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A B S T R A C T

This contribution aims for an enhanced numerical representation for strength prediction of timber. This implies
a validated elasto-plastic continuum damage model which considers orthotropy and heterogeneity of the
material, and represents the ductile behavior under compression and the brittle material behavior under tension
dependent on the three-dimensional orthogonal fiber directions. The behavior under compression is captured
by Hill (1948) plasticity and an exponential hardening law enhanced by the loading direction dependency.
The same model covers also the brittle damaging behavior by means of continuum damage mechanics (CDM).
In this study, a separated damage mode (SDM) criterion with simultaneously evolving damage variables
is investigated. After the experimental validation of the model for axially loaded clear wood samples, the
developed numerical model is implemented to a sawn timber with fiber deviation, where homogenization of
the material and simplification to transverse isotropy is not anymore possible. The 3D orthotropic material
behavior is experimentally validated for this application example with bi-axial loading and aims for further
numerical investigation of wood with heterogeneities as occurring in sawn (hard)wood for its efficient use in
engineered wood products such as glued laminated timber.
. Introduction

Numerical simulations allow us to describe the mechanical/material
ehavior of a structural component when containing relevant consti-
utive material laws. For wood, this means to incorporate linear and
onlinear material laws for the elastic, plastic, damaging, moisture-
nd time-dependent behavior and to combine them in a model for
he prediction of the elastic and post-elastic material behavior until
ailure. Stress and strain fields can be predicted numerically and can be
btained at different scales, including micro-, meso- and macro-scale of
he naturally grown fiber composite wood. Since different wood species
ave different micro-structural characteristics, the goal is to develop
nd validate a generally applicable material model at macro-scale with
aterial input parameters that can be varied accordingly for the wood

pecies.
European beech (Fagus Sylvatica L.) is considered in this study to de-

elop the numerical model and to validate the results. Throughout the
ast decades, the share of beech has increased in European forests. For
he use of beech wood in construction purposes, its complex anatomic
tructure, including fiber deviations and irregularly occurring hetero-
eneities such as knots and strong variations of the pith location along

∗ Corresponding author.
E-mail address: seeber@hfm.tum.de (F. Seeber).

the boards [1] need to be investigated to understand their influence
on mechanical properties such as strength. This knowledge can then be
used in the development of engineered wood products. The production
of beech glued laminated timber (GLT) is relatively scarce at present.
However, high-grade GLT beams demonstrate the potential through the
targeted combination of low-grade and high-grade lamella qualities [2].
Essential for optimized GLT beams is the numerical investigation of
such ‘‘low-grade’’ wood components with appropriate constitutive ma-
terial laws for including elasticity, plasticity, brittle/ductile failure as
well as moisture-, temperature and time dependent behaviors [3].

The elastic material range is substantially affected by the
orthotropic material orientation, which is mostly introduced by means
of tensor transformation according to the fiber orientation from the
grain flow analysis around knots [4,5], laser scanning information [6,7]
or CT-scanning information [8].

The post-elastic range for wood is strongly dependent on the load
direction. For compressive stresses, the behavior is quasi-ductile and
can be represented by plasticity. Several single surface plasticity mod-
els [9,10] were extended to multi-surface plasticity models [11–13] to
vailable online 6 April 2024
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be able to describe the post-elastic material behavior in a more accurate
way.

For tensile or shear stresses, brittle softening and brittle failure can
be represented by different methods. Continuum Damage Mechanics
(CDM) introduces the effective stress concept [14]: After a defined
stress state is reached, damage initiates and evolves following the
defined damage evolution law to evoke the weakening of the material
due to the occurrence of micro-cracks. Micro-cracks consequently ac-
cumulate to a macro-crack and lead to failure. This concept is mainly
established for composites [15,16] and adapted to wood [17]. Different
damage initiation criteria such as the ones provided in [9,10,18–20]
can be included. Other methods than CDM, are e.g. based on fracture
mechanics, with the focus on discontinuous crack propagation such as
cohesive zone models [21], XFEM approaches [22,23], and lately also
phase field models [24,25].

Different approaches already combine both post-elastic ductile and
brittle material behaviors in one model with the purpose to analyze
wood e.g. in connections and investigate the effect of different parame-
ters on the load carrying capacity and failure behavior in a cost-efficient
way [17,26–28]. Models are established either with a multi-linear
approach in [29] or with nonlinear material laws. The latter ones focus
on elasto-plastic damage model for transversely isotropic material in
3D [30,31] or for plane stress situation in 2D in [23,32]. Their main
motivation is on describing dowel-type connections with the ductile
embedding failure as well as the brittle cracking of wood considering
different failure initiation criteria.

Besides investigations on connections, the strength of sawn wooden
components such as beech boards strongly depends on heterogeneities
as fiber deviations at different local positions. In this case different bi-
axial loading situations can occur and need to be analyzed. Bi-axial
loading situations are analyzed experimentally e.g. in [33,34] for clear
wood and represented numerically in models based on plasticity [11,
12] or in general polynomial stress criteria in [35] and its comparison
in [20]. In addition, combined loading is studied specifically for the
combination of shear and compression e.g. in [36–38].

Previous models had a look at multiple of criteria to cover the
complex mechanical behavior of wood. However such models need
to be validated and further developed to cover the comprehensive
3D nonlinear material response, which considers plasticity and dam-
age for different loading configurations under directional changes of
fibers. The model in this study aims to prevent homogenization of
the material by considering local variation of the properties. It fur-
ther includes the validation of the developed 3D nonlinear material
model and specially shows its application for cases with locally varying
bi-axial 3D stress configurations. The objective of this contribution
is an enhanced and validated representation of the post-elastic non-
linear three-dimensional orthotropic behavior in a three-dimensional
orthotropic material by means of an elasto-plastic damage model. The
goal is to predict different failure modes as a consequence of dam-
age evolving in different directions due to local stress concentrations
(or stress interactions) in a parallel to the fiber tensile tested sawn
board with fiber deviation. Additionally, the necessary representation
of direction-dependent plasticity for the orthotropic material behavior
of wood is incorporated considering hardening in the different direc-
tions. Can an elasto-plastic damage model contribute to understanding
local resistance (in e.g. beech wood) with strong fiber deviation for
predicting the strength of sawn timber?

Different failure behavior is incorporated for tension and compres-
sion, including ductile plasticity in Section 2.1 considering harden-
ing in the different directions and different damage initiation criteria
in Section 2.2. The model is validated for the orthotropic direction
dependency for uni-axial tests under compression (Section 4.1) and
tension (Section 4.2). Accordingly, a separate mode damage criterion
is developed in this study for describing the material with local fiber
deviations. Finally, these failure criteria are applied on a board loaded
in tension with 3D fiber deviation and its according representation of
2

strength and failure mode in Section 4.3.
Fig. 1. Schematic material behavior dependent on the orthotropic directions 𝑖 as well
as on the loading direction.

2. Constitutive nonlinear elasto-plastic damage model

The mechanical behavior of wood is characterized by a strong
orthogonal directional- and stress-sign dependency due to its natural
fiber structure. 𝐿 represents the longitudinal fiber direction, 𝑅 the
adial direction and 𝑇 the tangential direction in the following sections.
his will be represented in the following constitutive model by three
lastic moduli (tensile and compression moduli are assumed to be the
ame), three shear moduli, and six Poisson ratios in the elastic range.
he post-elastic material behavior is further described by nine different
trength values dependent on direction and stress-sign (compression,
ension or shear). Consequently, the definition of the different material
ehavior results in different failure modes, which were investigated
n a micro-mechanical level inter alia in [39], shall be subdivided
t meso-/macro-scale to four principle patterns [11]. Brittle damage
ue to tensile or shear stresses leads to micro-cracks in the material
hich accumulate and form a macro-crack. Fiber rupture (parallel to

fiber direction) and inter-fiber band shear failure (in radial or tangential
direction) are the consequence. Ductile plasticity due to compressive
stress leads to high deformations while maintaining toughness. This
mechanical behavior is driven by cell wall buckling (parallel to fiber
direction) and fiber cell crushing (in radial or tangential direction),
which further leads to densification at large strains.

In the following, a nonlinear three-dimensional elasto-plastic dam-
aging material model is presented to capture the described material
behavior. As visualized in Fig. 1, it consists of independent post-
elastic parts (ductile plasticity and brittle softening) which represent
the material behavior in accordance with [40,41]. Ductile plasticity
in Section 2.1 is based on [42] and covers an anisotropic yield sur-
face 𝑓𝑦𝑖𝑒𝑙𝑑,𝑖. Together with a nonlinear isotropic hardening law 𝑞𝑖, the
model takes into consideration the plastic material behavior and the
compressive material strength 𝑓𝑐,𝑖, dependent on the decisive loading
direction (purple region in Fig. 1). Brittle damage in Section 2.2 is
modeled by CDM [14]. The reduction of the elastic stiffness in different
material directions (including normal and shear stresses) can occur
simultaneously, which reflects on combined loading situations.

