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A B S T R A C T

The Marchenko algorithm can suppress the disturbing effects of internal multiples that are present in seismic
reflection data. To achieve this, a set of coupled equations with four unknowns is solved. These coupled
equations are separated into a set of two equations with two unknowns using a time window. The two unknown
focusing functions can be resolved by an iterative or direct method. These focusing functions, when applied
to reflection data, create virtual point-sources inside the medium. Combining individual virtual point-sources
into a plane-wave leads to an efficient computation of images without internal multiples. In this study the
internal multiples are eliminated in a redatuming step which is part of the imaging algorithm. To use the
Marchenko algorithm with plane-wave focusing functions, the time window that separates the unknowns must
be adapted. The design of the plane-wave Marchenko algorithm is explained and illustrated with numerically
modeled and measured reflection data.
1. Introduction

Seismic imaging is a technique to image geological structures in
the subsurface of the earth from reflected wavefields measured at the
surface of the earth. The measured wavefields usually originate from
human-activated and controlled sources such as air-guns or vibrating
plates. In passive seismic methods the source of the wavefield can
originate from earthquakes, ocean waves, or uncoordinated human
activities as traffic. The primary reflection of a geological structure,
large and strong enough to be detected by a propagating wavefield, is
of main interest and is used to compute an image of the subsurface. At
each geological structure, wavefields are partly reflected upward and
partly transmitted further downward. Between two strong reflecting
structures, the wavefield can bounce up and down multiple times and
generate so called internal multiples. These multiple reflections are also
measured by geophones at the surface and difficult to distinguish from
primary reflections. In the imaging step the reflections are migrated
from time to depth and construct an image of the subsurface. If multiple
reflections are not recognized as such, they will get imaged being
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primary reflections at wrong depths. These falsely imaged multiples
distort the actual image of the subsurface; the distorted image con-
tains much more (ghost) structures that are positioned along with the
primary reflections. Therefore, in seismic imaging, it is important to
recognize these multiple reflections, and if possible, remove them from
the computed image. This removal can be performed at different stages
of the processing scheme to construct an image of the subsurface. The
internal multiples can be directly removed from the measured reflection
data, in the redatuming step or after the imaging step. For removal
after the imaging step, a computed prediction of imaged multiples is
subtracted from the image to obtain an image without multiples. In
this paper, we discuss a method for removing internal multiples during
the redatuming step.

Besides internal multiples that are reflected between boundaries
within the subsurface, there are also free-surface-related multiples.
These multiples are generated by reflections from upcoming waves that
bounce back into the subsurface by the surface of the earth. Free surface
multiples are not considered in this paper. They are assumed to be
removed prior to the removal of the internal multiples.
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The Marchenko algorithm can eliminate internal multiples from
seismic reflection data (Slob et al., 2014; Behura et al., 2014). In
this algorithm the up- and down-going focusing functions, with a
focal-point in the subsurface, are key to the method. The goal of the
Marchenko method is to retrieve these up- and down-going parts of
the focusing functions from the reflection data by solving a coupled
set of the so-called Marchenko equations. This set of equations can be
solved by iterative methods (Wapenaar et al., 2014b; Thorbecke et al.,
2017), or a direct method (van der Neut et al., 2015a; Ravasi, 2017).
The Marchenko method has found many different applications, ranging
from redatuming for time-lapse monitoring (van IJsseldijk et al., 2022),
adaptive subtraction of Marchenko estimated multiples (Staring et al.,
2018), homogeneous Green’s function retrieval (Brackenhoff et al.,
2019), and direct multiple elimination on reflection data (Zhang and
Slob, 2020). In this paper, a particularly efficient application of the
Marchenko method for imaging by plane-waves is highlighted, and the
implementation details of this method are discussed in more detail.

Meles et al. (2018) show that besides focal-points, focal-planes
can also be solved by the Marchenko equations. Meles et al. (2020)
build on the Marchenko Multiple Elimination (MME) method proposed
by Zhang and Slob (2019) and introduce the plane-wave MME method.
The major advantage of the plane-wave-based Marchenko method is
that with a minimal effort of one Marchenko run (for a single plane-
wave), for each depth level (or time instant for MME), a multiple free
image can be built up. Especially in 3D applications, the plane-wave
Marchenko method is computationally efficient for building an internal
multiple-free image (Brackenhoff et al., 2022). A single plane-wave can
be sufficient to build an accurate image if the subsurface interfaces
are near-flat. Multiple plane-waves, with different illumination angles,
are needed for subsurface interfaces with varying dips, or geologically
complex structures, to illuminate the subsurface properly (Almobarak,
2021). The Marchenko algorithm for the focal-plane method is similar
to the focal-point algorithm. The initial point-focusing function is in
the plane-wave algorithm replaced by a time-reversed direct plane-
wave response. The main difference lies in the choice of the time
windows to separate the Green’s functions from the focusing functions.
The minimum conditions to hold for a plane wave are the same as for
a point source; a separation in time can be made between the direct
and later arrivals. In this paper, we discuss in detail how these time
windows are adapted for the Marchenko plane-wave method, discuss
the implementation aspects, and illustrate the method with applications
on numerically modeled and field data.

The software accompanied by this paper contains scripts and source
code to reproduce all the numerical examples presented in this paper.
The code can also be found in its GitHub repository (Thorbecke et al.,
2017; Thorbecke and Brackenhoff, 2023), where the most recent up-
dated version and the latest developments are available. To reproduce
the figures and perform a few pre- and post-processing steps, Seismic
Unix (Stockwell and Cohen, 2016) is required.

