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Summary

A utomated driving technologies hold many potential benefits for society, such
as safer, more accessible, and more environmentally friendly road transporta-

tion. However, many challenges remain before Automated Vehicles (AVs) can be
widely used on public roads. One of these important open problems is the inter-
action between AVs and human-driven vehicles in traffic. Interactions between
vehicles during lane changing and merging on highways are the specific focus of
this thesis.
In these merging interactions, two or more vehicles negotiate a safe outcome
while adhering to spatio-temporal constraints such as relative speeds and dis-
tances. All drivers (human or automated) adapt their control behaviour contin-
uously to prevent collisions. Besides that, human drivers use their vehicle’s kine-
matics to communicate their intent. During a merging interaction, drivers make
joint decisions, such as who goes first and exhibit joint behaviour, such as the size
of the gap they keep between the vehicles. However, these joint outcomes of an
interaction stem from individual decisions and behaviours, such aswhether to yield
and how and when to accelerate. Therefore, the interaction between multiple
vehicles on the highway can best be described as a joint driver effort and best
modelled with a joint driver model: a model that describes multiple drivers’ joint
and individual behaviours.
Such a joint drivermodel should cover the joint systemof drivers and their individual
contributions on multiple levels. High-level decisions are needed to capture the
most likely outcome and individual contributions to that outcome (e.g., who yields
or accelerates). Gap-keeping and velocity behaviour are used by human drivers
for communicative actions and need to be covered by a model to understand
those. However, such a joint driver model capturing the dynamics of traffic inter-
actions during merging is missing. Current models used in autonomous vehicles
do not always generalise well to real-world behaviour (Chapter 2). Other driver
behaviour models only regard a single driver responding to their environment and
often have a limited scope. For example, they only cover the decision to yield
or merge or the acceleration input while following another car, but not both.
Combining multiple models of individual drivers to describe the joint behaviour
will not necessarily cover the dynamics between the drivers since these models
are only designed to respond unilaterally.
Current interactions between AVs and human drivers are often over-conservative
and sometimes awkward. This can potentially decrease the acceptance of the
AV’s behaviour and impact safety and travel efficiency. A potential solution to
this problem is to provide AVs with knowledge of human driving behaviour. This
knowledge, in the form of a driver model, could inform the AV on two topics: first,
how the other drivers in the interaction are most likely to act, and second, how
human-like the behaviour of the AV itself is. This can help the AV to display safe
and acceptable behaviour in interactions. However, current AVs use models of
individual drivers that are assumed to only respond to the Avs’s behaviour. To
facilitate a step towards making interaction-aware autonomous vehicles a reality
this thesis aims to increase the fundamental understanding of merging and lane-
changing interactions and capture this knowledge in a joint driver model. This
thesis includes work in three pillars: naturalistic driving behaviour, model theory,
and controlled experiments.
Naturalistic Driving Behaviour The work on naturalistic driving behaviour considers
existing approaches to interaction-aware control: Controllers for AVs that incor-
porate a model of human driving behaviour to reason about the future actions of
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other drivers. Although such controllers were previously demonstrated in simulated
environments, showing that they generate safe behaviour, their interactive capa-
bilities were never evaluated, and the used driver models were never validated.
Chapter 2 presents a method to validate driver models used in interaction-aware
controllers. In a case study, an inverse-reinforcement-learning-based driver model
generalises poorly to real-world driving behaviour. This chapter uses a naturalistic
(real-world) dataset recorded on a German highway: the HighD dataset and
a specifically developed visualisation software package named TraViA (a Traffic
Visualisation and Annotation tool) (Appendix A).
Chapter 3 presents a method to extract similar scenes from this large dataset to
investigate the variability in human responses to similar scenarios. This investiga-
tion showed that interactive scenarios have multiple possible outcomes on both
an operational level (how a manoeuvre is performed) and tactical level (which
manoeuvre is chosen). For example, when approaching a slower-moving vehicle
on the highway, a driver can decide to slow down or change lanes (tactical
variability). Still, if they slow down, the amount of braking can vary (operational
variability). Chapter 3 shows that driver responses to similar scenarios vary on both
levels and it provides a method to uncover and quantify this variability.
Model Theory Chapter 4 focuses on the theory behind driver models for inter-
actions and discusses the limitations of the current approaches. One limitation
is that many existing driver models only describe a single driver. They assume
this driver responds to their environment, but the environment (including all other
drivers) does not respond to the modelled driver. We named this the one-way in-
teraction assumption because there is only one responsive driver. This assumption
prevents a model from describing dynamic interactions. A much-used approach
to joint driver modelling uses game theory, developed initially to model one-shot
decisions. This does not align with the dynamic negotiations observed in traffic
interactions. Furthermore, game theory assumes humans behave as rational utility
maximisers who do not communicate. Chapter 4 presents evidence from the
literature that humans do not continuously (i.e., on every timestep in a simulation)
optimise their behaviour and that communication is an important aspect of traffic
interactions.
This theoretical evaluation led to the development of a new model framework
to describe the joint driver dynamics in traffic interactions, presented in Chap-
ter 4. The framework explicitly incorporates the communication between multi-
ple drivers; therefore, we named it the Communication-Enabled Interaction (CEI)
model framework. The CEI framework assumes drivers have a deterministic plan
for their future movements. They communicate this plan to others through implicit
or explicit communication; at the same time, they receive similar communication
from these other drivers. Based on the received communication, drivers form a
probabilistic belief of the other driver’s future movements. The probabilistic belief
combined with the deterministic plan results in a level of perceived risk. If the per-
ceived risk exceeds a personal threshold, themodelled driver updates their plan to
get the risk under control. These triggered plan updates are based on the concept
of satisficing: the notion that humans do not have themental capacity or the time
to optimise their behaviour constantly but instead search for a solution that suffices
and satisfies. In a case study, an instance of aCEI-model implemented to describe
amerging scenario showed plausible joint driver behaviours based on explainable
model parameters. Furthermore, human-like gap-keeping behaviour emerged in
a car-following scenario.
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Controlled Experiments Controlled experiments have been widely used to investi-
gate the effects of controlled parameters on the behaviour of individual drivers.
However, there are not many controlled experiments involving multiple drivers.
One of the complicating factors of including multiple drivers in a single experi-
ment is the large number of signals that must be measured and processed per
driver (e.g., steering inputs and pedal inputs). Furthermore, analytic tools and
valid metrics to analyse the data are missing because previous experiments used
metrics and tools specifically developed for individual drivers. One example of
such a metric is time-to-collision, which is used to investigate car-following be-
haviour. Chapter 5 takes a step towards controlled experiments with two drivers in
a simulator. It presents a simplified merging scenario, with fewer signals for each
driver, that can be used in a coupled driving simulator. In this scenario, two human
drivers resolve a merging conflict in a top-down view simulation. Furthermore,
three analytic tools are specially developed to analyse the drivers’ behaviour,
including a metric to capture the duration of the conflict: the Conflict Resolution
Time (CRT).
Chapter 6 presents the empirical analysis of an experiment with the simplified
merging scenario. It reveals important aspects of driver behaviour in interactions.
Firstly, humans use intermittent piecewise-constant control for the acceleration
of their vehicles. Secondly, the experiment showed that the high-level outcome
of a merging interaction (i.e., which vehicle merges first) mostly depends on
the kinematics of the vehicles at the start of the interaction, not on differences
between the drivers. These effects are quantified in a statistical model. Thereby,
Chapter 5 helps to increase the fundamental understanding of interactive driver
behaviour during merges. Finally, the effects of vehicle kinematics on CRT are
also quantified in Chapter 6.
The empirical analysis provided insights that inspired improvements to the model
presented in the case study in Chapter 4. This updated joint driver model is pre-
sented in Chapter 7. It uses intermittent piece-wise constant control analogues to
the observed behaviour in Chapter 6. A new implementation of the belief mod-
ule reflects the safety margins observed in human merging interactions. Finally,
dynamic risk-thresholds provide an incentive to act based on relative kinematics
(e.g., a following vehicle in car following is more inclined to act than the leading
vehicle). The model in Chapter 7 can qualitatively and quantitatively describe
the driver behaviour from the experiment in Chapter 6 onmultiple levels. High-level
decisions of individual drivers (e.g., to yield or not) lead to accurate joint outcomes
(e.g., which driver merges first?). Human-like input signals (i.e., velocity profiles)
accurately describe the individual contributions to the joint safety margins (i.e.,
the gap between the vehicles). Finally, the model reproduces typical qualitative
interactions between drivers in the experiment, such as miscommunications when
both drivers initially take the same action.
The three overarching conclusions of this thesis are: 1) Different drivers respond
with different tactical and operational behaviours to similar interactive situations;
therefore, driver models should capture operational and tactical variability, which
should be assessed independently. 2) An important requirement for a joint driver
model is the ability to capture that drivers do not continuously (rationally) opti-
mize their acceleration inputs; instead, they use intermittent piece-wise constant
control – as was empirically observed in a simplified merging scenario. 3) With
communication-enabled, risk-based intermittent control, the proposed CEI-model
can describe abstract merging interactions between two drivers, including their
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decisions (who goes first), safety margins over time, and underlying individual con-
tributions and control inputs (brake/accelerate). The most important limitation
of this thesis is that all the modelling was done in a simplified merging scenario.
This scenario involved just two drivers that only have longitudinal control. One of
the major open challenges on the road to leveraging the results of this thesis is
extending the model to scenarios with more vehicles and full control. The conclu-
sions, limitations, possible future work and potential model applications are further
discussed in Chapter 8.
To conclude, I believe the work presented in this thesis has yielded valuable knowl-
edge about human lane-changing and merging interactions and how to model
them. The studies presented here have not only identified the shortcomings of
existing interactive autonomous driving approaches based on naturalistic traffic
data but also proposeda solution tomodelling traffic interactions that showsmuch
potential in a simplified merging scenario. Therefore, I believe the work could be
a considerable step towards equipping autonomous vehicles with knowledge of
how drivers interact in traffic.
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Samenvatting

T echnologie voor geautomatiseerd rijden biedt veel potentiële voordelen voor
de samenleving, zoals veiliger, toegankelijker en milieuvriendelijker vervoer.

Maar een aantal uitdagingen moeten worden aangegaan voordat geautoma-
tiseerde of Autonome Voertuigen (AV’s) breed kunnen worden ingezet op open-
bare wegen. Eén van deze belangrijke open problemen is de interacties in het
verkeer tussen AV’s en door mensen bestuurde auto’s. In dit proefschrift staan
zulke interacties tussen voertuigen op snelwegen centraal, specifiek tijdens het
wisselen van rijstrook en bij het invoegen.
Bij die interacties moeten de bestuurders van twee of meer voertuigen samen tot
een veilige uitkomst komen. Hierbij moeten ze rekening houden met de beschik-
bare ruimte en tijd, zoals met relatieve snelheden en afstanden. Alle bestuurders
(menselijk of geautomatiseerd) passen hun gedrag continu aan om botsingen te
voorkomen. Bovendien gebruiken mensen de positie en snelheid van hun auto
om aan anderen te communiceren wat ze van plan zijn. Bij het invoegen nemen
bestuurders samen beslissingen, zoals wie voor gaat, en bepalen ze samen de
veiligheidsmarge die ze aanhouden. Deze gezamenlijke aspecten van een inter-
actie komen echter voort uit individuele beslissingen en gedrag, zoals de beslissing
om wel of geen voorrang te verlenen en het gedrag hoe hard iemand remt. De
interactie tussenmeerdere voertuigen op de snelweg is daaromeen gezamenlijke
inspanning van individuele bestuurders en kan dus het best worden gemodelleerd
met een gezamenlijk model: een model dat het gezamenlijke en individuele ge-
drag van meerdere bestuurders beschrijft.
Om waardevol te kunnen zijn voor een AV moet een model van menselijk rijge-
drag de bestuurders gezamenlijk en individueel kunnen beschrijven op meerdere
niveaus. Gezamenlijke beslissingen beschrijven de uitkomst (wie gaat er eerst)
waaraan individuele beslissingen bijdragen, bijvoorbeeld de beslissing om af te
remmen en ruimte temaken voor een andere invoegende bestuurder. Daarnaast
gebruiken bestuurders hun snelheid en afstand ten opzichte van anderen om te
communiceren, een model moet dit kunnen beschrijven om van waarde te zijn in
een AV. Maar zo’n model wat de gezamenlijke dynamiek van bestuurders tijdens
het invoegen kan beschrijven ontbreekt in de literatuur. Modellen die worden
gebruikt in autonome voertuigen beschrijven gedrag op de weg niet altijd goed
(Hoofdstuk 2). Anderemodellen in de literatuur beschrijven vaakmaar één enkele
bestuurder die alleen reageert op zijn of haar omgeving. Daarnaast beschrijven
dezemodellen vaak het gedrag op één enkel niveau, ze beschrijven bijvoorbeeld
alleen de beslissing om voorrang te verlenen of alleen de versnellingen tijdens het
volgen van een andere auto. Een combinatie van meerdere van deze individu-
ele modellen beschrijft niet automatisch het gezamenlijke gedrag omdat deze
modellen ontworpen zijn om eenzijdige reacties te beschrijven.
Huidige AV’s gedragen zich vaak conservatief in interactie met menselijke be-
stuurders, hierdoor kan de interactie onnatuurlijk zijn. Deze onnatuurlijke interacties
kunnen de acceptatie van autonoom gedrag en de veiligheid en efficiëntie in
het verkeer negatief beïnvloeden. Om interacties met mensen te verbeteren
worden AV’s in sommige gevallen voorzien van kennis van menselijk rijgedrag.
Deze kennis, in de vorm van een model, helpt een AV op twee manieren. Ten
eerste door te voorspellen wat de andere bestuurders waarschijnlijk zullen doen in
de nabije toekomst. Daarnaast kan hetmodel worden gebruikt om te beoordelen
hoe menselijk het gedrag van de AV zelf is. Deze informatie kan helpen om de AV
zich veilig en acceptabel te laten gedragen in interacties op de weg. Echter, de
modellen die in AV’s worden gebruikt zijn modellen van enkele bestuurders die
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eenzijdig reageren op de AV. Om natuurlijke interacties tussen AV’s en mensen
dichterbij te brengen heeft dit proefschrift als doel om de fundamentele kennis
van interactie tussen bestuurders tijdens het invoegen en wisselen van rijbaan te
vergroten en deze kennis te vangen in een model van meerdere bestuurders. Het
werk in dit proefschrift kanworden onderverdeeld in drie pijlers: natuurlijk rijgedrag,
modellen, en gecontroleerde experimenten.
Natuurlijk Rijgedrag In het eerste deel over natuurlijk rijgedrag worden bestaande
technologieën voor interactieve AV’s beschreven en gevalideerd. Deze AV’s
gebruiken een model van menselijk rijgedrag om de toekomstige acties van an-
dere bestuurders te voorspellen. In simulaties is aangetoond dat deze AV’s veilig
gedrag genereren, maar de gebruikte modellen van rijgedrag werden nooit ge-
valideerd voor gebruik buiten deze simulaties. In Hoofdstuk 2 wordt een methode
gepresenteerd om met behulp van data die is opgenomen op de weg modellen
van rijgedrag te valideren die worden gebruikt in interactieve AV’s. Deze me-
thode wordt vervolgens gebruikt om een model op basis van inverse reinforce-
ment learning te valideren. Dit model wordt in de literatuur gebruikt in simulaties,
maar blijkt niet goed te werken voor gedrag op de weg. In dit hoofdstuk wordt
gebruik gemaakt van een dataset die is opgenomen op een Duitse snelweg:
de HighD-dataset. Daarvoor is specifieke visualisatie-software ontwikkeld: TraViA
(een Traffic Visualisatie en Annotatietool) (Bijlage A).
In Hoofdstuk 3 wordt een methode ontwikkeld om vergelijkbare scènes in deze
grote dataset te vinden. Die scènes kunnen vervolgens worden gebruikt om de
variabiliteit in menselijke reacties op die scène te onderzoeken. Deze reacties
blijken meerdere mogelijke uitkomsten te hebben op zowel een operationeel ni-
veau (hoe een manoeuvre wordt uitgevoerd) als op een tactisch niveau (welke
manoeuvre wordt gekozen). Zo kan een bestuurder achter een langzamer rijdend
voertuig op de snelweg beslissen om af te remmen of van baan te wisselen (tac-
tische variabiliteit). Maar als de bestuurder besluit om af te remmen kan dit op
meerdere manieren (operationele variabiliteit). Hoofdstuk 3 laat zien dat er varia-
biliteit bestaat op beide niveaus als bestuurders regeren op vergelijkbare scènes.
In een casestudie wordt ook een methode gedemonstreerd om die variabiliteit te
kwantificeren.
Modellen In Hoofdstuk 4 worden recente ontwikkelingen in modellen van mense-
lijk rijgedrag voor interacties geanalyseerd. Veel van deze modellen beschrijven
slechts één enkele bestuurder; ze gaan ervan uit dat deze bestuurder reageert op
zijn of haar omgeving, maar dat de omgeving (inclusief alle andere bestuurders)
niet reageert op de gemodelleerde bestuurder. We noemen dit de aanname van
eenzijdige interactie omdat er slechts één bestuurder reageert op de ander. Door
deze aanname kan een model de dynamiek van interacties tussen meerdere
bestuurders niet beschrijven. Een veelgebruikt alternatief voor interactie model-
len maakt gebruik van speltheorie (game theory). Deze theorie is oorspronkelijk
ontwikkeld om beslissingen bij het spelen van een spel te modelleren en om de
strategie te vinden die de kans op winst maximaliseert. Deze eenmalige beslissin-
gen hebbenweinig overeenkomstenmet de continue dynamische aanpassingen
in het gedrag van weggebruikers. Daarnaast maak speltheorie de aannames dat
mensen zich rationeel gedragen en niet communiceren. Echter is uit de literatuur
bekent dat mensen hun gedrag niet voortdurend optimaliseren en dat communi-
catie een belangrijk aspect is in interacties in het verkeer.
Op basis van deze evaluatie van recente literatuur wordt in Hoofdstuk 4 een nieuw
ontwerp-kader ontwikkeld voor modellen die dynamische interacties tussen be-
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stuurders kunnenbeschrijven. Dit kader is gebaseerd op het feit dat communicatie
tussen bestuurders een belangrijke rol speelt in het verkeer, vandaar de naam: het
Communication-Enabled Interaction (CEI) model-kader. Het CEI-kader gaat er-
van uit dat bestuurders een deterministisch plan hebben voor hun acties in de na-
bije toekomst. Ze communiceren dit plan naar anderen doormiddel van impliciete
of expliciete communicatie; ook ontvangen ze communicatie van deze andere
bestuurders. Op basis van de ontvangen communicatie vormen bestuurders een
probabilistisch geloof over de wat de andere bestuurder in de nabije toekomst
gaat doen. De combinatie van dit plan en het geloof vormen de basis voor een
perceptie van risico. Als het waargenomen risico hoger is dan een persoonlijke
norm werkt de bestuurder zijn of haar plan bij om het risico onder controle te
krijgen. Deze plan-updates die getriggerd worden door risico perceptie zijn geba-
seerd op het concept van ’satisficing’: het idee dat mensen niet is staat zijn om
continu hun gedrag te optimaliseren, maar in plaats daarvan op zoek gaan naar
een oplossing die ’goed genoeg’ is. In een casestudie met een invoegscenario
laat een CEI-model plausibel gedrag zien van twee bestuurders. Dit op basis van
modelparameters met een duidelijke functie. Bovendien hield het model in een
scenario waar twee auto’s elkaar volgen op een menselijke manier afstand tot
anderen terwijl het daar niet specifiek voor ontwikkeld is.
Gecontroleerde Experimenten Met gecontroleerde experimenten worden de ef-
fecten van (gecontroleerde) parameters op het gedrag van individuele bestuur-
ders onderzocht, dit wordt echter weinig gedaan voor interacties tussenmeerdere
bestuurders. Meerdere bestuurders laten deelnemen aan één experiment is com-
plex door het grote aantal signalen dat moet worden gemeten en verwerkt per
bestuurder (bijvoorbeeld de stuur- en gaspedaal-hoeken). Bovendien ontbreken
analytische tools (zoals geschikte statistieken) om de gegevens te analyseren.
Veel eerdere experimenten gebruiken statistieken en tools die specifiek zijn ont-
wikkeld voor individuele bestuurders; bijvoorbeeld de statistiek time-to-collision,
die wordt gebruikt om het gedrag bij het volgen van auto’s te onderzoeken. In
Hoofdstuk 5 wordt een gecontroleerd experimenten met twee bestuurders in één
simulator ontwikkeld. Onderdeel van dit experiment is een vereenvoudigd invoeg-
scenario met minder signalen per bestuurder. Dit scenario kan worden gebruikt in
een gekoppelde rijsimulator met twee bestuurders en een simulatie in vogelper-
spectief. Daarnaast worden er in dit hoofdstuk drie analytische tools ontwikkeld
om het gedrag van de bestuurders te analyseren, waaronder een statistiek om de
duur van het conflict te meten: de Conflict Resolution Time (CRT).
In Hoofdstuk 6 wordt een empirische analyse gemaakt op basis van de resultaten
van het experiment met het vereenvoudigde invoeg-scenario. In deze analyse
komen belangrijke aspecten van het gedrag van bestuurders in interacties naar
voren. Ten eerste gebruiken mensen discontinue constante inputs voor de acce-
leratie van hun voertuigen. Daarnaast laat het experiment zien dat de uitkomst
van de interactie (welke auto eerst gaat) voornamelijk afhangt van de kinematica
van de voertuigen aan het begin van de interactie, niet van individuele verschillen
tussen de bestuurders. Hoofdstuk 5 draagt bij aan het fundamentele begrip van
interactief gedrag tijdens het invoegingen door deze effecten te kwantificeren in
een statistisch model. Ook de effecten van voertuigkinematica op de Conflict
Resolution Time worden gekwantificeerd in Hoofdstuk 6.
Met deze inzichten uit de empirische analyse kon het model uit de casestudy in
Hoofdstuk 4 worden verbeterd. Dit verbeterde gezamenlijke model wordt gepre-
senteerd in Hoofdstuk 7. De nieuwe versie van het model maakt gebruik van
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discontinue constante inputs, zoals is waargenomen in Hoofdstuk 6. De belief-
module is vernieuwd om de afstanden tussen voertuigen (veiligheidsmarges) te
kunnen reproduceren. Tenslotte heeft dit model een ingebouwde stimulans voor
individuele bestuurders om te handelen op basis van relatieve kinematica. Hier-
door kan het model bijvoorbeeld beschrijven dat een bestuurder die een auto
volgt eerder geneigd is om actie te ondernemen om de afstand tussen de twee
te vergroten dan de bestuurder van het voorste voertuig. Het model in Hoofd-
stuk 7 kan het individuele en gezamenlijke rijgedrag uit het experiment in Hoofd-
stuk 6 kwalitatief en kwantitatief beschrijven op meerdere niveaus. Beslissingen
van individuele bestuurders (e.g., het wel of niet voorrang verlenen) leiden tot
gezamenlijke uitkomsten (e.g., welke bestuurder eerst gaat). Snelheidsprofielen
met menselijke karakteristieken beschrijven nauwkeurig de individuele bijdragen
aandegezamenlijke veiligheidsmarges (e.g., de ruimte tussen de voertuigen). Ten
slotte reproduceert het model typische kwalitatieve interacties tussen bestuurders
die zijn waargenomen in het experiment, zoals een miscommunicatie als beide
bestuurders in eerste instantie dezelfde actie ondernemen.
Dit proefschrift heeft drie overkoepelende conclusies: 1) Verschillende bestuur-
ders reageren tactisch en operationeel verschillend op vergelijkbare interactieve
situaties; daarom zouden modellen van menselijk rijgedrag operationele en tac-
tische variabiliteit moeten vastleggen, daarnaast moeten ze hierop onafhankelijk
worden beoordeeld. 2) Een belangrijk aspect voor een gezamenlijk model van
rijgedrag is dat bestuurders hun acceleratie-inputs niet voortdurend (rationeel)
optimaliseren; in plaats daarvan gebruiken ze discontinue constante inputs – zo-
als empirisch waargenomen in een vereenvoudigd invoegscenario. 3) Met het
modelleren van communicatie en op risico gebaseerde discontinue constante
inputs kan het CEI-model abstracte interacties tussen twee bestuurders beschrij-
ven, inclusief hun beslissingen (wie gaat er eerst), veiligheidsmarges over tijd, en
het onderliggende individuele gedrag (remmen/accelereren). De belangrijkste
beperking van dit proefschrift is dat het model en het experiment beide een ver-
eenvoudigd invoegscenario gebruiken. In dit scenario zijn er slechts twee be-
stuurders die alleen de snelheid van hun auto kunnen controleren; ze kunnen niet
sturen. Om de resultaten van dit proefschrift toe te kunnen passen in dagelijks
verkeer is het uitbreiden van het model naar scenario’s met meer voertuigen en
volledige controle noodzakelijk. De conclusies, beperkingen, mogelijkheden voor
verder onderzoek, en de potentiële toepassingen voor het model worden verder
uiteengezet in Hoofdstuk 8.
Samenvattend heeft het werk in dit proefschrift een bijdrage geleverd aan de
kennis over, en het modelleren van, menselijke gedrag bij interacties tijdens het
wisselen van rijstrook en het invoegen. De studies in de hoofdstukken van dit
proefschrift hebben niet alleen de tekortkomingen van modellen in bestaande
interactieve AV’s geïdentificeerd op basis van natuurlijk rijgedrag, maar ook een
potentiële oplossing voorgesteld voor het modelleren van verkeersinteracties. Dit
nieuwe model heeft in een vereenvoudigd invoegscenario veelbelovende resul-
taten laten zien. Daarom hoop ik dat wemet deze studies een stap hebben gezet
in de richting van het ontwikkelen van geautomatiseerd rijgedrag op basis van
kennis van interacties in het verkeer.