In addition in this section an overview is going to be given about the
already existing damage initiation criteria. Once damage is initiated, it
results in a damage vector taking the direction dependency and the
consequent failure mode into account.
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In the elastic range, Hooke’s law is applied:

�̂� = 𝐂0 ⋅ 𝜺e,

𝝈 = 𝐂d ⋅ 𝜺e.
(1)

where �̂� is the effective stress acting only on the elastic, non-damaged
material according to CDM [14]. 𝐂0 is the initial undamaged or-
thotropic stiffness tensor. The stress 𝝈 in a damaged state can be
calculated using the damaged orthotropic stiffness tensor 𝐂d.

The strain vector 𝜺 is composed of an elastic part 𝜺e and a plastic
part 𝜺p:

𝜺 = 𝜺e + 𝜺p. (2)

Consequently, the stress tensors can be computed as:

�̂� = 𝐂0 ⋅ (𝜺 − 𝜺p),

𝝈 = 𝐂d ⋅ (𝜺 − 𝜺p).
(3)

2.1. Ductile plasticity (compression and shear)

The single surface failure criterion according to Hill (1948) [9] is
considered for initiating plasticity under compression and shear. Since
wood presents a brittle behavior under tension, this criterion is not used
for modeling of tensile cases. It is a quadratic criterion for describing
anisotropic plastic deformations and it is modified here to consider the
decisive loading-stress in the current stress situation (in compression
and shear).

The anisotropic Hill (1948) criterion in its initial form is

𝐹 (𝜎11 − 𝜎33)2 + 𝐺(𝜎33 − 𝜎11)2 +𝐻(𝜎11 − 𝜎22)2

+2𝐿𝜎223 + 2𝑀𝜎231 + 2𝑁𝜎212 = 1,
(4)

where the material parameters 𝐹 ,𝐺,𝐻,𝐿,𝑀,𝑁 are dependent on the
compression strength 𝑓c,𝑗 and shear strength 𝑓v,𝑗𝑘, 𝑗, 𝑘 = L,R,T:

𝐹 = 1
2

(

1
𝑓 2
c,R

+ 1
𝑓 2
c,T

− 1
𝑓 2
c,L

)

, 𝐿 = 1
2𝑓 2

v,RT

,

𝐺 = 1
2

(

1
𝑓 2
c,T

+ 1
𝑓 2
c,L

− 1
𝑓 2
c,R

)

,𝑀 = 1
2𝑓 2

v,LT

,

𝐻 = 1
2

(

1
𝑓 2
c,L

+ 1
𝑓 2
c,R

− 1
𝑓 2
c,T

)

, 𝑁 = 1
2𝑓 2

v,LR

.

(5)

The Hill criterion can further be written in the following matrix
form

𝑓 (𝝈) = 𝝈T ∶ 𝐀 ∶ 𝝈 − 1, (6)

with

𝐀 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(𝐻 + 𝐺) −𝐻 −𝐺 0 0 0
−𝐻 (𝐹 +𝐻) −𝐹 0 0 0
−𝐺 −𝐹 (𝐹 + 𝐺) 0 0 0
0 0 0 2𝑁 0 0
0 0 0 0 2𝑀 0
0 0 0 0 0 2𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (7)

Since the plastic material behavior for wood is restricted to com-
pressive normal stresses and strongly depends on the orthogonal direc-
tion, the Hill (1948) plasticity criterion [9] is enhanced in this paper for
taking the actual loading status into consideration. After determining
the decisive loading situation, the modification is performed in all
directions. This process is given in Eqs. (8)–(13). It is similar to [30],
where only one loading situation was considered for 𝐀 and hence lacks
in capturing the orthotropic material responses.

According to the current stress situation, the yield function in Eq. (6)
is extended to isotropic hardening as:

𝑓 (𝝈, 𝑞𝑖) = 𝝈T ∶ 𝐀 ∶ 𝝈 −
(𝑓y,𝑖 + 𝑞𝑖)2

2
, (8)
3

𝑓c,𝑖
Fig. 2. 2D failure surfaces of the adapted Hill criterion [9], for which the strength
and hardening variables are listed in Table 1.

where the strength in the decisive direction is 𝑓 2
c,𝑖 = (𝑓y,𝑖 + 𝑞𝑖)2 with 𝑖

being the determined decisive loading direction following Eq. (9), 𝑓y,𝑖
epresenting the yield strength in the same direction and 𝑞𝑖 representing
he hardening law (Eq. (12)):

f
|𝜎11|
𝑓c,L

≥
|𝜎22|
𝑓c,R

and
|𝜎11|
𝑓c,L

≥
|𝜎33|
𝑓c,T

∶ 𝑓c,𝑖 = 𝑓c,L,

f
|𝜎22|
𝑓c,R

≥
|𝜎11|
𝑓c,L

and
|𝜎22|
𝑓c,R

≥
|𝜎33|
𝑓c,T

∶ 𝑓c,𝑖 = 𝑓c,R,

f
|𝜎33|
𝑓c,T

≥
|𝜎11|
𝑓c,L

and
|𝜎33|
𝑓c,T

≥
|𝜎22|
𝑓c,R

∶ 𝑓c,𝑖 = 𝑓c,T.

(9)

Consequently the anisotropic Hill-yield criterion is adapted and
Eq. (8) can be restructured to

𝑓 (𝝈, 𝑞𝑖) = =
√

𝝈T ∶ �̃� ∶ 𝝈 − (𝑓y,𝑖 + 𝑞𝑖). (10)

Due to the adaption of the Hill-matrix �̃�, the material parameters
𝐹 ,𝐺,𝐻 of Hill-plasticity are reformulated to

𝐹 = 1
2

(

1
𝑓 2
𝑐,𝑅∕𝑓

2
c,𝑖

+ 1
𝑓 2
c,T∕𝑓

2
c,𝑖

− 1
𝑓 2
c,L∕𝑓

2
c,𝑖

)

,

�̃� = 1
2

(

1
𝑓 2
c,T∕𝑓

2
c,𝑖

+ 1
𝑓 2
c,L∕𝑓

2
c,𝑖

− 1
𝑓 2
c,R∕𝑓

2
c,𝑖

)

,

̃ = 1
2

(

1
𝑓 2
c,L∕𝑓

2
c,𝑖

+ 1
𝑓 2
c,R∕𝑓

2
c,𝑖

− 1
𝑓 2
c,T∕𝑓

2
c,𝑖

)

,

�̃� = 1
2𝑓 2

RT∕𝑓
2
c,𝑖
, �̃� = 1

2𝑓 2
LT∕𝑓

2
c,𝑖
, �̃� = 1

2𝑓 2
LR∕𝑓

2
c,𝑖
.

(11)

The failure surfaces and the isotropic hardening surfaces are visual-
ized in 2D in Fig. 2. The hardening law 𝑞𝑖 can be expressed using the
hardening variable 𝛼𝑖:

𝑞𝑖 = 𝐾(𝛼𝑖) (12)

with the exponential isotropic hardening law 𝐾(𝛼𝑖) according to [11,
12]. To consider the nonlinear hardening behavior, Eq. (10) is reformu-
lated to Eq. (13) considering the exponential hardening law [43] with
𝑄𝑖 and 𝑏𝑖 being the hardening parameters in the decisive direction 𝑖.

𝑓 (𝝈, 𝛼) =
√

𝝈T ∶ �̃� ∶ 𝝈 − (𝑓y,𝑖 +𝐾(𝛼𝑖))

=
√

𝝈T ∶ �̃� ∶ 𝝈 − (𝑓y,𝑖 +𝑄𝑖(1 − 𝑒−𝑏𝑖𝛼𝑖 ))
(13)

Consequently, 𝑏𝑖 in Eq. (13) defines the shape of the exponential
function and 𝑄𝑖, is the difference between ultimate and yield strength,
which defines the magnitude of the exponential function. The input
material properties for the numerical analysis are listed in Table 1.

According to [44], the evolution of plastic strain �̇�p is defined by
the associative flow rule as

̇ p = 𝛥𝜆
𝜕𝑓
𝜕𝝈

, (14)

with the plastic consistency parameter 𝛥𝜆. The hardening variable 𝛼 is
defined by considering the hardening law as

�̇� = 𝛥𝛼
𝜕𝑓

= 𝛥𝜆
𝜕𝑓 𝜕𝑞

= 𝛥𝜆
𝜕𝑞

, (15)

𝜕𝛼 𝜕𝑞 𝜕𝛼 𝜕𝛼
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𝛥

since 𝜕𝑓∕𝜕𝑞 = 1 and 𝛥𝜆 = 𝛥𝛼.
Finally, the Kuhn–Tucker loading/unloading conditions need to be

ulfilled

𝜆 ≥ 0, 𝑓 (𝝈, 𝛼) ≤ 0, 𝛥𝜆𝑓 (𝝈, 𝛼) = 0, (16)

as well as the consistency conditions

𝛥𝜆 ̇𝑓 (𝝈, 𝛼) = 0, if 𝑓 (𝝈, 𝛼) = 0. (17)

With all conditions being fulfilled, the elasto-plastic tangent modu-
lus is expressed according to [42] as

𝐂ep =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐂0 −
𝐂0 ∶

𝜕𝑓
𝜕𝝈

⊗ 𝐂0 ∶
𝜕𝑓
𝜕𝝈

𝐂0 ∶
𝜕𝑓
𝜕𝝈

∶
𝜕𝑓
𝜕𝝈

+
𝜕𝑓
𝜕𝑞

∶
𝜕𝑞
𝜕𝛼

if 𝛥𝜆 > 0

𝐂0 if 𝛥𝜆 = 0.