2. Theory

The Marchenko method is introduced by two coupled equations that
contain four unknown fields (up- and downgoing focusing functions
and Green’s functions) we would like to retrieve. These fields enable us
to suppress internal multiples by using the up- and downgoing focusing
functions to redatum seismic reflection data from the acquisition sur-
face S0 to the focal level(s) in the subsurface. In this redatuming step,
the internal multiples of the overburden are suppressed. The seismic
reflection data is recorded at acquisition boundary S0. The reflection
esponse 𝑅(𝐱𝑅, 𝐱𝑆 , 𝑡), a scaled version of the Green’s function without
he direct arrival (Wapenaar et al., 2012), is measured with sources
nd receivers positioned at 𝐱𝑆 and 𝐱𝑅 on this boundary. The recording
ime is denoted by 𝑡. This reflection response does not contain free-
2

urface related multiple reflections neither a source wavelet. Hence, f
pre-processing steps are required to remove the free-surface multi-
ples and the direct arrival, and to deconvolve the wavelet from the
measured reflection data.

The up- and downgoing parts of the focusing functions 𝑓−
1 and 𝑓+

1
are used to define a relation between the decomposed Green’s functions
𝐺−,+ and 𝐺−,− in the actual medium and with the reflection response
at the surface (Wapenaar et al., 2014a). The focusing functions have a
focal point in the subsurface at 𝐱𝐴. This focal point serves as a virtual
source for the Green’s function. The rightmost + and − superscripts of
the decomposed Green’s function refer to the direction of propagation
(+ for down and − for up) from the virtual source at 𝐱𝐴. The leftmost
superscript indicates an up-(−) or downward(+) propagating field at
the receiver locations. The relation between the two unknown focusing
functions and the two unknown Green’s functions is given by the
following two equations (Wapenaar et al., 2021);

𝐺−,+(𝐱𝑅, 𝐱𝐴, 𝑡) + 𝑓−
1 (𝐱𝑅, 𝐱𝐴, 𝑡) = ∫S0 ∫

∞

𝑡′=0
𝑅(𝐱𝑅, 𝐱𝑆 , 𝑡′)𝑓+

1

× (𝐱𝑆 , 𝐱𝐴, 𝑡 − 𝑡′)d𝑡′d𝐱𝑆 , (1)

−,−(𝐱𝑅, 𝐱𝐴, 𝑡) + 𝑓+
1 (𝐱𝑅, 𝐱𝐴,−𝑡) = ∫S0 ∫

∞

𝑡′=0
𝑅(𝐱𝑅, 𝐱𝑆 , 𝑡′)𝑓−

1

× (𝐱𝑆 , 𝐱𝐴, 𝑡′ − 𝑡)d𝑡′d𝐱𝑆 . (2)

n the compact operator notation of van der Neut et al. (2015b) Eqs. (1)
nd (2) are written as

𝐺−,+ + 𝑓−
1 = 𝑅𝑓+

1 , (3)
−,− + 𝑓+⋆

1 = 𝑅𝑓−⋆
1 , (4)

here ⋆ denotes the time-reverse. These two equations contain four
nknowns: two Green’s functions and two focusing functions. The
nly known in these equations is the measured reflection response
. Wapenaar et al. (2013) use the reasoning that the Green’s function
nd focusing function can, under certain circumstances, be separated in
ime. Therefore, a time window function (Wapenaar et al., 2014a) 𝛩(𝑡)
s defined that passes the focusing function and removes the Green’s
unction from the left-hand side of Eqs. (3) and (4). For point-sources
hat radiate in all directions, one time window is sufficient for both
he up- and downgoing traveling waves. Up- and downgoing plane-
aves, on the other hand, propagate at opposite dipping angles; hence,

wo time windows are needed in the plane-wave algorithm. These time
indows remove all events that arrive at later times than the direct
ave traveling from the virtual source position 𝐱𝐴 to the receiver
osition 𝐱𝑅 at surface S0, including the direct wave itself. This results
n the following two equations that only have two unknowns (assuming
he direct arrival 𝑓+

1,𝑑 is known)

𝑓−
1 = 𝛩𝑏𝑅𝑓

+
1 , (5)

+⋆
1 − 𝑓+⋆

1,𝑑 = 𝛩𝑎𝑅𝑓
−⋆
1 , (6)

here 𝑓+
1 = 𝑓+

1,𝑚+𝑓
+
1,𝑑 , with 𝑓+

1,𝑑 the direct arrival of 𝑓+
1 , and 𝑓+

1,𝑚 events
hat arrive before the direct arrival time 𝑡𝑑 . The separation between 𝑓+

1,𝑑
and 𝑓+

1,𝑚 can be successfully applied when there are no overlapping
reflection events with the direct response. In other cases, separation
can still be applied, but requires additional steps to overcome interfer-
ence (Zhang et al., 2019). These time windows (Wapenaar et al., 2021)
are defined as

𝛩𝑏(𝑡) = 𝜃(𝑡𝑏 − 𝑡), (7)

𝛩𝑎(𝑡) = 𝜃(𝑡𝑎 − 𝑡), (8)

here 𝜃(𝑡) denotes a tapered Heaviside step function. Note that two
ime windows are defined: one at time 𝑡𝑎 and one at 𝑡𝑏. In the point-
ource algorithm, 𝑡𝑏 = 𝑡𝑑 − 𝜀 = 𝑡𝑎 which makes Eq. (8) equal to Eq. (7),
ith the window function 𝜃(𝑡𝑑 − 𝜀 − 𝑡). The 𝜀 takes into account the
inite length of the band-limited wavelet and ensures that the direct
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Fig. 1. Multi layer model with velocity (a) and density (b) parameters. The location of the virtual point-source is marked with a ⋆.
wave is removed from the right-hand side of Eq. (6) (Broggini et al.,
2014). Epsilon is typically chosen as half the dominant wavelength.

To illustrate the application of the time windows, a virtual point-
source is defined at a depth of 800 m in the laterally varying model of
Fig. 1 (after Meles et al., 2018).