xviii
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W e live in a time most interesting for researchers and engineers working on
automated vehicles (AVs); the development of AVs is booming. Impressive

works on AV perception, path planning, and decision-making are published in
videos and research articles almost weekly. This high research output can be
partially explained by the available (financial) resources and the great public
interest in the topic. But it cannot be denied that amajor factor in this activity is the
large number of challenging open problems that still exist for automated driving.
One of these open problems is how autonomous and automated vehicles should
handle interactive driving scenarios such as merging on a highway.
While access to commercial autonomous vehicles for scientific research is limited,
online videos provide examples of the difficulties AVs have with interactive sce-
narios. A video on YouTube (Figure 1.1) shows how a white AV tries to merge onto
a highway with heavy traffic (Figure 1.1-1). A grey human-driven vehicle drives
directly behind the white AV in themerging lane (Figure 1.1-2). This vehicle merges
in quickly without any problems. The AV, however, keeps driving in the merging
lane until it reaches the end of the lane, where it comes to a full stop (Figure 1.1-3).
Even when the vehicle that recorded the video leaves a large gap as an offer to
the AV to merge, it remains stationary (Figure 1.1-4).
This anecdotal evidence shows that this AV has yet to reach a level of driving
comparable to human drivers in a merging scenario. The AV fails to merge in on
its own and does not take the offered gap, showing that it does not understand
the communicative action of the camera car. In 2023, Brown et al. systematically
reviewed online videos where AVs interact with human-driven cars [1]. They show
multiple examples of awkward interactions between AVs and human traffic par-
ticipants. In one example, the passenger of an AV even opens the car window to
apologise to pedestrians it was interacting with: ”Sorry! Self-driving car.” In this
case, the passenger and the pedestrians understand the interaction in a way
the AV misses. Brown et al. concluded that: ”To build self-driving cars that can
integrate in traffic, [..] understanding traffic has a fundamental role to play in
debates and design of self-driving vehicles. [..] The challenge then is not one of
computability but of understanding social interaction.”
These traffic interactions are difficult to ”understand” for AVs because of the inher-
ent risk of colliding with other vehicles and how they try to minimize this risk. While
human drivers share the road with automated vehicles, this collision risk must be
managed in interaction (and in conjunction) with human road users. However,
these human drivers are accustomed to traffic interactions with other humans,
and much is still unknown about how human drivers interact with each other in
traffic [2]. During an interaction, all drivers (human or automated) can adapt
their control behaviour continuously to communicate their intent [1]–[3]. Drivers
use their vehicles’ kinematics –velocity, position, and the gaps with respect to
others– to communicate their intent [2]. Theymake individual decisions and exhibit
individual behaviours, such as whether to merge now or to wait and how and
when to accelerate. These individual behaviours lead to joint outcomes, such
as who goes first in a merge, and joint continuous behaviour, such as the size of
safety margins between the vehicles. Without a good understanding of joint and
individual human interactive behaviour, or in the words of Brown et al. without
”understanding social interaction”, it will be challenging to design and validate
safe and acceptable automated behaviour in interactions.
The common solution to enable interactions in automated vehicles is using
Interaction-Aware controllers (IACs, e.g., [4]–[6]). These controllers incorporate
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Figure 1.1: Stills from a video showing an autonomous vehicle merging onto a busy highway. Orange
arrows show the positions of the (white) autonomous vehicle. The green arrow shows points out the
merging human-driven vehicle. source: https://www.youtube.com/watch?v=NMGYv0HpmOI

an understanding of human driver interactions in the form of a driver model
(see Figure 1.2). IACs use these models to predict the future trajectories of other
vehicles and make driving decisions based on these predictions. However,
such predictions are uncertain; therefore, driving decisions become a trade-off
between safety and speed. The AV can either take more risk (i.e., be more
assertive) and proceed quicker or be more conservative but slower. Because
AVs are often designed to be safe above everything else, this can lead to a
situation where the AV cannot find a plan it regards as safe enough to proceed.
In this case, it will decide to stop moving. This issue is known as the freezing robot
problem and is directly related to the accuracy of the driver model used [7].
In less extreme situations, the AV might not come to a full stop but can still be-
have too conservatively from a human perspective. Un-human-like behaviour in
interactions could be difficult to understand and predict from the perspective of
other drivers on the road. This could cause annoyance or even unsafe situations.
For example, consider an intersection with two vehicles, where the vehicle with
the right-of-way seems to stop and yield (for similar real-world examples, see [1],
[2]). This will be annoying for the other driver. It could even be dangerous if
both vehicles believe the other will yield. Thus, unnatural traffic interactions could
lead to unsafe behaviour and decreased acceptability of AV behaviour by both
the passengers of the AV and the other drivers it is interacting with. To prevent
situations like this, the models that inform automated driving technology should
accurately capture the higher-level outcomes and decisions in an interaction,
such as which vehicle goes first, and the lower-level communicative signals drivers
use to communicate their intent. Combined, these form the underlying principles
of driver behaviour in traffic interactions.
To limit the scope, the focus of this thesis will be on highway interactions, more
specifically on merging and lane changing. These interactions contain commu-
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Figure 1.2: A schematic depiction of the inner workings of Interaction-Aware Controllers (from Chapter 2).
Interaction-aware controllers for Autonomous Vehicles (AVs) are developed to let AVs interact with
human-driven vehicles in interactive scenarios, such as the highway merging scenario on the left. These
controllers use two internal models to predict the future state (s) of the vehicles and human response to
their actions (a).

nicative signals and higher-level decisions, such as yielding described earlier (see
Figure 1.1). Furthermore, they occur in a relatively structured environment without
vulnerable road users such as pedestrians and bicyclists. Finally, these interactions
can occur with just two drivers but can include multiple vehicles and are thus
scalable. Therefore, they form a suitable scenario to study these vehicle-vehicle
interactions.
Figure 1.3 (panel A) shows an example of such a merging interaction from a
dataset containing vehicle trajectories recorded on German highways: the
HighD dataset [8]. In this example, the green vehicle wants to merge onto the
highway. It shows how this manoeuvre plays out by showing the positions and
velocities of the green and purple vehicles over time (Panel B). The behaviour of
the interacting (green and purple) vehicles can be broken down into three levels:
Decisions, safety margin, and control inputs (Panel C). Input behaviour can only
be seen from the perspective of a single vehicle, but the other two levels can also
be viewed from the perspective of the joint behaviour of the two vehicles.
The green vehicle has a head start at the beginning of the interaction but travels at
a significantly lower velocity. However, the joint outcome (i.e. decision) is that the
green vehicle merges in front of the purple vehicle (i.e., Green goes first). This can
be seen in the top plot (panel B) at the time when Green crosses the lane marker
(marker I). Both vehicles individually contribute to this decision: Green speeds up
while Purple slows down. These individual decisions (e.g., to yield or not, marked
with 1) contribute to the joint decision that Green goes first. The joint safety margin
at the merge is depicted by the gap plot, which shows the distance between the
vehicles at the time of the merge (marker II). However, the velocity plot reveals (at
marker 2) that the green vehicle provides an extra individual contribution to this
safety margin: Green speeds up even further just before the merge, while purple
stops decelerating. This is purely to increase the gap; the decision that green
would go first was already made at marker 1. These individual contributions to the
gap can also be used as a means of communication [2]. The velocity plot also
provides an intuitive and general insight into the characteristics of control inputs.
In this example, it can be seen that the green vehicles mostly maintain a constant
velocity at the start and end of the interaction, with a linear acceleration phase in
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Figure 1.3: An introduction to modelling of interactive highway scenarios. Panel A shows a schematic
representation of a typical interactive scenario: the green vehicle wants to merge onto the Highway. It
has a position advantage but a significantly lower velocity than the Purple vehicle. This example is taken
from the HighD dataset [8]. Panel B shows the individual position traces, the gap between the vehicles,
and the individual velocity traces. Markers indicate individual and joint perspectives on the three levels of
behaviour indicated in panel C. Panel C shows three levels of behaviour in betweenMichon’s operational
and tactical behaviour [26]. It also shows four types of driver models, each with examples from literature,
that capture part of the interactive behaviour. A hypothetical model that would capture all three levels
on the individual and joint levels is more likely to have captured the true underlying mechanisms of driver
interactions.

between. The velocity plot is preferred to obtain insights into the input behaviour
over an acceleration plot because the velocities are easier to understand intu-
itively.
There have beenmany efforts to model highway traffic interactions duringmerges
and lane-changing. These models can be classified into five model classes (panel
C): Gap acceptance, traffic simulation, statistical, acceleration-based and
game-theoretic models. This overview includes references to examples of driver
models within each of these classes. Control approaches are not included in this
overview because even though they can be inspired by human behaviour, they
do not aim to reproduce human behaviour as closely as possible (including its
negative aspects). Each model class in the overview targets (and is evaluated
on) a specific part of the individual and joint levels of behaviour just described.
Gap acceptance (GA in Figure 1.3) models (e.g. [9]–[13]) describe the decisions
made by the individual drivers that want to merge onto the highway (e.g., the
green vehicle) by evaluating available gaps between other vehicles in heavy
traffic conditions. Drivers decide if a gap is large enough to merge into based
on a personal threshold: the preferred individual safety margin. Merging models
that are used in traffic simulations (TS in Figure 1.3) often rely on the same gap
acceptance theory [14]–[16] and are sometimes combined with acceleration-
based models that describe the lower-level inputs of drivers [17], [18]. Statistical
models (ST in Figure 1.3) describe the probability that a certain vehicle will merge
or change lanes. Some include desired safety margins [19], [20], while others do
not [21]. Finally, game-theoretic (GT in Figure 1.3) models describe the high-level
joint outcome (who goes first) and decision-making in interactions by considering
multiple drivers in a single model [22]–[25], i.e., a joint driver model.
Panel C also shows that the fundamental understanding of how the levels are con-
nected is missing; no driver model yet covers all aspects of a merging interaction
between specific drivers. The example in panel B highlights how the individual
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contributions of the vehicles lead to a joint outcome (e.g., how two individual
decisions lead to Green going first). This indicates that to understand merging
interactions fully, they should be regardedas a joint systemof drivers with individual
contributions. Studying the (modelled) behaviour of one of the two drivers while
disregarding or fixing the others’ behaviour disregards the interactive aspects of
this system. This could mean (unintentionally) dividing a system into multiple parts
that inherently belong together, changing the dynamics. Therefore, I argue that
merging interactions can be best described and modelled as a joint system of
drivers. In this thesis, I refer to this approach as a joint driver model: a model that
describes multiple drivers’ joint and individual behaviours. A joint driver model that
accurately captures the aspects of merging interactions at these three levels is
alsomore likely to have captured the underlyingmechanisms of interactive driving
behaviour in general.
Such a model would have a large potential for practical applications since it
could be used to actively inform AVs and help them make safe and acceptable
decisions. It could provide a more fundamental understanding of the important
aspects of human driving interactions, such as how drivers form beliefs about oth-
ers based on communicative actions and how these beliefs influence their future
actions. A fundamental understanding of how humans handle merging and lane-
changing situations can, in turn, help design automated behaviours that are un-
derstood and accepted by humans. Therefore, the aim of this thesis is to increase
the fundamental understanding of merging and lane-changing interactions and
capture this knowledge in a joint driver model.

1.1. The three pillars of this thesis
Three pillars form the foundation for the work in this thesis to increase the funda-
mental understanding of driver behaviour in merging and lane-changing interac-
tions: Natural(istic) driving, controlled experiments, and model theory (Figure 1.4).
Naturalistic driving considers driver behaviour in the real world; this is often studied
with datasets recorded in real traffic, commonly referred toas naturalistic datasets.
Controlled experiments are usually conducted in driving simulators or on test tracks
and aim to uncover the underlying principles of human driving behaviour. Model
theory covers the design of driver behaviour models and the assumptions about
human behaviour made in these models. In this section, I will provide background
in these three areas and discuss the (previously) open questions that led to the
work in this thesis.

1.1.1. Natural(istic) behaviour
The main motivation behind investigating human traffic interactions in this thesis
is to improve the interactive capabilities of automated vehicles in real-world traf-
fic. Therefore, it seems logical to start our investigation there: with natural driver
behaviour. Multiple datasets were recently published that were recorded on real
roads, for example, in Germany [8], Greece [27], China [28], and the US [28], [29].
These datasets provide the opportunity to investigate natural traffic interactions.
These naturalistic datasets contain a large range of behaviours. Specifically in
interactions, multiple levels of driver behaviour are important to consider: drivers
can respond to, for example, a merging vehicle, by deciding what to do (e.g.,
change lanes) and how to do it (e.g., fast or slow). These levels have previously
been described by Michon [26], who distinguished between operational, tactical
and strategic behaviour. Tactical behaviour is the choice ofmanoeuvre (i.e., what
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Figure 1.4: An overview of the three pillars used in this thesis to increase the fundamental understanding
of merging and lane-changing interactions and capture this knowledge in a joint driver model.

to do), and operational behaviour regards how a this is executed (i.e., how to
do it). Strategic behaviour is a higher level that concerns decisions such as route
choice and is therefore not relevant to the traffic interactions in this thesis.
A large amount of work has been devoted to studying traffic behaviour in the real
world using naturalistic datasets [19], [20], [30]–[32]. Most of these empirical studies
were motivated to better understand the overall traffic flow [19], [20], [31]. There-
fore, these studies focus on the operational behaviour of the whole population
within specific tactical behaviours (e.g., lane changes or car following), or on the
distribution between tactical behaviours. For example, these studies aim to find
the probability that vehicles merge under specific conditions (e.g. [19]) or try to
describe the distribution of the safetymargins that are keptwhendrivers are follow-
ing another car (e.g. [33]). This makes these studies very suitable for understanding
(and improving) the overall traffic system, but individual vehicle interactions are
obscured. Specifically, it is unknown how to uncover the operational and tactical
variability in responses of individual drivers facing the same (real-world) scenario.
These naturalistic datasets have not been widely used in research on interaction-
aware autonomous driving. State-of-the-art interaction-aware controllers (from lit-
erature) have never been evaluated in real-world traffic interactions [4]–[6]. These
controllers have been developed and tested in simulated (top-down-view) en-
vironments. Deploying them in real vehicles or even real-world traffic to evalu-
ate their interactive capabilities could potentially be dangerous. The available
datasets could be promising environments to gain more insight into the potential
of these IACs. Therefore, an open question is: how can we leverage the available
naturalistic data for a preliminary evaluation of interaction-aware controllers? The
answer to this question could also be a step towards answering another open
question: howwell will current interaction-aware controllers perform in real traffic?
However, this is beyond the scope of this thesis.

1.1.2.Modelling theory
Driving behaviour has been a research topic ever since the automobile was in-
vented, and this research has yielded many models. To name just a few to show-
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case the depth and width of this field: In 1938, Gibson and Crooks reasoned that
driving behaviour and specifically choices about what trajectory to use can be
explainedbya ”field of safe travel” [34]. In 1976, Leepresentedamodel that linked
the braking actions of drivers directly to the capability of the human visual system
to estimate relative velocities from the increasing or decreasing size of objects in
the field of view (called looming) [35]. The intelligent driver model was proposed
in 2000 by Treiber et al. to describe car-following behaviour and has been used in
many studies since [18]. Finally, andmore recently, in 2020, Kolekar et al. proposed
a unified risk-based driver model that can describe driver behaviour in 7 different
(non-interactive) scenarios [36].
In this wide variety of driver models, only a limited number of models target traffic
interactions and regard all drivers in the interaction. Some others focus on inter-
active scenarios but only describe a single driver within this scenario. Four types
of driver models that aim to describe such merging and lane-changing scenarios
were identified earlier (see Figure 1.3): Gap acceptance, traffic simulation, statis-
tical, and game theoretic models.
Gap acceptance models (e.g. [9]–[13]) describe the decisions made by the in-
dividual merging drivers by evaluating available gaps between other vehicles
in heavy traffic conditions. Drivers decide if a gap is large enough to merge
into based on a personal threshold. Merging models used in traffic simulations
often rely on the same gap acceptance theory [14]–[16]. In these simulations,
the models of the high-level decision to accept a gap are complemented with
car-following models (e.g., the intelligent driver model (IDM) [18]). This way, the
control behaviour before and after the merging decision is included in the mod-
elled behaviour. Thus, two models are stitched together to describe a full merging
manoeuvre of a vehicle. This might describe the population well in traffic simula-
tions; however, it remains unkown how well this combination of models describes
individual interactions.
Statistical models are based on the previously discussed naturalistic traffic data.
These models describe the probability that a certain vehicle will merge or change
lanes. Some include desired safety margins [19], [20], while others do not [21]. As
with the gap acceptancemodels, thesemodels only describe high-level decisions
for individual vehicles. This raises the question of whether models of individual
vehicles are the best way to describe interactions that inherently play out between
multiple vehicles.
Game-theoretic models describe the interaction by considering multiple drivers
in a single model. Game theory describes the high-level outcome and decision
making in the merging process [22]–[25] (for a more extensive review of game-
theoretic merging and lane-changing models see [37]). Game theoretic models
have in common that they assume humans to be rational utility-maximizing agents
that do not communicate. Are these assumptions valid whenmodelling themerg-
ing behaviour of drivers on the highway?
In conclusion, many approaches to driver modelling have been explored in the
past. These approaches all have their strengths and limitations, leaving us with the
open question: How to model the joint dynamics of multiple drivers in merging
interactions?

1.1.3. Controlled experiments
Besides naturalistic data, controlled experiments are a valuable data source for
studying driver behaviour. These experiments are used to investigate how specific
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controlled variables influence behaviour. They can take place in actual vehicles
in a controlled environment, such as on a test track (e.g., [38], [39]) or in the lab in
driving simulators (e.g., [40]–[42]). Many aspects of driving behaviour have been
studied, such as steering behaviour [41], braking behaviour [39], [42], and risk
perception [38], [40]. However, in all these cases, only a single driver participated
in the experiment.
Studying the behaviour of a single driver in a controlled experiment entails record-
ing many different signals. This makes the analysis of such experiments a time-
consuming effort. An often-used solution to this problem is to capture the be-
haviour in metrics that describe the aspects of behaviour we are interested in.
For example, in car following, the safety margin is usually described in terms of
time to collision (TTC) (e.g., [43]). This is the time until two vehicles collide, given
that they keep driving at their current velocities. This metric captures the distance
between the vehicles and the relative velocity between the vehicles. However,
this metric is only valid when vehicles follow each other in a single lane. What
metrics accurately describe the joint behaviour in interactive scenarios wheremul-
tiple tactical behaviours (such as lane changing and overtaking) are possible is
currently unknown.
This problem of the lack of meaningful metrics to analyse becomes larger when
multiple drivers are involved. Including more drivers in the experiment means
recording more input signals, which could hinder the analysis of interactive
behaviour in driving simulators. An experiment with a scenario specifically
designed to reflect traffic interactions yet limit the input signals per driver is
needed to enable such studies. However, it is unclear what scenario and metrics
to use in a controlled experiment to investigate merging interactions in traffic.
With such an experiment, driver behaviour in a coupled simulator can be inves-
tigated. This will answer questions such as: what is the input strategy drivers use
during interactions? What individual contributions lead to a specific high-level
outcome (e.g., who goes first in a merging interaction)? How do drivers respond
to differences in relative velocity and position? Or, to put it more generally: How
do interacting drivers behave in terms of decisions, safety margins, and control
inputs?

1.2. Structure and approach
All the bold questions posed in the previous section will be answered in the fol-
lowing chapters of this thesis. Figure 1.5 shows an overview of which chapter
contributes to which pillar. Each chapter, its aim, and main findings will be briefly
discussed here.
In Chapter 2 a framework is proposed to validate driver models used for
interaction-aware controllers. This framework provides a method to leverage
naturalistic data for this validation. A case study shows that a state-of-the-art
inverse-reinforcement-learning-based driver model, similar to those used in
interaction-aware controllers, does not capture human driving behaviour,
motivating the research into new models for traffic interactions.
Chapter 3 investigates how to uncover the variability in naturalistic human driving
behaviour. It proposes a method to extract similar traffic scenes from large natu-
ralistic datasets automatically. A case study shows that there is variability present
in tactical and operational behaviour. Appendix A presents a software package
called TraViA (for Traffic Visualisation and Annotation) which was specially devel-
oped for the work in chapters 2 & 3.
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Figure 1.5: Contributions of the chapters in this thesis to the final goal: ”to increase the fundamental
understanding of merging and lane-changing interactions and capture this knowledge in a joint driver
model”

In Chapter 4, the Communication-Enabled Interaction model (CEI-model) is
introduced. This is a model of traffic interactions that includes communication
between drivers and attributes drivers’ actions to risk perception following from a
probabilistic belief about the other driver’s future trajectory. This chapter discusses
the theoretical background for modelling traffic interactions, which led to the
development of the CEI framework. The chapter also includes simulations of
the model that show plausible human-like behaviours in a merging interaction.
Furthermore, human-like gap-keeping behaviour in a car-following scenario
emerged from the model.
In Chapter 5 an experiment in a controlled environment is designed, including
a simplified merging scenario and novel analysis tools. This simplified merging
scenario is used to investigate model and human behaviour from this chapter
onward. The chapter introduces the experiment used to gather data on human-
human merging interactions in a coupled top-down-view driving simulator. It also
describes three analysis tools, specifically developed to analyse the behaviour of
a pair of drivers. One of these tools is the Conflict Resolution Time (CRT), a metric
that describes the time it took the drivers to resolve the conflict.
Chapter 6 provides an empirical analysis of the data gathered in the merging
experiment. This includes a qualitative analysis of individual human behaviour
and statistical models of both individual and pair-wise behaviour. This chapter
aims to answer the question: How do humans behave in interactive merging?
The conclusions of this chapter were used to improve the CEI model presented in
Chapter 4.
Chapter 7 presents an improved version of the CEI model. This chapter also vali-
dates this final model, using the data gathered from the experiment in Chapters 5
and 6. The results show that the model can accurately describe individual and
joint driver behaviour in terms of high-level decisions, safety margins, and control
inputs. It also discusses the new insights the model gave into how drivers solve
merging conflicts.
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To conclude the thesis, the overarching conclusions are drawn and discussed in
Chapter 8. This final chapter also includes a discussion on the results, potential
applications of the model, and an outline of future work.

