “integrate as much as possible” approach was

chosen and implemented, although other alternative approaches (also briefly mentioned

in this article) could have been adopted. As a result, the “new” Energy ADE has become

more compact through the mapping of attributes and the replacement of all geometries

by means of the centrally defined geometry concept in CityGML 3.0. Furthermore, the

ADE classes are now semantically richer due to the new space concept and their mapping

to more specialised classes within the CityGML 3.0 data model. Some time series classes

could be fully replaced by CityGML 3.0 classes in the Dynamizer module.

ISPRS Int. J. Geo-Inf. 2024, 13, 121 37 of 40

Of course, only more testing and further implementations will show the overall ap-

plicability of the developed mapping approach, for the Energy ADE in this specific case,

but also for other existing ADEs to be ported to CityGML 3.0. Nevertheless, given the

scarcity of existing publications and documentation on this specific topic, together with

the limited number of available examples, we believe that our experience may contribute

to narrowing the knowledge gap and serve as an example for other ADEs to follow.

Author Contributions: Conceptualisation, Carolin Bachert, Camilo León-Sánchez, Tatjana Kutzner,

Giorgio Agugiaro; methodology, Carolin Bachert, Camilo León-Sánchez, Tatjana Kutzner, Giorgio

Agugiaro; software, Carolin Bachert, Tatjana Kutzner; data curation, Carolin Bachert, Giorgio Agug-

iaro; writing—original draft preparation, Carolin Bachert, Giorgio Agugiaro writing—review & ed-

iting, Carolin Bachert, Camilo León-Sánchez, Tatjana Kutzner, Giorgio Agugiaro; visualisation, Car-

olin Bachert, Camilo León-Sánchez; supervision, Camilo León-Sánchez, Tatjana Kutzner, Giorgio

Agugiaro. All authors have read and agreed to the published version of the manuscript.

Data Availability Statement: All materials created in this research are available in the GitHub re-

pository [18]. The description of the contents is available in the readme file.

Funding: This research received no external funding.

Conflicts of Interest: Author Carolin Bachert was employed by the company con terra GmbH. The

author declares that the research was conducted in the absence of any commercial or financial rela-

tionships that could be construed as a potential conflict of interest.

Appendix A

Module Class Status Details

Core

_AbstractBuilding/BuildingProper

ties

Mostly taken

over

Adapted to new hook mechanism, some

properties replaced by CityGML 3.0 ones

AbstractEnergySystem Adapted

New generalisation class: AbstractOccupiedSpace,

incorporation into space and geometry concept,

property yearOfManufacture replaced by

CityGML 3.0 property

EnergyDemand, WeatherData
Mostly taken

over

Adapted to the new hook mechanism, relation to

AbstractDynamizer to represent time-varying

property

Building Physics

ThermalZone Adapted

New generalisation class:

AbstractBuildingSubdivision, incorporation into

space and geometry concept, replacement of

properties floorArea and volume by CityGML 3.0

properties

ThermalBoundary,

ThermalOpening
Adapted

New generalisation class: AbstractThematicSurface,

incorporation into space and geometry concept,

replacement of area property

Material and

Construction/Laye

ring

Construction/LayeredMaterial,

ReverseConstruction/ReverseLayer

edMaterial

Adapted
Changed name due to semantic mismatch with

CityGML 3.0 concept of construction

Layer, LayerComponent
Mostly taken

over

New generalisation class:

AbstractFeatureWithLifespan

AbstractMaterial, Gas,

SolidMaterial

Mostly taken

over

New generalisation class:

AbstractFeatureWithLifespan

ImageTexture
Mostly taken

over

New generalisation class:

AbstractFeatureWithLifespan

Occupant

Behaviour
UsageZone Adapted

New generalisation class:

AbstractBuildingSubdivision, incorporation into

ISPRS Int. J. Geo-Inf. 2024, 13, 121 38 of 40

space and geometry concept, replacement of

property floorArea by CityGML 3.0 properties

BuildingUnit Adapted

Now extends CityGML 3.0 BuildingUnit with

additional properties through ADE hook,

incorporation into space and geometry concept,

replacement of property floorArea by CityGML

3.0 property

Occupants, Household
Mostly taken

over

New generalisation class:

AbstractFeatureWithLifespan

Facilities, DHWFacilities,

LightingFacilities,

ElectricalAppliances

Adapted
New generalisation class: AbstractOccupiedSpace,

incorporation into space and geometry concept

Energy Systems

AbstractEnergy

ConversionSystem, Boiler,

ElectricalResistance,

CombinedHeatPower,

MechanicalVentilation,

AirCompressor, Chiller,

GenericConversion

System, HeatPump,

HeatExchanger,

AbstractSolarEnergy

System, Photovoltaic

System, SolarThermal

System, Photovoltaic

ThermalSystem

Mostly taken

over

Incorporation into space and geometry concept,

generalisation class derives from

AbstractOccupiedSpace

AbstractEnergy

DistributionSystem,

ThermalDistribution

System, Power DistributionSystem

Mostly taken

over

Incorporation into space and geometry concept,

generalisation class derives from

AbstractOccupiedSpace

AbstractStorageSystem,

ThermalStorageSystem,

PowerStorageSystem

Mostly taken

over
Incorporation into space and geometry concept

EmitterSystem
Mostly taken

over
Incorporation into space and geometry concept

EnergyFlow, EnergySource
Mostly taken

over

Relation to AbstractDynamizer to represent time-

varying property

SystemOperation
Mostly taken

over

New generalisation class:

AbstractFeatureWithLifespan

Support classes:

Time Series

AbstractTimeSeries Obsolete
variableProperties are mapped to

AbstractTimeseries with the ADE hook

RegularTimeSeries/RegularTimese

ries
Adapted

Incorporated into the CityGML 3.0 Dynamizer

module as specialisation class of

AbstractAtomicTimeseries

IrregularTimeSeries/GenericTimes

eries
Obsolete

Replaced by GenericTimeseries in the Dynamizer

module

RegularTimeSeriesFile,

IrregularTimeSeriesFile/

TabulatedFileTimeseries

Obsolete,

Adapted

Both classes largely replaced by

TabulatedFileTimeseries in the Dynamizer module,

addition of properties recordSeparator and

timeInterval with the ADE hook

ISPRS Int. J. Geo-Inf. 2024, 13, 121 39 of 40

Support classes:

Schedules

AbstractSchedule,

ConstantValueSchedule,

DualValueSchedule

Adapted
Changed to stereotype «FeatureType», new way

for properties to reference to schedules

DailyPatternSchedule Adapted

Changed to stereotype «FeatureType», only one

property containing time-depending values,

relation to AbstractDynamizer, complex time

series are now covered through

CompositeTimeseries in the Dynamizer module

TimeSeriesSchedule/TimeseriesSch

edule
Adapted

Changed to stereotype «FeatureType», relation to

AbstractDynamizer

Support classes:

other
WeatherStation Adapted

New generalisation class: AbstractPhysicalSpace.

Incorporation into space and geometry concept

References

1. Nageler, P.; Koch, A.; Mauthner, F.; Leusbrock, I.; Mach, T.; Hochenauer, C.; Heimrath, R. Comparison of dynamic urban build-

ing energy models (UBEM): Sigmoid energy signature and physical modelling approach. Energy Build. 2018, 179, 333–343.

https://doi.org/10.1016/j.enbuild.2018.09.034.

2. Horak, D.; Hainoun, A.; Neugebauer, G.; Stoeglehner, G. A review of spatio-temporal urban energy system modeling for urban

decarbonization strategy formulation. Renew. Sustain. Energy Rev. 2022, 162, 112426. https://doi.org/10.1016/j.rser.2022.112426.

3. Corrado, V.; Fabrizio, E. Steady-State and Dynamic Codes, Critical Review, Advantages and Disadvantages, Accuracy, and

Reliability. In Handbook of Energy Efficiency in Buildings; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–294.

https://doi.org/10.1016/B978-0-12-812817-6.00011-5.

4. Ali, U.; Shamsi, M.H.; Hoare, C.; Mangina, E.; O’Donnell, J. Review of urban building energy modeling (UBEM) approaches,

methods and tools using qualitative and quantitative analysis. Energy Build. 2021, 246, 111073.

https://doi.org/10.1016/j.enbuild.2021.111073.