(18)

The algorithmic treatment of the stated plasticity is performed ac-
cording to [30] and for the sake of completeness stated in Appendix B.

2.2. Brittle damage (tension and shear)

Beyond the linear elastic material range, softening of the material
starts, which can be represented by CDM [14]. The onset of damage
mechanisms, such as micro-cracking, are defined by damage initiation
criteria in Section 2.2.1. The evolution of micro-cracks is characterized
by the damage evolution laws using different scalar damage variables
in Section 2.2.2, which can occur simultaneously. The propagation of
the damage is dependent on the orthotropic material direction and the
load-sign, and the propagation continues until macro-cracks evolve and
failure occurs.

Taking effects of possible stress interactions into account, various
damage initiation criteria are used in the literature inter alia in [9,
10,17,19]. Among these, four different stress-based damage initiation
criteria are selected and compared analytically in this section. The first
criterion, Tsai–Wu [10], initiates damage by accounting for interaction
of normal stresses in tensor formulation with only one closed surface.
The second criterion, Hashin [19], originating from fiber composites,
introduces four interactive failure criteria for four different failure
modes with quadratic functions based on the stress invariants. More
recently, Sandhaas [17] further adapted the latter criterion for wood
by differentiating between eight different failure modes. And finally,
a separated damage mode criterion with piece-wise continuously dif-
ferentiable maximum stress functions for the single failure variables is
discussed.

These four different analytical criteria represent existing and fre-
quently considered damage initiation criteria for wood, besides phe-
nomenologically based single-surface-plasticity-models which take
strength and assumed interaction factors from experimental results into
account as e.g. in [11,12]. They are validated in Sections 4.1 and 4.2
and further applied and compared on a tensile tested board with known
fiber deviation in Section 4.3.

2.2.1. Damage initiation
(a) Tsai–Wu damage initiation criterion [10]

This criterion is represented by a single elliptical surface without
distinction between failure modes. Thus compression and ten-
sion cannot be considered separately, which is the case in the
other models in the following paragraphs. The tensor formula-
tion is stated analytically in Eq. (19). This formulation is based
on normal and shear stresses considering their interaction:

F1�̂�11 + F2�̂�22 + F3�̂�33 + F11�̂�211 + F22�̂�222 + F33�̂�233+

2F12�̂�11�̂�22 + 2F23�̂�22�̂�33 + 2F13�̂�11�̂�33+
2 2

(19)
4

F44�̂�13 + F55�̂�23 + F66�̂�12 ≤ 1.
with

F1 =
1

𝑓t,L
− 1

𝑓c,L
, F2 =

1
𝑓t,R

− 1
𝑓c,R

, F3 =
1

𝑓t,T
− 1

𝑓c,T
,

F11 =
1

𝑓t,L𝑓c,L
, F22 =

1
𝑓t,R𝑓c,R

, F33 =
1

𝑓t,T𝑓c,T
,

F44 =
1

𝑓 2
v,LT

, F55 =
1

𝑓 2
v,RT

, F66 =
1

𝑓 2
v,LR

,

F12 = −1
2

1
√

𝑓t,L𝑓c,L𝑓t,R𝑓c,R
, F13 = −1

2
1

√

𝑓t,L𝑓c,L𝑓t,T𝑓c,T
,

F23 = −1
2

1
√

𝑓t,R𝑓c,R𝑓t,T𝑓c,T
.

(20)

This failure criterion has limited physical meaning for wood
because e.g. the material resistance F1 in Eq. (20) depends on
a combination of tensile and compression strength.

(b) Hashin damage initiation criterion [19]
This criterion was primarily developed for fiber composites
with transversely isotropic material properties, where it is nec-
essary to distinguish between fiber- and matrix-failure. It is
based on the stress invariants and is separated into different
criteria according to the fiber- and matrix-behavior. Four stress-
interactive failure criteria represent four different failure modes:
parallel failure in tension 𝐹𝑡,∥ or compression 𝐹𝑐,∥ and matrix
failure in compression 𝐹𝑐,⟂ or tension 𝐹𝑡,⟂. In different failure
modes, stress interactions are considered differently as shown in
Eq. (21) and (22). Hashin further concluded that only linear and
quadratic terms are necessary for the simplest fitting solution.

�̂�11 ≥ 0 ∶ Ft,∥ =
(

�̂�11
𝑓t,∥

)2
+

�̂�212 + �̂�213
𝑓 2
v,12

≤ 1

�̂�11 < 0 ∶ Fc,∥ =
(

�̂�11
𝑓𝑐,∥

)2
≤ 1

(21)

�̂�22 + �̂�33 > 0 ∶ Ft,⟂ =
(�̂�22 + �̂�33)2

𝑓 2
t,⟂

+
(�̂�223 − �̂�22�̂�33)

𝑓 2
v,23

+
�̂�212 + �̂�213
𝑓 2
v,12

≤ 1

�̂�22 + �̂�33 < 0 ∶ Fc,⟂ =
[

( 𝑓c,⟂
2𝑓v,23

)2
− 1

]

(

�̂�22 + �̂�33
𝑓c,⟂

)

+
(�̂�22 + �̂�33)2

4𝑓 2
v,23

+
(�̂�22 + �̂�33)2

𝑓 2
c,⟂

+
(�̂�223 − �̂�22�̂�33)

𝑓 2
v,23

+
�̂�212 + �̂�213
𝑓 2
v,12

≤ 1

(22)

(c) Sandhaas damage initiation criterion [17]
This mixed phenomenological and analytical criterion differen-
tiates between eight failure modes. Longitudinal normal stresses
are treated separately in compression and in tension, and nor-
mal and shear stresses are combined in quadratic criteria for
transverse tension and shear failure modes, as presented in
Eq. (23)- (25).

�̂�11 ≥ 0 ∶ Ft,L =
�̂�11
𝑓t,L

≤ 1

�̂�11 < 0 ∶ Fc,L =
−�̂�11
𝑓c,L

≤ 1
(23)

�̂�22 ≥ 0 ∶ Ft,R =
�̂�222
𝑓 2
t,R

+
�̂�212
𝑓 2
v,LR

+
�̂�223
𝑓 2
v,RT

≤ 1

�̂�22 < 0 ∶ Fc,R =
−�̂�22
𝑓c,R

≤ 1

Fv,R =
�̂�212
2

+
�̂�223
2

≤ 1

(24)
𝑓v,LR 𝑓v,RT
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�̂�33 < 0 ∶ Fc,T =
−�̂�33
𝑓c,T

≤ 1

�̂�33 ≥ 0 ∶ Ft,T =
�̂�233
𝑓 2
t,T

+
�̂�213
𝑓 2
v,LT

+
�̂�223
𝑓 2
v,RT

≤ 1

Fv,T =
�̂�213
𝑓 2
v,LT

+
�̂�223
𝑓 2
v,RT

≤ 1

(25)

(d) Separated damage mode (SDM) initiation criterion
This is the only criterion which does not assume interactions
of stresses, but treats every stress direction separately. Thus,
nine different failure modes are separated in maximum stress
functions.

Fc∕t,L =
|�̂�11|
𝑓c∕t,L

Fc∕t,R =
|�̂�22|
𝑓c∕t,R

Fc∕t,T =
|�̂�33|
𝑓c∕t,T

Fv,LR =
�̂�12
𝑓v,LR

Fv,LT =
�̂�13
𝑓v,LT

Fv,RT =
�̂�23
𝑓v,RT

(26)

ue to the scatter of material properties and the strong dependence
n the orthotropic material directions, it is difficult to verify which
amage initiation criterion is the best representation. Commonly, it can
e pointed out that all damage initiation criteria shall agree in uniaxial
rincipal stress directions. The assumption that stress interaction leads
o strength reduction is not fully confirmed yet, although some biaxial
oading experiments [33] tried to quantify the influence of biaxial
oading on strength and failure modes. However it is still unknown
ow the stress interactions evolve in orthotropic heterogeneous space,
ince the mentioned models are simplifying the cellular structure of the
aterial to a continuum transverse isotropic material.

A slightly different approach to single failure surfaces, as e.g. Tsai–
u, is applied in Hashin, Sandhaas and SDM: The interaction of dif-

erent stresses is considered by means of using not only one damage
calar but multiple damage variables for the orthotropic directions
nstead. As one or several damage variables start to evolve, stiffness
ets weakened, and consequently stress redistribution will occur. This
eparate consideration can also be seen as an analogous procedure for
tress interactions and makes the differentiation between mixed failure
odes possible.

After the initiation of damage indicated by 𝐹𝑖 ≥ 1, the tensor of
amage variables 𝐝(𝜅𝑖) is being identified for modifying the compliance
atrix in Eq. (33) separately in each direction. 𝜅𝑖 is defined as the state

ariable and specified as 𝜅𝑖 = max
{

1,max(Fincr𝑖 )
}

for 𝑖 representing the
ifferent failure modes according to the damage initiation criterion.
he limit state function 𝜙𝑖 in this case is then expressed as a function
f F𝑖 and the state variable 𝜅𝑖 as:

𝑖(F𝑖, 𝜅𝑖) = F𝑖 − 𝜅𝑖 ≤ 0. (27)

Similar to plasticity, the damage threshold values are expressed by
he Kuhn–Tucker conditions:

𝑖 ≤ 0, �̇�𝑖 ≥ 0, �̇�𝑖𝜙𝑖 = 0, (28)

nd the consistency condition

𝑖�̇�𝑖 = 0 if 𝜙𝑖 = 0. (29)

.2.2. Damage evolution
After damage initiation, different damage variables of the damage

ensor can propagate dependent on the damage propagation law in
ompression and in tension. Multiple stresses and their interaction ef-
ects are considered by combining the simultaneously evolving damage
ariables in one damaged stiffness matrix.

