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Gastrointestinal Radiology 

Automated Assessment of  
T2-Weighted MRI to Differentiate 

Malignant and Benign Primary Solid 
Liver Lesions in Noncirrhotic Livers 

Using Radiomics  
Martijn P.A. Starmans, PhD, Razvan L. Miclea, MD, PhD, Valerie Vilgrain, MD, PhD,  

Maxime Ronot, MD, PhD, Yvonne Purcell, MD, Jef Verbeek, MD, PhD, Wiro J. Niessen, PhD,  
Jan N.M. Ijzermans, MD, PhD, Rob A. de Man, MD, PhD, Michael Doukas, MD, PhD,  

Stefan Klein, PhD1, Maarten G. Thomeer, MD, PhD1  

Rationale and Objectives: Distinguishing malignant from benign liver lesions based on magnetic resonance imaging (MRI) is an 
important but often challenging task, especially in noncirrhotic livers. We developed and externally validated a radiomics model to 
quantitatively assess T2-weighted MRI to distinguish the most common malignant and benign primary solid liver lesions in 
noncirrhotic livers. 

Materials and Methods: Data sets were retrospectively collected from three tertiary referral centers (A, B, and C) between 2002 
and 2018. Patients with malignant (hepatocellular carcinoma and intrahepatic cholangiocarcinoma) and benign (hepatocellular 
adenoma and focal nodular hyperplasia) lesions were included. A radiomics model based on T2-weighted MRI was developed in 
data set A using a combination of machine learning approaches. The model was internally evaluated on data set A through cross- 
validation, externally validated on data sets B and C, and compared to visual scoring of two experienced abdominal radiologists on 
data set C. 

Results: The overall data set included 486 patients (A: 187, B: 98, and C: 201). The radiomics model had a mean area under the curve 
(AUC) of 0.78 upon internal validation on data set A and a similar AUC in external validation (B: 0.74 and C: 0.76). In data set C, the two 
radiologists showed moderate agreement (Cohen’s κ: 0.61) and achieved AUCs of 0.86 and 0.82. 

Conclusion: Our T2-weighted MRI radiomics model shows potential for distinguishing malignant from benign primary solid liver lesions. 
External validation indicated that the model is generalizable despite substantial MRI acquisition protocol differences. Pending further 
optimization and generalization, this model may aid radiologists in improving the diagnostic workup of patients with liver lesions.   
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INTRODUCTION 

L iver cancer is the seventh most commonly diagnosed 
cancer and the third most common cause of cancer 
death worldwide, with approximately 906,000 esti-

mated new cases and 830,000 deaths in 2020 (1). One of the 
most important tasks in routine clinical practice is to dis-
tinguish malignant from benign primary solid liver lesions, as 
this differentiation influences treatment planning. The final 
diagnosis is often based on biopsy (2,3), but the first assess-
ment is typically performed by radiologists on magnetic re-
sonance imaging (MRI). In patients with underlying chronic 
liver disease (e.g., cirrhosis), assessment is relatively easy, as 
the a priori chance of a lesion being hepatocellular carcinoma 
(HCC) is by far the largest (4). Furthermore, the Liver 
Imaging Reporting and Data System (LI-RADS) system (5), 
specifically designed to aid radiologists in classifying liver 
lesions in cirrhotic livers, has been shown to be quite ef-
fective. In noncirrhotic livers however, diagnosis is more 
challenging due to the wide variety of phenotypes (6) and 
lack of a clear MRI assessment consensus (7). Specifically for 
HCC in noncirrhotic livers, there has been an increase in 
prevalence, requiring further investigation and diagnostic 
aids as the phenomenon remains complex (8). 

In recent years, radiomics—the use of large numbers of 
quantitative medical imaging features to predict clinical out-
comes—has been successfully used to create diagnostic aids in 
various clinical areas (9). In liver cancer, the use of radiomics has 
mostly focused on computed tomography (10). Regarding 
MRI in liver cancer, radiomics has been used to classify focal 
liver lesions (11–15) and hepatic lesions (16), and as LI-RADS 
surrogate (5,17). However, the characterization of liver lesions 
based on radiomics is still at an early stage (18). Major challenges 
include the lack of large multicenter cohorts, particularly for 
external validation, and image acquisition heterogeneity. 