5. Gröger, G.; Plümer, L. CityGML—Interoperable semantic 3D city models. ISPRS J. Photogramm. Remote Sens. 2012, 71, 12–33.

https://doi.org/10.1016/j.isprsjprs.2012.04.004.

6. Agugiaro, G.; Benner, J.; Cipriano, P.; Nouvel, R. The Energy Application Domain Extension for CityGML: Enhancing interop-

erability for urban energy simulations. Open Geospat. Data Softw. Stand. 2018, 3, 2. https://doi.org/10.1186/s40965-018-0042-y.

7. Kolbe, T.H.; Kutzner, T.; Smyth, C.S.; Nagel, C.; Roensdorf, C.; Heazel, C. OGC City Geography Markup Language (CityGML)

Part 1: Conceptual Model Standard. Reference Number: 20-010. 2021. Available online: http://www.open-

gis.net/doc/IS/CityGML-1/3.0 (accessed on 31 March 2024).

8. Biljecki, F.; Kumar, K.; Nagel, C. CityGML Application Domain Extension (ADE): Overview of developments. Open Geospat.

Data Softw. Stand. 2018, 3, 13. https://doi.org/10.1186/s40965-018-0055-6.

9. Van den Brink, L.; Stoter, J.; Zlatanova, S. UML-Based Approach to Developing a CityGML Application Domain Extension:

UML-Based Approach to Developing a CityGML Application Domain Extension. Trans. GIS 2013, 17, 920–942.

https://doi.org/10.1111/tgis.12026.

10. Kutzner, T.; Chaturvedi, K.; Kolbe, T.H. CityGML 3.0: New Functions Open Up New Applications. PFG—J. Photogramm. Remote

Sens. Geoinf. Sci. 2020, 88, 43–61. https://doi.org/10.1007/s41064-020-00095-z.

11. Biljecki, F.; Lim, J.; Crawford, J.; Moraru, D.; Tauscher, H.; Konde, A.; Adouane, K.; Lawrence, S.; Janssen, P.; Stouffs, R. Extend-

ing CityGML for IFC-sourced 3D city models. Autom. Constr. 2021, 121, 103440. https://doi.org/10.1016/j.autcon.2020.103440.

12. Saeidian, B.; Rajabifard, A.; Atazadeh, B.; Kalantari, M. A semantic 3D city model for underground land administration: Devel-

opment and implementation of an ADE for CityGML 3.0. Tunn. Undergr. Space Technol. 2023, 140, 105267.

https://doi.org/10.1016/j.tust.2023.105267.

13. Saeidian, B.; Rajabifard, A.; Atazadeh, B.; Kalantari, M. Managing underground legal boundaries in 3D—Extending the

CityGML standard. Undergr. Space 2024, 14, 239–262. https://doi.org/10.1016/j.undsp.2023.08.002.

14. Utility Network ADE for CityGML 3.0 [Git Repository]. Available online: https://github.com/tum-gis/citygml3-utility-network-

ade (accessed on 31 March 2024).

15. Bachert, C. Mapping the Energy ADE to CityGML 3.0. MSc. Thesis, Delft University of Technology, Delft, The Netherlands, 20

January 2023. Available online: http://resolver.tudelft.nl/uuid:d253b343-7c96-45ee-9239-5c85594ad4fa (accessed on 31 March

2024).

16. FME Conversion [Website]. Available online: https://hub.safe.com/publishers/con-terra-lab/templates/convert-citygml-2-0-to-3-

0 (accessed on 31 March 2024).

ISPRS Int. J. Geo-Inf. 2024, 13, 121 40 of 40

17. Chaturvedi, K.; Kolbe, T. Integrating Dynamic Data and Sensors with Semantic 3D City Models in the context of Smart Cities.

ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, IV-2/W1, 31–38. https://doi.org/10.5194/isprs-annals-IV-2-W1-31-2016.

18. Energy ADE for CityGML 3.0 [Git Repository]. Available online: https://github.com/tudelft3d/EnergyADEv1_toCityGMLv3 (ac-

cessed on 31 March 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