Material properties such as the fracture energy and elastic moduli
n each specific material direction are considered in the given damage
ropagation laws following linear softening according to [17], as

t∕v,𝑖(𝜅𝑖) = 1 − 1
2

(

𝑓 2
t,𝑖 −

2𝑔f ,𝑖E𝑖

𝜅

)

, (30)
5

𝑓t,𝑖 − 2𝑔f ,𝑖E𝑖 𝑖
ith the maximum strength 𝑓t∕v,𝑖, modulus of elasticity E𝑖, fracture
nergy 𝑔f ,𝑖, which includes the characteristic element length as given
n Eq. (47), in the same material direction 𝑖.

Considering a different damage propagation in the ductile failure
odes for wood under compression, shown in Fig. 1, perfect plasticity

ccording to [17] is modeled as,

c,𝑖(𝜅𝑖) = 1 − 1
𝜅𝑖
. (31)

All scalar damage variables may appear simultaneously and take
values between 0 for undamaged and 1 for completely damaged. Only
the differentiation between compression and tension in normal direc-
tions 𝑖 = 𝐿,𝑅, 𝑇 is performed using the Macaulay operator according
to

𝑑𝑖 = 𝑑c,𝑖
⟨�̂�ii⟩
|�̂�ii|

+ 𝑑t,𝑖
⟨�̂�ii⟩
|�̂�ii|

. (32)

These damage propagation laws can be adapted to other degra-
ation laws e.g. exponential functions for softening in tension and
ompression or densification laws in compression.

Once the scalar damage variables are computed, the compliance
atrix is modified as

d =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
(1 − dL)E11

−𝜈21
E22

−𝜈31
E33

0 0 0

−𝜈12
E11

1
(1 − dR)E22

−𝜈32
E33

0 0 0

−𝜈13
E11

−𝜈23
E22

1
(1 − dT)E33

0 0 0

0 0 0 1
(1 − dv,LR)G12

0 0

0 0 0 0 1
(1 − dv,LT)G13

0

0 0 0 0 0 1
(1 − dv,RT)G23

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (33)

hich can be inserted in Eq. (3).

. Implementation and workflow

The elasto-plastic damaging material law is implemented in the
oftware ABAQUS/Standard (Simulia 6.14, from Dassault Systems) as
user defined material subroutine UMAT. The local principal material
irections are determined by the fiber angle and ring angle via the
ransformation matrix locally at each integration point as presented
n [7].

The numerical workflow is controlled by strain-based increments,
hich are divided into 𝑁 defined time intervals [𝑡𝑛, 𝑡𝑛+1] over a fictive

ime 𝑇 .
The total strain is composed of the elastic and plastic strain, where

he plastic part is implemented via the closest-point-projection algo-
ithm of Simo and Hughes [42]. The scheme is described in detail in
ppendix B following the main steps of [30]. Furthermore, after the

angent plastic stiffness matrix has been calculated, damage initiation
riteria are being checked and consequently damage variables are being
alculated, which reduces the entries of the tangent plastic stiffness
atrix, following the principle of CDM. The crack band method ac-

ording to [45] is implemented to alleviate mesh dependency. Once
ne damage variable reaches the value of 1 in all integration points of
n element, the element is deleted. This is supposed to represent cracks
n a simplified way and avoids highly distorted elements.

. Numerical examples with experimental validation

Although the developed model is applicable to different wood
pecies, European beech (Fagus Sylvatica L.) is chosen for validation,
ue to the importance and motivation stated in Section 1. The focus of
his investigation is on the validation of the numerical material model
or the 3D post-elastic material behavior. Model complexity is increased
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Table 1
Summary of material properties for European Beech (Fagus Sylvatica F.).

Literature Simulation values

[40] [46] [17] [47] [3] [48] (GAU) [48] (THR)

Elastic

EL

[MPa]

14 000 10 560 13 000 13 700 13 509 12 741 12 500
ER 2280 1510 860 2240 1722 2036 2050
ET 1160 730 860 1140 707 913 810
GLR 1640 1240 810 1610 1640
GLT 1080 930 810 1060 1080
GRT 470 380 59 460 470

𝜈LR

[–]

0.43 0.43 0.450 0.32 0.40 0.43
𝜈LT 0.58 0.58 0.510 0.30 0.40 0.58
𝜈RT 0.61 0.61 0.750 0.61 0.66 0.61
𝜈RL 0.04 0.04 0.073 0.04
𝜈TL 0.04 0.04 0.044 0.04
𝜈TR 0.31 0.31 0.360 0.26 0.29 0.31

Post-elastic

𝑓𝑡,L

[MPa]

96.7 96.7 41.0 135.0 139.4 121.7 134.0
𝑓𝑡,R 14.7 19.5 1.0 7.0 18.2 17.9 18.0
𝑓𝑡,T 8.9 8.9 1.0 7.0 8.0 6.2 7.0
𝑓𝑐,L 45.0 45.0 57.0 57.0 61.9 62.0
𝑓𝑐,R 11.0 14.2 10.0 11.9 15.5 15.5
𝑓𝑐,T 6.0 14.2 10.0 5.7 6.7 7.0
𝑓𝑣,LR 13.8 6.9 12.7–14.8 14.0
𝑓𝑣,LT 17.7 6.9 15.7–19.7 18.0
𝑓𝑣,RT 15.0 0.5 15.0

Gf ,L

[N/mm]

10.00 10.00
Gf ,R∕T 0.32–0.73 0.71 0.32–0.73 0.71
Gf ,v 1.20 1.20
Gf ,roll 0.55–0.69 0.60 0.55–0.69 0.60

Numerical

𝑄L
[MPa]

9.3
𝑄R 5.4
𝑄T 2.5
𝑏L

[–]
300

𝑏R 500
𝑏T 250
Table 2
General characteristics of experimental test data [48] and its scatter for compression
(c) and tension (t) in the three directions (L,R,T) for the amount of test samples (n);
standard deviation is given in the brackets after the mean value.
𝑖 n 𝑓𝑖 [MPa] 𝐸𝑖 [MPa] [48]

c,L 47 61.9 (4.3) 12820 (1337)
c,R 49 15.5 (0.9) 2082 (127) (THR)
c,T 49 6.7 (0.4) 818 (32)

t,L 43 139.4 (38.5) 13509 (1652)
t,R 29 18.2 (1.0) 1722 (74) (GAU)
t,T 30 8.0 (0.5) 707 (28)

gradually, thus two clear wood benchmark examples and one example
with slight fiber deviation are analyzed for axial loading conditions.
These examples are modeled with the material model presented in
Sections 2 and 3 and compared to experimental results. To be able to
distinguish and study different failure modes, the first example focuses
on the nonlinear ductile material behavior under compression, while
the second example on brittle softening under tension/shear. The third
example demonstrates the application of the numerical model on sawn
timber with local fiber deviations for strength prediction.

Literature values for the input material parameters such as elas-
tic moduli, shear moduli, Poisson ratios, as well as strength values
in compression and tension, and fracture energies are listed in Ta-
ble 1. Differences can be observed for the different references listed
which might be a consequence of different mechanical testing setups,
strain/stress measurement techniques, size effects, etc. However, the
numerical model needs to contain an appropriate set of input param-
eters that represent the material well, considering the scatter in the
material properties. Consequently, plausible values in the range of
literature and experimental values are taken as input parameters for
this model and listed in the last column of Table 1.
6

Fig. 3. Exemplary representation of the compression test cubes under compression
loading with regard to the alignment in longitudinal, radial or tangential direction [48].

4.1. Compression cuboid with square cross-section

For the validation of the plastic material behavior experimental
test results from [48] have been used in this study. Similar to [48],
samples with rectangular shapes, and dimensions of 45 × 15 × 15 mm3

(𝑙 × 𝑤 × 𝑡) in accordance with DIN 52192 have been numerically
simulated, see Fig. 3. A total number of 20 tests in each direction
have been analyzed separately in this study. Table 2 summarizes the
main characteristics of the experimental data focusing on the mean and
standard deviation of the measured stiffness/strength and shows the
heterogeneous material character. The given material parameters are
in accordance with Table 1, except the elastic moduli in compression,
which were simplified to be the same as the elastic moduli in tension.