Fig. 2 shows the focusing functions and Green’s functions for the
model of Fig. 1, and the window functions (indicated with a dashed
line) that separate these functions. Fig. 2a represents the left-hand side
of Eq. (3) and the time window that separates 𝑓−

1 from 𝐺−,+. In Fig. 2b,
the time window separates the time-reversal of 𝑓+

1,𝑚 from 𝐺−,− and
represents the left-hand side of Eq. (4). The convolution/correlation in
the right-hand sides of Eqs. (3) and (4) is in practice carried out in
the frequency domain, and a discrete Fourier transform in time is used
to transform the sampled reflection data into the frequency domain.
The discrete Fourier transform makes the fields periodic in time, with
a periodicity equal to the number of time samples (𝑛𝑡). Given this
periodicity in time, reflection events occurring in time beyond 𝑛𝑡, end-
up in negative times. The time windows defined in Eqs. (7) and (8) pass
all events earlier in time than 𝑡 = 𝑡𝑎 and will also pass these time wrap-
around events. To exclude these wrap-around events a time window is
also implemented for negative times. In Fig. 2a, we can see that the
focusing functions also include events at negative times, and that these
events are not present earlier than −𝑡𝑎 = −𝑡𝑑+𝜀. Hence, the cutoff point
of the time window at negative times is chosen at −𝑡𝑎. The implemented
time windows become

𝛩′
𝑏(𝑡) = 𝜃(𝑡𝑏 − 𝑡) − 𝜃(−𝑡𝑏 − 𝑡), (9)

𝛩′
𝑎(𝑡) = 𝜃(𝑡𝑎 − 𝑡) − 𝜃(−𝑡𝑎 − 𝑡), (10)

and the time windows at negative times, to suppress time wrap-around,
are indicated with the dotted lines in Fig. 2. There is no guarantee
that this time window suppresses all wrap-around. If these windows
are not sufficient to suppress the wrap-around, zeros can be padded to
the reflection response.

To solve the unknown focusing functions in the coupled equations
(5) and (6) different methods are developed. The iterative method
described in Behura et al. (2014) and Wapenaar et al. (2014a) start with
𝑓+
1,𝑑 as the initial solution of 𝑓+

1 and solve Eq. (5) for 𝑓−
1 and substitute

the solution in Eq. (6) to update 𝑓+
1 . This process is repeated until the

updates to the focusing functions become very small. This iterative al-
gorithm to solve the Marchenko equations is shown in Fig. 3. The even
iterations (starting the iteration count at 0 for the initial solution) in
the scheme solve Eq. (5) and the odd iterations solve Eq. (6). Thorbecke
et al. (2017) explain in more detail the implementation of this iterative
algorithm.

Depending on the application it is not always needed to solve these
equations until convergence. In Staring et al. (2018) the results of the
first iteration are used to predict internal multiples and an adaptive
subtraction method is used to suppress the predicted multiples. A
3

direct least-squares inversion method to solve the coupled equations
is discussed in van der Neut et al. (2015b) and Ravasi (2017).

Meles et al. (2018) show that plane-wave focusing functions 𝑓+
1

and 𝑓−
1 and associated plane-wave Green’s functions �̃�−,+ and �̃�−,− can

be obtained by integrating an appropriate set of time-delayed focusing
functions 𝑓+

1 and 𝑓−
1 , each involving the solution of a Marchenko equa-

tion. The tildes represent plane-wave quantities for focusing functions
and Green’s functions. The plane-wave focusing functions (Wapenaar
et al., 2021; Brackenhoff et al., 2022) are defined by the following
integration

𝑓±
1 (𝐱,𝐩𝐴, 𝑡) = ∫S𝐴

𝑓±
1 (𝐱, 𝐱𝐴, 𝑡 − 𝐩 ⋅ 𝐱𝐻,𝐴)𝑑𝐱𝐴, (11)

with 𝐩 = (𝑝1, 𝑝2) and 𝑝1 and 𝑝2 horizontal ray parameters and 𝐩𝐴 =
(𝐩, 𝑥3,𝐴) the ray parameter of the plane-wave at surface S𝐴. The surface
S𝐴 is the depth level at which focusing takes place. The plane-wave
Green’s functions are defined by a similar integration. Here 𝐱𝐻,𝐴 =
(𝑥1,𝐴 − 𝑥1,𝑐 , 𝑥2,𝐴 − 𝑥2,𝑐 ), and (𝑥1,𝑐 , 𝑥2,𝑐 ) is the rotation point of the plane-
wave. The rotation point is chosen in the center of the lateral extent of
the plane-wave. This rotation point also defines the time origin 𝑡 = 0
of the plane-wave. By making this choice for 𝑡 = 0, the time-axis in the
computed plane-wave Green and focusing functions is the same as in
the point-source Marchenko solutions with a focal point at the rotation
point of the plane-wave.

Note that the plane-wave integration in Eq. (11) for a time-reversed
wave-field 𝑃 (𝐱, 𝐱𝐴,−𝑡) gives

𝑃 (𝐱,𝐩′𝐴,−𝑡) = ∫S𝐴
𝑃 (𝐱, 𝐱𝐴,−(𝑡 − 𝐩 ⋅ 𝐱𝐻,𝐴))𝑑𝐱𝐴, (12)

with 𝐩′𝐴 = (−𝐩, 𝑥3,𝐴), a plane-wave dipping with the opposite angle as a
plane-wave with 𝐩. On a surface S𝐴 with a homogeneous velocity along
the surface, 𝐩 ⋅ 𝐱𝐻,𝐴 are time shifts that are linearly proportional to the
distance from the rotation point.