1.3. Remarks on publications
The following chapters have been previously published or submitted for publica-
tion and were included in the thesis unaltered:

• Chapter 2 was published as:

O. Siebinga, A. Zgonnikov, and D. Abbink, “A Human Factors Approach to
Validating Driver Models for Interaction-aware Automated Vehicles”, ACM
Transactions on Human-Robot Interaction, vol. 11, no. 4, pp. 1–21, Dec. 2022,
ISSN: 2573-9522. DOI: 10.1145/3538705. [Online]. Available: https://dl.
acm.org/doi/10.1145/3538705

• Chapter 3 was published as:

O. Siebinga, A. Zgonnikov, and D. A. Abbink, “Uncovering Variability in Hu-
man Driving Behavior Through Automatic Extraction of Similar Traffic Scenes
from Large Naturalistic Datasets”, in 2023 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), IEEE, Oct. 2023, pp. 4790–4796. DOI:
10.1109/SMC53992.2023.10393913. eprint: 2206.13386. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/10393913/

• Chapter 4 was published as:

O. Siebinga, A. Zgonnikov, and D. A. Abbink, “Modelling communication-
enabled traffic interactions”, Royal Society Open Science, vol. 10, no. 5,
May 2023, ISSN: 2054-5703. DOI: 10.1098/rsos.230537. [Online]. Available:
https://royalsocietypublishing.org/doi/10.1098/rsos.230537

• Chapter 5 was published as:

O. Siebinga, A. Zgonnikov, and D. Abbink, “Interactive merging behavior
in a coupled driving simulator: Experimental framework and case study”,
Human Factors in Transportation, vol. 60, pp. 516–525, 2022. DOI: 10.54941/
ahfe1002485

• Chapter 6 was published as:

O. Siebinga, A. Zgonnikov, and D. A. Abbink, “Human Merging Behavior in
a Coupled Driving Simulator: How Do We Resolve Conflicts?”, IEEE Open
Journal of Intelligent Transportation Systems, vol. 5, no.October 2023, pp. 103–
114, 2024, ISSN: 2687-7813. DOI: 10 . 1109 / OJITS . 2024 . 3349635. arXiv:
2308.04842. [Online]. Available: http://arxiv.org/abs/2308.04842%
20https://ieeexplore.ieee.org/document/10380755/

• Chapter 7 has been submitted for publication in a journal and is available at:

O. Siebinga, A. Zgonnikov, and D. Abbink, “A merging interaction model
explains human drivers’ behaviour from input signals to decisions”, pp. 1–18,
Dec. 2023. arXiv: 2312.09776. [Online]. Available: https://arxiv.org/
abs/2312.09776
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Remarks on publications

Because these chapters have been published or submitted to different journals
and conferences, they differ in their use of British or American English. Chap-
ters 2, 3, and 5 are written in American English while Chapters 4, 6, and 7 use
British English. All other texts are also in British English. I choose to include the
chapters unaltered to preserve their standalone readability. This means that some
information and some figures are repeated throughout the thesis.
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2
A human factors approach to
validating driver models for
interaction-aware automated
vehicles



Amajor challenge for autonomous vehicles is interacting with other traffic par-
ticipants safely and smoothly. A promising approach to handle such traffic

interactions is equipping autonomous vehicles with interaction-aware controllers
(IACs). These controllers predict how surrounding human drivers will respond to
the autonomous vehicle’s actions, based on a driver model. However, the pre-
dictive validity of driver models used in IACs is rarely validated, which can limit
the interactive capabilities of IACs outside the simple simulated environments in
which they are demonstrated. In this paper, we argue that besides evaluating the
interactive capabilities of IACs, their underlying driver models should be validated
on natural human driving behaviour. We propose a workflow for this validation
that includes scenario-based data extraction and a two-stage (tactical/opera-
tional) evaluation procedure based on human factors literature. We demonstrate
this workflow in a case study on an inverse-reinforcement-learning-based driver
model replicated from an existing IAC. This model only showed the correct tacti-
cal behaviour in 40% of the predictions. The model’s operational behaviour was
inconsistent with observed human behaviour. The case study illustrates that a
principled evaluationworkflow is useful and needed. Webelieve that our workflow
will support the development of appropriate driver models for future automated
vehicles.



A human factors approach to validating driver models

2.1. Introduction
One of the great technological and societal promises of the 21st century is the
autonomous vehicle (AV) [1]–[3]. This technology has been under development
in laboratories and under controlled conditions for decades and is now transition-
ing to the real world. However, a major challenge for real-world implementation
of AV technologies is enabling AVs to handle complex interactions with human
road users. AV controllers have recently been proposed that aim to address this
challenge through interaction-aware controllers (IACs) [4]–[18]. IACs incorporate
amodel of human driver behaviour in the controller, to predict how another driver
is likely to respond to the AV’s behaviour. Based on this prediction and its own re-
ward function (e.g., incorporating safety, comfort, etc.), the IAC finds the optimal
action for the AV (Figure 2.1). However, up to now the interactive capabilities
of these controllers have only been demonstrated in simplified simulated environ-
ments (e.g. top-down view computer simulations). Whether the state-of-the-art
IACs are capable of predicting naturalistic driver behaviour and interacting with
humans in real traffic remains an open question.

Figure 2.1: A high-level diagram of a typical interaction-aware controller (IAC) for autonomous vehicles
(AVs). Such a controller operates in situations where the states and actions of a human-driven vehicle
(superscript ℎ) and an AV (superscript 𝑎𝑣) influence each other, e.g. the merging situation depicted in
the left panel. Future states and actions are denoted with subscript 𝑡 + 1, all other states and actions
are at time 𝑡. An IAC determines the optimal action 𝑎 for the AV based on the current state 𝑠 of both
the AV and the human. To find this optimal action, IACs make use of at least two prediction models: a
dynamic model to predict future states (𝑠∗𝑡+1) based on current states (𝑠∗𝑡 ) and actions (𝑎∗𝑡)(the superscript
∗ denotes it can either be used for the AV or the human), and a human driver model to predict the
actions surrounding human drivers will take in response to the AV’s action. Both the dynamic and human
behaviour predictions are evaluated to find the optimal action for theAV, this is usually donewith a reward
function that incorporates aspects like safety and comfort. The validation of the human driver model is
the focus of this work.

Although demonstrating a proposed controller in a simulated traffic environment
is a necessary first step to show its potential, it does not provide sufficient evidence
on how well the controller will generalize to real-world environments. In this work,
we take the position that before implementing an IAC in vehicles to validate its
behaviour in the real world, its underlying driver model should be validated on
natural human driving behaviour. If themodel fails to predict real-world behaviour
accurately, the controller will act on false predictions which can lead to annoying
or even unsafe situations. Such driver model validation can therefore provide
an early indication of the IAC validity without much of the cost associated with
implementing and testing it in real traffic interactions. However, driver model val-
idation is currently not a part of the mainstream approach to IAC validation (see
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e.g. [4], [5], [7]), and a principled framework for such validation is missing from the
literature.
The contribution of our work lies in proposing and demonstrating a human-factors-
based evaluation workflow, in order to help IAC designers in the process of se-
lecting appropriate driver models. The proposed workflow validates driver models
using empirical data obtained from naturalistic (real-world) traffic interactions, ac-
knowledging two levels of driving behaviour [19]: tacticalchoices andoperational
safetymargins. Tactical behaviour refers towhichmanoeuvres are executed (e.g.,
a lane change or car following) and operational behaviour describes how they
are executed (e.g., in terms of safety margins). To demonstrate the potential of
this workflow, we perform a case study that shows that an inverse-reinforcement-
learning-based model, replicated from a model used in a previously developed
IAC [4], does not generalize to real-world data. Even though we do not quantify
the implications of these results for any specific IAC, they still underline the impor-
tance of using validated driver models in AV controllers.

2.2. Validating driver models for interaction-aware controllers
2.2.1.Why validate?
Part of the reason why model validation is necessary is that the simulated envi-
ronments in which IACs are evaluated are not sufficient to assume safe gener-
alization to the real world. A particular aspect of the evaluation is the human
response to the AV’s actions. Two approaches to generate this response are
used. Some studies [5]–[12], [16]–[18] simulate human driver responses using driver
models. However, many of the driver models used for this purpose are also not
validated on natural human driver behaviour, which could indicate a discrep-
ancy between the simulation and natural behaviour. Other studies [4], [13]–[15]
use real-time responses of a human test subject in an abstract top-down view
computer simulation, much like a video game. The gap between such abstract
test environments and real-world driving is large, e.g. due to the absence of risk
perception [20], motion cues, and visual looming [21]. So, again we can expect
the participants’ responses to differ from driver responses in real-world traffic. This
means that both approaches can only provide very limited evidence for general-
ization of the demonstrated interactive capabilities of the IAC to the real world.
To show that the IAC’s behaviour does generalize to the real world, one could
propose to implement the IAC in a real vehicle and demonstrate its workings in
a natural environment. However, deploying a proof-of-concept IAC in the real
world might result in unsafe situations even under highly controlled conditions. This
raises ethical concerns about such real-world testing. Another possibility would
be to use real-time human responses and minimize the mismatch between the
simulation environment and the real world, e.g. by using a high-fidelity driving
simulator. However, such experiments are expensive and time-consuming, and
human behaviour even in realistic driving simulators can still differ from behaviour
in real traffic [20], [22]. For this reason, we advocate a complementary approach:
validating the driver model on naturalistic traffic data before implementing it in
an IAC. The combination of the model validation on real-world data and demon-
strating the IAC’s interactive capabilities in a (simplified) simulated environment
provides a firm ground for the further implementation and testing of the IAC in real
vehicles.
To the best of our knowledge, validation on naturalistic driving data for use in
IACs has not been performed for two of the most commonly used driver models
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Figure 2.2: The proposed driver model validation workflow for interaction-aware autonomous vehicle
controllers. The workflow consists of three steps. In the first step, a suitable dataset is selected to perform
the validation of the driver model on. From this selected dataset, specific situations are automatically
extracted. The actual validation of the model takes place in the last two steps. A distinction is made
based on the level of behaviour. First, the tactical behaviour is validated in step 2. This step reveals to
what extent the driver model shows tactical behaviour that is consistent with human behaviour in the
dataset. behaviour inconsistent with human data, e.g. collisions, is not regarded in the final step. The
third step evaluates the operational behaviour of the model based on human factors literature. This is
done for every tactical behaviour separately. The final conclusion of the validation should be based on
the combined results of steps 2 and 3.

proposed for IACs. These models are the intelligent driver model IDM [23] (used
in [6], [7], [14] to predict driver behaviour and in [12], [15], [17] to simulate other
drivers’ responses) and the expected-utility-maximizing model (used e.g. in [4],
[5] to predict other drivers’ behaviour) that uses a reward function learned from
human demonstrations with inverse reinforcement learning (IRL). Although the re-
ward function in this model is learned from naturalistic driving data, none of the
studies which proposed IACs based on an IRL-based model have validated the
resulting model with respect to its ability to capture human behaviour.

2.2.2. How to validate?
We propose a three-step evaluation workflow (Figure 2.2) that incorporates im-
portant aspects of driver model validation: evaluation against naturalistic data
on both the tactical and operational levels.

Step 1: Select naturalistic data
When validating a driver model for an IAC, we propose that the model is com-
pared against human behaviour data recorded in a natural environment, i.e.
a naturalistic driving dataset. There are increasingly many naturalistic datasets
available, butwhich dataset should onechoose? Andonce thedataset is chosen,
should all the data in the dataset be used uniformly for model validation?
When selecting a naturalistic dataset, one should be aware whether the data
recording was done with obtrusive or unobtrusive methods. Obtrusive methods
are methods where the driver is aware their behaviour is being recorded (e.g., the
SHRP2 dataset [24]). As a result, the driver might have changed their behaviour
e.g., to conform to the expectations of the researchers. Other datasets are gath-
ered without the drivers knowing that their behaviour is being recorded, typically
with drones and cameras (several open-access datasets are available e.g., [25]–
[27]). Because of the possibility of adapted behaviour in obtrusive naturalistic
datasets, unobtrusive datasets are preferable for model validation.
When a suitable dataset is chosen, specific parts of the data need to be selected
to perform the validation on. Data recorded in the real world often contains many
different scenarios, e.g. different locations, vehicle types, and manoeuvres. Using
all this data to validate a driver model would be intractable because humans
behave differently in different scenarios. Instead, comparable scenarios can be
selected from the dataset to be evaluated together. These scenarios should fit
the intended environment of the IAC. At the same time, one should avoid hand-
picking scenarios, or selecting them on low-level characteristics (e.g. only include
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vehicles that reach a certain velocity) because this will reduce the variability in
the data and thus negate the purpose of the validation, to show that the model
generalizes to real-world behaviours. Instead, scenarios should be selected on
higher-level similarities, e.g. include all lane changes or all unprotected left turns.
Open-source software is available that includes examples of how to extract such
scenarios automatically e.g., [28].

Behaviour validation
After selecting relevant scenarios, the model can be trained and validated. Val-
idation of models of human behaviour is often difficult because there are many
aspects that determine if the model’s behaviour resembles human behaviour. In
most cases, the difference cannot be captured by a single metric. For example:
when validating a driver model in a lane-changing scenario, it could be tempting
to use a distance-based error-metric to describe the goodness-of-fit. However, an
event like a collision with a vehicle in an adjacent lane can, in some cases, be
described by a small lateral distance error with respect to a human-driven trajec-
tory. If only this distance error would be examined when validating the model, it
would seem to perform well, but in reality, the model predicts that a human would
collide with another vehicle. The collision is missed in the single-metric validation
procedure, and the (wrong) conclusionwould be that themodel describes human
behaviour with only a small error margin.
This example illustrates that a distinction should bemadebetweenwhatbehaviour
is executed (e.g., car following, crashing, or lane changing) and how it is exe-
cuted (i.e. specific trajectories and safety margins with respect to lane boundaries
and traffic participants). This bears resemblance to the common distinction in
driving behaviour [19] of tactical and operational behaviour (note that strate-
gic behaviour, e.g. route selection, is not covered by the models in IACs). In
this distinction, the manoeuvres executed by the driver, like a lane change, are
tactical behaviour. The manner in which they are executed, e.g., expressed in
accelerations or dynamics of the gaps with respect to other vehicles, is called op-
erational behaviour. Making this distinction in driver model validation is especially
relevant for driver models used in IACs because these models are mostly designed
to incorporate multiple tactical behaviours. This is in contrast to traditional driver
models that were more often designed to only represent one specific tactical
behaviour.
For many tactical behaviours, the corresponding operational behaviour has been
studied in human-factors experiments (e.g., for car following [29]–[34]). These stud-
ies provide the important metrics of human operational behaviour, given a spe-
cific tactical behaviour. Making the same distinction during the validation allows
one to leverage the existing human factors literature, enabling researchers without
in-depth human-factors expertise to validate their models.
Determining what tactical behaviour is executed by the model and if it matches
human behaviour is something that can be done without any expert knowledge.
For instance, it is straightforward to specify if a lane change is made, and to com-
pare if the model performs a lane change in the same situation where a human
does. Once the tactical behaviour is determined, the metrics specifying the oper-
ational behaviour can be defined based on the relevant human-factors literature.
This will require obtaining some knowledge on the subject, but with a properly
specified tactical behaviour, a brief, non-exhaustive driver-behaviour literature
survey would be enough for a researcher to make a motivated choice of the
metrics characterizing the corresponding operational behaviour.
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Because making a distinction between tactical and operational behaviour is rel-
evant for IACs and makes the validation process easier, we propose a sequential
two-stage validation process. The first stage (step 2 in the workflow of Figure 2.2)
is to validate the model’s behaviour on a tactical level, providing a quick and
straightforward distinction between behaviour that clearly resembles or does not
resemble the observed human driving behaviour in the same circumstances. The
second stage (step 3 in Figure 2.2) examines the tactical behaviours separately on
the operational level.

Step 2: Tactical validation
The purpose of the tactical validation step is two-fold. First, it serves to determine
which of the model’s responses are consistent with human behaviour and which
are not. A valid driver model does not predict tactical responses inconsistent with
human behaviour, therefore we will refer to such responses as undesirable tactical
behaviour. Desirable behaviours on the other hand, are all tactical responses that
can be observed in naturalistic human driving data. Second, this step will cate-
gorize the model’s responses so its desirable behaviours can be validated in the
operational validation step according to the right criteria. Undesirable behaviour
can be disregarded during the operational validation step because it does not
matter how the model performs a behaviour that is undesirable in the first place.
To achieve this, a mutually exclusive set of possible tactical behaviours exhib-
ited by the model should be defined. The distinction between these tactical be-
haviours should be based on simple rules (or inclusion and exclusion criteria) such
that all exhibited model behaviour falls in one and only one tactical category.
Which and how many of these categories to include depends on the outcome
of the literature survey discussed earlier. All behaviours in one category should
be validated on the same operational characteristics, which should be taken into
account when determining the categories.

Step 3: Operational validation
For the operational validation step, human-factors literature provides signals and
metrics that best describe human behaviour for specific tactical behaviour. This
operational validation step can compare individual trajectories or averagedmet-
rics between human and model behaviour as long as the metrics and signals
are chosen appropriately and the tactical behaviours are regarded separately.
Examples of such metrics are metrics that relate to the dynamics of the behaviour,
e.g. the gap between vehicles, or to the properties of the manoeuvre, e.g. the
duration of a lane change. Human-factors literature can also providemethods on
how to compare the signals andmetrics. For example, in [29] figures are presented
that relate phase diagrams in car following to responsive actions of human drivers,
such plotting methods can also be used for model validation.

The validation conclusion
The final conclusion of the validation procedure should be based on both the
tactical and operational behaviour displayed by the model. The model should
display desirable tactical behaviour in a way that resembles how humans perform
the same behaviour on an operational level. But because the eventual goal is
to incorporate the driver model in an IAC, the controller’s ability to safely operate
while using the model’s predictions can be seen as the most important factor in
the final conclusion.
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When a driver model shows behaviour that deviates from human behaviour to a
large extent, but the controller that implements the model can still safely operate
with these errors, it can still be concluded that the model is ”good enough” for
use in the IAC. To draw such a conclusion, the maximal acceptable difference
between themodel’s output and human behaviour has to be defined. This should
be done for every IAC separately due to differences in IACs, scenarios, and re-
garded tactical behaviours. Themaximal acceptable difference can for example
be based on an evaluation that shows that the controller can still reliably execute
safe andacceptable interactive behaviour when confrontedwith predictions that
have this maximal deviation from future human behaviour.
However, even if an IAC is robust to inaccurate predictions of the driver model, we
argue that it is still important to validate themodel and report themagnitude of the
deviation from human behaviour. This improves the re-usability of the proposed
model for other IACs and provides a basis for a re-evaluation of the model when
extending or improving the IAC.

2.3. Case study: Methods
To demonstrate the proposed workflow we use it to validate an inverse reinforce-
ment learning (IRL) basedmodel replicated from a study that proposed one of the
first IACs for autonomous vehicles [4]. The choice to validate an IRL-based model
was made because this increasingly popular type of model describes dynamic
human behaviour in multiple scenarios and has not been validated previously.
The two IACswith IRL-based drivermodels discussed earlier [4], [5] use similar imple-
mentations of such a model. However, only the work by Sadigh et al. [4] provides
enough detail, in the form of mathematical description and open-source code,
to replicate the used IRL-based model. For that reason, the model used by Sadigh
et al. is used as a reference for this case study.

2.3.1.Model implementation
IRL-baseddrivermodels assume that humanbehaviour is ”driven” by an underlying
reward function. A parameterized reward function is assumed and inverse rein-
forcement learning is used to infer the parameters directly fromhumandemonstra-
tions (see [35]–[37]). This reward functionwith the learned parameters can be used
in an agent to generate individual predictions of human behaviour. Driver models
basedon IRL use a utility-maximizing rational agent for this purpose. Throughout this
paper, we refer to this method of generating predictions combinedwith a specific
assumed reward function as the model. We refer to instances of the model with
a specific set of parameters as an agent. In IRL-based driver models, the used
reward function consists of a linear combination of features, each with its own
weight:

𝑅ℎ(𝑠, 𝑎) =∑𝜃ℎ𝑖 𝜙𝑖(𝑠, 𝑎). (2.1)

In this formula, 𝑅ℎ denotes the reward of a specific human, 𝑠 is the state (at time
𝑡) and 𝑎 is the action sequence the human will take. This action sequence is
subject to a finite planning horizon. 𝜙𝑖 denotes the 𝑖𝑡ℎ feature and 𝜃𝑖 represents the
corresponding weight, which is learned by IRL from demonstrations produced by
a human driver ℎ. Note that the features 𝜙𝑖 in equation (2.1) are designed before-
hand and do not vary over humans, demonstrations, or situations. The weights
𝜃𝑖 are learned from the demonstrations and vary over humans. These weights
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are learned by maximizing the log-likelihood of an observed demonstration with
respect to the weights, given the assumed features.

2.3.2. Assumed reward function
The reward function 𝑅ℎ used for the IRL-based model in this work was replicated
from [4] and consists of four features for: maintaining a preferred velocity, lane-
keeping, staying on the road, and collision avoidance. The collision avoidance
feature is modeled by a two-dimensional Gaussian function, based on distances
between the centers of vehicles. Because the human demonstrations we use for
the case study were recorded on highways, the heading angles of the vehicles
take very low values and are therefore neglected for collision avoidance. They
are assumed to be equal to the road heading (this is a deviation from the model
used in [4]). The lane-keeping and road boundary features are both Gaussian
functions of the lateral road axis, they are constant over the longitudinal axis of
the road. The velocity feature is the squared error with respect to the desired
velocity. Since the exact desired velocity is not known for the human drivers that
provide the demonstrations, and the legal speed limits that could be used for this
purpose are not always provided with the data, the maximum recorded velocity
of a vehicle is taken as the driver’s desired velocity. The full reward function is given
in equation (2.2).

𝑅ℎ(𝑥, 𝑦, 𝑣𝑥) = 𝜃ℎvel𝜙vel(𝑣𝑥) + 𝜃ℎlane𝜙lane(𝑦) + 𝜃ℎbounds𝜙bounds(𝑦)+
𝜃ℎcollision𝜙collision(𝑥, 𝑦),

(2.2)

where

𝜙vel(𝑣𝑥) = (𝑣𝑥 − 𝑣𝑑)2

𝜙lane(𝑦) = 𝑒−𝑐(𝑦𝑙𝑐−𝑦)
2

𝜙bounds(𝑦) = 𝑒−𝑐(𝑦𝑟𝑏−𝑦)
2

𝜙collision(𝑥, 𝑦) =
1

𝜎𝑥√2𝜋
𝑒−(1/2)((𝑥−𝑥𝑜)2/𝜎2𝑥 ) 1

𝜎𝑦√2𝜋
𝑒−(1/2)((𝑦−𝑦𝑜)2/𝜎2𝑦)

In these formulae, 𝑥 and 𝑦 denote the longitudinal and lateral position as defined
in Figure 2.4, 𝑙𝑐 and 𝑟𝑏 denote the lane center and road boundaries respectively,
where the road boundaries are defined at half a lane width outside the outermost
marking. 𝑣 represents velocity and subscript 𝑜 denotes the other vehicle. The
constants 𝑐, 𝜎𝑥 and 𝜎𝑦 are used to shape the features. A visual representation
of the reward function, excluding the velocity feature, can be found in Figure 2.3.
The constants that shape these features were determined with a grid search on
the first 15 demonstrations of the used dataset. Initial guesses of the parameters
were based on a visual comparison of the heatmap to the road image. Variations
around these initial guesses were estimated based on dimensions of the lanes. (For
example𝑚𝑖𝑛(𝜎𝑦) = 1.4 𝑚, thus 95.4% of the lateral influence on collision prevention
lies within 2.8 𝑚 distance between vehicle centers. With a lane width of 4 𝑚 and
a 2 𝑚 wide vehicle, this means the lane marking has to be crossed before the
collision prevention starts contributing to the reward. Thus, the lower bounds of our
parameter grid are close to the smallest plausible parameter values.) We used the
following sets in the grid search: 𝑐 = {0.14, 0.18, 0.22}, 𝜎𝑥 = {5.0, 10.0,15.0, 20.0}, 𝜎𝑦 =
{1.4, 1.8, 2.2}, where the bold value the selected value. Each parameter combina-
tion in the grid was evaluated based on the resulting number of desired tactical
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Figure 2.3: A heat map of the reward function (equation (2.2)) used for the IRL-based driver model where
the black block indicates the ego vehicle. Warmer colours indicate low reward, cooler colours indicate
high reward. The feature for velocity is not shown here because it does not depend on the position.
The dimensions and positions of the features displayed here are assumed to be constant over different
humans. The weights, represented here by the colours, differ between humans and are learned from
demonstrations.

behaviours by the agent (see Section 2.2.2, Step 2 for the definition of desired
behaviour). The parameter sets 𝑐, 𝜎𝑥 , 𝜎𝑦 = 0.14, 15.0, 1.4 and 𝑐, 𝜎𝑥 , 𝜎𝑦 = 0.14, 20.0, 1.4
had the maximum number of desired tactical behaviours in this grid search, we
chose to select the combination containing our initial guess.