4.1.1. Mechanical test setup
All samples were climatized to 20◦C∕65% relative humidity (RH)

and tested in 20◦C∕50% RH climatized conditions. The mechanical
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Fig. 4. Stress in loading direction and strain in the three orthogonal directions from experimental and numerical tests in longitudinal (first column), radial (second column) and
tangential (third column) loading direction with marked yield initiation (o) and damage initiation (x). Sim.Var1 and sim.Var2 refer to the simulation with modified material
properties as discussed in Section 4.1.3.
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testing setup and procedure was executed with a universal testing
machine Zwick/Roell Z100 and linked to a 100 kN load cell. The
displacement rate of the compression load was set to 0.6 mm∕min
for reaching an initial strain rate of 1%∕min. The experiments were
terminated when a clear drop in the force occurred. For the detection
of the surface strain with the digital image correlation (DIC) system
(Aramis, GOM GmbH, Braunschweig, Germany), it was necessary to
cover the surfaces with a white primer and random black sparkles
distributed on the samples surfaces. The optical measurement system
was positioned perpendicular to the edge of the test specimen such that
the strain was measured on two sides in F1 (10 × 13 mm) as visualized
in Fig. 3. Three different strain directions were measured: 𝜀∥ in loading
direction and 𝜀⟂ in both directions perpendicular to loading direction.
Thus it was possible to evaluate three Poisson ratios in the elastic range
and the plastic strain in all directions in the post-elastic range.

4.1.2. Numerical test setup
The cuboids are modeled in three different configurations of fiber

orientation, following the experimental tests. The orientation is induced
by a global Cartesian coordinate system. After performing the mesh
convergence studies, the appropriate mesh size is chosen for the cal-
culations. In this study, linear solid brick elements C3D8 are used for
the simulations. The bottom surface is clamped with all degrees of
freedom fixed, which assumes high friction between the supporting
plate and the test specimens as observed in the experimental tests. The
top surface is coupled to a reference point, where the compression stress
7

was induced by a prescribed displacement similar to the experimental
tests with a maximum increment size of 0.01 mm. Degrees of freedom
in the other directions are fixed similarly to the bottom surface, as-
suming infinitesimal friction between the supporting plate and the test
specimen.

The elastic material properties for the model are given in Table 1.
The elasto-plastic damaging material model presented in Section 2 is
applied to the three cuboids. For the post-elastic behavior, yield com-
pression strength in longitudinal direction was set to 𝑓𝑦,L = 0.85 ⋅ 𝑓c,L
nd in radial as well as in tangential direction to 𝑓𝑦,R∕T = 0.65 ⋅ 𝑓c,R∕T,
imilar to [11]. Accordingly, the hardening moduli, 𝑄𝑖 are defined since
he difference between the compression strength and the yield strength
n the same directions with 𝑄L = 0.15 ⋅ 𝑓c,L, 𝑄R∕T = 0.35 ⋅ 𝑓c,R∕T is
ependent on the decisive loading directions as outlined in Section 2.1.
imilarly to the experiments, the strain is evaluated in the area ‘F1’ of
he specimen visualized in Fig. 3 for the simulations.

.1.3. Results and validation
The main focus of this investigation is to analyze the stress in

oading direction as well as the strain in all three orthotropic material
irections, since all directions contribute to the material strength in
3D board with fiber deviation. The elastic and post-elastic results

rom the experimental and numerical compression tests are visualized
n Fig. 4. The first row of diagrams in Fig. 4 shows the stress over time,
hereas the second row represents the strain response in all directions
ver time and the third row of diagrams illustrates the stress–strain
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Fig. 5. Numerical strain and stress in loading direction of compression tests during
nonlinear hardening scaled by factor 50.

graph in the respective loading direction: in longitudinal fiber direction
(first column), in radial direction (second column) and in tangential
direction (third column).

The experimental strains are averaged over the area ’F1’, shown in
Fig. 3 and the engineering stress is calculated by dividing the applied
force by the initially measured cross-sectional area. The same is done
for the numerical stress–strain results indicated in Fig. 4. Further,
numerical stress and strain results are visualized in Fig. 5 in the
post-elastic hardening phase.

Looking at the results in the third row of Fig. 4, all three global
stress–strain curves show an overall representative material behavior.
Experimental results in longitudinal direction demonstrate a larger scat-
ter in comparison to the experimental results in radial and tangential
direction, which is also captured by the mean and standard deviation
values for stiffness and strength in Table 2.

Generally, in all three material directions, the elastic material be-
havior is corresponding well for both numerical and experimental
results. Also after the elastic range, when the yield stress is reached
and hardening is initiated, good conformity in the response between
experimental and simulation is achieved. When the load is considered
in radial or tangential direction (second and third column), the yield
stress already occurs at around 65% of the maximum stress and the
nonlinear plastic behavior is more pronounced.

Looking at the strain behavior of the experimentally tested speci-
mens in the second row of Fig. 4, differences are visible in evolution of
strains in the three orthotropic material directions and for all loading
configurations due to its input parameters. This material behavior is
mostly also covered in the numerical results. The increase in slope of
the numerical strain in the plastic region is dependent on the adapted
Hill-plasticity criterion and the exponential hardening law, controlled
according to the exponential factor 𝑏𝑖 in Eq. (13).

The influence of the boundary conditions and its resulting stress
concentrations, the influence of the Poisson ratios, and the influence
of the damage law are analyzed and shown exemplarily for loading
in radial direction (second column in Fig. 4). By applying a friction
coefficient of 0.3 between the loading plate and wood, stress con-
centrations are amplified in the regions of boundary conditions. The
plastic strain in the middle of the sample is not directly influenced,
however its effect is visible in the initiation and evolution of damage
8

Fig. 6. Stress 𝜎11 in [MPa] and according damage variable 𝑑L for loading in fiber
direction at the time step of 130 s capturing fiber buckling in the boundary regions.

in compression (crushing cells). Not only damage in loading direc-
tion 𝑑R, but also damage in tangential direction 𝑑T is initiated. Once
damage in loading direction (radial) starts, the stress redistributes
also in tangential direction. This effect elevates even more due to the
influence of the boundary conditions with high friction, since ultimate
compressive strength is reached earlier. Subsequently, it results in the
drop of stress and strain visualized in the dashed curves in Fig. 4,
second column at 100 seconds. In a separate set of simulations (Var1)
the boundary conditions of the model are changed. Different friction
coefficients between loading plate and test sample are analyzed and
a friction coefficient of 0.1 is visualized in Fig. 4-Var1. Once friction
is reduced, damage in tangential direction 𝑑T is postponed and, the
second drop in stress/strain occurs at 125 seconds, as visualized in
the dashed–dotted curve in the same graph (Fig. 4-Var1). Furthermore,
stress redistributions are mostly influenced by the orthotropic material
law and the high Poisson’s ratios for wood. While in literature, as
presented in Table 1, scatter in material properties are given, the effect
of less stress redistributions to the tangential direction according to
𝜈RT = 0.31 is visualized in the dotted line (Fig. 4-Var2): Damage in the
second direction initiates later causing the second drop in stress/strain
at around 150 s.

Wood as a naturally grown material has a considerable amount of
scatter in its material properties and its mechanical behavior. ‘‘Perfect’’
small clear wood samples do not exist. Thus this validation example
does not aim to best fit the deterministic model to experimental data,
but it rather aims to predict the mechanical behavior of this material.
Therefore, sensitivity analysis of different numerical material models
including different laws/parameters are performed in this study. It is
also shown here, that preventing homogenization of the material gives
a considerable variation of the results. Effects of several parameters are
difficult to distinguish once more heterogeneities such as imperfections
or fiber deviations are included in the model. Loading in fiber direction
shows a stronger scatter of experimental values (stiffness, strength)
in loading direction and than in radial and tangential directions as
can be seen in Table 2 and in Fig. 4. The slope of strain-over-time
(second row) increases until an abrupt drop in strain in fiber direction
(and less pronounced also in radial and tangential direction) becomes
noticeable. This indicates the buckling of the fibers in the local region
near the boundary conditions and is also captured by the numerical
model with an exaggerated strain drop. Subsequently, neither stress
nor strain increase remarkably, which indicates the damaged crushed
fibers. The material behavior at this point is further captured in Fig. 6
showing the compression cube with high stresses and local damage
values around the fully constraint boundary conditions.

For loading in radial direction, the experimental results in the
second column in Fig. 4 can be interpreted as follows. The experimental
curves show slightly less scatter in the post-elastic nonlinear region. The
strain in fiber direction remains around zero and the slope of strain-
over-time in (radial) loading direction does not change significantly
compared to the elastic range. After reaching the ultimate load the
strain increases slightly and shows approximately perfect plasticity in
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Fig. 7. Geometry of tensile dogbone test sample for loading in fiber direction (scaled,
left) and for loading in radial/tangential direction (right) [48] with units in [mm].

radial direction. Comparing the simulation results with the experi-
ments, one can see that the elastic and plastic strain in all directions
seem congruent. The numerical strain in fiber directions remains zero.
The sudden drop in stress and strain in the other directions is due to
damage initiation in the areas of the clamped boundary conditions,
where buckling of the fibers occurs and subsequently smaller increase
in slope of strain results. It is exaggerated due to fully constrained
boundary conditions in the simulation allowing no friction in second
and third direction. Nevertheless, this damage can also be seen in both
experimental and numerical results with the kink in the strain curves,
marked by (x) in the numerical stress–strain-curve.

Loading in tangential direction indicates similar behavior like load-
ing in radial direction: The strain in fiber direction remains zero.
Meanwhile, the strain in tangential loading direction increases signifi-
cantly after the elastic material range and the strain in radial direction
remains nearly constant in the post-elastic material range. No softening
is identifiable, but a pronounced nonlinear hardening behavior needs
to be pointed out. This is also represented in the numerical model until
a strain drop occurs due to damage at the boundary conditions similar
to the behavior in radial or longitudinal direction visualized in Fig. 6.