Applying the same integration as in Eq. (11) over all fields results in
the plane-wave representations of Eqs. (3) and (4) (Meles et al., 2018)

�̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡) + 𝑓−
1 (𝐱𝑅,𝐩𝐴, 𝑡) = {𝑅𝑓+

1 }(𝐱𝑅,𝐩𝐴, 𝑡), (13)

�̃�−,−(𝐱𝑅,𝐩′𝐴, 𝑡) + 𝑓+⋆
1 (𝐱𝑅,𝐩𝐴, 𝑡) = {𝑅𝑓−⋆

1 }(𝐱𝑅,𝐩𝐴, 𝑡). (14)

Applying a time window that separates the Green function from the
focusing function gives again two equations with two unknowns (as-
suming 𝑓+⋆

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡) is known);

𝑓−
1 (𝐱𝑅,𝐩𝐴, 𝑡) = �̃�𝑏{𝑅𝑓+

1 }(𝐱𝑅,𝐩𝐴, 𝑡), (15)

𝑓+⋆
1 (𝐱𝑅,𝐩𝐴, 𝑡) − 𝑓+⋆

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡) = �̃�𝑎{𝑅𝑓−⋆
1 }(𝐱𝑅,𝐩𝐴, 𝑡) (16)

with 𝑓+⋆
1 = 𝑓+⋆

1,𝑚 + 𝑓+⋆
1,𝑑 , where 𝑓+⋆

1,𝑑 is the direct arrival of the plane-
wave with a propagation angle defined by (𝐩, 𝑥3,𝐴), and 𝑓+⋆

1,𝑚 contains
the events that arrive before the direct arrival time 𝑡𝑑 , where 𝑡𝑑 is the

first arrival time of a plane-wave with a propagation angle defined by
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Fig. 2. Illustration of the time window function to separate the Green’s function from the focusing function. The dashed black lines indicate the separation line of the time window
and are indicated with white arrows. The dotted line indicates the time window that suppresses time wrap-around.
Fig. 3. Flow chart of the Marchenko algorithm. The down- (𝑓+
1 ) and up-going (𝑓−

1 ) focusing functions are alternately updated. The scheme is finished after a pre-defined number
of iterations and is usually chosen between 10–20 iterations.
(𝐩, 𝑥3,𝐴). Note that the Green’s functions in Eqs. (13) and (14) contain
plane-waves with opposite dipping angles defined by 𝐩𝐴 and 𝐩′𝐴. To
separate �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡) from 𝑓−

1 (𝐱𝑅,𝐩𝐴, 𝑡) the direct arrival 𝑡𝑑 , that is the
first arrival time of �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡), is required. The notation for 𝑡𝑑 or 𝑡′𝑑
is a choice, our choice is the same as made in Wapenaar et al. (2021).
This choice uses the ′ on 𝑡𝑑 the same as the ′ on the propagation angle
𝐩𝐴 in the upgoing Green’s functions �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡) and �̃�−,−(𝐱𝑅,𝐩′𝐴, 𝑡).
Note that the defined arrival time 𝑡′ has the same arrival time of an
4

𝑑

upward propagating modeled plane-wave at (𝑥3,𝐴) with propagation
angle 𝐩′𝐴.

The time window �̃�𝑏(𝑡) removes �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡) from Eq. (13). The
first non-zero contribution of �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡) is at time 𝑡𝑏 = 𝑡𝑑 −
𝜀. The time window �̃�𝑎(𝑡) removes �̃�−,−(𝐱𝑅,𝐩′𝐴, 𝑡) and 𝑓+⋆

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡)
from Eq. (14), hence all events at times later than 𝑡𝑎 = 𝑡′𝑑 − 𝜀 are set
to zero. Similar to the point-source scheme these time windows are
implemented with an additional window at negative times to suppress
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Fig. 4. Illustration of the time window function to separate the plane-wave Green’s function from the focusing function. The dashed black lines indicate the separation line of the
time window and are indicated with white arrows. The dotted line indicates the time window that suppresses time wrap-around.
time wrap-around and are given by

�̃�′
𝑏(𝑡) = 𝜃(𝑡𝑑 − 𝜀 − 𝑡) − 𝜃(−𝑡′𝑑 + 𝜀 − 𝑡), (17)

�̃�′
𝑎(𝑡) = 𝜃(𝑡′𝑑 − 𝜀 − 𝑡) − 𝜃(−𝑡𝑑 + 𝜀 − 𝑡). (18)

Similar to Fig. 2, Fig. 4 shows the plane-wave focusing functions and
Green’s functions, as in the left-hand side of Eqs. (13) and (14), and
the window functions separating them. In this example the depth of
the plane-waves is chosen at 800 m in the model shown in Fig. 1. In
the following section these two time window functions are discussed in
more detail and the differences with the point-source implementation
of the Marchenko algorithm are explained.

3. Basic algorithm

The plane-wave method is illustrated with two numerical examples,
a laterally invariant and laterally variant medium. In two dimensions
the downward propagating plane-wave focusing function 𝑓+

1 (𝐱,𝐩𝐴, 𝑡)
in Eq. (11), defines a plane-wave at the focal plane S𝐴 with a dip
angle 𝛼 and 𝑝1 = sin(𝛼)

𝑐 . In the first numerical example we assume a
medium with a laterally invariant velocity 𝑐 for each depth and shown
in Fig. 5a and b. Fig. 6 shows 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡), for a focal plane at a
depth of 900 m at two different angles: Fig. 6a with an angle of 0
degrees and Fig. 6c with an angle of 3 degrees. In Fig. 6b and d the
focus function is shown for receivers at the focal level (900 m depth).
Similar to the focal-point Marchenko method, the medium for the
plane-wave focusing functions is chosen homogeneous below the focal
level. The focus function 𝑓+

1 (𝐱,𝐩𝐴, 𝑡) has a focus in time at 𝑡 = 𝐩 ⋅ 𝐱𝐻,𝐴.
For a dipping plane-wave this time focus occurs at different positions
in the model. Fig. 6a and c shows the computed 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡) at the
surface (0 m depth) and includes an extra event around −0.15 s that
compensates for the multiples generated between the first and second
reflector at 400 and 700 m respectively. The compensation of multiples
for point-sources is explained in detail in Zhang and Slob (2019). The
focus functions at focal level (Fig. 6b and d) show only one event, the
downgoing event present at the surface is compensated by the reflected
event from the reflector at 700 m depth.