2.3.3. Using the proposed workflow
Here we will discuss the use of the proposed workflow (Figure 2.2) to validate the
IRL-based model with the reward function as shown in equation (2.2) step by step.

Step 1: select data
The first step of the proposed workflow is to select a naturalistic dataset. Among
multiple naturalistic driving datasets that are openly available, in this case studywe
considered three datasets: the NGSIMdataset [26], the pNEUMAdataset [27], and
the HighD dataset [25]. Of these three the NGSIM data has larger uncertainties
in the trajectories because it was recorded with fixed-base cameras instead of
drones. The pNEUMA dataset was recorded in an urban environment, this does
not match the environment of the regarded IAC [4] which focuses on multi-lane
scenarios (e.g. a highway) with human behaviour that mostly consists of actions to
prevent collisions, like lane changing. The HighD dataset contains high-precision
data recorded in a multi-lane environment. It also contains dynamic behaviour
such as lane changes to prevent collisions. For these reasons, we will use the
HighD dataset. This dataset consists of 60 separate recordings, recorded in 6 dif-
ferent locations in Germany. All recordings were made on highways using drones
equippedwith cameras; from these recordings, trajectory datawas automatically
extracted [25]. Every recording is of a fixed stretch of highway, the average length
of these recorded stretches is 416 𝑚, the average duration of a single-vehicle track
is 14.34 𝑠.
To visualize the data and the resulting agent behaviour we used TraViA [28], an
open-source visualization and annotation tool for trajectory datasets. TraViA can
visualize all mentioned datasets and we extended it to train and visualize the IRL-
based model. The extension code is available online [38]. An example frame of
the HighD dataset visualization can be found in Figure 2.4.
From this dataset, we automatically select suitable scenarios for training and vali-
dating the model. These scenarios should fit the intended use of the IAC [4]: in our
case study, we assume the goal of the IAC is to interact with human drivers who
perform lane changes. This means we could consider two distinct behaviours in
the HighD dataset: lane changing and merging. A merging lane is only present
in 3 of the 60 HighD recordings. For this reason, we will use human lane-changing
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Figure 2.4: An example frame of the HighD dataset [25] as visualized using TraViA [28]. The frame includes
a stretch of a highway in Germany, where vehicles drive on the right side of the road and where, in some
of the cases, there are no legal speed limits. The orange shapes represent regular cars, the green shapes
are trucks. All vehicles have a vehicle-ID shown in white. The white arrows display the coordinate frame
and the yellow marking shows a visualization of the gap between two vehicles as used in the metrics for
step 3 of the validation workflow.

manoeuvres for validation. For consistency, the three recordings with a merging
lane were not considered.
As mentioned before, the features in the reward function consider collision avoid-
ance, lane-keeping, staying on the road, and maintaining a preferred velocity.
This means that not all lane changes can be explained with this model. Lane
changes to the right are not covered because they are ”driven” by a need to
adhere to (socially acceptable) traffic rules that are not incorporated in the re-
ward function (In Germany, it is obligatory to drive in the rightmost lane if it is free.
So a lane change to the right is most often performed simply because that lane is
free, not to avoid a collision. It can therefore not be explained by the used reward
function). Therefore, only single lane changes to a left lane are considered for
training and validation. The highD dataset includes the number of lane changes
for every trajectory (basedon lanecrossings) and the current lane number at every
frame. We automatically extracted all used trajectories based on these metrics.

Step 2: tactical validation
The next step is to define a set of tactical behaviour categories. There are only
a limited number of possible tactical behaviours on a highway without an exit
lane, we will consider four possibilities: car following, lane changing, colliding,
and crossing the road boundaries. Lane-keeping is not regarded as a separate
behaviour since all vehicles on a highway essentially follow another vehicle. In this
set car following and lane changing are regarded as desirable behaviours, and
colliding and going off-road are considered undesirable.
Besides defining the behaviour categories, we established a procedure to place
the trajectories produced by the agent in one of these categories based on a
hierarchy in tactical behaviours. First, if an agent collided with another vehicle,
this is labeled as “collision”. If the agent did not collide, a check is done to see
if the center of the vehicle stayed within the outer road boundaries; if not, the
tactical behaviour is labeled “off-road”. Agents that did not fall in one of the
two categories above are checked for lane changes; if there is one, the tactical
behaviour is labeled “lane change”. And finally, agents that showed none of
these three behaviours are placed in the “car following” category. All of these
checks are implemented in the software and are performed automatically for all
agents by checking for overlap with other vehicles and evaluating the vehicle’s
center position for every time step.
The used hierarchy is based on the idea that a predicted collision has the highest
impact for IACs. If a model predicts a collision, an IAC will act to avoid this, inde-
pendent of the fact that the model predicts a lane change first. Vehicles leaving
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the road will also have a big impact on IAC behaviour because it reduces the
number of vehicles to consider and thus changes the scene. However, the IACwill
not take drastic actions to avoid this, therefore it comes second in the hierarchy.
Only if none of these undesirable behaviours are executed by the model, lane
changes are relevant. Finally, all other behaviours within a single lane is grouped
as car following. A more fine-grained distinction could have been made here
by including behaviours such as nudging or aborted lane changes. But before
considering those more sophisticated behaviours, we chose to evaluate if and
how the model displays car following in general.
To evaluate if the model’s tactical performance is adequate for use in an IAC, a
maximum acceptable deviation from human behaviour needs to be specified.
Because no IAC implementation is used in this case study, we cannot specify such
a threshold here.

Step 3: operational validation
The last step is to determine how to evaluate the model’s operational behaviour
for the cases where the tactical behaviour falls in one of the desirable categories.
We have defined two desirable categories: lane changes and car following. Ear-
lier studies investigated human car-following behaviour and risk perception using
inverse time-to-collision vs time gap plots [34], [39], these metrics were also used
to evaluate human lane changes before [40].
Time-to-collision is defined as the time it will take until a vehicle collides with the
preceding vehicle given that they both continue at their current velocity,

TTC =
𝑥gap
𝑣rel

. (2.3)

The time gap is the time it will take a vehicle to close the current gap with the
preceding vehicle, given its current velocity,

𝑡gap =
𝑥gap
𝑣agent

. (2.4)

In these equations, TTC is time-to-collision, 𝑣rel is the relative velocity of the agent
and the preceding vehicles, and 𝑥gap is the distance gap between the vehicles.
This distance gap is visualized in Figure 2.4. Finally, 𝑣agent is the longitudinal velocity
of the agent vehicle.
Both TTCand timegapare available in the HighDdataset for humanbehaviour; for
the agent behaviour, the metrics are calculated using the equations (2.3) & (2.4).
Again, quantifying an acceptable error margin can only be done for a specific
controller. Because we don’t demonstrate a controller, we can only show the
difference between the model and human behaviour, but in this case study, we
cannot quantify if this is acceptable for any specific IAC.

2.3.4.Model training
The optimization procedure to find the weights that fit a human demonstration
best is the same as used by Sadigh et al. [4]. The negated log-likelihood function
as proposedby [41] is minimizedwith respect to theweights. To keep this tractable,
the human demonstration is divided into sections with the same number of frames
as the control horizon used in the agent (𝑁 = 5). All data frames are used, so the
time step is 1

25 𝑠 and the planning horizon is 15 𝑠. The log-likelihood functions of the
parts of the demonstration are summed and the summed negated log-likelihood
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is minimized. We assume that every lane-change trajectory in the dataset comes
from a different human, an agent is trained separately for every trajectory, this
resulted in 3279 trained agents. Demonstrations on which the optimization proce-
dure fails (i.e., no minimum of the negated log-likelihood function could be found)
were discarded (2302 demonstrations, 41%).
Because highway data is used, the velocities of the vehicles are high (mean =
29.7𝑚/𝑠) and heading angles are small. The heading angles of the vehicles are
ignored in the dataset. For this reason, the dynamics of the vehicles are mod-
eled as point masses. Because the trajectories are extracted from videos, no
direct acceleration data was recorded. Acceleration data is available from the
HighD dataset, but this has been reconstructed from velocity data. For this reason,
the humans in the demonstrations are assumed to have direct control over the
longitudinal and lateral velocities. Making the state and action vectors both 2-
dimensional containing respectively an 𝑥, 𝑦-position and -velocity. This assumption
is justified because the goal of the model is to learn the reward function, not the
dynamics of human control.

2.3.5. Validation of agent behaviour
To validate the agent’s behaviour, we evaluate the response of every agent in-
dividually in the same scenario that was used to train the agent. A dedicated
test-set is not required contrary to most machine learning approaches because
the log-likelihood optimization proposed by Levine and Koltun accounts for sub-
optimal demonstrations by humans. This means that the learned reward function
does not need to be fully optimized in the human-driven demonstration, but the
agent will fully optimize the reward function. So the agent might display different
behaviour than the human in the same situation and thus this situation can be
re-used for validation.
For evaluation, the agent will be placed in the same initial position and its be-
haviour is recorded for the same duration as the demonstration trajectory. Be-
cause the agent learned its reward function from this exact situation, this is a
best-case scenario for the model. This approach also has the advantage that
we can directly compare the agent’s behaviour to the human demonstration it
was trained on.
As for the IRL training, heading angles are neglected and the dynamics of the
vehicle are assumed to be point mass dynamics. To approximate the states and
actions of real drivers, the agents are assumed to have direct control over the
linear accelerations of the vehicle. This results in a 4-dimensional state vector per
vehicle, containing both 𝑥, 𝑦-position and -velocity, and a 2-dimensional action
vector containing the 𝑥, 𝑦- accelerations. The agent is a utility-maximizing rational
agent, so it will select an action 𝑎 in state 𝑠, that maximizes its summed reward
function 𝑅 over a time horizon 𝑁 = 5. Again, the times-step is equal to the frame
rate of the HighD dataset ( 125 𝑠). The agent has full knowledge about the future
trajectories of all adjacent vehicles. As for the choice of situation, this can be
regarded as a best-case scenario for the agent, since it has a perfect prediction
system to predict other human behaviour.
The direct control over lateral accelerations, combined with the point mass
dynamics, can result in trajectories that are not subject to normal vehicle
dynamic constraints. To approximate normal vehicle dynamics, the agent’s
actions (𝑥, 𝑦- accelerations) are constrained to the maximal values of these
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accelerations found in the HighD dataset. The 𝑥-acceleration is constrained
between (−6.63, 20.06) 𝑚/𝑠2 and the 𝑦-acceleration between (−1.63, 1.63) 𝑚/𝑠2.

2.4. Case study: Results
From the first 57 recordings in the HighD dataset, all 5581 single lane changes to
the left lane were automatically detected. These lane changes served as human
demonstrations for the IRL-based driver model. Out of these 5581 demonstrations,
3279 resulted in a set of weights after the inverse reinforcement learning proce-
dure. For the other 2302 demonstrations, the IRL procedure failed to converge.

Figure 2.5: Inverse TTC vs time gap plots of human demonstrations (panels a and c) and IRL agent
behaviour (panels b and d) in lane changes and car following. Panel a shows human behaviour in the
used demonstrations. Since these demonstrations do not contain any car following, panel c shows 55
illustrative examples of car-following behaviour selected from other trajectories in the dataset, three are
highlighted for clarity. Black diamonds indicate the initial position, this is the first frame in which a vehicle
appears in the HighD dataset. In panels a and b, orange dots indicate a lane change, corresponding to
the frame in which the center of a vehicle crosses the center-line between lanes. From panels a and b
we conclude that themodel’s lane change behaviour has human-like dynamics in general, however, the
model makes lane changes at substantially higher inverse-TTC (lower TTC) compared to humans. From
panels c and d we conclude that the model’s car-following behaviour does not resemble human car-
following behaviour.

In practice, the failure of the IRL procedure means that the likelihood function
adopted from [41] becomes intractable. This function contains the logarithm of
the determinant of the Hessian matrix (𝑙𝑜𝑔|−H|). When this determinant becomes
negative, the optimization fails. We found that this can happen when the opti-
mization algorithm assigns a positive value to 𝜃ℎ𝑣𝑒𝑙 (i.e., when deviating from the
desired velocity is rewarded instead of punished). Note that weights are not re-
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stricted to be either positive or negative by the IRL procedure. IRL learns if a feature
represents a reward or penalty for the human demonstration.
To examine if this was the cause of the high rate of failures in our trainingprocedure,
we estimated the Jacobian used in the optimization procedure for the initial values
of 𝜃. For 97% of the demonstrations where IRL failed, the Jacobian value for 𝜃ℎ𝑣𝑒𝑙
was negative and hadamagnitudeat least 10 times larger thanall other Jacobian
values. This did not happen in demonstrations where IRL succeeded (0 out of
100 randomly selected cases). Which indicates that the optimization algorithm
attempted to use positive weights for 𝜃ℎ𝑣𝑒𝑙 as they have a high likelihood to explain
the demonstration in the failed cases.
This could mean that features in the reward function that are based on the de-
viation from a maximum observed (or allowed) velocity are not suitable for use
on real-world traffic conditions. On the other hand, the IRL procedure might not
have failed in these cases if 𝜃ℎ𝑣𝑒𝑙 was restricted to always be negative (or more
generally, if weights are restricted to represent either rewards or penalties). Further
investigation to answer these questions is left for future work. We discarded the
demonstrations were training failed and continued the attempt to validate the
IRL-based driver model using the training data for which the model converged.
The 3279 agents that trained successfully were placed in the same scenario they
were trained on to examine to what extent they show human-like behaviour on a
tactical and operational level. Wewould like to remind the reader that, combined
with the fact that all agents had access to perfect predictions of all surrounding
vehicles, this constituted a ’best-case scenario’ for the model.

number of
agents

percentage
of agents

percentage
of humans

Lane-change 1318 40.2% 100.0%
Collision 875 26.7% 0.0%
Car following 593 18.1% 0.0%
Off-road 493 15.0% 0.0%
Total 3279 100% 100%

Table 2.1: Tactical behaviour as shown by the IRL agents and in the human-driven demonstrations the
agents were trained on.

Tactical behaviour
On a tactical level, we have defined four possible behaviours to categorize the
resulting agent behaviour: car following, lane changing, colliding, and crossing
the road boundaries. Only in 40.2% of the cases the model showed the same
tactical behaviour as the human demonstration, a lane change (Table 2.1). In
more than 41% of the cases, the model either collided or went on an off-road
adventure. This behaviour was not present in the chosen subset of the human
data, so we conclude that model behaviour is inconsistent with human behaviour.

Operational behaviour
We then compared the operational behaviour of the model to the operational
behaviour in the human demonstrations using the inverse time to collision vs time
gap plots (Figure 2.5). Trajectories with multiple preceding vehicles show jumps
in these plots due to suddenly changing values, for that reason those trajectories
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were omitted. Agents and humans that perform a lane change when the pre-
ceding vehicle is out of sight are also omitted since no inverse TTC and time gap
data can be calculated for them for the final frames. All car-following trajectories
are cropped to the point where the preceding vehicle gets out of sight.
The plots on the left side of Figure 2.5 (a & c) show human operational driving
behaviour. In the case of lane changing (2.5-a.), the inverse TTC increases while
the time gap decreases, until the point where the center lane-marking is crossed,
depicted with an orange circle. In the case of car-following (2.5-c), humans oscil-
late around a preferred equilibrium point.
The model’s behaviour for the same manoeuvres can be seen on the right side of
Figure 2.5. Themodel’s lane-changing behaviour (2.5-b) has human-like dynamics
in general (as in 2.5-a), however, the model makes lane changes at substantially
higher inverse TTC (lower TTC) compared to humans. Also, the time gap at the
moment of the lane change is on average smaller than for the human demon-
strations. To further illustrate the differences in the lane change dynamics, we
investigated the distributions of inverse TTC and time gap at the moment of lane
change (Figure 2.6). This shows substantial differences between the estimated
distributions. We performed a paired t-test to check for significant differences,
both the inverse TTC (𝑡(1075) = −7.61, 𝑝 = 6.1e−14 < 0.001, Cohen d=0.302)
and time gap (𝑡(1075) = 13.49, 𝑝 = 2.0e−38 < 0.001, Cohen d=0.234) values at
the moment of lane change differ significantly between the model and human
demonstrations. So for lane-changing behaviour, we conclude that the IRL-based
model does not resemble human behaviour on an operational level.
When comparing the agent’s car-following behaviour (2.5-d) with the human’s
car-following behaviour (2.5-c), there are no oscillations around an equilibrium
point for most agents. The general shape resembles that of a human lane-
changing manoeuvre (2.5-a) without crossing the center lane-marking. From this,
we conclude that if the model shows car-following behaviour, it does not do that
in a way that resembles human oscillatory car-following behaviour but instead it
tailgates the preceding vehicle.

Figure 2.6: Estimated distributions of inverse time to collision and time gap at the moment of the lane
change. The orange distributions represent the model’s behaviour and the blue distributions represent
the human demonstrations. The mean values for inverse TTC are 0.19 𝑠−1 for human lane changes and
0.47 𝑠−1 for the model. The mean values for time gap are 1.05 𝑠 for human behaviour and 0.85 𝑠 for the
model behaviour.
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Reason for the agents’ behaviour
Why do the IRL-based agents show behaviour that is so different from human be-
haviour, even though their reward function was learned from human demonstra-
tions? We randomly selected several agent trajectories for manual examination
using the TraViA [28] traffic visualization tool to answer this question. Examples
of these trajectories can also be found as videos in the supplementary materials.
From these manual evaluations, twomain causes were identified that explain why
the behaviour of the agents does not represent human behaviour: the model’s
assumptions and the IRL fitting procedure.
To start with the cases where the model’s assumptions cannot explain the desired
behaviour. Consider a demonstration where a human is merging in a slow-moving
and crowded left lane to overtake a truck farther ahead in the right lane. This
might be beneficial in the long run because the truck can be overtaken, but such
behaviour is unlikely to be beneficial within the short planning horizon of themodel,
especially because the distance-based collision features promote staying away
fromother vehicles. This issue is similar to the previously identified problem that lane
changes to a right lane cannot be explained by the currently assumed reward
function. In both of these cases, no matter the learned weights, the assumed
reward function will not lead to the desired behaviour within the planning horizon.
In other cases, the approach of learning the weights from a demonstration us-
ing an assumed reward function can be identified as the cause of the problem.
Many agents that collided learned their weights from a demonstration where the
human moves into the area influenced by the collision feature (see Figure 2.7 for
an example). Because the dimensions of this collision feature are fixed and only
the weights are learned in the IRL procedure, the resulting collision weight will be
low, i.e. a low collision weight is the only way to explain the humanmoving into this
area. When this lowcollisionweight is used in the agent to generate behaviour, the
agent will not perform a lane change, because moving into the collision-feature
area will always decrease the reward. Instead, the agent will stay in its lane. When
it approaches the preceding vehicle, it will collide, because of the low collision-
prevention weight.
The underlying problem here is that the assumed reward function cannot describe
the human’s demonstrated behaviour properly. Suppose using such a flawed
reward function with hand-picked weights. In that case, one would expect pre-
diction errors on the operational level, because the timing of the lane change
is determined by the distance-based collision feature. In this case however, the
IRL procedure exaggerates the effects of the flawed reward function by learn-
ing weights that result in more collisions. So even though the problem lies in the
flawed reward function and not the IRL procedure itself, the combination of the
IRL-procedure and reward function might not only limit the performance of the
model, it can actively make it worse.

2.5. Discussion
In this work, we have proposed a validation workflow for driver models in
interaction-aware AV controllers. We illustrated its utility through a case study of
validating an inverse reinforcement learning-based driver model replicated from
literature [4] using naturalistic highway driving data extracted from the HighD
dataset [25]. Our validation workflow (Figure 2.2) incorporates the automatic
extraction of comparable lane change scenarios (5581) on which the IRL model
was trained (step 1). The validation of the model was then performed in two
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Figure 2.7: An example of a demonstration where the assumed anti-collision feature does not describe the
human’s demonstrated behaviour. In this figure, the black shape represents the position of the human-
driven demonstration vehicle during a lane change manoeuvre, the white arrow indicates its direction of
motion. Only the collision feature is visualized with warmer colours indicating higher cost. In this example,
the demonstrating vehicle is moving from a low-cost area (right lane) to a high-cost area (left lane). The
only way to explain this behaviour with the assumed features is to assign a low weight to the collision
feature. Apparently, the demonstrating human does not care so much about moving into the higher
cost area in the left lane, other features must be more important. When these learned weights are then
used in a utility-maximizing agent in the same situation, it will not make the demonstrated lane change.
Instead, it will stay in the right lane with a lower penalty and finally collide with the preceding vehicle (969),
because collision prevention has a low weight.

related stages. First, we examined the tactical behaviour of the model (step
2). Even though no collisions or off-road driving were present in the training
data, the model produced such behaviour in more than 41% of the cases
(Table 2.1). Second, we analyzed the operational behaviour of the model in the
59% remaining trajectories (step 3). This analysis revealed that even though the
dynamics of the model’s lane changes are similar to humans (Figure 2.5a,b),
the model performed the lane changes with significantly smaller safety margins
(Figure 2.6). Furthermore, the dynamics of the model’s car following behaviour
was largely inconsistent with human behaviour (Figure 2.5c,d).
In conclusion, despite training the IRL-based model on data of real-world driving
behaviour, our 3-step evaluation workflow exposed how the model is not able
to produce realistic behaviour in the same scenarios. This case study illustrated
that despite promising results in simple IAC demonstrations, the models used for
human behaviour prediction in IACs can deviate substantially from actual human
behaviour, which can have serious ramifications for generalization of IACs to real-
world environments. Our results highlight the importance of validating the models
used in interaction-aware motion planning for autonomous vehicles, and suggest
an easy-to-use framework to aid researchers in doing so.

Practical applicability of the validation workflow
The case study of validating an IRL-based driver model illustrated the practical
applicability of the proposed validation workflow (Figure 2.2). In the first step of
the workflow, the case study showed the feasibility of automatically extracting
data from an open-access naturalistic dataset. Even after narrowing down the
extracted data to select specific scenarios (in our case, lane changes), the data
were sufficiently rich to serve as training data for the IRL model. Note that multiple
other datasets were available for consideration (e.g., NGSim [26] & PNeuma [27])
to further enlarge the data and/or use scenarios other than lane changes.
The second and third steps of the workflow propose a two-stage evaluation ap-
proach, separated into tactical and operational driver behaviour. The case study
illustrated why this two-stage validation is useful and necessary. On the tactical
level, the large number of collisions and off-road driving would have been hard
to identify in a one-stage metric-based validation (e.g. mean square-root error
in [42]). On the operational level, the evaluation illustrated that the differences
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between car following and lane changing in human behaviour were not reflected
in the model’s behaviour. This would have been impossible to identify without first
examining the tactical behaviour.
The results of the case study also underline the importance of validating driver
models for IACs in general. The discrepancybetween thedrivermodel and human
behaviour suggests that an IAC using this modelmight not safely generalize to real-
world scenarios. The case study shows that models that do not actually capture
human behaviour are not just a hypothetical issue, but a practical concern for
IACs developed for autonomous vehicles.

Implications for interaction-aware controllers
The results of the IRL-basedmodel validation have implications for IACs that would
use this model to predict other drivers’ responses. Wrong predictions on the tacti-
cal level can lead to dangerous situations. If an AV decides to accelerate based
on an inaccurate prediction that a vehicle in an adjacent lane will stay there, a
dangerous situation might occur when the other vehicle moves in front of the AV.
The same holds for inaccurate predictions on an operational level. For example,
the model will close the gaps to a (very) high inverse TTC (low TTC) compared
to human drivers. This can lead to over-conservative AV behaviour because the
controller overestimates the aggressiveness of the human. The full extent of these
implications needs to be further examined in future work.