Finally to summarize the results, simulation results and experimen-
tal results agree well. Therefore the elasto-plastic damage material
model is able to capture the real behavior in all three directions for
axial loading situations and material input parameters referring to
literature values. Early fiber buckling due to fixed BCs can be pointed
out as limitation of these validation results.

4.2. Tensile dogbone test

For the validation of the elasto-damaging constitutive law (Sec-
tion 2.2) for brittle failure behavior, specimens with dogbone shape and
different dimensions, as presented in Fig. 7 following DIN 52188, have
9

been tested in tension in [48]. A total number of 20 tests have been
evaluated separately in each direction in this study. Table 2 summarizes
the main characteristics of the experimental data focusing on the mean
and standard deviation of the measured stiffness and strength.

4.2.1. Mechanical test setup
All samples were climatized to 20◦C∕65% RH and tested in 20◦C∕50%

RH climatized conditions. The mechanical test setup and procedure
was executed with a universal testing machine Zwick/Roell Z100 and
linked to a calibrated 5 kN load cell. The specimen was clamped with a
clamping length of 60 mm by means of collets without wedge clamping
effect, so that no pressure was generated in the testing direction during
clamping. The geometrical dimension and the centered position of the
samples reduced the stress situation to one decisive failure stress. In
addition, the material for this test was selected in a way that the global
clear wood material directions did not show visible fiber deviations.

The displacement rate of the tensile load was set to achieve a strain-
rate of 0.95 − 1.05%∕min. For the detection of the strain with DIC
(Aramis, GOM GmbH, Braunschweig, Germany), the surfaces in the
area of interest were covered with a random pattern. The measurement
system was positioned in front of the test specimen and the strain
was measured on the surface with a length of 50 mm in fiber loading
direction and a length of 10 mm in radial/tangential loading directions.
The width of the surface measurement was kept over the whole width
of the test sample.

4.2.2. Numerical test setup
The dogbone-shaped specimens are modeled according to the ex-

perimental tests, where the orientation is induced by means of a
global Cartesian coordinate system. Similar to the compression tests,
after performing the mesh convergence test for this set of analysis
an optimal mesh size, with respect to the model accuracy, resolution
and computational costs has been selected for the simulations. C3D8
linear solid brick elements are used for the simulations. The bottom
surface is fixed in loading direction and two edges of the surface are
fixed in second or third direction. The top surface is constraint to a
reference point with prescribed displacements in loading direction and
fixed rotation around the loading axis. The displacement is induced
with an increment size of 0.01 mm until the strength is reached. The
elastic material properties as well as the strength and fracture energies
for the model are given in Table 1. The elasto-plastic damaging material
model, presented in Section 2.2, is applied and validated for this axial
load case.
Fig. 8. Experimental and numerical global results of the dogbone-shaped tensile tests in all three directions.
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Fig. 9. Numerical evolution of the damage variables and the driving stress 𝜎11 in [MPa] (rows) for the SDM criterion at different time steps (columns): Damage initiation, damage
evolution and failure as well as the experimental failure mode for a representative experimental test sample (middle right).
4.2.3. Experimental validation and numerical results
For validation of the numerical results, global structural response

(Fig. 8) and local damage evolution (Figs. 9, 10) are investigated. The
global structural response is compared in the linear elastic range as
well as for the stress peak at brittle failure. Different material behavior
for the two different sample sizes (for loading in fiber direction and
loading in radial/tangential direction) are shown in this figure. For
loading in fiber direction, the stress–strain curves, failure modes of
the experimental data, as well as the mean and standard deviation
of the strength in Table 2 point out the high scatter of the material
properties dependent on small deviations in the material orientation
of the assumed clear wood samples. For loading in radial/tangential
direction, the scatter of experimental data in Table 2 is smaller. Also
the experimental stress–strain curves in Fig. 8 are aligned and show
congruence with the numerical results.

For the validation of damage evolution, the numerical local material
behavior is investigated and visualized in Figs. 9–11 for the different
directions and failure criteria. The tangential direction is not shown
because of its similar behavior to the radial direction. Only a part
of the model, representing the region of interest, is shown in these
10
plots. The damaged area of interest is captured at three different time
steps in Figs. 9, 11. Damage initiation at 𝜎max in loading direction is
shown in the first column followed by damage evolution in the second
column, when micro-cracks evolve. And finally, the formation of a
macro-crack before failure is shown in the third column, when the first
fully damaged elements are deleted. By considering linear elastic and
brittle material behavior for tension, once damage is initiated, softening
of the material occurs instantly. Therefore, damage develops rapidly
within a time frame of 0.5 s, which immediately leads to the failure
of the material. Such behavior can be seen in both, experimental and
numerical tests. For radial direction slight nonlinear elasticity can be
seen in the experiments, which is not covered for the simulations.

Fig. 9 shows the main damage variables in the normal stress direc-
tions 𝑑L, 𝑑R, 𝑑T as well as the driving stress 𝜎11 for the model loaded
in fiber direction with the SDM initiation criterion. For this loading
direction, all three damage parameters contribute to damage, whereas
in radial or tangential loading direction only the damage variable in
loading direction contributes to damage/failure. The reason for this
is the stress redistribution due to initial damage and the respectively
low strength in the directions perpendicular to the fiber. When damage
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Fig. 10. Numerical progression of the fiber damage variable 𝑑L in longitudinal loading direction for different damage initiation criteria (rows) at different time steps (columns):
Damage initiation, damage evolution and failure. The experimental failure mode for a representative sample is shown in the right column.
initiates in fiber direction, the material starts to weaken at the location
of maximum stress and consequently the load transfers to undamaged
parts. Therefore, damage also initiates in tangential direction and forms
the mixed failure mode of tangential and fiber splitting, also shown
in the experimental failure crack path in Fig. 9 on the right side. The
numerical failure path initiates from the inside and propagates into
the lateral direction of the sample (width). In experimental results,
this behavior cannot be captured by the camera system due to the
abrupt highly brittle behavior. Figs. 10 and 11 show the behavior
of different damage initiation criteria. They represent similar damage
evolution for all damage initiation criteria in this axial loading case
with the exception of Tsai–Wu. The results of the SDM-, Sandhaas- and
Hashin-criterion differ slightly due to the considered stress interactions
in the latter two criteria. The first two criteria do not combine radial
and tangential stresses in one criterion and result thus in different
failure modes, visualized in Fig. 10. Tsai–Wu criterion suffers from
bifurcation probably due to the mixed compression and tensile strength
parameters.

Analogously, the radial direction is visualized in Fig. 11. Similar
to the global structural response in direction perpendicular to the
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fiber, the local damage evolution and the final failure modes are also
comparable for all damage initiation criteria.

In conclusion, the focus of this benchmark example is the validation
of the damage initiation criteria. Due to axial loading conditions and
global fiber orientation, the comparison of damage initiation criteria
is performed at a systematically simplified stress situation. Differences
among the damage initiation criteria exist and affect the resulting
failure mode. Whereas existing failure criteria incorporate the stress
interactions by means of summation of stress–strength ratios, the SDM
criterion initiates all separated damage variables simultaneously. Once
damage initiates in one direction, the second/third direction could still
be loaded. Nevertheless, as a consequence of the damage initiation
in the first direction, stress redistributions in second/third direction
influence immediately the damaged stress state and subsequently result
in damage in second/third direction.

Element deletion (as explained in Section 3) is activated to represent
discontinuities in a straight-forward solution. Additionally, it needs to
be pointed out that, although the crack band method is implemented
already in the models, damage is still mesh dependent and the model
suffers from localized energy in single elements during damage evo-
lution. As shown in Fig. 10, a very fine mesh is used in this study to
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Fig. 11. Numerical progression of the fiber damage variable 𝑑R in radial loading direction for different damage initiation criteria (rows) at different time steps (columns): Damage
initiation, damage evolution and failure. The experimental failure mode for a representative sample is shown in the right column.
Fig. 12. Tensile test setup with corresponding dimensions according to [7] visualizing
the board with fiber deviations.

capture the damage propagation and failure mode resulting in higher
computational costs.

4.3. Application example on tensile tested board with local fiber directions

The last example shows the application of the presented elasto-
plastic-damage model to a tensile tested sawn beech board with fiber
deviations. An exemplary sample from the test set presented in [7],
with only local fiber deviation and no strong heterogeneities such as
knots, is chosen to increase complexity gradually and validate the me-
chanical response. The geometrical dimensions and mechanical setup of
the experimental tensile test are shown in Fig. 12. Further, the inclusion
of local fiber deviation according to laser scanning measurements and
12
its mapping from the real board to the numerical FE model is done
according to [7]. In the experimental test, a clamping pressure of 4
MPa is applied on the clamping surfaces before the sample is pulled
displacement controlled in 𝑥-direction. The same is represented in the
numerical model. The boundary conditions are applied in the clamping
regions on the wide sides of the board, analogously to the experiment.
The displacement DOFs of the four clamped surfaces are constraint
to four reference points (RPs) separately to provide rigidity of the
contact surfaces and the BCs are then applied on the RPs. In 𝑥-direction
one side is fixed and on the other side the predefined displacement
is applied. In 𝑦-direction, one side is fixed and on the other side the
clamping pressure is applied. All four surfaces are fixed in 𝑧-direction.
Two loading steps are separated: Initially, the 4 MPa (according to
the experiment) clamping pressure is applied in 10 steps with a linear
gradient and kept constant subsequently. Next, a displacement of 3 mm
is applied with an increment size of maximum 0.03 mm.