To illustrate this compensation effect, snapshots of the focusing
function 𝑓+(𝐱,𝐩 , 𝑡) (Fig. 6a and c) propagating into the truncated
5

1 𝐴
medium (that is homogeneous below the last reflector at 700 m
depth) are shown in Fig. 7 for the same angles of 0 and 3 degrees.
Fig. 7a to d shows four different snapshots of the superposition of
the down-going horizontal plane-wave 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡) and upgoing plane-
wave 𝑓−

1 (𝐱𝑅,𝐩𝐴, 𝑡). The snapshots of a plane-wave with an angle of 3
degrees are shown in Fig. 7e to h. At 0.05 s before 𝑡 = 0 (Fig. 7a and e),
there are two upward traveling reflected waves from the interfaces at
400 and 700 m depth and two downgoing events from 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡).
The snapshots in Fig. 7f (at 𝑡 = 0.00 s), 7c and g (at 𝑡 = +0.05 s)
show that the second downward traveling event coincides at the first
interface (at 400 m depth) with the upgoing reflection of the second
interface (at 700 m depth) and these events compensate each other.
This is indicated with an arrow in the pictures. The fourth snapshot
show that after this compensation all the internal multiples between
the reflectors at 400 and 700 m depth have vanished and only one
downgoing direct wave and an upgoing reflected wavefield (from the
reflector at 700 m depth) are remaining. The compensation of the first
upward traveling multiple indicates that 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡) is a solution of the
Marchenko equations. The illustration in Fig. 7 demonstrates that the
internal multiple compensation principle also holds for the plane-wave
Marchenko method.

In Fig. 8 the experiment is repeated in the laterally variant medium
of Fig. 1. The focal-plane is chosen at 800 m depth, just below the
fourth reflector. The same observation is made; the downgoing events
in 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡) compensate the upgoing events at interfaces and sup-
press the generation of internal multiples.

3.1. Horizontal plane-waves

To start the iterative Marchenko algorithm for plane-waves 𝑓+
1,𝑑

(𝐱𝑅,𝐩𝐴, 𝑡) is required; the first arrival of a plane-wave response from
a focal-plane in the subsurface. This forward modeling step can be
computed in a macro model estimated from the reflection data. The
computed initial response is then muted below the first arrival times to
get the time-reversal of the initial focusing field 𝑓+

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡). A first
example is made for a horizontal (zero-degree) plane-wave defined at
800 m depth in the laterally varying model of Fig. 1 (same model as in
Meles et al., 2018).
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Fig. 5. Two dimensional four layer model with velocity (a) and density (b) parameters. A common-source record, with source position 𝐱 = (𝑥1 = 0, 𝑥3 = 0) and receivers at
𝐱𝑅 = (𝑥1 = 𝑥𝑅 , 𝑥3 = 0) (c). The source wavelet in 𝑅 has a flat frequency spectrum from 5 to 90 Hz.
Fig. 6. Time recordings of the plane-wave focusing function 𝑓+
1 (𝐱𝑅 ,𝐩𝐴 , 𝑡) with a focal depth of 900 m measured with receivers at 𝑥3 = 0 and 𝑥3 = 900 m in the truncated medium

for two different plane-wave propagation angles (0 and 3 degrees). At the end-points of the plane-wave, diffraction curves are present due to the limited lateral extent of the
constructed plane-wave.
Fig. 9a shows the forward modeled plane-wave response of a hor-
izontal plane-wave at 800 m depth and receivers at the surface. The
first arrivals of that plane-wave, shown in Fig. 9b, is the time-reversal
of the input field 𝑓+

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡) of the Marchenko scheme. The computed
down- and up-going Green’s functions, after 16 iterations of Eqs. (15)
and (16) and substituting the results in Eqs. (13) and (14), are shown
in 9c and d respectively and give the expected response. The horizontal
plane-wave Marchenko mute-line (as defined by �̃�′

𝑎,𝑏 in Eqs. (17) and
(18)), to separate the Green’s function from the focusing functions, is
symmetric around 𝑡 = 0 because 𝑡𝑑 = 𝑡′𝑑 . This is the same time symmetry
as in use for the Marchenko point-source algorithm.

3.2. Dipping plane-waves

The Marchenko algorithm for dipping plane-waves follows the same
procedure as for horizontal plane-waves. As indicated by Eqs. (17)
and (18) the Marchenko time windows have to be designed differently
for dipping plane-waves. For horizontal plane-waves the implemented
time window is symmetric around 𝑡 = 0 and �̃�′

𝑎 = �̃�′
𝑏. This does not

hold anymore for dipping plane-waves. Fig. 10 is an example of time
windows that are designed for a dipping plane-wave of +5 degrees. Two
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time windows are designed: one for the even iterations (Fig. 10a), in
use by Eq. (15), and one for the odd iterations, that has a reverse angle
(Fig. 10b) and in use by Eq. (16). To design these windows for a positive
angle, the first arrival time for a plane-wave at the same depth level
with a reverse angle is needed as well.

In the following we explain in more detail what is expressed in
the plane-wave Marchenko equations (15) and (16). The plane-wave
Marchenko scheme starts with forward modeling the response to a
(dipping) plane-wave at depth. This modeled wave-field response is
given in Fig. 12a, where the depth of the plane-wave is chosen at
800 m. The direct arrival is selected from this modeled field and shown
in Fig. 12b. The time reverse of this field will be 𝑓+

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡). This
field 𝑓+

1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡) is, together with the reflection data 𝑅, input of the
plane-wave Marchenko scheme.

In the Marchenko algorithm the iterations are alternating between
a convolution of the focusing functions with 𝑅, or a correlation with
𝑅 (Thorbecke et al., 2017). In the first step, correlation by Eq. (16),
the wavefield is shifted backward in time related to the times of 𝑡𝑑 ,
and in the second step, convolution by Eq. (15), the wavefield is shifted
forward in time related to the times of 𝑡′𝑑 . In Fig. 11a the result of the
first iteration (correlation) is shown and in Fig. 11b the result of the
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Fig. 7. Time snapshots for a propagating 𝑓+
1 (𝐱𝑅 ,𝐩𝐴 , 𝑡) + 𝑓−

1 (𝐱𝑅 ,𝐩𝐴 , 𝑡) at two different plane-wave propagation angles. Note the diffraction effects at the edges of the plane-wave.
The white dotted-line indicates the focal depth of the plane-wave.
Fig. 8. Time snapshots for a propagating 𝑓+
1 (𝐱𝑅 ,𝐩𝐴 , 𝑡) + 𝑓−

1 (𝐱𝑅 ,𝐩𝐴 , 𝑡) in model of Fig. 1 for two different plane-wave propagation angles. Note that there are remaining diffraction
effects originating from edges on the interfaces. The white dotted-line indicates the focal depth of the plane-wave. The arrows indicate positions at a reflector where an up-going
reflected field, that generates internal multiples, is compensated by a down-going event from the focusing function.
second iteration (convolution) is shown. In Fig. 11a we can see that
the first event, that starts at negative time, shows an imprint of the
undulation of the first reflector and has an opposite dip compared to
the plane-wave in Fig. 12a.