Related work and generalizability
To the best of our knowledge, our work is the first attempt to validate a drivermodel
used in interaction-aware controllers on both the tactical and operational levels.
The work on which this model was based [4] does not use naturalistic data and
reports no validation attempt of the behaviour model. Another related study [5]
does use naturalistic data (NGSim) to train the IRL-based model, but also does
not report any validation of the trained model. In the supplementary material
(available at [42]) Schwarting et al. do report the mean squared errors of their
model for merging scenarios. However, given the complexity of human behaviour
in traffic interactions, such one-dimensional averaged error metrics provide only
rudimentary information on how well the model captures human behaviour.
Driver model validation using naturalistic data has been performed for other use
cases than IACs. In [43] five car-following models are validated for use in micro-
scopic traffic simulations on naturalistic data collected in Shanghai. Their valida-
tionmethod could also be useful when designing IACs, and our validationmethod
could as well be used to validate models developed for applications other than
IACs. However, we argue that because our method includes the tactical and op-
erational validation steps, it is more suitable to validate models displaying multiple
higher-level behaviours.
Besides the IAC literature, there have been other driver modelling attempts using
IRL. However, IRL-based models can differ substantially from each other in terms
of the used reward function. Naumann et al. studied the suitability of different
cost functions for different driving scenarios [44] and showed that there are sub-
stantial differences. The other modelling attempts that use IRL differ from our work
precisely in the sense that they target another scenario (e.g. [45] who regards
curve negotiation) or use different reward function features (e.g. [46] who uses
velocity-based features for risk perception). That means that the results of those
works should be regarded as validations of different models, despite the fact that
they are also based on IRL. This observation leads to two conclusions. First, other
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models that use different features should be validated as new models even when
they also use IRL. Second, the choice of features for the reward function impacts
the performance of the model, which might provide an opportunity to improve
models that underperform.
The reasons why the IRL-based models perform poorly in our case study will most
likely generalize to other IRL-basedmodels that use similar distance-based collision
features in the reward function. The results show that such distance-based features
do not capture the essence of human driving behaviour. Only changing the
shape or dimension of a position-based feature will not solve this. Instead, we
advocate that the metrics used in the reward function features should be based
on human factors literature for the targeted tactical behaviours, as was done in
the operational validation of the model; e.g. the distance-based collision feature
could be replaced with a TTC-based feature (similar to the previously mentioned
model in [46]).
Other validation attempts of human driver models that do not specifically target
IACs and do not use IRL also exist, one especially related to our work is [47]. In that
work, Srinivasan et al. compare the trajectories generated with a deep-learning-
based model to naturalistic driving data. As in our work, the comparison is based
on an in-depth analysis of the resulting trajectories instead of one-dimensional
metrics. They show that, also for deep-learning-based driver models, validation
should be grounded on a low-level comparison of trajectories, not just high-level
metrics. They do however not provide a generalized framework for performing
such validations as we do with our proposed workflow.

Limitations and recommendations
This work has three main limitations. First, we used only a single demonstration of a
lane change to train the IRL, whichmight explain part of the discrepancy between
human and model behaviour in the results. However, providing the system with
more training data might only slightly improve the model’s performance. In the
case study we identified the causes of the observed problems to be the features
of the reward function, not the weights. Adding more training data could result in
weights that better fit a specific driver. But it will not negate the problem with the
features used in the reward function.
Second, it should be noted that the planning horizon of themodel is very short due
to the combination of a low number of frames and a high frame rate (𝑁 = 5 at
1
25 𝐻𝑧). The number of frames within the planning horizon was chosen based on
the previous work [4] and to keep the IRL procedure tractable. The frame rate was
directly adopted from the HighD dataset for simplicity, both for reproduction pur-
poses and to not introduce any extra assumptions when down-sampling the data.
Increasing the planning horizon and examining themodel’s behaviour under those
conditions is left for future work.
Finally, our case study only attempts to validate the model, it does not quantify
the implications of the outcome for use of the model in an IAC. Therefore, we
are unable to say which aspects of the model’s behaviour would be tolerable
when used in an IAC or which aspects have major consequences. Quantifying
the implications of the mismatch between the model’s, and naturalistic human
behaviour is left for future work. Answering such a question is an interesting topic
of research on its own, a perspective on how to approach such an evaluation can
be found in [48].
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Future work should also focus on validating more driver models for use in AV con-
trollers, e.g. the Intelligent Driver Model [23] mentioned in the introduction is used
in many simulations and demonstrations to model individual human behaviour for
IACs and should be validated for such use. Future work on IRL-based driver models
could focus on redesigning the used reward function such that it better captures
similarities between human drivers by using human-factors literature as a starting
point. Besides that, the IRL-based model used here could be extended to take
the uncertainty in human behaviour into account. Either the uncertainty over the
learned rewards could be targeted by learning multiple reward functions (as is
done in [44], [49]) instead of only single parameters and selecting the best fit, or
stochasticity could be added when selecting the actions to relax the assumption
of humans being utility maximizers (also done in [49]). However, such changes to
the model could complicate the implementation in an IAC.

2.6. Conclusions
In this paper, we argued for validation of the driver models used in interaction-
aware controllers. We proposed an evaluation workflow for such validation, illus-
trated through a concrete case study. Based on the findings in our paper, we
conclude the following:

• The proposed workflow allowed for a detailed evaluation of a driver model
replicated from literature, based on an open-source dataset fromwhich 3279
human-driven lane changes in moderately heavy highway traffic could be
extracted. After training the model on each lane change, it did not repro-
duce adequate behaviour when exposed to the same conditions. It gener-
ated crashes and road departures in 41.7% of the cases (inadequate tac-
tical behaviour). For the remaining cases, unrealistic safety margins were
observed (inadequate operational behaviour). These unrealistic predictions
show that models that do not capture realistic human behaviour are a prac-
tical concern for implementing IACs in future autonomous vehicles.

• During the case study, the proposed workflow proved to be practically ap-
plicable, providing a structured basis for model validation in two stages:

– First, validating the tactical behaviour illustrated to what extent high-
level choices are correctly predicted (e.g., that a lane change occurs,
rather than staying behind the lead vehicle see Table 2.1).

– Second, correct tactical behaviours produced by a model should
be validated in additional detail, by evaluating to what extent
the behaviour is executed in a way that resembles the timing and
spatio-temporal safety margins acceptable to human drivers (see
Figure 2.5).

– In these two stages, different tactical behaviours should be evaluated
based on different operational criteria because differences in human
operational behaviour were observed for different tactical behaviours
(see Figure 2.5).
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3
Uncovering variability in
human driving behavior
through automatic extraction
of similar traffic scenes from
large naturalistic datasets



R ecently, multiple naturalistic traffic datasets of human-driven trajectories have
been published (e.g., highD, NGSim, and pNEUMA). These datasets have been

used in studies that investigate variability in human driving behavior, for example
for scenario-based validation of autonomous vehicle (AV) behavior, modeling
driver behavior, or validating driver models. Thus far, these studies focused on the
variability on an operational level (e.g., velocity profiles during a lane change),
not on a tactical level (i.e., to change lanes or not). Investigating the variability
on both levels is necessary to develop driver models and AVs that include multiple
tactical behaviors. To expose multi-level variability, the human responses to the
same traffic scene could be investigated. However, no method exists to automat-
ically extract similar scenes from datasets. Here, we present a four-step extraction
method that uses the Hausdorff distance, amathematical distancemetric for sets.
We performed a case study on the highD dataset that showed that the method
is practically applicable. The human responses to the selected scenes exposed
the variability on both the tactical and operational levels. With this new method,
the variability in operational and tactical human behavior can be investigated,
without the need for costly and time-consuming driving-simulator experiments.



Uncovering variability in human driving behavior

3.1. Introduction
In recent years, multiple open-access naturalistic datasets have been published.
Some of these datasets are constructed by first recording videos of traffic with
mounted cameras (e.g., NGSIM [1]) or drones (e.g., highD [2] and pNEUMA [3]).
Image recognition techniques are then used to extract trajectory data from these
videos. Such datasets contain trajectories for all vehicles that pass through a
specific area.
Researchers have used these datasets for multiple purposes, among which:
scenario-based validation of autonomous vehicle (AV) behavior (see [4]
for a review), modeling and predicting driver behavior (e.g.,[5]–[7]), and
validating driver models to be used in autonomous vehicles (e.g.,[8]). In all these
applications, the variability (the range of human behaviors that can be expected
in response to a given situation, sometimes referred to as uncertainty) in driver
behavior is relevant.
Currently, variability is mostly regarded on the level of operational driving behavior
(e.g., [5], [6], [9]–[11]). Operational driving behavior considers the execution of a
maneuver [12], for example a lane change. However, variability does also exist
on the tactical level, that is, in the choice of maneuver when a driver responds to
a traffic scene [12]. For instance, some drivers might respond to a slower-moving
vehicle in their lane by overtaking it, while others will brake in the same situation.
Understanding variability on both the operational and the tactical level is impor-
tant for assessing the human-likeness and acceptability of AV behavior, and also
for validating human driver models used in AVs [8]. The reason is that both these
applications must consider all possible tactical behaviors under given conditions.
Traditional driver models on the other hand, mostly target a specific tactical be-
havior (e.g., car following in the Intelligent Driver Model [13]), thus for their appli-
cation, only operational variability is relevant. When designing driver models that
describe multiple tactical behaviors, the variability in tactical behavior also needs
to be understood.
To study driver behavior variability to its full extent, similar traffic scenes have to be
(automatically) extracted from the previouslymentioneddatasets to compare the
human responses to these scenes. However, most automatic extraction methods
select traffic scenarios (see [4] for a review), not traffic scenes. According to Ul-
brich et al. [14], a scenario ”describes the temporal development between several
scenes in a sequence of scenes..”, where ”a [traffic] scene describes a snapshot
of the environment including the scenery and dynamic elements..” (dynamic el-
ements in the discussed datasets are (human-driven) vehicles). These definitions
show that (extracted) traffic scenarios include part of a trajectory. Similar trajec-
tories describe the same tactical behavior in most cases. Thus, selecting similar
traffic scenarios implicitly means selecting similar tactical responses. Some other
approaches even explicitly extract data corresponding to a pre-specified tactical
behavior (e.g. lane changes in [6], [8]).
These existing approaches expose the variability in the operational execution of a
given tactical maneuver but disregard the variability in tactical behavior. Further-
more, including trajectories as part of the automatically extracted data conflates
the initial traffic scene (i.e., what a driver is responding to) and the driver’s response
itself. This makes it more difficult to investigate the full extent of variability in human
responses to a specific initial traffic scene.
A method to automatically extract similar traffic scenes from naturalistic datasets
would support studies into driver behavior variability on both operational and tac-
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Proposed Method

Figure 3.1: The four steps of the proposed method to find similar scenes in a naturalistic traffic dataset.
In the first step, the scene of interest (of which similar instances should be found) is defined by manually
selecting an example of this scene from the naturalistic dataset. The second step consists of extracting
the traffic context from this example and converting it to a mathematical set of points — the context set.
We use the scaling parameter 𝜆 in this conversion because we target highway traffic, but this is optional.
The distance between this set and all other sets present in the data is calculated in step three using the
Hausdorff distance. Optional pre-filtering steps can be used here to reduce the computational load of
the method. Finally, in step four the 𝑁 scenes with the shortest distance to the example can be selected.

tical levels. With such a method, the trajectories in response to an initial scene
can be studied, both in terms of operational and tactical characteristics. How-
ever, to the best of our knowledge, all the methods that have been proposed to
automatically extract traffic scenarios from the data cannot extract traffic scenes.
This paper proposes a method to automatically extract similar traffic scenes from
large naturalistic datasets (for a schematic overview, see Figure 3.1). We intro-
duce the concept of traffic context to specify the part of the initial traffic scene
that is relevant for comparing human responses. We define traffic context as all
positions and velocities of all surrounding vehicles at a given time. Compared to
the complete traffic scene, the traffic context excludes scenery and the state of
the ego vehicle. Therefore, the traffic context represents the aspects of the scene
the ego-vehicle is responding to.
We use a distance metric to express the difference between traffic contexts. With
such a measurable distance, it becomes possible to automatically find scenes
that are similar to amanually-selected example. However, such a distancemetric
for traffic scenes does not readily exist. Instead of developing a completely new
distancemetric, we use existingmathematical constructs andmethods. This allows
us to leverage existing literature and software implementations in our work. We
propose to convert the traffic context to amathematical set where each element
in the set represents a vehicle in the traffic context. Once converted to a set, we
use the Hausdorff distance for mathematical sets [15] to represent the distance
with respect to other traffic sets.
An implementation of our method is provided on GitHub1 as an extension of the
traffic visualization software TraViA [16]. We validated the method in a case study
using the highD dataset, where we show that this method is practically appli-
cable and provides insight into the operational and tactical variability of driver
behaviour.

3.2. Proposed Method
Our proposed method consists of four steps (Figure 3.1). These steps are briefly
introduced in this section and explained in more detail when applied in the case
study. In the first step, one should manually select an example of the scene of
interest from the dataset. This example represents the traffic scene of interest of
which multiple instances should be found. The traffic context from this example
is converted to a mathematical set (the context set) in the second step. After
that, the Hausdorff distance is used to determine the distance between the traffic
1github.com/tud-hri/hausdorffsceneextraction
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context in the selected scene and all other scenes in the dataset. Finally, one
selects the 𝑁 contexts with the shortest distance to the example. The resulting
scenes are the scenes with traffic contexts most similar to the example across the
whole dataset.

Figure 3.2: A visual example of how to calculate the Hausdorff distance from the blue set 𝐴 to the orange
set 𝐵 in a 2-dimensional space. First, for every point in the blue set, find the closest (Euclidean) distance to
any point in the orange set. These are shown here as solid lines. Then, select the longest of these minimum
(solid-line) distances, this is the Hausdorff distance. This distance is here shown as the green solid line.

The Hausdorff distance is a distance metric for mathematical sets proposed by
Felix Hausdorff in 1914 [15]. It can be used to express the distance between two
non-empty compact sets. For two sets 𝐴 and 𝐵, the Hausdorff distance represents
the maximum distance between any point in set 𝐴 and the closest point in set 𝐵
(Figure 3.2). It can be used to describe the similarity between two sets, even if
these sets have a different number of points. This practically means that it can be
used to compare scenes with a different number of vehicles.
More extensive (and formal) explanations of the Hausdorff distance and how it
can be calculated can be found in the literature (e.g., [17]) and online (e.g., [18]).
Mathematically, the (directed) Hausdorff distance between two sets 𝐴 and 𝐵 is
defined as:

ℎ(𝐴, 𝐵) =max
𝑎∈𝐴

{min
𝑏∈𝐵

{𝑑(𝑎, 𝑏)}} (3.1)

Where we use the Euclidean distance between points 𝑎 and 𝑏 for distance 𝑑(𝑎, 𝑏).
The directed Hausdorff distance from set 𝐴 to 𝐵 is not equal to the distance from
𝐵 to 𝐴 (i.e., ℎ(𝐴, 𝐵) ≠ ℎ(𝐵, 𝐴)). Therefore we use the general Hausdorff distance H:

𝐻(𝐴, 𝐵) =max{ℎ(𝐴, 𝐵), ℎ(𝐵, 𝐴)} (3.2)

3.3. Case Study: Methods
In this case study, we make use of the highD dataset [2] to show the potential of
our proposed method. The highD dataset consists of traffic data recorded in Ger-
many at 6 different highway locations. The dataset is made up of 60 independent
recordings. To visualize the data and generate the images used in this work, we
used the TraViA visualization software [16]. The proposed method’s source code
is publicly available as an extension to TraViA [19].

3.3.1. Step 1: Select an example
The first step of the proposed method is to select an example of the scene, to
which the variability in responses is the topic of research. We will refer to this scene
as the traffic scene of interest. This example should be at a specific point in time,
seen from the perspective of a selected ego vehicle. For the highD dataset, this
means that the example can be fully defined by a combination of three numbers:
a dataset id, a vehicle id, and a frame number. For this case study, we have
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Figure 3.3: The hand-picked example of the traffic scene of interest, as it is used in step 1 of our case study
(highD dataset 1, frame 379, ego vehicle id 21). The blue vehicle is the ego vehicle, with the red arrow
indicating the driving direction. The orange vehicles (id 25,26,20) denote other traffic participants, making
up the traffic context, all driving in the same direction on the two-lane highway. In this example, the driver
could decide to stay behind the vehicle it is currently following (id 20), but could also decide to accelerate
and overtake that vehicle. The white arrows depicting x and y show the ego vehicle’s reference frame.
The gap between vehicle 25 and the ego vehicle is 95 meters. The numbers in red denote the longitudinal
velocities of the surrounding vehicles.

selected the example as depicted in Figure 3.3. This scene canbe found in dataset
1, frame 379 with ego vehicle id 21.
This example was selected because the driver of the ego vehicle (blue, id 21) can
respond to this scene inmultiple (tactical) ways as illustrated in Figure 3.3: the driver
could decide to stay behind the vehicle it’s currently following (id 20), but could
also decide to accelerate and overtake that vehicle. The headway between the
following vehicles (ids 25 and 26) and the ego vehicle is large enough (95 𝑚 and
128.7 𝑚) to allow the ego vehicle to change lanes, but small enough to expect
some effect of their presence on the ego vehicle’s behavior.

3.3.2. Step 2: Extract the context set
The second step of our proposed method is to convert the traffic context to a
mathematical set of 4-dimensional points. We will refer to this set as the context
set consisting of context points. There is one context point for every surrounding
vehicle. The context set can contain any number of context points, depending
on the number of surrounding vehicles that are assumed to be part of the traffic
context. In our case study, we used the definitions provided by highD to determine
the vehicles that make up the traffic context. In the highD dataset, 8 positions
for surrounding vehicles are reported for every ego vehicle. We assume these
surrounding vehicles make up the traffic context.
To convert the state of the surrounding vehicles to context points, the 2-
dimensional position of each vehicle is expressed in the ego vehicle’s reference
frame. The 2-dimensional absolute velocities (expressed along the same axes)
of each vehicle are then concatenated to the relative positions. The result is
a 4-dimensional point per surrounding vehicle. In mathematical form, a single
context point representing a single surrounding vehicle can be expressed as

𝑝𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑣𝑥,𝑖 , 𝑣𝑦,𝑖], (3.3)

where 𝑖 denotes the 𝑖𝑡ℎ surrounding vehicle, 𝑥 and 𝑦 denote the center 𝑥-position
and 𝑦-position of the vehicle relative to the ego vehicle and 𝑣𝑥 and 𝑣𝑦 the velocities
in 𝑥 and 𝑦 direction.
One potential problem with defining the context points as is done in Equation 3.3
is that it regards differences in longitudinal and lateral positions equally. However,
on highways such as in the highD dataset, a small (e.g. 4 m) lateral difference
in position can mean a vehicle is driving in another lane. This would substantially
change the scene. While the same difference in longitudinal position would have
amuch smaller effect. To account for this difference, we introduce the parameter
𝜆 to scale the lateral dimension of the context points. This parameter should be
estimated to reflect the relative importance of longitudinal and lateral position
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and velocity differences. With the new parameter 𝜆, the definition of the context
points becomes

𝑝𝑖 = [𝑥𝑖 , 𝜆𝑦𝑖 , 𝑣𝑥,𝑖 , 𝜆𝑣𝑦,𝑖]. (3.4)

In our case study, we have assumed 𝜆 = 10.0. This corresponds to the notion that a
1meter change in the lateral position of a surrounding vehicle is equally important
as a 10meter change in the longitudinal position.

3.3.3. Step 3: Apply the Hausdorff distance
Now that the traffic context has been represented as a mathematical set, we
can use the Hausdorff distance to compare different context sets. This step of the
proposed method requires the Hausdorff distance to be calculated between the
context set of the selected example and the context sets for all possible combi-
nations of frame number and vehicle id in the dataset. For the highD dataset,
there are 39.7× 106 such combinations. Because this is a very large number of dis-
tances to be calculated, we will reduce it by filtering the relevant vehicles before
calculating the distances.
When searching for scenes with similar traffic contexts, an important aspect is the
lane in which the ego vehicle is driving. This determines where surrounding vehicles
can be present and in which directions the ego vehicle can change lanes (e.g.,
a vehicle driving in the center lane can go both left and right, but a vehicle
driving in the left lane can only change lanes to the right). For that reason we
only consider vehicles driving in the same lane as the ego vehicle in the selected
example. We consider 4 possible lanes: the left lane, the center lane, the right
lane, and themerging lane. We determine the lane in the selected example (e.g.,
for Figure 3.3: the right lane) and only use the vehicle frame combinations from the
dataset where the vehicle drives in the same lane. For our case study, this leaves
12, 515, 286 vehicle-frame combinations.
If the resulting number of distances to be calculated is still too large after applying
this filter, one could consider down-sampling the frames. Depending on the spe-
cific frame rate of a chosen dataset, one could assume that the traffic context
does not substantially differ within a certain number of frames and therefore only
look at a subset of all frames. This would reduce the number of distances to be
calculated even further. In our case study, this was not necessary because the
resulting number of required distance calculations proved to be feasible. The
calculation time on a high-end desktop (9th Gen Intel i9 8-core) was 3 hours, on a
consumer-grade laptop (8th Gen Intel i7 4-core) it took 5 hours.

3.3.4. Step 4: obtain scenes
When all Hausdorff distances are calculated, the scenes in the dataset that are
closest to the example can easily be obtained by selecting the 𝑁 shortest dis-
tances. The only caveat here is that consecutive data frames are very similar,
which results in groups with the same vehicle id andmany consecutive frame num-
bers having very similar (short) Hausdorff distances to the example of the scene of
interest. This problem can be accounted for by sorting all results based on the
shortest distance only keeping the highest entry for every vehicle. Selecting the
top 𝑁 entries from the resulting table yields the final result.
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Figure 3.4: The spread of the context points representing the results of the case study obtained after the
final step. The top plot shows the positions of surrounding vehicles relative to the ego vehicle (see Figure 3.3
for the frame definition) where the starts represent the scene of interest. The ego vehicle always drives in
the right-most lane. The bottom plot shows the absolute velocities of the surrounding vehicles (denoted
by the stars). The ego vehicle’s velocity is not regarded as part of the traffic context, so it differs for all
scenes and is not depicted here. The stars represent the context set extracted from the selected example
(Figure 3.3). The blue dots represent the 250 closest context sets that were automatically extracted from
the highD dataset.

3.4. Case Study: Results
We used the proposed method in a case study to extract 250 scenes with a similar
traffic context from the highD dataset. The hand-picked example of the scene
of interest in step 1 is illustrated in Figure 3.3. The proposed method resulted in
250 scenes, where the traffic context is closest to this example. The spread of the
resulting context points is shown in Figure 3.4. Of the 250 found scenes depicted in
Figure 3.4, 233 contain precisely 3 surrounding vehicles, the same number as in the
scene depicted in Figure 3.3. The other 17 scenes contain 4 surrounding vehicles.
Figure 3.4 shows that the proposed method for automatically selecting scenes
from a dataset succeeds in selecting context sets that are similar to the traffic
context of the scene of interest. Note that the three clusters in this figure are
not three independent distributions. The Hausdorff distance between sets can be
interpreted as a trade-off between the points in a set. If one point is far away from
the example, the other two need to be closer to result in a short Hausdorff distance.
Therefore, the points within one set cannot be seen as samples from independent
distributions.
Figure 3.4 also shows that the resulting spread is larger in the longitudinal direction
than in the lateral direction. For example, in longitudinal positions, the maximum
difference between the found sets and the selected example is approximately
25 𝑚 where the maximum lateral deviation is approximately 2 𝑚. These values
correspond to the used 𝜆 value of 10.
The variability in the results does depend on the amount of data and the scene of
interest. The proposed method finds the closest available sets, so if the example
represents a more common scene or the dataset to search is larger, lower vari-
ability in the found context sets can be expected. The variability in results can
also be reduced by selecting fewer context sets i.e. select the 𝑁 = 100 closest
set instead of the 𝑁 = 250, but this is a trade-off with the power of the resulting
variability estimation.
Among other use cases, these results can be used for research targeting the vari-
ability in human responses to similar traffic contexts. To illustrate the utility of the
results, Figure 3.5 shows these human responses. 26 drivers (10%) responded to this
scenario by changing lanes within 3 seconds, 62 drivers (25 %) slowed down by
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Figure 3.5: The variability in driver responses (driven trajectories) as they evolve from the 250 traffic scenes
with similar traffic context automatically extracted from the highD dataset (represented in Figure 3.4). The
lateral positions are normalized such that 0 𝑚 indicates the center of the original (right-most) driving lane.
Lane widths differ slightly within the highD dataset but are approximately 4 𝑚. The horizontal grey bars
show the range in which all lane markings fall. Blue dots depict the drivers’ initial positions and grey lines
depict their individual trajectories - withmarkers for 1 (orange), 2 (green), and 3 (red) seconds. Distributions
on longitudinal and lateral vehicle behavior are estimated and shown on the top and right sides of the
figure. The figure illustrates tactical variability: some vehicles (n=19) make a lane change (the red dots
with substantial positive lateral positions) while others keep car following in the original lane. Operational
variability can also be observed in position and velocity for both the lane-changers and the car-followers.

more than 1 % of their initial velocity, and the other 162 drivers (65 %) did not slow
down or change lanes within the 3 second period.
The figure also shows kernel density estimations of the longitudinal and lateral dis-
tributions for multiple points in time. These estimated distributions could be used to
validate driver models that make predictions in the form of distributions. The figure
illustrates two potential benefits of the proposed method: the method can be
used to extract scenes to which humans respond with different tactical behaviors,
and distributions of human behavior can be estimated from the responses to these
selected scenes.