Diagnosis on MRI is commonly based on a variety of 
sequencies, for example, T2-weighted MRI, T1-weighted 
MRI with or without (liver-specific) contrast agents, and 
diffusion-weighted imaging (2,3). The presence of hy-
pervascularity, wash-out, liquid, and intralesional fat on these 
sequences can commonly be made with high accuracy by the 
radiologist as illustrated by LI-RADS. However, while aided 
by guidelines (2,3), the radiologist’s interpretation of T2- 
weighted MRI remains challenging, qualitative, and ob-
server dependent. For example, while some heterogeneity 
patterns are associated with malignancy (e.g., vast chaotic 
heterogeneity (19) or mosaic (20)), others (e.g., atoll or 
crescent sign (21,22)) make the diagnosis of liver cancer less 
probable. In this study, we propose to evaluate radiomics as a 
diagnostic aid to objectively estimate the probability of solid 
liver lesion malignancy based on T2-weighted MRI. This 
sequence is frequently used and widely available in the as-
sessment of liver cancer, is relatively straightforward to 
perform, shows less heterogeneity, and is less invasive 
compared to sequences using contrast agents (2,3,5). Hence, 

a T2-weighted MRI–based radiomics model would be 
widely applicable, scalable, and generalizable. 

The primary aim of this study was to evaluate radiomics in 
the quantitative assessment of T2-weighted MRI to distin-
guish malignant and benign primary solid liver lesions in 
noncirrhotic livers. As a pilot study, we focused on the most 
common lesion types, which concern more than 90% of all 
primary solid liver tumors: HCC, intrahepatic cholangio-
carcinoma (iCCA), focal nodular hyperplasia (FNH), and 
hepatocellular adenoma (HCA). We externally validated the 
radiomics model in two multicenter cohorts and compared 
its performance to visual assessment by two experienced 
abdominal radiologists. 

MATERIALS AND METHODS 

Data Collection 

Three data sets were collected retrospectively from three 
tertiary referral centers: all patients diagnosed at or referred to 
(A) the Erasmus University Medical Center, Rotterdam, the 
Netherlands, between 2002 and 2018 (publicly released  
(23)); (B) Maastricht UMC+, Maastricht, the Netherlands, 
between 2005 and 2018; and (C) Hôpital Beaujon, Paris, 
France, included in reverse chronological order starting in 
2018, until a total of 201 patients were identified. Imaging 
data, age, sex, and phenotype were collected for each patient. 

Inclusion criteria were as follows: HCC, iCCA, HCA, or 
FNH; pathologically proven phenotype, except “typical” 
FNH; and availability of a T2-weighted MRI scan. Exclusion 
criteria were as follows: maximum diameter ≤3 cm; under-
lying liver disease; or significant imaging artifacts. 

Malignant lesions included HCC (75%–85% of primary 
liver cancers (6)) and iCCA (10%–15% of primary liver 
cancers) (6). Benign lesions included HCA (3–4 cases per 
100,000 person-years in Europe and North America) and 
FNH (found in 0.8% of all adult autopsies) (6). The most 
common benign primary liver lesions, hemangiomas, and 
cysts were not included, as these are nonsolid and generally 
easy to diagnose on imaging (2,24). Only lesions with a 
pathologically proven phenotype were included to ensure an 
objective ground truth. Pathological analysis for each patient 
was performed locally in their admission hospital. Details of 
the pathological examination are provided in Supplementary 
Material 1. An exception was made for typical FNH (6), 
which are routinely diagnosed radiologically and not biop-
sied (25), as typical FNH imaging characteristics are 100% 
specific (2). Excluding these would have created a selection 
bias toward “atypical” FNH, meaning that no claims could 
be made regarding model performance in typical FNH. 

Lesions with a maximum diameter ≤3 cm were excluded, 
since in noncirrhotic livers, these have a higher probability of 
being secondary lesions, hemangiomas, or cysts (24,26), 
which are generally easy to diagnose on imaging (2,24). 
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Specifically for secondary lesions, the diagnosis is further 
simplified by the patient’s clinical background and history; 
for example, it is frequently already known whether a pri-
mary tumor is present at another location upon secondary 
lesion detection. 

Patients with underlying liver disease due to alcohol, he-
patitis, or vascular liver disease, such as fibrosis or cirrhosis, 
were excluded. Steatosis was not an exclusion criterion, as a 
degree of steatosis frequently occurs in the general population  
(27). Diagnosis of liver disease was based on clinical, patho-
logical, and/or imaging findings. In patients with HCC, ab-
sence of cirrhosis was always confirmed by biopsy or resection. 