The result of the first iteration in Fig. 11a is windowed in time
(with the window in Fig. 10a) to mute �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡), followed by
time-reversal and convolution with 𝑅 (Eq. (16)). The result is shown
in Fig. 11b. In this second iteration the convolution step brought the
data back to the arrival times corresponding to reflection times in the
forward modeled plane-wave response of Fig. 12a. Note that the arrival
7

time in Fig. 11b, starting from the left at time 0.2 s dipping to the
right to 0.5 s, is the same as the first arrival time 𝑡𝑑 in Fig. 12a and b.
The result of this second iteration is muted in time (with the window
in Fig. 10b) to remove �̃�−,−(𝐱𝑅,𝐩′𝐴, 𝑡) and the first arrival event at
𝑓+
1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡), as indicated in Fig. 4b. The odd iteration(s) are building

up 𝑓−
1 (𝐱𝑅,𝐩𝐴, 𝑡) and �̃�−,+(𝐱𝑅,𝐩𝐴, 𝑡) and the even iteration(s) are building

up 𝑓+
1 (𝐱𝑅,𝐩𝐴, 𝑡) and �̃�−,−(𝐱𝑅,𝐩′𝐴, 𝑡). Fig. 11c and d show 𝑓+

1 (𝐱𝑅,𝐩𝐴, 𝑡)
and 𝑓−

1 (𝐱𝑅,𝐩𝐴, 𝑡) respectively after 16 iterations.
In Fig. 12 three plane-wave responses are shown with angles of −5,

0 and 5 degrees after 16 iterations. Comparing these three plane-wave
̃−,− ̃−,+
responses for 𝐺 and 𝐺 shows that each angle illuminates different
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Fig. 9. Results of the plane-wave Marchenko scheme for a horizontal plane-wave 𝐩𝐴 = (𝟎, 𝑥3,𝐴). Adding the up- and downgoing Green’s functions of c and d, that are computed
with the Marchenko algorithm, gives the same wavefield as the directly forward modeled result in a. All figures are plotted with the same clipping factor.
Fig. 10. The time windows for dipping plane-waves for even (a) and odd (b) iterations for an angle of +5 degrees. The wavefields in the black area of the windows pass, the
fields in the white area are set to zero.
Fig. 11. Basic plane-wave Marchenko results for a plane-wave with an angle of incidence of +5 degrees. Note, that the results of the first iteration (a) is dipping in the opposite
direction as the second iteration (b) and the algorithm uses the time windows, designed for dipping plane-waves as given in Eqs. (17) and (18), to take this into account.
parts of the medium. This is clearly seen in the events that arrive later
than 1.2 s. By combining different plane-wave responses into one image
a fully illuminated image can be constructed by using only a few migra-
tions (Meles et al., 2018). Plane-wave imaging, that suppress internal
multiples, can use the same strategies as point-source Marchenko, for
example double focusing as described in van der Neut et al. (2017),
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Staring et al. (2018), or Multi Dimensional Deconvolution as discussed
in Ravasi et al. (2016). Almobarak (2021) discusses different plane-
wave imaging methods and shows that the Marchenko Green’s function
plane-wave response is a computational efficient imaging method.

Fig. 13 shows horizontal plane-wave images from the Troll field
data-set located west of Norway, that was kindly provided by Equinor.
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Fig. 12. Marchenko computed plane-wave responses for angles at 5 (a–d), 0 (e–h), and −5 (i–l) degrees. Note the difference in illumination in the decomposed Green’s function
for different dipping angles of the plane-wave. Analog to Fig. 9 the addition of the Marchenko computed up- (d) and downgoing (k) Green’s function gives the forward modeled
response in a.
This data set is part of a time-lapse monitoring set. We have selected
a small part of this data-set, with source and receiver positions on
the same locations. The receiver and source spacing is 12.5 m and
traces are recorded with a time sampling of 4 ms. The data-set has
been pre-processed to remove free-surface multiples and deconvolve
the wavelet (Qu and Verschuur, 2020).

The imaging is carried out according to the imaging method de-
scribed in Meles et al. (2018). In the basic imaging method, a forward
modeled plane-wave response is computed at each depth level in an
estimated smooth macro model of the data. This plane-wave depth
response is correlated with the point-source responses of the recorded
data and integrated over the receiver coordinate for each point-source
9

response. This creates the plane-wave depth response of the data (Ri-
etveld et al., 1992). This plane-wave response of the data is correlated
with the same modeled plane-wave response at each depth level and
the imaging condition 𝑡 = 0 is used to construct the image for all depth
levels. Combining these depth levels gives the left side picture in Fig. 13
labeled ‘standard’.