3.5. Discussion
In this paper, we propose a novel method to automatically extract similar traffic
scenes from large naturalistic datasets. In a case study on the highD dataset, we
showed that the proposedmethod is practically applicable andprovides insightful
results that expose the operational and tactical variability in human responses to
similar traffic scenes. Therefore, our proposed method can be a valuable tool
for the development of autonomous vehicles and traffic systems that incorporate
human responses in their control decisions. Also, the case study showed that
humans respond to similar traffic scenes with different tactical behaviors (some
change lanes while others stay in their initial lane).
One approach closely related to our method is that of clustering scenarios. As
discussed in the introduction, obtaining similar scenarios serves a different use
case than extracting similar scenes. However, clustering requires a distancemetric
which makes it comparable to our method. There are two specific trajectory
clustering methods that bear resemblance to our approach. In [20], the same
distance metric is used as in our approach: the Hausdorff distance. However,
in their approach, it is used to determine the distance between two trajectories
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by regarding the waypoints as a set while we convert the traffic context to a
mathematical set. In [21], another distance metric for scenes is proposed based
on a grid around the ego vehicle and the longitudinal distances to other vehicles.
Although similar scenes can indeed be found using only longitudinal distance,
our method based on the Hausdorff distance is more complete because it also
takes into account the lateral positions and longitudinal and lateral velocities of
the surrounding vehicles.
Using naturalistic traffic datasets is not the only way to investigate variability in
human responses to the same scene, driving-simulator experiments are a well-
established alternative. In a driving simulator, multiple participants can be sub-
jected to exactly the same scene with the same traffic context. However, natural-
istic data should be used for some applications, for instance when validating hu-
man driver models for autonomous vehicles [8]. In other cases, a large diversity of
drivers might be needed (e.g., when interested in behavior across the population).
This wouldmakedriving-simulator experiments time-consuming and expensive. For
those reasons, our proposed method based on naturalistic data to study human
responses to similar traffic contexts is a valuable new approach.
The proposed approach has four main limitations, some of which can be ad-
dressed in future work. First, there is no measure to determine how similar two
traffic scenes are from a human perspective. This means that the magnitude of
similarities and differences between the selected scenes, and thus the method’s
performance, cannot be quantified. The best way to construct such a measure
would be to collect similarity ratings from humans by letting them experience se-
lected pairs of scenes from the dataset.
Second, the dimensions of vehicles are not taken into account for the traffic con-
text. This could be addressed in a post-processing step if these dimensions are
deemed important to answer one’s research question. This might, however, limit
the amount of extracted scenes. Third, the initial velocity of the ego vehicle is
ignored. This was done purposefully because we argue that the initial velocity of
the ego vehicle is part of the human response, not of the traffic context. This is a
limitation when the resulting data is used to validate driver models that do take
this information into account. Including the ego vehicle’s velocity could be done
by adding the ego vehicle as an extra context point to the context set at position
(0.0, 0.0).
Finally, we presented no systematic approach to determine the parameter 𝜆. The
main reason is that the relative importance of the longitudinal and lateral positions
of other vehicles can depend on a number of factors, such as the environment,
vehicles’ velocities, road dimensions, and the targeted scene. We would like to
point out that we needed the 𝜆 parameters because we used highway data. In
other environments with a single lane per direction, such as in inner-city traffic, the
𝜆 parameter would not be needed.
To investigate the sensitivity of the 𝜆 parameter we repeated our selection proce-
dure with the 𝜆-value increased and decreased by 10% (𝜆 = 9.0 and 𝜆 = 11.0). We
evaluated the results by comparing the found dataset and vehicle IDs between
the original and new 𝜆 values. The results for the lowered 𝜆 deviated for 15 vehicles
(6%) and for the increased 𝜆 for 12 vehicles (5%). We thus conclude that our
proposed method is not extremely sensitive to the choice of 𝜆, and that it can
be safely estimated manually.
Besides the limitations, there are some possibilities for extending the proposed
method. It could be extended to include multiple types of traffic users (e.g.,
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vehicles, pedestrians, and cyclists). To do this, every group of traffic users should
be converted to an individual set. The distances of all sets can then be summed
in step 3 to find the closest scenes. Besides that, contextual information could be
regarded in the post-processing step. This would allow for the inclusion of factors
such as weather or lighting conditions (if this information is available with the
data).
Furthermore, we used the highD dataset in our case study, but the method itself is
suitable for use with all trajectory data (e.g., with the pNeuma or NGSim datasets).
The main advantage of the highD dataset is that includes information about the
surrounding vehicles. This is a pre-processing step that has to be performed on
other datasets before they can be used with the proposed method.
In this paper, we have shown a case study on a single example from the highD
dataset. Although we believe it is an illustrative example, it only shows the results
of our method for a single scene. To verify if the method is generalizable, we
repeated the procedure for other example scenes. However, due to the page
limit, we did not share those results here. To aid in the reproduction of these results
and to enable the replication (including the generation of figures) on other scenes
from the highD dataset, we openly share the source code of our method [19].
Future studies can also use this code to systematically investigate the use of our
method for different applications and other traffic datasets.

3.6. Conclusion
We conclude that:

• When a set of comparable traffic scenes needs to be extracted from a large
naturalistic dataset (e.g. for human factors analyses), our proposedmethod-
ology offers an automated and repeatable approach. We demonstrate our
method on a HighD dataset, showing our method could find 250 compara-
ble traffic scenes for a handpicked car-following scenario with three other
vehicles surrounding the ego vehicle.

• With the extracted scenes, the variability in human responses be investigated,
independent of the executed maneuver, and without the need for costly
and time-consuming driving-simulator experiments.

• Our case study illustrates how the trajectories evolving from similar initial con-
ditions (of 250 comparable traffic scenes) can be analyzed to show variability
in operational and tactical driver behavior.
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4
Modelling
communication-enabled traffic
interactions



Amajor challenge for autonomous vehicles is handling interactions with human-
driven vehicles, for example in highway merging. A better understanding and

computational modelling of human interactive behaviour could help address this
challenge. However, existingmodelling approaches predominantly neglect com-
munication between drivers and assume that one modelled driver in the interac-
tion responds to the other, but does not actively influence their behaviour. Herewe
argue that addressing these two limitations is crucial for the accurate modelling of
interactions. We propose a new computational framework addressing these limi-
tations. Similar to game-theoretic approaches, wemodel a joint interactive system
rather than an isolated driver who only responds to their environment. Contrary to
game theory, our framework explicitly incorporates communication between two
drivers, and bounded rationality in each driver’s behaviours. We demonstrate our
model’s potential in a simplified merging scenario of two vehicles, illustrating that
it generates plausible interactive behaviour (e.g., aggressive and conservative
merging). Furthermore, human-like gap-keeping behaviour emerged in a car-
following scenario directly from risk perception without the explicit implementation
of time or distance gaps in themodel’s decision-making. These results suggest that
our framework is a promising approach to interaction modelling that can support
the development of interaction-aware autonomous vehicles.



Modelling communication-enabled traffic interactions

4.1. Introduction
Autonomous and automated vehicles (AVs) hold the potential to help address
major societal challenges related to mobility and sustainability. However, one
of the major open problems in autonomous vehicle development is safely and
acceptably dealing with driving scenarios that require reciprocal interaction with
human road users. In these interactions, such as in highwaymerging or intersection
negotiation, both vehicles influence and respond to the actions of each other. It
entails quick and sometimes iterative negotiations, based on communication (see
e.g., [1]–[3]) that can either be implicit (vehicle motions) or explicit (e.g., honking,
signalling). The continuous dynamics of a reciprocal interaction govern safety,
priority (who goes first, who gives way), and acceptance (by passengers and
other road users). For example, drivers can be misunderstood or cause annoy-
ance by being too conservative or aggressive (interfering with or ignoring others’
communication). Therefore, fundamental knowledge about continuous human
reciprocal interactions is necessary to developandevaluate safe andacceptable
AV behaviour for these scenarios. However, this fundamental knowledge about
the dynamics of interactions is currently lacking. We advocate using a modelling
approach for human reciprocal traffic interactions to develop the fundamental
understanding that in the future can help design better AV behaviour.
Modelling is a common way of gaining an understanding of human driving be-
haviour. But it has so far mostly been done with a focus on single-driver behaviour,
either in single-vehicle (e.g., [4], [5]), or multi-vehicle scenarios such as car follow-
ing [6], [7], lane changing [8], [9], and gap acceptance [10], [11]. Most multi-
vehicle approaches assume that themodelled driver responds to other traffic par-
ticipants, but that they don’t respond in turn. For example, car-following models
assume that the following driver responds to the leading vehicle, but this leading
vehicle does not change its behaviour based on the follower’s actions. We call
this theone-way interactionassumption because the influenceonbehaviour is uni-
directional. This assumption disentangles the behaviours of themultiple drivers and
thereby enables the researchers to better understand and model the behaviour
of the driver of interest. The scope of these models is thus deliberately restricted to
a single driver. This one-way interaction assumption is justified for car-following
models and the likes, but not for interactive driving scenarios such as merging
or intersection negotiations, which are inherently reciprocal. Simply joining two
one-way interaction models to describe an interaction will neglect the drivers’
beliefs about the other’s future actions and their expected influence on them.
Furthermore, it also neglects the presenceandeffects of communication between
the drivers. Therefore, we argue that the scope of an interaction model should
include all participants to begin with. It should be a model of a joint interactive
system.
The current mainstream approach to modelling joint interactive systems in traffic
(as opposed to individual drivers) is using game theory. Game theory was de-
veloped as a framework to describe reciprocal interactions between players in
abstract games.It has been used extensively to model traffic interactions. The first
model of humanmerging behaviour based on game theory was proposed in 1999
by Kita [12]. In 2007, Liu et al. improved the game theoretical approach by re-
moving the assumption of constant velocity [13]. After that, many works followed
(e.g. [14]–[17]). However, applying game theory tomodel dynamics between two
drivers is not trivial, because game theory makes three strong assumptions about
these players.
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First, the assumption that all players rationally maximize some utility function. Em-
pirical evidence has shown that even in simple economic games [18], but also in
driving behaviour [19] and traffic interactions [20], this assumption does not hold for
human players. Second, game theory does not allow communication between
the players, an aspect known to be important in interactive driving scenarios [3].
Third, the majority of game-theory-based interaction models use a set of discrete
actions for the drivers. Although this is useful to describe the higher-level tacti-
cal [21] decisions of drivers accurately (for example thedecision to yield ormerge),
it does not describe the lower-level operational [21] dynamics of the interaction
(e.g. changes in velocity or trajectory). Therefore, these approaches are not suf-
ficiently detailed for developing safe and acceptable AV behaviour. Combined,
these three limitationsmotivate the need for an alternative approach tomodelling
reciprocal traffic interactions that allows for communication, bounded rationality,
and continuous dynamic actions.
To address this gap, we propose a framework for Communication-Enabled-
Interaction (CEI) modelling. It can be used to create model implementations,
of which we provide one example in a case study1. Our modelling framework
relaxes the common (game-theoretic) assumptions that drivers are rational
agents and have full information about the strategies of other drivers. It is based
on the notion that all drivers have a plan they want to execute and a belief
about what other drivers are going to do. Combined, this plan and belief result
in a perceived risk for every driver. The drivers are assumed to act to keep this
risk below their individual threshold. The key insight of the framework is that the
beliefs about others are updated based on communication between the agents.
In a simulation case study, we show that an implementation of a CEI-model
produces plausible behaviour of two interacting drivers in a simplified merging
scenario. Besides that, human-like gap-keeping behaviour emerges directly from
the notion of risk perception. These results show that the proposed modelling
framework provides a promising new approach for modelling human-human
driver interactions.

4.2. Communication-Enabled Interaction (CEI) Modelling
We propose a framework to model reciprocal human-human traffic interactions
between twodrivers. This framework captures the joint systemof both drivers rather
than a single driver responding to their environment. The framework explicitly
includes (implicit/explicit) communication between the drivers which facilitates
the joint interaction. Each of the two drivers is described by four components:
a notion of that driver’s perceived risk, a deterministic plan for the driver’s own
control behaviour (e.g. accelerating/decelerating), a means of communication,
andaprobabilistic belief about the future behaviour of the other driver (Figure 4.1).
The general framework we present here only defines loose requirements for how
these four components should be operationalized. When implementing themodel
for a specific scenario or use case, these components can be operationalized
based on existing literature (e.g., from the fields of human behaviour modelling,
traffic communication, intent inference, or vehicle path planning). This means the
model framework allows the incorporation of different methods to operationalize
each of the four components, without having to fully redesign it. In this section, we
will discuss the four components and our reasoning behind their functionality and

1The software implementation of the presentedmodel and its simulation environment are available online
at [22]. The data discussed in the results section can be found at [23].
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requirements. The assumptions and requirements that need to be taken into ac-
count when implementing amodel based on this framework will also be discussed
per component. In Section 4.3, we will illustrate how each component can be
implemented in an example implementation for a simplified merging scenario.

Figure 4.1: An overview of the proposed Communication-Enabled-Interaction (CEI) modelling framework.
This framework is designed to capture the reciprocal interaction between two drivers, rather than the
one-way interaction behaviour of one driver with respect to another. Each driver has a plan for their
own behaviour. Plan updates are triggered based on a risk threshold and a risk estimate arising from
a belief of how the other driver will move over time. Each driver communicates their plan (intention)
either implicitly (e.g., through vehicle motion), or explicitly (e.g., through light signals) to the other driver.
This communication links one driver’s plans to the belief of the other and can be divided into three
components denoted *A, *B, and *C. *A represents the mapping of a driver’s plan to its communication,
*B represents the means of communication, and *C denotes the belief update of the other driver based
on the received communication.

4.2.1. Framework components
Risk-based re-plan
Recent research in non-interactive scenarios has shown that a quantification of
perceived risk can explain driver adaptations in speed and lateral position and
can be used to accurately predict future trajectories [4], [24], [25]. In our frame-
work, we combine this notion of risk-based decision-making in driving with Simon’s
ideas of bounded rationality [26] and satisficing [27]. Bounded rationality implies
that humans are not capable of fully optimizing their behaviour all the time. Satis-
ficing (a portmanteau of satisfy and suffice) is an example of bounded rationality
in which humans are assumed to not continuously search for an optimal solution.
Instead, they are satisfied with a ”good enough” solution that suffices. We reason
that the only solutions that suffice and satisfy in a driving interaction are the ones
that are subjectively safe enough. To formalize these ideas, and combine them
in a framework, we hypothesize that drivers act to keep their perceived risk below
their personal risk threshold.
Using such a threshold incorporates Simon’s ideas in two ways. First, it defines what
solutions are subjectively safe enough. Second, it limits (or bounds) the cognitive
capacities (or effort) required from the driver because it allows the driver to only
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rethink their plan when the situation has changed and the current plan does not
suffice or satisfy themanymore. This is what we call a risk-based re-plan (Figure 4.1).
By incorporating these ideas, we step away from the fundamental assumption
of game theory that humans are rational utility maximizers and move towards a
formulation that allows for team effort and mutual goals.
In summary, our framework assumes every driver evaluates the risk of their cur-
rent deterministic plan, given their probabilistic belief about what other drivers are
planning to do. Risk perception can be based on a number of factors, such as
high velocity, high acceleration, or the probability of a collision. This evaluation
happens continuously, but drivers will only perform a re-plan if the perceived risk
exceeds their threshold. This should result in drivers with a low risk-threshold adapt-
ing their plan in an early stage of the interaction to reduce the estimated risk. At
the same time, drivers with a high risk-threshold will instead continue their current
plan and take advantage of the fact that the risk of the situation is lowered by
the other driver. Intuitively this can be explained as the driver with the higher risk-
threshold being more aggressive.

Plan
The second component in our framework is the plan. We assume that drivers have
a deterministic plan about the actions they will take in the immediate future. In
the framework, this plan takes the form of a deterministic set of waypoints over a
limited time horizon. This time horizon should be long enough to include (part of)
the interaction.
The construction of this plan (i.e., the planning algorithm) should only consider
features that are not related to risk and safety (e.g., desired velocity or comfort),
as the perceived risk is constantly evaluated separately to determine if the current
plan still suffices and satisfies. This evaluation is done taking into account both
the plan and the belief. When re-planning, the risk threshold should be used as a
constraint in the planning algorithm. As long as such a constraint can be imposed,
the plan can be constructed using any suitable path-planning algorithm.

Communication
One of the key concepts of the framework is that drivers actively communicate
their plan to other drivers. This assumption is based on field studies on human-
human traffic interactions that confirm that traffic participants actively communi-
cate their plan both explicitly and implicitly to others (e.g. [3]). Experiments on
other (non-driving) tasks that require team effort have shown that humans use
their movement actions to coordinate with their team member [28] (which is a
form of implicit communication). The assumption of communication can also be
effectively used to model human behaviour in those tasks [29]. Finally, in sim-
ulation, communication can be beneficial for controlling co-bots that navigate
among humans [30], resulting in fewer dead-lock situations. In summary, previous
research suggests that humans communicate in traffic and that the assumption of
communication can be used both for the effectivemodelling of human teamwork
behaviour and the effective control of robots.
In the CEI modelling framework, communication links the plan of one driver to the
belief of the other driver. In practice, this means that three aspects of commu-
nication need to be designed when implementing a CEI-model. First, one needs
to determine the mode of communication; What signals are used to communi-
cate? These signals can be explicit (e.g., turn indicators) or implicit (e.g., velocity,
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heading angle, or acceleration). Second, a mapping from a plan to its communi-
cation is required. This can be as simple as just executing the plan, but one could
come up with more elaborate mappings based on traffic communication studies
such as slowing down, purely to communicate that the other driver can go first
(for an example of modelling such exaggerated trajectories in a bottle grasping
task, see [29]). Finally, a mapping from communication to belief is needed, this
mapping specifies how a probabilistic belief is updated based on the received
communication.

Belief
Both drivers are assumed to have probabilistic beliefs about what the other driver
will do in the near future. This belief consists of a number of points over a time
horizon. Each of these belief points is represented by a probability distribution
over positions for the other driver for that specific time in the future (Figure 4.1).
This assumption is based on the intuition that human drivers have a general but
uncertain idea about what other drivers are planning to do, a concept that has
been successfully applied in other modelling frameworks such as belief-desire-
intention programming (based on [31]) and (Bayesian) theory of mind [32].
When implementing the belief part of the CEI-model, the only requirement is that
the chosenprobability distribution canbe updated using new information (coming
from the observed communication). In practice, this means that most parametric
probability distributions are suitable because they can be updated with methods
such as Bayesian updates.

4.3. Case Study: an example of an implementation
To demonstrate the feasibility of theproposedmodel framework and to investigate
the effects of design choices (parameters) on model behaviour, we have imple-
mented a CEI-model for a simplified merging scenario. In this case study, we show
that even with simple components the model framework can produce plausible,
human-like interactive behaviour. At the same time, it is not the purpose of this
case study to quantitatively assess themodel’s consistencywith humanbehaviour.
Such an assessment using fine-grained data on the interactive behaviour of two
drivers requires a detailed investigation and is therefore left for future work.

4.3.1. Simplified merging scenario
For this case study, we used a simplified symmetric merging scenario (Figure 4.2).
In this scenario, two vehicles approach a merge point on a predefined track. The
model can directly control the acceleration of the vehicles, but there is no steering
involved. The vehicles have a rectangular bounding box for collision detection.
The heading of the vehicles is pre-defined and always corresponds to the heading
of the road. At the merge point, the heading of the vehicles changes instantly.
The vehicles in the simplified scenarios are subject to a negative acceleration due
to resistance and drag. The net acceleration (𝑎𝑛𝑒𝑡) is the applied input (𝑎𝑖𝑛) minus
the negative acceleration 𝑎𝑟 (a function of the vehicle’s velocity 𝑣):

𝑎𝑛𝑒𝑡(𝑣) = 𝑎𝑖𝑛 − 𝑎𝑟(𝑣), where (4.1)
𝑎𝑟(𝑣) = 𝛼𝑣2 + 𝛽. (4.2)

Parameters 𝛼 and 𝛽 define the magnitude of the drag and constant resistance
(𝛼 = 0.0005 and 𝛽 = 0.1). Besides the resistance, the vehicles have a maximum
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Figure 4.2: A top-down view of the simplified merging scenario as used in the case study, rotated 90
degrees clockwise. Vehicles follow pre-defined paths (road centres) that merge at a pre-defined merge
point. Vehicles have a two-dimensional body (4.5 𝑚 x 1.8 𝑚) and their headings change instantly at the
merge point. The model controls the accelerations of the vehicles directly. The dimensions of the track
are defined by two parameters. Distance 𝑙𝑎 (25 𝑚) denotes the distance between the start points of the
vehicles. Distance 𝑙𝑏 (50 𝑚) is the distance to travel from the start point until the merge point, and from
the merge point until the end of the track.

acceleration 𝑎𝑚𝑎𝑥 = 2.5 𝑚
𝑠2 , which is the same for positive and negative accel-

erations. The velocity of the vehicles is restricted to non-negative values. The
simulation updates all dynamics at a rate of 20 𝐻𝑧.

4.3.2. Plan
Theplanningpart of themodel consists of a path-planningalgorithm thatminimizes
the following cost function:

𝑐 =
𝑁

∑(𝑣𝑛 − 𝑣𝑑)2 + (𝑎𝑖𝑛𝑛 )2. (4.3)

Where 𝑛 denotes the time-step and 𝑣 the vehicle’s velocity. This cost function
includes terms for minimizing the squared input 𝑎𝑖𝑛 and for travelling at a desired
velocity 𝑣𝑑. The path is planned at the same frequency as the simulation (20 𝐻𝑧)
and is subject to a time horizon of 4 𝑠 (𝑁 = 4

0.05 = 80).
A visual example of the plan, belief, and risk perception is shown in Figure 4.3.
When initially planning the path, the cost function of Equation 4.3 is minimized, so
an optimal path is foundwith respect to comfort and speed (Figure 4.3-A). If, at the
next time step, the current plan still satisfies (i.e., the risk threshold is not exceeded),
the current plan is continued. Weassume thatmaintaining velocity at the final time
step is the practical equivalent of maintaining the current plan.
When the risk threshold is exceeded, the cost function is minimized again to find
a new plan (Figure 4.3-C). This time the minimization is subject to a risk constraint.
Based on the ideas of satisficing, we hypothesise that humans do not spend un-
limited effort to find an optimal plan, but instead search for a new solution that
satisfies and suffices. We hypothesize that re-planning is easiest (i.e., requires the
least cognitive effort) if the new plan is close to the previous plan (i.e., uses the
same strategy). Therefore, the re-planning optimization is executed with the old
plan as the initial condition. When using a gradient descent algorithm, this will
result in a solution that is close to the previous plan while the risk constraint is met.
For example, if the current plan is to decelerate and pass behind the other driver,
the most likely outcome of the re-planning will be to decelerate even more and
increase the gap. This will lower the perceived risk while using the current strategy.
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Figure 4.3: An example to illustrate the plan and the belief of themodel. a) shows four (of 80) deterministic
plan points along the one-dimensional track. These are the planned centre positions of the own vehicle at
four points in time. The distributions represent the believed centre position of the other vehicle at the same
four (of 16) points in time, where colours denote the points in time. b) shows these plan and belief points
after a single belief update. This update increased the certainty of the belief about the other vehicle’s
position. The belief is updated at every time step. c) shows the risk evaluation for one of the points. To
evaluate the risk, the probability of a collision (𝑝𝑐) is evaluated by calculating the probability that the other
vehicle will be within the bounds of collision for the given planned position. This risk evaluation is done at
every time step for all belief points. If the maximum perceived risk value exceeds the upper risk-threshold,
a re-plan is triggered. This re-plan uses the perceived risk as a constraint for the optimization. To lower the
risk, the planned position could be moved in the direction of the black arrow.