When T2-weighted MRI with fat saturation was not 
available, regular T2-weighted MRI was used, similar to 
clinical practice. Images with significant artifacts (i.e., patient 
related or scanner related) and therefore not suitable for di-
agnostic purposes, as judged by an experienced radiologist 
(21 years of experience), were excluded. In patients with 
multiple lesions, only the largest was included. 

Segmentation 

Lesions were semiautomatically segmented using in-house 
software (12) by one of the three observers: a radiology re-
sident and two experienced abdominal radiologists (RAD1 
(M.G.T.): 21 years of experience and RAD2 (R.L.M): 8 years 
of experience). A subset of 60 lesions (data set B: 30 and data 
set C: 30) was segmented by two observers (RAD1 and 
RAD2) to assess the interobserver variability using the pair-
wise Dice Similarity Coefficient (DSC) (28). 

Radiomics 

An overview of the radiomics methodology is depicted in  
Figure 1. All radiomics steps were performed using the 
Workflow for Optimal Radiomics Classification (WORC) 
toolbox (29,30). The code for feature extraction and model 
creation is available as open source (31). 

Before feature extraction, the images were normalized 
using z-scoring; no other preprocessing steps were applied. 
Instead of correcting for variations across centers, we hy-
pothesized that training the model on heterogeneous, mul-
ticenter, representative data will facilitate generalization. For 
each lesion, the default set of 564 features from WORC 
quantifying intensity, shape, and texture were extracted from 
the T2-weighted MRI scan (29). 

Construction of a radiomics model from the wide variety of 
available methods manually through a heuristic trial-and-error 
process has various disadvantages; for example, it is time 
consuming, not reproducible, does not guarantee an optimal 
solution, and has a high risk of overfitting. Hence, we instead 
used the WORC algorithm to automate and optimize this 
process (29). In WORC, decision model creation consists of 
several standardized components, for example, feature selec-
tion, resampling, and machine learning. For each component, 
a large collection of commonly used algorithms and their as-
sociated hyperparameters is included. For example, for the 

classification component, WORC includes eight different 
algorithms: support vector machine, random forest, logistic 
regression, linear and quadratic discriminant analysis, Gaussian 
Naïve Bayes, AdaBoost, and extreme gradient boosting 
(XGBoost). WORC exploits automated machine learning to 
compare 1000 different radiomics workflows (i.e., specific, 
randomly selected combinations of algorithms and hy-
perparameters) and optimize the combination that maximizes 
prediction performance on the training data set (29). The final 
model consists of an ensemble of the top 100 performing 
workflows by averaging their posterior probabilities. 

Experimental Setup 

First, to evaluate the predictive value of radiomics within a 
single center, internal validation was performed in data set A 
through a 100× stratified random-split cross-validation  
(32,33), see Supplementary Figure S1a. Second, to evaluate 
whether the model generalizes well to unseen data from other 
centers, two external validations were performed by training a 
model on data set A and testing it on the unseen data sets B 
and C, see Supplementary Figure S1b. Third, as clinicians 
frequently use age and sex in their decision-making, two 
additional models were externally validated based on (1) age 
and sex; and (2) age, sex, and radiomics features. 

For both the internal and external validations, all model 
construction and optimization were performed within the 
training data set using an internal 5× random-split cross- 
validation in order to prevent overfitting on the test data set, 
see Supplementary Figure S1. 

Performance of the Radiologists 

To compare the models to visual assessment, the T2- 
weighted MRI scans were scored by two experienced ab-
dominal radiologists (RAD1 and RAD2). They were 
blinded to the diagnosis and only had access to the T2- 
weighted MRI but were aware of the inclusion and exclu-
sion criteria of the study. Classification of malignancy was 
made on a four-point scale to indicate the radiologists’ cer-
tainty: 1 = benign, certain; 2 = benign, uncertain; 3 = ma-
lignant, uncertain; and 4 = malignant, certain. Additionally, 
the radiologists scored several characteristics used in the de-
cision-making: the presence of (1) central scar (6); (2) liquid; 
(3) atoll sign (22); and (4) degree of heterogeneity (scale 1–4 
similar to malignancy). As the radiologists were from centers 
A and B, scoring was carried out on data set C to prevent 
previous exposure to the data. 