To compute the Marchenko based image, the first arrivals of the
forward modeled plane-wave response at each depth level is input to
the plane-wave Marchenko algorithm to create �̃�−,+. The computed
�̃�−,+ is, similar to the standard imaging method, correlated with the
forward modeled plane-wave response for each depth level, and the
imaging condition at 𝑡 = 0 constructs the image for all depth levels.
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Fig. 13. Plane-wave images of the Troll field data-set for a horizontal plane-wave using standard imaging (left) and Marchenko based imaging (middle). All images are displayed
with the same clipping factor.
For a horizontal plane-wave (𝐩𝐴 = (𝐩 = 𝟎, 𝑥3,𝐴)) at one depth level 𝑥3,𝐴
this imaging condition is represented by

𝐼(𝐱𝑅,𝐩𝐴) = ∫𝑡
𝑓+
1,𝑑 (𝐱𝑅,𝐩𝐴, 𝑡)�̃�

−,+(𝐱𝑅,𝐩𝐴, 𝑡)𝑑𝑡. (19)

The advantage of using �̃�−,+ is that this field does not contain downgo-
ing internal multiples from the layers above the focal/imaging depth.
The Marchenko method has separated the internal multiples in up- and
downgoing parts in the Greens functions by applying the computed
focal functions to the reflection data. Alternative strategies to compute
an image without internal multiples can be based on MME. Thorbecke
et al. (2021) illustrate the working of the internal multiple elimina-
tion of MME directly on reflection data in Figure 9 and equations
(12)–(20). Staring et al. (2018) illustrate source–receiver Marchenko re-
datuming and imaging on field data using an adaptive double-focusing
method. Fig. 4 of that paper shows internal multiples that are first
predicted and then subtracted from the data.

The middle picture of Fig. 13 shows the Marchenko-created image.
The difference between the standard image and the Marchenko-based
image is shown in Fig. 13c. From this difference plot it is observed that
the Marchenko method predicts and removes internal multiples. In this
data-set the effect of the multiple removal on the image is small. van
IJsseldijk et al. (2024) show that Marchenko multiple removal on
this dataset improves the confidence of the effects of small time-lapse
changes.

4. Conclusions

The plane-wave Marchenko method is a straightforward exten-
sion of the point-source Marchenko method. A counter-intuitive aspect
of the plane-wave method is that the retrieved up- and down-going
Marchenko Green’s functions have opposite dipping angles. This is
taken into account in the time windows that separate the Green’s
function from the focusing function. In case one would like to get
the total Green’s function for a specific dip angle, one would have
to run the whole procedure twice, for opposite dip angles. In this
paper, the use of these time windows is illustrated with numerical and
field data examples. The plane-wave Marchenko method can give a
computational advantage over the point-source method. Specially for
imaging applications with 3-dimensional datasets that have moderate
lateral changes, in that case only a few plane-wave migrations are
needed to compute a well illuminated image.
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Code availability

• Name of the code/library: OpenSource code for Finite Difference,
Marchenko algorithms and processing utilities

• Contact: j.w.thorbecke@tudelft.nl (+31622211997)
• Hardware requirements: tested on x86_64 and aarch64 processors
• Program language: C and Fortran
• Software required: C compiler, Fortran compiler, GNU Make,

tested only on Linux/Unix OS. The display and generation of
the figures is done with Seismic Unix and is available at https:
//github.com/JohnWStockwellJr/SeisUnix.git.

• Program size: 147 MB

The source codes are available for downloading at the link: https:
//gitlab.com/geophysicsdelft/OpenSource.git

The scripts to reproduce the results in this manuscript can be
found in .../OpenSource/marchenko/demo/planewave. The
README in that directory explains all the steps to reproduce the results
in the manuscript. For the reproduction of the measured data example
please contact us directly, we will ask the owner of the data if we can
share the data.

References

Almobarak, M., 2021. Plane-Wave Marchenko Imaging Method: Applications (Master’s
thesis). Delft University of Technology.

Behura, J., Wapenaar, K., Snieder, R., 2014. Autofocus Imaging: Image reconstruction
based on inverse scattering theory. Geophysics 79 (3), A19–A26.

Brackenhoff, J., Thorbecke, J., Meles, G.A., Koehne, V., Barrera, D.F., Wapenaar, K.,
2022. 3D Marchenko applications: implementation and examples. Geophys.
Prospect. 70, 35–36.

Brackenhoff, J., Thorbecke, J., Wapenaar, K., 2019. Virtual sources and receivers in the
real earth: Considerations for practical applications. J. Geophys. Res.: Solid Earth
124 (11), 802–821.

https://github.com/JohnWStockwellJr/SeisUnix.git
https://github.com/JohnWStockwellJr/SeisUnix.git
https://github.com/JohnWStockwellJr/SeisUnix.git
https://gitlab.com/geophysicsdelft/OpenSource.git
https://gitlab.com/geophysicsdelft/OpenSource.git
https://gitlab.com/geophysicsdelft/OpenSource.git
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb1
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb1
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb1
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb2
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb2
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb2
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb3
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb3
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb3
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb3
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb3
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb4
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb4
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb4
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb4
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb4


Computers and Geosciences 187 (2024) 105577J. Thorbecke et al.
Broggini, F., Wapenaar, K., van der Neut, J., Snieder, R.K., 2014. Data-driven Green’s
function retrieval and application to imaging with multidimensional deconvolution.
J. Geophys. Res.: Solid Earth 119, 425–441.

Meles, G.A., Wapenaar, K., Thorbecke, J., 2018. Virtual plane-wave imaging via
Marchenko redatuming. Geophys. J. Int. 214 (1), 508–519.

Meles, G.A., Zhang, L., Thorbecke, J., Wapenaar, K., Slob, E.C., 2020. Data-driven
retrieval of primary plane-wave responses. Geophys. Prospect. 68, 1834–1846.

Qu, S., Verschuur, E., 2020. Simultaneous joint migration inversion for high-resolution
imaging/inversion of time-lapse seismic datasets. Geophys. Prospect. 68 (6),
1167–1188.

Ravasi, M., 2017. Rayleigh-Marchenko redatuming for target-oriented, true-amplitude
imaging. Geophysics 82 (6), S439–S452.

Ravasi, M., Vasconcelos, I., Kritski, A., Curtis, A., da Costa Filho, C., Meles, G.A., 2016.
Target-oriented Marchenko imaging of a North Sea field. Geophys. J. Int. 205 (1),
99–104.

Rietveld, W., Berkhout, A., Wapenaar, C., 1992. Optimum seismic illumination of
hydrocarbon reservoirs. Geophysics 57 (10), 1334–1345.