If the optimization with the current plan as the initial condition does not succeed,
three other initial conditions are considered: full braking at all time steps, no accel-
eration input at all time steps, and full acceleration at all time steps. The candidate
plan with the lowest cost is used as the initial condition for a second re-plan. This
can result in a change of strategy, but only if the current strategy is not feasible
anymore. For example, when the driver was decelerating but decelerating even
more will not reduce the risk enough, it will investigate if acceleration will reduce
the risk and change its strategy if needed.

4.3.3. Belief
The belief is kept as a sequence of probability distributions over positions for the
other vehicle, each at a specific point in time (Figure 4.3-A). This sequence of
belief points uses the same time horizon as the planning part of the model (4 𝑠) but
contains fewer points for simplicity. Belief points are kept at a 4 𝐻𝑧 frequency (this
number was based on an initial evaluation of the model), resulting in a sequence
of 4 ⋅ 4 = 16 points. Each belief point is represented by a Gaussian distribution.
The Gaussian distributions are initialized by combining the initial velocity and posi-
tion of the other vehicle with the maximum bounds of acceleration. To initialize a
belief point, the mean of the Gaussian is set to the position that corresponds to the
other driver maintaining its current velocity. To calculate the standard deviation,
an upper and lower position bound (𝑢𝑏 and 𝑙𝑏) are used. These are calculated
by predicting the position of the other vehicle if it would apply the maximum
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and minimum possible acceleration continuously. The standard deviation is then
calculated as the difference between the bounds and the mean divided by 3
(𝜎 = 𝑢𝑏−𝜇

3 ). The factor 13 is based on the fact that 99.73% of the area under a
normal distribution corresponds to 𝜇 + / − 3𝜎. Once the simulation time is equal to
the timestamp corresponding to the first belief point, this point is removed from the
sequence and a new point is initialized.

4.3.4. Communication
Human communication during driving is a complex topic on which a lot of re-
search has been done. Thus, there is much potential for including complex com-
municationmodels based on empirical evidence in a CEI-model. However, for this
initial investigation of the modelling framework, we used a simple implicit commu-
nicationmodel that does not includeany explicit communication signals (e.g., turn
indicators). We only use velocity and position as communication signals. These
two values are assumed to be constantly observed by the other driver without
any errors or noise.
When sending communication, the drivers do not use amapping from their current
plan to the actions they take. Instead, they just take the next action from their plan.
When receiving communication, drivers use a constant velocity model combined
with bounds of comfortable acceleration to update their belief. All belief points
are updated every time step using Bayesian updating.

Updating the belief
For Bayesian updating, the previous belief point serves as the prior distribution,
and the resulting posterior is adopted as the updated belief point (Figure 4.3-B).
The likelihood is constructed using the constant-velocity model. We assume the
likelihood to be a Gaussian distribution where the standard deviation is constant
and known. This means the likelihood and prior form a conjugate pair, meaning
that the posterior will also be a Gaussian distribution of which the 𝜇 and 𝜎2 have a
closed-form solution. The likelihood function for the belief point at time 𝑡 is defined
as follows:

𝒩(𝜇 = 𝑝
𝑡 , 𝜎

2 = (𝑎𝑐𝑡6 )
2
) (4.4)

In this equation, 𝑝 denotes a position sampled from the prior (the previous belief
point), 𝑡 denotes the time corresponding to the belief point, and 𝑎𝑐 is themaximum
comfortable acceleration (𝑎𝑐 = 1.0 𝑚

𝑠 ). The same value is used for positive and
negative accelerations, thus the distribution is symmetrical. The likelihood func-
tion describes the probability of observing a velocity 𝑣 (now) given a sampled
predicted position 𝑝 (at time 𝑡) from the prior belief. The mean 𝜇 corresponds to
constant velocity, and 𝜎 is determined based on the assumption that 99.73% of
the distribution falls within the bounds of comfortable acceleration.
With this likelihood function, the posterior has a closed-form solution. We denote
the prior as 𝒩(𝜇0, 𝜎20 ) and the posterior as 𝒩(𝜇1, 𝜎21 ). When updating with a single
data point 𝑣, the solution for the posterior becomes2:

2For a complete derivation of this closed-form solution, see the supplementary material.
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𝜇1 =
𝜇0𝜎2 + 𝑣𝜎2

1
𝑡

𝜎2 + 𝜎20
1
𝑡2

(4.5)

𝜎21 =
𝜎2𝜎20

𝜎2 + 𝜎20
1
𝑡2

(4.6)

4.3.5. Risk
The risk perceived by the drivers is assumed to be proportional to the probability of
a collision. Other aspects (i.e., high velocity and high acceleration) are assumed
not to contribute to the perceived risk for simplicity. To estimate the probability of
a collision, we define the concept of bounds of collision (Figure 4.3-C). These are
the extreme positions of the other vehicle that would result in a collision, given the
position of the own vehicle. These bounds are calculated for every point in the
driver’s plan. For example, if we know the driver will be at position 𝑥 at time 𝑡, we
can use the vehicles’ dimensions to calculate that a collision will occur if and only
if the other vehicle is at a position between 𝑥 + 𝑐1 and 𝑥 − 𝑐2 at the same time;
these are the bounds of collision. The believed probability that the other vehicle
will be within these bounds at that time can be calculated using the belief about
the other vehicle’s position. This probability is then equal to the probability of a
collision at that time.
The perceived risk for a complete plan is determined by taking the maximum risk
over all belief points. A re-plan is triggered if the perceived risk exceeds an upper
threshold 𝜌𝑢. Only using the upper threshold, however, poses a potential problem
when the merging conflict is resolved because after that there will be no triggers
to re-plan anymore. This might cause vehicles to stall or drive very slowly for no
reason. We avoid this by extending the risk module with a lower risk threshold 𝜌𝑙
and a saturation time 𝜏. If the perceived risk is lower than 𝜌𝑙 and the last update
was longer than 𝜏 ago, a re-plan is also triggered. When a re-plan optimization
is performed, the perceived risk is constrained to be lower than the average of
the two thresholds. For the implementation of this constraint, the instant heading
change at the merge point in the track posed a problem. Therefore, a linear
approximation of the bounds of collision is used.

4.3.6. Investigated scenarios
In total, every driver in the model has four parameters that determine their be-
haviour: a desired velocity 𝑣𝑑, an upper risk-threshold 𝜌𝑢, a lower risk-threshold 𝜌𝑙,
and a saturation time 𝜏. Besides these parameters, the initial velocity and position
(𝑣0 and 𝑥0) of the drivers can also be adjusted. Both drivers always start from
the beginning of the track. In the case study, we investigate the effect of these
parameters and the effect of differences in the initial condition in four scenarios
(Table 4.1).
The first two scenarios (A & B)manipulate the initial and desired velocity of the right
driver while keeping the parameters of the left driver fixed; the drivers here have
the same risk thresholds. In scenario A, the drivers are not expected to be on a
collision course if they would stick to their desired velocity, but in scenario B, they
are.
Scenarios C & D focus on the risk thresholds. Scenario C investigates the effect of a
difference in risk thresholds between drivers. Scenario D investigates the sensitivity
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Table 4.1: Parameters of the investigated scenarios. Underlined values denote deviations from the default
values. 𝜌𝑙 and 𝜌𝑢 denote the lower and upper risk-thresholds. 𝑣0 and 𝑣𝑑 are the initial and desired velocity
respectively. 𝑥0 denotes the initial position of the vehicle along the track.

Side 𝜌𝑙 𝜌𝑢 𝑣0[𝑚/𝑠] 𝑣𝑑[𝑚/𝑠] 𝑥0[𝑚]
Condition A:

No expected collision
left 0.2 0.5 10.0 10.0 0.0
right 0.2 0.5 9.0 9.0 0.0

Condition B:
On a collision course

left 0.2 0.5 10.0 10.0 0.0
right 0.2 0.5 9.0 9.0 1.2

Condition C:
High and low thresholds

left 0.2 0.4 10.0 10.0 0.0
right 0.3 0.6 10.0 10.0 0.0

Condition D:
Threshold sensitivity

left 0.3 0.4 10.0 10.0 0.0
right 0.3 0.6 10.0 10.0 0.0

of model behaviour to variations of these thresholds in one of the drivers. The
saturation time 𝜏 only affects the behaviour after the conflict is resolved, therefore
it is kept constant at 2.0 𝑠 for all scenarios.

4.4. Results
4.4.1. Scenario A: No expected collision
Scenario A serves as a baseline scenario. Here, both drivers have an initial velocity
that is equal to their desired velocity, but that differs from the velocity of the other
driver (Table 4.1). If they would keep their initial (desired) velocity up until the
merge point, no collision would occur. The left driver would pass the merge point
first with a small distance gap of 0.2 𝑚. Therefore we would expect a rational
optimizing model (that does not explicitly include human-like gap-keeping) to
maintain the desired velocity all the way. A behaviour expected from human
drivers, on the other hand, is to increase this small safety margin. In an empirical
study [33], it was found that human drivers in the Netherlands merged on three
different highway locations with mean headways of 12.6, 13.4, & 36.1 𝑚 for veloc-
ities below 60 𝑘𝑚/ℎ = 16.7 𝑚/𝑠, and standard deviations of respectively 10.3, 12.8
& 18.2 (the headway is defined as the gap plus the leading vehicle length).
In the modelled outcome of scenario A (Figure 4.4), the left driver reached
the merge point first. They accelerated slightly to increase the safety margin
at the merge point, after that, they returned to their preferred velocity. The
headway when the second vehicle reached the merge point was 6.4 𝑚. This
corresponds to the expected human behaviour, and can not be modelled with
utility-maximization unless utility is explicitly awarded for keeping a gap. The right
driver did not take any action in this scenario. The reason for that is highlighted in
the risk perception plot. The left driver’s risk increases earlier because it expects to
reach the merge point earlier. This increase causes the left driver to take action
to lower the risk, while the right driver can continue their plan without exceeding
their risk threshold. The right driver’s perceived risk also decreases as soon as the
left driver takes action; they perceive that the conflict was resolved by the left
driver.

4.4.2. Scenario B: On a collision course
In scenario B, the drivers have the same desired and initial velocities as in scenario
A. However, the right vehicle starts with a 1.2 𝑚 head-start. Therefore, the pro-
jected positions of the two vehicles at the merge point overlap by 1.0 𝑚. Thus,
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Figure 4.4: Model behaviour in scenario A (no expected collision). Line colours correspond to the vehicle
colours in Figure 4.2. a) Positions of the left and right vehicles over time. The x positions of the vehicles
are plotted with an offset to prevent the lines from overlapping after the merge point. The grey dots
and dashed lines indicate vehicle positions at equal time stamps with an interval of 1.0 𝑠. b) Velocities
of the vehicles over time. The stars indicate the moment when the simulated driver performed a re-plan
because the upper risk-threshold was exceeded, and a circle denotes a re-plan because the risk fell
below the lower threshold. These re-plans are only triggered if the last re-plan was longer than 𝜏 ago. c)
Accelerations of the vehicles over time. d) Perceived risk of both simulateddrivers. In the case of a re-plan,
the perceived risk after the re-plan is shown. The dashed horizontal lines in the lowest plots indicate the
risk thresholds of the drivers. In this scenario, the drivers increased the small projected gap, even though
they were initially not on a collision course. The simulated drivers behaved in a way to increase the initially
narrow safety margin.

if neither driver deviates from their desired velocity, this scenario will result in a
collision. Wewould therefore expect that this scenario requiresmore severe action
to be resolved than scenario A, but we do expect the model to avoid a collision.

The modelled outcome of scenario B (Figure 4.5) shows that this scenario indeed
requires more effort from both drivers to resolve the conflict compared to scenario
A. Both drivers start braking until the left driver decides they can only reduce the
risk of a collision by accelerating. This can be explained by the fact that the left
driver has a slightly higher velocity at this point compared to the right driver. The
right driver sticks to their plan and keeps decelerating until the risk drops below
the lower threshold and the saturation time has passed, only then they accelerate
again. This behaviour results in a safety margin between the vehicles that is not
explicitly included in the reward function. Because the left driver is the first to ac-
celerate, they reach the merge point first. This explainable interactive behaviour
combinedwith the collision-free outcome can be regarded as a plausible human-
like interaction.
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Figure 4.5: Model behaviour in scenario B. The simulated drivers prevent a collision by slowing down.
Initially, they both slow down, but after approximately one second, the left (initially faster) driver speeds
up and reaches the merge point first. For details of the notation, see the caption of Figure 4.4.

4.4.3. Summary Scenarios A and B
In scenario A, the driver with the higher preferred velocity that approached the
merge point first also passed the merge point first. But the distance gap between
the vehicle was enlarged by the drivers. This corresponds to what we expected
from human drivers. If the drivers approach themerge point with an expected col-
lision (scenario B), however, the drivers take more drastic action but still manage
to resolve the conflict by interacting with each other.

4.4.4. Scenario C: High and low thresholds
Scenario C represents a case where the simulated drivers of both vehicles have
the same initial conditions anddesired velocities, but different risk thresholds. Com-
pared to the previous scenarios, the right driver has higher risk thresholds while the
left driver has lower thresholds. The left driver, having lower thresholds, is expected
to act early in the interaction to reduce their perceived risk. In terms of human
behaviour, this would correspond to risk-averse, conservative driving. The right
driver (high thresholds meaning higher tolerance to risk) is expected to react to
a potential conflict at a later point and therefore to keep their velocity at the
desired level longer. We expect that the right driver reaches the merge point first,
and deviates less from their desired velocity compared to the left driver.
The modelled outcome of scenario C (Figure 4.6) is as expected: the left driver
reached their upper threshold first and started to decelerate to reduce the per-
ceived risk. In terms of human driving, this can be seen as more conservative
behaviour. The right driver reacts later because their risk threshold is exceeded
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Figure 4.6: Model behaviour in scenario C. The right driver maintains their initial velocity longer. After briefly
decelerating, they accelerate and reach themerge point first. For details of the notation, see the caption
of Figure 4.4.

at a later moment. They briefly decelerate, but quickly start to accelerate to
reduce the risk since the left driver already decelerated. This results in the right
driver reaching the merge point first and deviating less from their desired velocity
than the left driver. This corresponds to the intuition that lower sensitivity to risk (i.e.
higher risk thresholds) could be associated with more aggressive behaviour.

4.4.5. Scenario D: Threshold sensitivity
Scenario D investigates the sensitivity of the modelled drivers’ behaviour to vari-
ations in the lower risk threshold. This scenario is the same as scenario C, with
the only exception that the left driver has a slightly higher value for 𝜌𝑙 (lower risk
threshold). We, therefore, expect a very similar outcome in scenarios C and D.
The only expected difference is that the left driver in scenario D re-plans more
frequently because the risk for the new plan is constrained to the average of the
two risk thresholds. With a smaller difference between 𝜌𝑙 and 𝜌𝑢, the absolute risk
decrease at the re-plan points is smaller. This should cause the perceived risk to
reach the upper threshold quicker and thus result in more frequent re-plan events.
However, the model simulation results show major differences between scenarios
C and D (Figures 4.6 & 4.7). As expected, the smaller difference between the
left driver’s lower and upper risk-threshold resulted in more plan updates. But
unexpectedly, this more frequent re-planning resulted in the left driver starting to
accelerate and reaching the merge point first. To keep their perceived risk under
control, the left driver deviated from their desired velocity to a larger extent than
the right driver. This observation can be explained by the fact that high velocities
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Figure 4.7: Model behaviour in scenario D. The slight change in 𝜌𝑙 for the left driver (in comparison to
scenario C) resulted in a major change in high-level outcome. Instead of the right driver, the left driver
now reaches the merge point first. For details of the notation, see the caption of Figure 4.4.

and accelerations do not contribute to risk. The left driver takes whatever action
is needed to keep the probability of a collision below their threshold (in this case,
high acceleration and high velocity). The slight change in risk thresholds andmore
frequent re-plans resulted in one of the re-plans initially failing. This triggered a
change in the left driver’s high-level strategy, they accelerated instead of braked,
and this heavily influenced the outcome.

4.4.6. Summary scenarios C and D
In scenario C, the driver with the higher risk thresholds (the right driver) passed the
merge point first. This driver changed their plan at a later moment compared to
the other driver. In terms of humanbehaviour, this can be explainedas beingmore
aggressive. The effect of slight changes to the lower threshold was shown to be
substantial in scenario D. A small change resulted in adifferent interaction strategy,
making the theoretically more ”conservative” left driver arrive at the intersection
first. This more conservative driver used high velocities and accelerations to lower
their perceived risk even though high velocities would be interpreted by many
humandrivers as high-risk behaviour. The reason for this seemingly counter-intuitive
model behaviour is that the high velocities and accelerations on their own do not
contribute to the perceived risk of these modelled drivers.

4.4.7. Emergent gap-keeping behaviour for car following
Although the main focus of our model is on the interactive behaviour of the drivers
when approaching the merging point, it also provides insight into their behaviour
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after the merging conflict is resolved. Specifically, in the four scenarios above,
we found that the simulated drivers continued maintaining a gap on the straight
section after the merge point. This behaviour was not explicitly programmed and
theplanner has nocost associatedwith short timeor small distancegaps (a feature
frequently used in human driver models [34], [35]). Instead, these distance gaps
appear to emerge from the combination of risk perception and a probabilistic
belief about the plan of the other driver.
To further investigate this effect, we investigated a scenario without a merging
point. In this scenario, the drivers drive behind each other on a straight stretch
of road (400 𝑚). We used the default parameters from Table 4.1, except for the
velocity parameters. The leading vehicle has lower desired and initial velocities
(9𝑚/𝑠) compared to the following vehicle (10𝑚/𝑠). Figure 4.8 shows that a steady-
state gap emerges after approximately 100 meters. In this scenario, the leading
driver mostly acts to reduce the risk and prevent a collision.

Figure 4.8: Model behaviour in the straight road scenario. For details of the notation, see the caption of
Figure 4.4. The bottom panel shows the gap between the vehicles as a function of the leading vehicle
position. In this scenario, the blue (following) vehicle has a higher preferred velocity compared to the
orange (leading) vehicle. The x-axes have been cropped to the first 200meters of the 400meter track.

Although the fact that the leading, not the following, driver mostly acts tomaintain
this gap is not uncommon for human drivers and has been observed under some
conditions [36], it is not themost commonbehaviour for reducing the risk during car
following [37]. We identified two causes for this model behaviour. First, the belief
and risk perception in the model are purely symmetrical. There is no difference in
perceived risk between drivers that are in front of or behind another driver, nor is
there any difference in believed probability that the other driver will accelerate

4

74



Results

or decelerate. In natural traffic this simplification will not hold. This should be
accounted for when extending the model for use in those scenarios. Second, the
risk thresholds of both drivers are equal in this example. It can be expected that in
other situations, even under the previously mentioned assumption, the driver with
the lower risk-threshold will act to maintain the gap, as was seen in scenario C.
This can be either the leading or the following driver, as was observed in human
behavior [36], [37].
We investigated the effect of absolute velocities on the resulting steady-state dis-
tance gap, where we take the average gap over the final second of simulation
as the steady-state gap. We simulated the model behaviour in this scenario for
different velocities, every time with a 10 % velocity difference between the drivers,
and an initial time gap of 1 𝑠. We found that the emerging steady-state gap
increased linearly with increasing velocities (Figure 4.9). This corresponds to human
behaviour: the same linear relationship has been previously observed in a study
on human gap-keeping behaviour on highways with low speeds [38].

Figure 4.9: Steady-state gap sizes (averaged over the last second) on a straight road where the following
vehicle has a higher preferred velocity. The velocity difference between the vehicle is 10% and the initial
time gap is 1 𝑠.

Ourmodel explains this relationship between velocity and distance gap as follows:
The leading driver (orange) is unsure about the future plan of the following driver
(blue). It could be possible that the blue driver will accelerate in the near future;
In this case, a collision can occur. Because the orange driver keeps its risk below
a threshold, it will keep a distance from the blue driver to make sure that its plan
does not overlap too much with the possible future positions of the blue driver.
Higher velocities, with the same maximum comfortable acceleration, result in a
high standard deviation in the belief points. This causes the gap size to increase
with velocity.
The mentioned study [38] also showed that humans keep larger gaps
(approximately 12 𝑚 to 23 𝑚 for the same velocity range) compared to
our model. We, therefore, conclude that the model qualitatively captures
the underlying risk-mitigation mechanism in human car-following behaviour,
but needs to be further explored to investigate if fitting the model parameters
to human data would also allow it to capture the magnitude of the gap
characteristic of human drivers.
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4.5. Discussion
In this work, we have proposed a modelling framework for reciprocal human-
human interactions in traffic. We illustrated the utility of the framework by imple-
menting a concrete model based on the framework, targeted at interactive be-
haviour in a simplified merging situation. We investigated the model’s behaviour
in four scenarios, one where the drivers are not on a collision course, one where
they are, and two where we investigated the effects of the model parameters.
The model captures the actions of two drivers who 1) successfully resolve merging
conflicts without collisions, 2) increase safety margins that are clearly too small
(a 20 𝑐𝑚 gap) for human drivers, and 3) exhibit individual conservative and ag-
gressive behaviour, based on physically meaningful model parameters: their risk
thresholds. In all scenarios, themodel behaves in a plausible way that corresponds
to intuitions about human interactive behaviour in merging conflicts.
Furthermore, from the model’s underlying principle (the notion of risk combined
with the probabilistic belief about the other driver’s plan) plausible behaviour
emerged outside of the situations we developed and tuned the model for.
Specifically, a realistic gap-keeping behaviour emerged, where the drivers keep
larger distance gaps at higher velocities, as humans do [38]. This behaviour was
observed even though no distance or time gap-related costs are incorporated in
the model. These results show that the proposed model framework is a promising
novel approach for modelling reciprocal multi-agent interactions in traffic.
Modelling interactions in traffic has both practical and fundamental applications.
In practice, a modelling framework like the one we propose could aid the devel-
opment of autonomous vehicle controllers that aim to increase acceptability and
safety in interactive scenarios. More fundamentally, such modelling, even when
limited to an isolated traffic scenario, could contribute to gaining fundamental
knowledge of human behaviour by highlighting the cognitive mechanisms hu-
mans use when interacting with each other. Our novel framework addresses the
limitations of existing modelling and control approaches, among which game-
theoretic models and interaction-aware controllers, because it explicitly incorpo-
rates communication and reciprocal interaction. Furthermore, our model frame-
work does not make strong assumptions about human behaviour, such as the
assumption that humans are rational utility maximizers. We hope that the initial
exploration of the model framework presented here can spark a new strain of
interaction modelling research.