Model Insight 

To gain insight into the radiomics model’s decision-making, 
lesions were ranked based on the probability of a lesion being 
malignant as predicted by the model. Ranking was done as 
archetypal benign (ground truth benign, probability near 0%) 
- pitfall malignant (ground truth malignant, probability near 
0%) - borderline (probability around 50%) - pitfall benign 
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(ground truth benign, probability near 100%) - archetypal 
malignant (ground truth malignant, probability near 100%). 
This was done using data set C to enable comparison with 
the radiologists. 

Statistical Analysis 

To evaluate the differences in clinical characteristics and 
radiomics features between the malignant and benign lesions, 
for each data set separately, univariate statistical testing was 
performed using a Mann-Whitney U test for continuous 
variables and a Chi-square test for categorical variables. P- 
values of the radiomics features were corrected using the 
Bonferroni correction (i.e., multiplying the p-values by the 
number of tests). To analyze the differences between data 
sets, the distributions of clinical characteristics were statisti-
cally compared using a Kruskal-Wallis test for continuous 
variables and a Chi-square test for discrete variables. 

For all radiomics models, the area under the curve (AUC) 
of the receiver operating characteristic (ROC) curve, as well 
as accuracy, sensitivity, and specificity, were calculated. The 
positive class was defined as the malignant lesions. For the 
internally validated model, 95% confidence intervals of the 
performance metrics were constructed using the corrected 
resampled t-test, thereby taking into account that the samples 
in the cross-validation splits are not statistically independent  
(33). For the externally validated model, 95% confidence 

intervals were constructed using 1000× bootstrap resampling 
of the test data set and the standard method for normal 
distributions ((34) Table 6, method 1). ROC confidence 
bands were constructed using fixed-width bands (35). 

For binary scores, the agreement between radiologists was 
evaluated using Cohen’s κ (36). For ordinal scores, that is, 
degree of heterogeneity and malignancy, the correlation was 
evaluated using Spearman’s ρ (37). The AUCs of the 
radiomics model and the radiologists were compared using 
the DeLong test (38), and confusion matrices were used to 
analyze agreement. 

For all statistical tests, p-values < 0.05 were considered 
statistically significant. As the performances of the radiomics 
model and radiologists were not known beforehand, no a 
priori sample size calculation could be performed. Instead, 
sample size is taken into account naturally in the used con-
fidence interval computations, and power tests were per-
formed for the DeLong test (38). 

All statistical analyses were performed using Python 3.7.6 
(the Python Software Foundation). 

RESULTS 

Data Sets 

In total, 486 patients were included (A: 187, B: 98, C: 201). 
The clinical and imaging characteristics are reported in  

Figure 1. Schematic overview of the radiomics approach. Input to the algorithm are the T2-weighted magnetic resonance imaging scans (1) 
and the lesion segmentations (2). Processing steps include feature extraction (3) and the creation of a machine learning decision model (5) 
using an ensemble of the best 100 workflows from 1000 candidate workflows (4), where the workflows are different combinations of the 
different analysis steps (e.g., the classifier used). Adapted from Vos et al. (45): the images under (1), texture features, numbers at (3), and 
output at (4) have been modified with respect to the original figure. 
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Table 1. As all centers serve as tertiary referral centers, the 
data sets originated from 159 different scanners (A: 52, B: 21, 
and C: 86), resulting in substantial MRI acquisition protocol 
heterogeneity. Statistically significant differences were found 
between data sets A, B, and C for magnetic field strength 
(Kruskal-Wallis: p = 0.001), manufacturer (p = 10−4), slice 
thickness (p = 10−32), repetition time (p = 0.006), flip angle 
(p = 0.05), and use of fat saturation (p = 10−17). 

On the subset that was segmented by two observers, the 
mean DSC indicated a high average overlap, but the standard 
deviation also indicated large discrepancies (B: 0.80  ±  0.21; 
C: 0.81  ±  0.11). 

Radiomics 

The results of the radiomics model are presented in Table 2. 
The internal validation on data set A had a mean AUC of 
0.80; the two external validations yielded a similar perfor-
mance (B: 0.75; C: 0.78). The ROC curves (Fig 2) illustrate 
that the model trained on data set A performed similarly in 
each of the three centers. The accuracy per phenotype is 
presented in Table 3. The radiomics model had a similar 

accuracy in HCC (0.80) and iCCA (0.78), while the per-
formance in FNH (0.76) was better than in HCA (0.54). 