Slob, E.C., Wapenaar, K., Broggini, F., Snieder, R.K., 2014. Seismic reflector imag-
ing using internal multiples with Marchenko-type equations. Geophysics 79 (2),
S63–S76.

Staring, M., Pereira, R., Douma, H., van der Neut, J., Wapenaar, K., 2018. Source-
receiver Marchenko redatuming on field data using an adaptive double-focusing
method. Geophysics 83 (6), S579–S590.

Stockwell, J.W., Cohen, J.K., 2016. CWP/SU: Seismic Unix package. URL: https:
//github.com/JohnWStockwellJr/SeisUnix.git.

Thorbecke, J., Brackenhoff, J., 2023. OpenSource code for Finite Difference, Marchenko
algorithms and processing utilities. URL: https://gitlab.com/geophysicsdelft/
OpenSource.git.

Thorbecke, J., Slob, E., Brackenhoff, J., van der Neut, J., Wapenaar, K., 2017.
Implementation of the Marchenko method. Geophysics 82 (6), WB29–WB45.

Thorbecke, J., Zhang, L., Wapenaar, K., Slob, E., 2021. Implementation of the
Marchenko multiple elimination algorithm. Geophysics 86 (2), F9–F23.

van der Neut, J., Johnson, J.L., van Wijk, K., Singh, S., Slob, E.C., Wapenaar, K., 2017.
A Marchenko equation for acoustic inverse source problems. J. Acoust. Soc. Am.
141 (6), 4332–4346.
11
van der Neut, J., Thorbecke, J., Wapenaar, K., Slob, E., 2015a. Inversion of the
multidimensional marchenko equation. In: 77th Annual International Meeting,
Extended Abstracts. European Association of Geoscientists and Engineers, pp.
We–N106–04.

van der Neut, J., Vasconcelos, I., Wapenaar, K., 2015b. On Green’s function retrieval
by iterative substitution of the coupled Marchenko equations. Geophys. J. Int. 203
(2), 792–813.

van IJsseldijk, J., Brackenhoff, J., Thorbecke, J., Wapenaar, K., 2024. Time-lapse
applications of the Marchenko method on the Troll field. Geophys. Prospect. 72
(3), 1026–1036.

van IJsseldijk, J., van der Neut, J., Thorbecke, J., Wapenaar, K., 2022. Extracting small
time-lapse traveltime changes in a reservoir using primaries and internal multiples
after Marchenko-based target zone isolation. Geophysics 88 (2), R135–R143.

Wapenaar, K., Brackenhoff, J., Dukalski, M., Meles, G.A., Slob, E., Staring, M.,
Thorbecke, J., van der Neut, J., Zhang, L., Urruticoechea, C.R., 2021. Marchenko re-
datuming, imaging and multiple elimination, and their mutual relations. Geophysics
86 (5), WC117–WC140.

Wapenaar, K., Broggini, F., Slob, E.C., Snieder, R.K., 2013. Three-dimensional single-
sided Marchenko inverse scattering, data-driven focusing, Green’s function retrieval,
and their mutual relations. Phys. Rev. Lett. 110 (8), 084301.

Wapenaar, K., Broggini, F., Snieder, R.K., 2012. Creating a virtual source inside a
medium from reflection data: heuristic derivation and stationary-phase analysis.
Geophys. J. Int. 190 (2), 1020–1024.

Wapenaar, K., Thorbecke, J., van der Neut, J., Broggini, F., Slob, E., Snieder, R., 2014a.
Marchenko imaging. Geophysics 79 (3), WA39–WA57.

Wapenaar, K., Thorbecke, J., van der Neut, J., Broggini, F., Slob, E.C., Snieder, R.K.,
2014b. Green’s function retrieval from reflection data, in absence of a receiver at
the virtual source position. J. Acoust. Soc. Am. 135 (5), 2847–2861.

Zhang, L., Slob, E.C., 2019. Free-surface and internal multiple elimination in one step
without adaptive subtraction. Geophysics 84 (1), A7–A11.

Zhang, L., Slob, E., 2020. A fast algorithm for multiple elimination and transmission
compensation in primary reflections. Geophys. J. Int. 221 (1), 371–377.

Zhang, L., Thorbecke, J., Wapenaar, K., Slob, E., 2019. Transmission compensated
primary reflection retrieval in the data domain and consequences for imaging.
Geophysics 84 (4), Q21–Q36.

http://refhub.elsevier.com/S0098-3004(24)00060-8/sb5
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb5
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb5
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb5
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb5
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb6
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb6
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb6
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb7
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb7
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb7
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb8
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb8
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb8
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb8
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb8
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb9
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb9
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb9
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb10
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb10
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb10
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb10
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb10
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb11
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb11
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb11
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb12
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb12
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb12
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb12
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb12
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb13
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb13
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb13
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb13
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb13
https://github.com/JohnWStockwellJr/SeisUnix.git
https://github.com/JohnWStockwellJr/SeisUnix.git
https://github.com/JohnWStockwellJr/SeisUnix.git
https://gitlab.com/geophysicsdelft/OpenSource.git
https://gitlab.com/geophysicsdelft/OpenSource.git
https://gitlab.com/geophysicsdelft/OpenSource.git
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb16
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb16
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb16
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb17
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb17
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb17
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb18
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb18
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb18
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb18
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb18
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb19
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb20
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb20
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb20
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb20
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb20
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb21
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb21
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb21
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb21
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb21
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb22
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb22
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb22
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb22
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb22
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb23
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb24
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb24
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb24
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb24
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb24
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb25
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb25
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb25
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb25
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb25
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb26
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb26
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb26
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb27
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb27
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb27
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb27
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb27
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb28
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb28
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb28
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb29
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb29
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb29
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb30
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb30
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb30
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb30
http://refhub.elsevier.com/S0098-3004(24)00060-8/sb30

	Design, implementation and application of the Marchenko plane-wave algorithm
	Introduction
	Theory
	Basic algorithm
	Horizontal plane-waves
	Dipping plane-waves

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Code availability

	References