The mesh was adopted to elements with a size of 5 mm in the region
of interest (at the boundary conditions and in regions with strong fiber
deviation) for satisfying the numerical accuracy with respect to damage
and plasticity.
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Fig. 13. Experimental and numerical global results of the tensile tested board with
fiber deviation for different damage initiation criteria.

4.3.1. Experimental and numerical results
The global structural response of both experimental and numerical

tests is visualized in Fig. 13. The light blue curves represent the
experimental results from the displacement measured on top and on
the bottom of the board. The dotted lines show the different damage
initiation criteria. Other than for the dogbone-shaped tensile tests in
Section 4.2, a clear difference between the damage initiation criteria
is visible. The force–displacement graph in Fig. 13 shows congruent
behavior for simulation and experimental results in the elastic range
with a stiffening behavior before reaching the maximum force. This
stiffening is dependent on the position of displacement measurement
within the board: The experimental displacement measured on the bot-
tom of the board (with more distance to the fiber deviation) increases
less than the displacement measurement at the top of the board near the
fiber deviation. The same stiffening effect is displayed by the simulation
(SDM- and Hashin-criterion), where the displacement was measured at
the same point like the experimental top edge. Generally, criteria which
take stress interactions into account initiate damage at a lower stress
state due to the summation of separate stress–strength-ratios presented
in Section 2.2. The criterion, which shows the global structural force–
displacement response closest to the experiment, is the SDM criterion
and accounts for all stresses separately.

Apart from the global structural response, the local damage behav-
ior is visualized in Fig. 14. Already the results in the elastic range of
the material, presented in [7], show the development of local stress
concentrations due to local fiber deviations in boards loaded in global
𝑥-direction. The elasto-plastic damage model presented in this study
additionally captures the post-elastic material behavior and can thus
predict the initiation of micro-cracks, adding up to a single macro-
crack and consequently leading to failure. Comparing each local stress
component with its strength, or a combination of stress–strength ra-
tios, initiates the appropriate damage variable. Following the damage
evolution law in Eq. (30), the initiated damage variables evolve and
weaken the stiffness matrix. Due to the stress concentrations 𝜎33 and
𝜎13 caused by local fiber deviation, in this case 𝑑T and 𝑑LT are initiated
simultaneously. Fig. 14 shows two states of the numerical response: On
the left side damage initiation at 2.4 mm displacement and on the right
side, damage evolution before failure of the whole board at 2.9 mm
displacement. Both, the local driving stresses 𝜎33, 𝜎13 and its according
damage variables 𝑑T, 𝑑LT are shown for the SDM criterion. At the same
time both damage variables reduce the strength of the material in
its according directions. This consequently leads to redistribution of
local stresses and represents indirectly stress interactions. Once the first
damage parameter reaches the value of one in all eight integration
points of an element, the element is being deleted, similar to the
opening of a macro-crack. In this way not only stress interactions but
13
Fig. 14. Driving stress in [MPa] and its corresponding damage variable at damage
initiation and damage evolution (before failure) for the SDM criterion besides the
experimental failure mechanism.

also the combination of different failure modes in one test sample can
be modeled, similar to the frequently observed failure mechanism in
tensile/bending tests of sawn timber [41].

In the literature stress–strength-ratios in different directions are
summed up either linearly or in a quadratic form for the damage initi-
ation criteria. This aims to represent stress interactions including both
normal and shear stresses. Different stress combinations are considered
in the four different criteria analyzed in this study: Tsai–Wu, Hashin,
Sandhaas and SDM. The specific combinations of stresses are inspired
either by fiber composites with transverse isotropic behavior or mainly
phenomenologically based on experiments to represent certain failure
behavior. Nevertheless, unlike for joint analysis, homogenization and
simplification to transverse isotropy is not possible for 3D orthotropic
modeling of wood with imperfections. Thus, the representation of stress
interactions by means of combination and summation in the damage
initiation criterion leads to early failure and might be replaced by
SDM criterion. In the latter criterion, damage weakens the material
locally and separately for all directions, but consequently leads to stress
redistributions and damage in other directions. Considering separate
damage variables for different stresses at the same time cannot only be
seen as a different interpretation of stress interactions but is also repre-
senting the orthotropic behavior consistently and thus allows a better
differentiation between failure modes. Consequently, it is pointed out
that stress transformation due to local fiber deviations together with
damage initiation criteria that take stress interactions in form of stress
summation into account, may predict damage and failure to occur at
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earlier stress-states. A remaining challenge for this model is the strong
mesh dependency and convergence at the stage of damage evolution.

5. Conclusion

This study approaches to capture the post-elastic material behavior
numerically, which is necessary to improve the strength prediction of
e.g. beech lamellas for optimized GLT.

Fundamental for such a numerical representation is an elasto-plastic
damaging material model incorporating the three-dimensional behavior
of this heterogeneous material as well as experimental validation in all
directions.

In consideration of existing transversely isotropic elasto-plastic dam-
aging material models from the state of the art, the material model
in this contribution was enhanced for full orthotropy. On one side,
this implied the focus on the post-elastic behavior: In compression, the
Hill48-plasticity criterion with nonlinear hardening was enhanced for
incorporation of the crucial loading direction. A systematic experimen-
tal testing of clear wood samples provided the crucial strain results for
validation in three dimensions.

On the other side in tension, different damage initiation criteria
were analyzed and validated on clear wood dogbone-shaped samples
axially loaded in tension in all three orthotropic directions. Interactive
damage criteria, combining different stress directions, were further
compared for the three-dimensional damage effect in sawn boards with
fiber deviation. In such cases homogenization and simplification to
transverse isotropy was not possible due to the fiber deviations. Local
fiber directions needed to be accounted and damage initiation was
modeled most accurately by means of separated damage variables. Con-
versely, the summation of the stresses in combined criteria resulted in
an underestimation of the failure behavior. Further, it was shown in this
study that for the case of an orthotropic and heterogeneous material,
experimental results could be captured well numerically. With different
damage variables evolving simultaneously, cracks were modeled. The
consequence were stress redistributions and subsequently accumulating
to a macro-crack, resulting in specific types of failure modes for wood.

The detailed incorporation of shear failure behavior to the plasticity
criterion will be an important step for the future, while considering
the whole 3D orthotropic stress situation. Despite including the crack
band method, a further remaining challenge for the model is the mesh
dependency and convergence at the stage of damage evolution. This
illustrates one outlook of the future work, where other regularization
approaches for the representation of the fracture may be considered
and incorporated into the model. Further, a systematic validation of
loaded boards with strong heterogeneities such as strong fiber devia-
tions including knots need to be analyzed carefully including detailed
experimental validation with local strain measurement.
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Appendix A. Nomenclature

𝝈 stress tensor
�̂� effective stress tensor
𝜺e elastic strain tensor
𝜺p plastic strain tensor
𝐂0 initial undamaged orthotropic stiffness tensor
𝐂d damaged orthotropic stiffness tensor
𝐂ep elastic–plastic stiffness tensor
𝐃d damaged compliance matrix
𝐀 matrix of material parameters for Hill (1948)
�̃� matrix of material parameters for adapted Hill (1948)
𝑖 = [𝐿,𝑅, 𝑇 ]; direction regarding the fiber orientation:

longitudinal (L), radial (R), tangential (T)
E𝑖 stiffness modulus
𝜈𝑖𝑗 Poisson’s ratio
G𝑖𝑗 shear modulus
𝑓y,𝑖 yield strength
𝑓c,𝑖 ultimate compressive strength
𝑓t,𝑖 tensile strength
𝑓v,𝑖𝑗 shear strength
𝑞𝑖 hardening law
𝑄𝑖 hardening modulus
𝑏𝑖 hardening model parameter
𝛼𝑖 hardening variable
𝛥𝜆 plastic consistency parameter
F𝑖 𝑖th failure function
𝜙𝑖 𝑖th limit state function
𝜅𝑖 𝑖th state variable
𝑑t∕v,𝑖 tensile damage variable
𝑑c,𝑖 compression damage variable
gf ,𝑖 regularized fracture energy
ℎ characteristic element length
Gf ,𝑖 fracture energy
Gf ,v longitudinal shear fracture energy
Gf ,roll rolling shear fracture energy
𝜂 fictitious viscosity parameter
GAU Georg-Augustin-Universität Göttingen

THR Technische Hochschule Rosenheim
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Appendix B. Elasto-plastic damage model - Algorithmic solution

Following [30], in the initialization step the current effective stress
and plastic strain are determined and the plastic strain hardening
variable is initialized as:

𝜺𝑝𝑛+1 = 𝜺𝑝𝑛 + 𝛥𝜆
𝜕𝑓

𝜕𝝈𝑛+1
,

𝛼𝑛+1 = 𝛼𝑛 + 𝛥𝜆
𝜕𝑓

𝜕𝑞𝑛+1
,

�̂�𝑛+1 = 𝐂0 ∶ (𝜺𝑛+1 − 𝜺𝑝𝑛+1),

𝑓𝑛+1 = 𝑓 (𝝈𝑛+1, 𝛼𝑛+1) = 0.