The age-and-sex-only model had a high AUC in both the 
internal validation (A: 0.94) and the two external validations 
(B: 0.93 and C: 0.92). Combining age, sex, and the radio-
mics features yielded an improvement (A: 0.94, B: 0.98, and 
C: 0.98), although not statistically significant. 

Comparison with Radiologists 

The performance of the two experienced abdominal radi-
ologists in classifying data set C is presented in Tables 2 and 
3. The ROC curves (Fig 2c) were mostly just above the 95% 
confidence interval of the radiomics model. The AUC of 
RAD1 (0.86) was statistically significantly better than the 
radiomics model (DeLong: p  <  0.001): the differences in 
AUC between RAD2 (0.83) and the radiomics model and 
between the two radiologists were not statistically significant. 

Confusion matrices of the predictions on data set C are 
depicted in Figure 3. The agreement between the radi-
ologists in classifying the lesions as malignant or benign was 
moderate (Cohen’s κ (36): 0.61): the two radiologists agreed 
in 160/201 patients (80%). The agreement between the two 

TABLE 2. Performance of the Radiomics Model and the Radiologists in the Three Data Sets (A, B, and C)        

Evaluation Internal Cross-validation External Validation Radiologist 1 Radiologist 2  

Train set Aa A A - - 
Test set Aa B C C C 
AUC 0.80 (0.74, 0.85) 0.78 (0.69, 0.88) 0.75 (0.67, 0.82) 0.86 0.83 
Accuracy 0.72 (0.65, 0.78) 0.71 (0.63, 0.80) 0.70 (0.64, 0.77) 0.80 0.77 
Sensitivity 0.69 (0.60, 0.78) 0.84 (0.72, 0.96) 0.80 (0.71, 0.89) 0.88 0.87 
Specificity 0.74 (0.64, 0.84) 0.62 (0.50, 0.73) 0.64 (0.56, 0.72) 0.74 0.69 

AUC, area under the receiver operating characteristic curve. 
For the radiomics model, the mean (internal cross-validation) or point estimate (external validation) and 95% confidence intervals are 

reported.  
a Training and testing within a single data set were done through a 100× random-split cross-validation.    

ba c

Figure 2. Receiver operating characteristic curves of the radiomics model and radiologists. For the radiomics model, the curves present the 
model internally validated on data set A (a); and trained on data set A, externally validated on data set B (b) and data set C (c). The 
performance of scoring by the two experienced abdominal radiologists on data set C is also depicted in (c). For the radiomics model, the 
crosses identify the 95% confidence intervals of the 100× random-split cross-validation (a) or 1000× bootstrap resampling (b and c); the bold 
curves are fit through the means. AUC, area under the receiver operating characteristic curve. 
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radiologists and the radiomics model was moderate (RAD1 
κ: 0.55) and weak (RAD2 κ: 0.45), as reflected by the 
confusion matrices. For the other characteristics scored by 
the two radiologists, the agreement was weak for the pre-
sence of a scar (κ: 0.41) and liquid (κ: 0.52) and strong for the 
presence of the atoll sign (κ: 0.80); the correlation was strong 
for heterogeneity (Spearman’s ρ (37): 0.70) and malignancy 
(ρ: 0.70). The radiomics model correctly predicted 2/23 
patients that both radiologists scored incorrectly and 23/62 
patients that at least one radiologist scored incorrectly. 

Model Insight 

In data set A, on which the radiomics model was developed, 
45 radiomics features showed statistically significant differ-
ences between the malignant and benign lesions, with p- 
values after Bonferroni correction ranging from 10−10 to 
0.049. These included four shape features (volume was not 
significant), one orientation feature, and 40 texture features. 
Statistically significant differences were found for 49 radio-
mics features in data set B and 10 in data set C. Only four 
radiomics features (all texture features) showed statistically 
significant differences in all three data sets. A list of these 
features and their p-values can be found in Supplementary 
Table S1. The differences in volume between the three data 
sets were statistically significant (p = 10−5). 