(34)

The failure criterion 𝑓 is now used to check whether the current
stress state is inside, outside, or on the yield surface. If 𝑓 is less
than zero, we are in the elastic stress state, which requires no further
adjustments to the stiffness matrix. If this is not the case, the current
effective elastic predictor stress is calculated:

�̂�trial
𝑛+1 = �̂�𝑛 + 𝐂0 ∶ 𝛥𝜺, (35)

and the plastic corrector needs to be calculated iteratively with the
numerator of iterations 𝑘 (all variables have the subscript 𝑘 which is
submitted in the following equations):

�̂�𝑛+1 = �̂�𝑛 + 𝐂0 ∶ 𝛥𝜺𝑒 = �̂�𝑛 + 𝐂0(𝛥𝜺− 𝜟𝜺𝑝)

= �̂�trial
𝑛+1 − 𝐂0 ∶ 𝛥𝜺𝑝.

(36)

On the basis of the plastic strain increment

𝛥𝜺𝑝𝑛+1 = 𝐃0 ∶ (�̂�trial
𝑛+1 − �̂�𝑛+1), (37)

the plastic flow residuals are calculated, which need to converge to 0
during the iterations:
1. Plastic strain residual as

𝐫𝜺𝑝𝑛+1 = 𝐃0 ∶ (�̂�𝑛+1 − �̂�trial
𝑛+1 ) + 𝛥𝜆𝑛+1

𝜕𝑓
𝜕�̂�𝑛+1

= 0. (38)

. Equivalent plastic strain residual (or residual of the plastic hardening
ariable) as

𝛼
𝑛+1 = −𝛼𝑛+1 + 𝛼𝑛 + 𝛥𝜆𝑛+1

𝜕𝑓
𝜕𝑞

. (39)

.Failure surface as

𝑛+1 = 𝑓𝑛+1(�̂�𝑛+1, 𝛼𝑛+1). (40)

Considering the hardening law, the growth of the consistency pa-
ameter is determined with linearization:

𝜺𝒑
𝑛+1 + 𝐃0 ∶ 𝛿�̂�𝑛+1 + 𝛿𝛥𝜆𝑛+1

𝜕𝑓
𝜕�̂�𝑛+1

+ 𝛥𝜆𝑛+1
𝜕2𝑓
𝜕�̂�2

𝑛+1

𝛿�̂�𝑛+1 = 0,

r𝛼𝑛+1 − 𝛿𝛼𝑛+1 + 𝛿𝛥𝜆𝑛+1
𝜕2𝑓
𝜕𝑞2

= 0,

𝑓𝑛+1 +
𝜕𝑓
�̂�𝑛+1

𝛿�̂�𝑛+1 +
𝜕𝑓
𝜕𝑞

𝜕𝑞
𝜕𝛼

𝛿𝛼𝑛+1 = 0,

(41)

reformulation:

𝛿�̂�𝑛+1 =
𝐫𝜺𝑝𝑛+1 + 𝛿𝛥𝜆𝑛+1

𝜕𝑓
𝜕�̂�𝑛+1

−
(

𝐃0 + 𝛥𝜆𝑛+1
𝜕2𝑓
𝜕�̂�2

𝑛+1

)
,

= −
(

𝐫𝜺𝑝𝑛+1 + 𝛿𝛥𝜆𝑛+1
𝜕𝑓

𝜕�̂�𝑛+1

)

𝐂−1
𝑛+1,

𝛿𝛼𝑛+1 = r𝛼𝑛+1 + 𝛿𝛥𝜆𝑛+1
𝜕2𝑓
𝜕𝑞2𝑛+1

,

with 𝐂𝑛+1 =
(

𝐃0 + 𝛥𝜆𝑛+1
𝜕2𝑓
2

)−1
,

(42)
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𝜕�̂�𝑛+1
nd substitution:

𝛥𝜆𝑛+1 =
𝑓𝑛+1 +

𝜕𝑓
𝜕�̂�𝑛+1

(−𝐂𝑛+1)𝐫𝜺
𝑝

𝑛+1 +
𝜕𝑓
𝜕𝑞

r𝛼𝑛+1

𝜕𝑓
�̂�𝑛+1

∶ 𝐂𝑛+1 ∶
𝜕𝑓
�̂�𝑛+1

−
𝜕𝑓

𝜕𝑞𝑛+1
𝜕2𝑓
𝜕𝑞2𝑛+1

. (43)

Consequently the increase in plastic strains and internal variables
results in the following update of internal variables:

�̂�(𝑘+1)
𝑛+1 = �̂�(𝑘)

𝑛+1 + 𝛿(�̂�𝑛+1)(𝑘),

𝜺𝑝(𝑘+1)𝑛+1 = 𝜺𝑝(𝑘)𝑛+1 − 𝐃0 ∶ (𝛿�̂�𝑛+1)(𝑘),

𝜺𝑒(𝑘+1)𝑛+1 = 𝜺(𝑘+1)𝑛+1 − 𝜺𝑝(𝑘+1)𝑛+1 ,

𝛼(𝑘+1)𝑛+1 = 𝛼(𝑘)𝑛+1 + 𝛿𝛼(𝑘)𝑛+1,

𝜆(𝑘+1)𝑛+1 = 𝛥𝜆(𝑘)𝑛+1 + 𝛿𝛥𝜆(𝑘)𝑛+1.

(44)

The local iteration is considered to be finished as soon as both
the yield surface and the residua are less than or equal to the given
tolerance of 1 × 10−6 to ensure acceptable accuracy of the solution as
well as limited calculation time. Once the local iteration is finished, the
elastic–plastic tangent stiffness matrix is determined:

𝐂ep = 𝐂𝑛+1 −
𝐂𝑛+1 ∶

𝜕𝑓
𝜕�̂�𝑛+1

⊗
𝜕𝑓

𝜕�̂�𝑛+1
𝜕𝑓

𝜕�̂�𝑛+1
∶ 𝐂𝑛+1 ∶

𝜕𝑓
𝜕�̂�𝑛+1

+
𝜕𝑓

𝜕𝑞𝑛+1
𝜕𝑞
𝜕𝛼

. (45)

In the next step, damage yield functions 𝜙𝑖 according to Section 2.2
are checked and damage variables 𝑑𝑖 are calculated. The damaged com-
pliance 𝐃d and the damaged stiffness matrix 𝐂d can now be calculated
ccording to Eq. (33). Following CDM and Hook’s law the stress tensor
s updated according to

= 𝐂d𝜺e. (46)

Further, also the tangent stiffness matrix needs to be adapted ac-
cording to the next steps: The crack band method is considered for
regularization, where the fracture energy is expressed by means of the
characteristic element length ℎ:

𝑔f ,𝑖 =
Gf ,𝑖

ℎ
. (47)

To improve the convergence of the material model, a fictitious
viscous parameter 𝜂 is introduced, which leads to a remaining positive
definite stiffness matrix and thus a more robust solution process with
less convergence problems. The rate of the stabilized damage variable
𝑑𝑣𝑖 is calculated to

̇𝑑𝑣𝑖 =
(𝑑𝑖 − 𝑑𝑣𝑖 )

𝜂
, (48)

and can be discretized in fictitious time leading to the damage variable
with t being the fictitious time increment

𝑑𝑣𝑛+1 = max
{

0, 𝑑𝑣,𝑡−1,
𝜂

𝜂 + 𝛥𝑡
𝑑𝑣𝑛 + 𝛥𝑡

𝜂 + 𝛥𝑡
𝑑𝑛+1

}

. (49)

This further guarantees the irreversibility of the damage process.
Finally the Jacobian matrix needs to be adjusted according to damage
and the consistent tangential stiffness matrix in accordance with [30]
by differentiating the stress in Eq. (46):

d𝝈 =

[

𝜕𝐂𝑑𝑣

𝜕𝜺𝑒
∶ 𝜺𝑒 + 𝐂d𝑣

]

d𝜺𝑒,

d𝝈 =

[

𝜕𝐂𝑑𝑣

𝜕𝜺𝑒
∶ 𝜺𝑒 + 𝐂𝑑𝑣

]

∶ 𝐂−1
0 ∶ d�̂�,

d�̂� = 𝐂ep ∶ d𝜺,

𝜕𝝈 =

[

𝐂𝑑𝑣
𝑒 ∶ 𝜺𝑒 + 𝐂𝑑𝑣

]

∶ 𝐂−1
0 ∶ 𝐂ep,

(50)
𝜕𝜺 𝜕𝜺
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𝜕𝝈
𝜕𝜺

=

{

𝐂𝑑𝑣𝑛+1
+

𝑛
∑

𝑖=1

(

𝜕𝐂𝑑𝑣

𝜕𝑑𝑣𝑖
∶ 𝜺𝑒

)

×

(

𝜕𝑑𝑣𝑖
𝜕𝑑𝑖

𝜕𝑑𝑖
𝜕𝑓𝑖

𝜕𝑓𝑖
𝜕𝜺𝑒

)

|

|

|

|

|𝑛+1

}

∶ 𝐂−1
0 ∶ 𝐂ep.

(51)
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