Examples of lesions from data set C ranked as archetypal, 
borderline, or pitfall by the radiomics model are shown in  
Figure 4. Visual inspection of the T2-weighted MRI scans of 

the archetypal or pitfall lesions showed a relation with het-
erogeneity (archetypal malignant: heterogeneous; archetypal 
benign: homogeneous), area and volume (archetypal malig-
nant: generally high maximum axial area and high volume), 
and irregularity of shape on two-dimensional axial slices 
(archetypal malignant lesions: irregular; archetypal benign: 
compact). Pitfall lesions showed the opposite, for example, 
pitfall benign: heterogeneous. Borderline lesions, that is, 
with an almost equal predicted chance of being malignant or 
benign, were mostly of medium size and medium hetero-
geneity. 

The predictions by the radiomics model on data set C 
were compared to the characteristic scores of RAD1, who 
had the highest performance. The correlation between the 
probability of malignancy as predicted by the radiomics 
model and heterogeneity as scored by RAD1 was moderate 
(ρ: 0.59). RAD1 performed well when lesions had an ap-
parent atoll sign: from the 19 lesions which RAD1 scored as 
having an atoll sign and therefore classified as benign, 17 
were indeed benign, and two were malignant. On the 
contrary, the radiomics model only classified 11 of these 
lesions correctly, but these included the two malignant le-
sions misclassified by RAD1. 

DISCUSSION 

In this pilot, we developed a radiomics model to quantita-
tively assess T2-weighted MRI to distinguish between 

TABLE 3. Accuracy Per Phenotype of the Radiologists and the Radiomics Model in the External Validation on Data Set C      

Accuracy Radiomics Radiologist 1 Radiologist 2  

Train data set A - - 
Test data set C C C 
HCC (47) 0.80 0.85 0.83 
iCCA (37) 0.78 0.95 0.92 
HCA (65) 0.54 0.69 0.62 
FNH (52) 0.76 0.82 0.78 

FNH, focal nodular hyperplasia; HCA, hepatocellular adenoma; HCC, hepatocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma. 
The accuracy per phenotype represents the percentage of the lesions with that specific phenotype being correctly classified as malignant 

or benign. The number of lesions per phenotype in data set C is given between brackets in the first column.  

Figure 3. Confusion matrices of the predictions by the radiomics model and the two radiologists. The darker the background, the higher the 
agreement. 
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malignant and benign primary solid liver lesions in noncir-
rhotic livers. We showed that our radiomics model can 
distinguish between these lesions, both in an internal cross- 
validation and two external validations, but that caution is 
warranted concerning clinical utility at this stage. 

Currently, visual T2-weighted MRI interpretation is 
challenging, qualitative, and observer dependent, as sup-
ported by our results on the difference in interpretation by 
two experienced readers. Radiomics may help to overcome 
these deficits. The moderate correlation between the prob-
ability of malignancy by the radiomics model and the first 
radiologist and the differences in typical characteristics ap-
parently used by the radiomics model (e.g., irregularity of 
shape) and the radiologist (e.g., atoll sign) indicate the po-
tential complementary value of radiomics. Further research 
should focus on how radiologists can optimally use radiomics 
assessment of T2-weighted MRI in their clinical workflow 
and how to optimally combine imaging with clinical factors 
such as age and sex. Radiomics may be especially useful 
when there is no consensus between radiologists or in pitfalls 
for radiologists. Future work should also include improving 
the explainability and interpretability of our radiomics 
model, for example, by using techniques such as SHAP and 
LIME (39) to quantify feature importance in the model’s 
decision-making. 

While in recent years, several studies have evaluated 
radiomics for liver lesion classification (11–17,40), it is still at 
an early stage (18) and contains common radiomics vulner-
abilities (9,41–43). With respect to existing literature, our 
study addresses several important issues. First, to ensure a 
high level of evidence, our model was externally validated in 
two multicenter cohorts from different countries. Second, 
we used routinely acquired T2-weighted MRI without strict 
protocol requirements. Despite substantial acquisition pro-
tocol heterogeneity, in line with our hypothesis, our method 
showed similar performance in internal and external 

validation, increasing the chance that the reported perfor-
mance can be reproduced in a routine clinical setting. Third, 
our method uses automated machine learning to determine 
the optimal radiomics pipeline from a large number of 
methods. This facilitates reproducibility, automatically 
compares a large number of methods to optimize perfor-
mance, and prevents overly optimistic performance esti-
mates. 

Age and sex are strong predictors for distinguishing ma-
lignant from benign liver lesions (1,24). In our study, in line 
with international findings, the majority of benign lesions 
were found in (young) females, while the majority of ma-
lignant lesions were found in older patients (1,24). The 
models based on age and sex used an age threshold set at 49 
years, but in data set C, 19/114 (17%) lesions in patients aged 
< 49 years were malignant. Although this threshold yielded a 
high overall performance, it would lead to missing all ma-
lignant lesions in younger patients, the group which benefits 
the most from accurate and timely diagnosis. Simply classi-
fying all lesions in patients aged < 49 years as benign, re-
gardless of imaging information, is unacceptable and cannot 
be applied to the general population. Moreover, the relation 
in our database may be too strong due to our inclusion and 
exclusion criteria and thereby not representative of clinical 
practice. The T2-weighted MRI radiomics model does not 
use population-based information but predicts the lesion 
malignancy probability based purely on imaging appearance. 
Radiomics could be especially useful to avoid missing ma-
lignant lesions in young males and to detect benign lesions in 
older females. Future research should include optimally 
combining imaging, age, sex, and other clinical factors in the 
clinical workflow where radiologists typically have access to 
this information. For example, the radiologists can take these 
factors and the outcomes of a purely imaging-based radio-
mics model, which is less biased toward population-based 
information and more interpretable, separately into account 

Figure 4. Examples of liver lesions on T2-weighted MRI. From left to right, examples of lesions considered by the radiomics model as 
archetypal (i.e., predicted probability close to extremes and correct), pitfall (i.e., predicted probability close to extremes and incorrect), and 
borderline (i.e., predicted probability close to border of 50%). FNH, focal nodular hyperplasia; HCA, hepatocellular adenoma; HCC, hepa-
tocellular carcinoma; iCCA, intrahepatic cholangiocarcinoma. 
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in decision-making. Alternatively, an integrated radiomics 
model optimally combining clinical factors and imaging can 
be created, and the outcome presented to the radiologists. 
While such an integrated model may overall perform better 
than imaging only, it is more susceptible to biases as also 
observed in our study and may be less interpretable. 

Our study has several limitations. First, while the inclusion 
and exclusion criteria were set to maximize relevance to 
clinical decision-making of this pilot, they limit applicability. 
Future research should focus on loosening these criteria, for 
example, including smaller lesions, secondary lesions, non-
solid lesions, and patients with liver disease. We expect that 
loosening these criteria will also give a more representative 
distribution of clinical practice in terms of age and sex, thus 
allowing research into optimally combining imaging, age, 
and sex. Second, the current approach requires semiauto-
matic segmentations. While accurate, this is time consuming 
and subject to some observer variability, hindering transition 
to clinical practice. Future research should therefore include 
automatic segmentation of the tumors, for example, using 
deep learning (44). We do however not believe that inter-
observer variability substantially affected the results, as the 
radiomics model showed similar performance in the internal 
and external validations despite training and testing on seg-
mentations from different observers. Depending on tumor 
size, the complete radiomics model takes a few seconds to 
maximally a minute to execute. 

Future research should focus on extending this pilot to 
phenotyping to further aid clinical decision-making. Future 
research should also include evaluation of our model in the 
intended setting: radiomics to quantitatively assess T2- 
weighted MRI combined with visual assessment of other 
sequences. By isolating the T2-weighted MRI, we could 
evaluate the value of quantitative assessment of this sequence 
in detail, independently of other sequences. In real life, 
radiologists use multiple sequences in their assessment (2,3), 
suggesting that they contain additional information (13). As a 
result of the lack of standardized protocols in the literature, 
the main additional challenges facing multisequence radio-
mics are additional heterogeneity and missing data, as not all 
sequences are acquired by default. 

CONCLUSION 

Our radiomics pilot to quantitatively assess T2-weighted 
MRI shows the potential to distinguish malignant from be-
nign primary solid liver lesions in patients with noncirrhotic 
livers, both in internal validation and in two external vali-
dations based on heterogeneous multicenter data. However, 
the current performance is likely not sufficient yet, and 
further improvements are warranted, including extension to 
other phenotypes and combination with other MRI se-
q-

uences. Pending further improvements, our model may serve 
as a robust, noninvasive, and low-cost aid for radiologists to 
diagnose liver cancer. 
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APPENDIX A. SUPPORTING INFORMATION 

Supplementary data associated with this article can be found 
in the online version at doi:10.1016/j.acra.2023.07.024. 
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