Similar approaches
Among existing approaches to modelling traffic interactions, by far the most ex-
plored one is game theory. For example, for an extensive review of game-theory-
based lane-changing models, see [39]. What is similar to our framework, is that
game theory aims at modelling joint interactive systems instead of modelling only
one driver responding to another (for examples, see [12]–[17]). What is different, is
that our approach is not limited by two main assumptions (rationality, and lack of
communication), and –for the majority of game-theoretic approaches– a focus
on decision-making without describing operational behaviour. Finally, and more
conceptually, game-theoretic models implicitly approach traffic interactions as
a competition, while in our framework the agents have a joint primary objective
(interaction safety) that makes the interaction a cooperative effort.
In contrast with game theory, our approach explicitly incorporates the drivers’
ability to communicate their plan to other drivers, implicitly or explicitly. Although
there are similarities with game theory, for example, our case study uses the same
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modality of communication as many game-theoretical approaches, position and
velocity observations (e.g., [13], [40], for an overview, see [39]), there are two
fundamental distinctions in how we approach communication.
First, the communication in our framework allows drivers to construct and update
a belief about the other vehicle’s plan without the need for any prior information
about the other driver. This is a fundamental contradiction with game theory,
where players are assumed to know each other’s utility functions (at least partially)
beforehand. Therefore, in game theory, communication is not necessary because
players can reason about what the other player is going to do to maximize their
utility given the current state. Thus, the observations of position and velocity only
serve to determine the state of the world. While in our model, position and velocity
are used to convey information about the intention of drivers.
Second, in game theory, observations are not “remembered”. They only serve to
determine the current state, which is enough to reason about the other players’
actions. Previous states are irrelevant. This is also known as the Markov condition
or assumption. While in our work, the history of communication is kept in the belief
about the other driver’s intentions. Thus, the belief about a driver’s future actions
is based on its recent behaviour, not only on the current state. Some approaches
combine game theory with an online estimation of the other player’s utility func-
tion, thereby indirectly basing the belief about future actions (which directly de-
pends on the utility function) on recent behaviour (e.g., [35], [41]). However, in
these approaches, the conveyed information is not regarded as intentional com-
munication. Furthermore, these approaches only estimate part (e.g., a single
parameter) of the utility function online, the rest is assumed to be known a priori.
Another modelling concept that bears resemblance to our approach is that of
Belief-Desire-Intent (BDI) modelling. BDI modelling is based on the philosophical
work of Bratman [31] and models single agents that have a belief, a desire (goal),
and an intent (plan). Many implementations of BDI models have been proposed
for different applications [42]. The BDI framework and our CEI framework share the
concepts that agents construct a (probabilistic) belief about other agents and the
world, and then make a plan based on that belief to reach a final goal. The BDI
framework, however, was not indented to account for interactions. It is primarily
a model framework for individual agents that perform individual tasks. It therefore
also does not incorporate communication but instead updates its beliefs based
on changes that occurred in the world.
Finally, an important concept that can be complementary to the CEI-model
framework, and bears resemblance to the BDI framework is the concept of Theory
of Mind (ToM) [43] (for examples of applications to human-robot interaction,
see [44], [45]). ToM is a psychological concept that assumes humans have
an internal model of the beliefs, goals, and intentions of other humans in an
interaction. Thereby, having the ability to reason about what other humans wants,
and how they will try to achieve that goal. This idea that humans understand
the mechanisms behind the actions and beliefs of others could be used in an
implementation of our proposed CEI-model framework, which, in principle, only
requires humans to form a basic belief about the future movements of others.
As an example, the implementation of the CEI-model in the case study assumes
drivers predict where the other driver is going, not why they are doing that. A
complete ToM model could extend this belief about future actions of the other,
with beliefs about their beliefs and goals. Implementing a CEI-based model with
an internal ToM model is an interesting avenue for future research.
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Besides these different types of modelling approaches, recently a great deal of
effort was put into approaches for controlling (autonomous) vehicles in merging
scenarios (e.g. [35], [41], [46]). Although the underlying techniques (such as finding
a policy by optimizing some utility function) can be similar, the goal of these ap-
proaches is very different. While modelling approaches (such as ours) aim to best
describe human behaviour. Control approaches aim to find a safe and optimal
solution to a control problem. Game theory can therefore be very suitable for use
in control approaches (as was done in [35], [41], [47]).
Two recent works onmodelling come close in scope to this work. In 2022, Markkula
et al. proposed a modelling approach for individual agents in a driver-pedestrian
interaction rather than multiple agents in a driver-driver interaction [48]. Using
different versions of a model that incorporates a variety of concepts from psychol-
ogy, with varying levels of complexity, they conclude that ”modelling of human
road user interaction is a formidable challenge”. Similar to our work, their findings
suggest that the problem cannot be solved with simple rational models. Besides
that, accounting for specific, previously unexplained, phenomena observed in
human interactive behaviour could only be done using complex cognitive mod-
els. These conclusions resonate with our argument that the development of new
model frameworks that go beyond game theory and the assumption of one-way
interaction is a necessary step to improve our understanding of human traffic in-
teractions.
Secondly, in 2014, Wan et al. also proposed an approach to model vehicle-
vehicle interactions on merging ramps [49]. As in our work, they specifically ad-
dress the reciprocal influence vehicles have on each other. Their (and our) work,
therefore, differs from traditional driver models that usually describe a single driver
responding to – but not influencing – other traffic. Another similarity between our
proposed framework and the work byWan et al. is that we both explicitly consider
communication between vehicles. However, the model proposed by Wan et al.
specifically targets congested traffic and uses different mathematical models for
vehicles that have different roles in the interaction (i.e., they determine who will
lead, follow, and merge a priori). Wan et al. also do not consider individual
differences between drivers.

Framework extensions
Althoughwe have only demonstrated our proposedmodel framework for a simple
merging scenario with two vehicles, it could easily be extended to more vehicles
or to traffic interactions with other types of participants. The underlying reason is
that while we put themodel’s bounding box around the complete interaction, the
drivers within the model are strictly separated; the only component connecting
the two drivers is communication (Figure 4.1). This has two main advantages. First,
communication in our framework is based on observable signals (e.g., turn indica-
tors or velocity). This means that sending and receiving communication can easily
be shared between multiple drivers, i.e., the communication is broadcast to all
surrounding road users rather than sent directly to one of them. For that reason, the
model framework can be extended to any number of drivers without requiring a
redesign. Second, because the drivers are separated, it is possible to swap one of
the drivers in themodel with another type of agent, for example, a pedestrian. This
would require adding the agent type to the observed communication, but since
this is also an observable feature, it would not make the model more complex.
One could even go as far as replacing one of the agents in the model with a non-
model agent altogether. This could, for example, be used to let a real human
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interact with the model in a driving simulator (this would require an optimized
model implementation capable of running in real-time). This in turn would allow for
the possibility of human drivers subjectively evaluating the ability of the model to
describe natural interactions. Alternatively, a model could be used to evaluate
autonomous vehicle controllers by letting the model interact with such a con-
troller. Another potential extension useful for AV development is integrating the
model into an AV controller to help it make decisions with an online evaluation of
potential outcomes of an interaction.
We believe our model could also be adapted to other types of human-human
interaction tasks. An example of such a task is cooperative bottle reaching, for
which a communication model was developed in [29]. The task in [29] is similar
to our task in that it constitutes a joint effort for which communication and action
take place along the same channel (velocity/acceleration in our case). The main
difference between our model framework and the communication model in [29]
is that we target the interaction dynamics, in which we assume communication
plays an important role, instead of targeting to model the communication as a
stand-alone feature.

Limitations and future Work
Both the specific model implementation and the general modelling framework
have important limitations. To start with the former, the model used for the sim-
plified merging scenario uses very simplistic implementations for all components.
The plan is based on desired velocity and acceleration alone. The beliefs are
one-dimensional and assumed to be Gaussian distributions. The communication is
assumed to be perfect (continuous without any noise), and only based on implicit
cues. And finally, the risk is only based on collision avoidance, not influenced by
high velocities or accelerations. In future implementations of the model, these
limitations need to be addressed, and more realistic (and complex) model com-
ponents should be investigated. However, it is important to first identify which of
these limitations (if any) play a role in the model’s ability to accurately reproduce
human-human interactions. This could be done by comparing the model to data
on human-human interactions gathered in a driving simulator experiment.
Another limitation of the current model implementation lies in the updates of the
belief function. The assumption that the likelihood function (used for the Bayesian
updates) has a known and fixed standard deviation results in the fact that every
update reduces the standard deviation of the posterior, even if the new infor-
mation contradicts the current belief. This is counter-intuitive: contradicting infor-
mation (incoming through communication) should increase the variability of the
belief, not decrease it. Put differently, if another person or driver sends unclear
communication about what they are going to do by alternating between accel-
erating and braking, one should keep all options open, not decrease the standard
deviation of the predicted position after a couple of seconds while shifting the
mean around on every time step. How to properly address this limitation remains
an open question.
Finally, the model’s satisficing-based decision-making can result in unstable out-
comes for high-conflict scenarios. When re-planning, the drivers in the model
will first search for a new solution close to the previous solution. For example, if
the previous plan was to brake, the driver will first explore if braking harder will
satisfy the new constraint. Only if this optimization fails, the driver will explore other
strategies (i.e., acceleration) to lower the perceived risk. This drastic change in
high-level behaviour is thus triggered by the first optimization failing. Therefore,
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slight numerical or temporal differences in this optimization can lead to different
high-level outcomes, especially for situations that are highly symmetrical (e.g.,
when drivers have very similar parameters and none of the vehicles has a clear
kinematic advantage). This was already observed in scenario D, where a slight
change in model parameters caused a different outcome, but a similar outcome
change could also result from changes in the type of numerical optimization solver
or its parameters. One way of addressing this sensitivity is to make the model
stochastic: introducing variability in the model’s behaviour will make the outcome
in high-conflict scenarios inherently stochastic and therefore could help to make
it less sensitive to small external perturbations.
Adding stochasticity also addresses the main limitation of the overall framework,
which is that currently, the framework is fully deterministic: with the exact same
parameters (for model and solver), the model will always produce the same be-
haviour. This is inconsistent with the substantial behavioural variability that humans
exhibit in traffic [50]. We see multiple possible ways of introducing stochasticity
in the framework to account for this. To name two: adding stochasticity could
be done in the receiving of communication (translating perceptual information to
an updated belief) by using evidence accumulation mechanisms [10] or additive
noise, or by including noise directly in the risk perception. However, more work is
needed to determine the best approach.
A second limitation of the overall framework concerns improvements and
redesigns of the model. Although the different components in the framework
are separated, which should allow for easy redesign of parts of the model, they
do depend on each other. This could mean that when redesigning one aspect
of the model, a redesign of another aspect is inevitable. As an example, in the
case study, we used velocity and position as the means of communication. These
values are directly used in the belief update. However, if we would change the
communication component of the model, the belief and its update also need to
be changed. This is an important consideration when starting a redesign of the
model since this could be the case for more components.
Finally, event-based triggering of the re-plan based on perceived risk results in an
uneven computational requirement from the model: some time steps may take
significantly more time to compute than others. A result of this is that our current
implementation of the model cannot run in real-time. Instead, we used offline
simulation for the case study. This could pose a problem when an experiment
needs to be performed where the model interacts directly with a human.
Although the presented case study shows promising results, there is much future
work to be done on the proposed framework. In addition to accounting for
stochasticity in human behaviour and optimizing the runtime performance of
the model, a necessary next step is to compare the model to human-human
interactive behaviour. However, even validating single-driver models that do
not incorporate interactions is already a complex task [51], therefore comparing
our model to human-human interaction data requires a separate detailed
investigation.

4.6. Conclusion
In this paper, we proposed a novel modelling framework to model human-human
driving interactions. The key insight underlying this framework is the focus on the
joint behaviour of the drivers during the interaction, rather than the isolated be-
haviour of a single driver. The framework explicitly includes communication be-
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tween drivers and mutual influences (reciprocal interaction). We implemented
the model for a simplified merging scenario and investigated its behaviour in four
scenarios. We conclude the following:

• The model avoids impending collisions via plausible driver-driver interactive
behaviours;

• Changing the risk threshold parameters per driver results in changes in be-
haviour that can be interpreted as more aggressive or conservative;

• Velocity-depended gap-keeping behaviour emerges from the combination
of risk-based planning and a probabilistic belief about other drivers’ plans.
With this behaviour, themodel shows a fundamental aspect of humandriving
behaviour, without it being explicitly programmed;

• The proposed model framework is a promising novel approach for modelling
two-way multi-agent interactions in traffic.
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5
Interactive merging behaviour
in a coupled driving simulator:
Experimental framework and
case study



H uman highway-merging behaviour is an important aspect when developing
autonomous vehicles (AVs) that can safely and successfully interact with other

road users. To design safe and acceptable human-AV interactions, the underly-
ing mechanisms in human-human interactive behaviour need to be understood.
Exposing and understanding these mechanisms can be done using controlled
driving simulator experiments. However, until now, such human-factors merging
experiments have focused on aspects of the behaviour of a single driver (e.g.,
gap acceptance) instead of on the dynamics of the interaction. Furthermore,
existing experimental scenarios and data analysis tools (i.e., concepts like time-to-
collision) are insufficient to analyze human-human interactive merging behaviour.
To help facilitate human-factors research on merging interactions, we propose an
experimental framework consisting of a general simplifiedmerging scenario and a
set of three analysis tools: (1) a visual representation that captures the combined
behaviour of two participants and the safety margins they maintain in a single
plot; (2) a signal (over time) that describes the level of conflict; and (3) a metric
that describes the amount of time that was required to solve the merging conflict,
called the conflict resolution time. In a case study with 18 participants, we used
the proposed framework and analysis tools in a top-down view driving simulator
where two human participants can interact. The results show that the proposed
scenario can expose diverse behaviours for different conditions. We demonstrate
that our novel visual representation, conflict resolution time, and conflict signal are
valuable tools when comparing humanbehaviour between conditions. Therefore,
with its simplified merging scenario and analysis tools, the proposed experimental
framework can be a valuable asset when developing driver models that describe
interactivemerging behaviour andwhen designing AVs that interact with humans.



Interactive merging behaviour in a coupled driving simulator

5.1. Introduction
One of the main present-day challenges in the development of autonomous ve-
hicles (AVs) is enabling them to interact with human-driven vehicles safely, effi-
ciently, and in amanner acceptable for occupants andother road users. To reach
this goal, a deep understanding of human behaviour in interactive scenarios is
required. One example of such a scenario is merging on a highway.
While many studies have been performed to understand and model human be-
haviour in non-interactive scenarios (e.g., car following [1] or lane changing [2])),
there are only a limited number of studies concerning interactive merging be-
haviour. Some of these studies simulate behaviour and decision-making to in-
vestigate interactions. Mostly using game theory to investigate higher-level traffic
phenomena (e.g., [3]). Because the behaviour is simulated and not recorded,
these studies do not provide insight into the dynamics of driving interactions. Other
studies investigatemerging using naturalistic traffic datasets (e.g., [4]). These have
the disadvantage that they cannot capture the variability within (and between)
pairs of interacting vehicles, because there are no (known) repeated trials per
pair. Thus, when aiming to understand the dynamics and variability of interactive
driving behaviour, controlled human factors experiments are needed.
Existing human-factors experiments on merging behaviour, have so far focused
mainly on the behaviour of one of the participants of the interaction while us-
ing generated behaviour for other traffic (e.g., [5]). But to fully understand the
interaction, the joint behaviour of both drivers and their mutual influence should
be considered. Therefore, controlled experiments are needed that are designed
specifically to expose these underlying mechanisms of interactive behaviour.
For such an experiment, a merging scenario should be designed that evokes hu-
man interactive behaviour and that can be repeated and analyzed systemati-
cally. Additionally, meaningful signals and metrics should be defined that provide
insight into how the merging conflict is resolved by a pair of merging drivers (e.g.,
comparable to time-to-collision for car following). Because experiments thus far
focused on the behaviour of single drivers, both this simplified merging scenario
and these meaningful signals and metrics are lacking.
This work addresses that gap, by proposing an experimental framework for human-
factors experiments in coupleddriving simulators. Weproposea simplifiedmerging
scenario that reduces the action space compared to natural merging scenarios.
This enables a first principled analysis for which we propose three novel tools: 1)
a visual representation of the pair-wise behaviour, 2) a signal describing the time-
varying level of conflict, and 3) a novelmetric namedconflict resolution time (CRT).
The three analysis tools provide insight into the combined behaviour of two drivers
and how they solve the merging conflict. In a case study, we show the practical
applicability of the experimental framework and outline its potential for measuring
and modelling human-human merging interactions.

5.2.Merging scenario
We consider a simplified merging scenario as illustrated in Figure 5.1. In this sce-
nario, two vehicles of equal dimensions approach a predefined merge point. The
acceleration of each vehicle can be controlled by a participant, who is instructed
to maintain their initial velocity, but prevent collisions. No steering is considered:
the headings of the vehicles are always equal to the heading of the road, and at
the merge point, the headings of the vehicles change instantaneously.
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Figure 5.1: The proposed simplified merging scenario: a screenshot of the top-down view driving simulator
used in the case study, rotated 90 degrees clockwise. The left and the right vehicle approach a merge
point where their lanes merge into one instantaneously. Trees and roadside markers give participants a
visual cue for velocity. Each section of the track has a track length of 50 meters.

These simplifications reduce the vehicles’ action and position spaces to single
dimensions (longitudinal velocity and travelled distance along the track respec-
tively). Note that with two participants, the combined state of the two vehicles
and their possible actions are both two-dimensional. Besides the simplifications of
action and positions, the proposed merging scenario also simplifies environmental
factors. In this scenario, there is no right of way, therefore, the gathered data is
symmetrical.
The proposed merging track consists of three sections of equal track length (50
m): the tunnel, the approach (capturing the actual merging behaviour), and
a subsequent car-following section. In the tunnel section, participants cannot
control their vehicle but can only observe the two vehicles, they gain control once
both vehicles have exited the tunnel. This moment marks the explicit start of the
interaction.

5.3. Case study
To illustrate the utility of our simplified merging scenario, we performed a case
study. All obtained results combined with material to further detail the experi-
mental protocol and methods can be found online [6]). The software used in the
experiment can be found on GitHub [7].
Eighteen drivers volunteered to participate in our experiment (6 female, 12 male,
mean age: 25, std: 2.6), they were divided into 9 pairs of two. The participants
were seated at separate tables and divided by a black screen to prevent them
from seeing each other (Figure 5.2). Participants were instructed to remain seated,
use one foot on the gas or brake pedal, keep both hands on the steering wheel
(which was only used for feedback, not for steering), and to avoid making sounds.
Finally, participants were told that this is a scientific experiment, not a game or a
race, and that no vehicle had the right of way. When the vehicles in the simulation
collided, the participants got a time penalty of 20 seconds.
To investigate the impact of initial conditions on merging behaviour, the experi-
ment consisted of 11 experimental conditions in which two variables were varied:
the initial relative velocity of the vehicles (the average velocity was always 10
m/s), and the projected headway when the first vehicle reaches the merge point
(assuming that the vehiclesmaintain their velocity). Both are defined to bepositive
when the value for the left vehicle is larger. The conditions were labelled with
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a combination of numbers. First, the projected headway at the merge point in
meters (-4, -2, 0, 2, or 4 meters), and second, the relative velocity of the vehicles
(-8, 0, or 8 decimeters/second). The 11 conditions usedwere (-4_-8), (-4_0), (-4_8), (-
2_8), (0_8) (0_0) (0_-8), (2_-8), (4_-8), (4_0), and (4_8). Each conditionwas repeated
10 times in random order for every pair of participants. Five additional trials from
random conditions were used at the start of the experiment as training runs.

5.4. Results and analysis tools
Besides the simplified merging scenario, we propose three analysis tools that pro-
vide insight into interactive behaviour: 1) a visual representation of the pair-wise
behaviour, 2) a signal describing the time-varying level of conflict, and 3) a novel
metric named conflict resolution time (CRT). Using these tools, an overview figure
that provides insight into the conflict resolution behaviour of the pair of partic-
ipants was made for every trial. Figure 5.3 shows a representative example of
this overview, figures for all other trials can be found online [6]). We will use the
example in Figure 5.3 to introduce our proposed analysis tools in the following
sections.

Figure 5.2: The experimental setup as seen
from the view of one participant. The
participant sees a top-down view of the
vehicle they can control with the gas and
brake pedal. The steering wheel provides
vibration feedback if the participant devi-
ates from the designated velocity. Visual
velocity feedback is provided through the
speed dial in the lower part of the screen.

In Figure 5.3, we first illustrated the positions
and velocities of the individual participants
(panels A and B). Both these plots illustrate
the dynamics of individual vehicle motion but
provide little insight into how and when the
conflict was resolved, besides the fact that
the right vehicle reached the merge point first.
Therefore, we propose to use the visualization
in panel C of Figure 5.3.

5.4.1. Interaction visualization during merging
and car-following
A meaningful visualization of a traffic interac-
tion should capture both the state andpossible
actions of the involved vehicles, as well as
the safety margins. Consider car following
for example. The commonly used plot of
the distance gap over time shows the current
state (gap), action (the slope of the trajectory
represents the relative velocity), and safety
margin (if the gap is 0, a collision occurs). We
propose to extend this gap-plot in two ways to
make it applicable to the interactive merging
scenario.
First, we represent the behaviour of the two
drivers by plotting the headway; the distance
between the front bumpers of the vehicles.
We define the headway as positive if the left
vehicle is ahead. And second, instead of
against time, we plot the headway against the

average travelled distance of the two vehicles (we expand on this later in this
section). The resulting trajectory in the “headway – average distance” plane
represents the joint dynamics of the two vehicles (Figure 5.4).
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Figure 5.3: Dynamics of a representative case study trial (pair 1, trial 1, condition -2_8). Panel A shows
individual positions, the connected markers represent positions at the same points in time showing the
left car exits the tunnel later, and arrives later at the merge point. Panel B shows individual velocities
over time. Panels C and D show the “headway – average distance” trajectory and the level-of-conflict
signal, respectively. These will be introduced in the following sections. The conflict resolution time (CRT) is
indicated by the crosses, this metric will be explained in the second last section. Finally, triangles indicate
the moment when a vehicle exits the tunnel and squares denote the moment a vehicle reached the
merge point. The average traveled distance is average position (distance along the track) of the two
vehicles.

In the car-following gap plot, the imminent collision is indicated simply by the gap
approaching zero (or the headway approaching the length of the vehicle), in
our interactive merging scenario no collision can occur during the approach, yet
a conflict can still be present (i.e. the vehicles are heading towards a collision).
To visualize this approach conflict, we define the collision area in the “headway
– average distance” plane (grey area in Figure 5.4). This area is a block during
the car following section and does not exist during the approach. The shape
and size of it at the merge point depend on the dimensions of the track and the
vehicles (the dark part in Figure 5.4). If the joint trajectory of the vehicles goes
inside the collision area a collision occurs. The exact boundaries of the area can
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Figure 5.4: The proposed visualization of the interactive behavior, this in an extended view of Figure 5.3
panel C. The darker part of the collision area is influenced by themerge point, the light part represents the
car-following part. The joint trajectory in the “headway – average distance” plane shows the dynamics of
how the conflict is resolved and when it is resolved (when the line no longer heads for the collision area).
Additionally, the safety margin is shown as the headway between the trajectory and the collision area
(this is the gap).

becalculatedbyminimizing the headwaywhile constraining the overlapbetween
the vehicles to be 0, for all average travelled distances.
We opted for visualizing the headway against the average distance and not time
because the existence of the described collision area depends on the section
of the track the vehicles are in. Therefore, representing it over time makes it de-
pendent on the vehicles’ positions at a certain time. This would result in a dif-
ferent visual representation of the collision area for every repeated trial of the
experiment. Thus, it would make it impossible to compare trials in a single plot.
Conversely, plotting the headway over the average distance along the track
anchors the collision area (and track sections) and enables the visual comparison
of experiment trials.
In the context of the overview figure with case study results (Figure 5.3-C), our pro-
posed visual representation provides additional insight compared to the position
and velocity plots (panels A and B). The ”headway-average distance” trajectory
shows the initial conditions (i.e., the situation at the tunnel exit), the chosen solution
(the trajectory bends down so the right vehicle went first), and the safety margin
(the gap between the vehicles at the merge point is observable as the vertical
distance between the line and the collision block: approximately 4 m).

5.4.2. Level-of-conflict signal
The visual representation of the interaction also inspired us to propose a signal de-
scribing the level of conflict (Figure 5.3-D). It quantifies the amount of effort needed
to resolve the conflict as well as the safetymargins after the conflict is resolved. The
signal is calculated using three checkpoints along the track (illustrated as orange
lines in Figure 5.5). These checkpoints are situated at the end of the track, at the
merge point, and at the collision threshold (the first position on the track where
a collision can occur). This collision threshold is located before the merge point
because there is a possibility of a side-to-side collision on the approach.
There are always two solutions to themerge conflict: either the left vehicle merges
first or the right one does. At every checkpoint, the minimum safe headway can
be determined for each solution (this is positive when left merges first and vice
versa). These minimum safe headways at the checkpoints can be represented as
points on the boundary of the collision area in the “headway – average distance”
plane (orange markers in Figure 5.5).
For every point on the headway trajectory, we can now calculate the angle be-
tween the current slope of the trajectory (blue arrow in Figure 5.5) and vectors to-
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Figure 5.5: The construction of the level-of-conflict signals from the “headway – average distance” plane
representation. The blue marker and arrow represent a point and slope of the headway trajectory.
The orange lines denote the checkpoints along the track, orange markers indicate the minimum safe
headway there, for both the left and right-first solutions. The green lines represent the minimum and
maximum slope needed to clear the collision area. They thus represent the deviation needed from the
current trajectory, to safely reach the left-first (top) or right-first (bottom) solution.

wards all 6 boundary points (orange markers in Figure 5.5)(for the implementation,
see [7]). The minimum andmaximum values of these 6 angles can be visualized as
lines from the current point on the trajectory to a boundary point, which precisely
clears the collision area (green lines in Figure 5.5).
Note that the slope of the headway trajectory is directly related to the relative
velocity of the vehicles, these angles thus represent changes in relative velocity.
Therefore, they quantify the deviation from the current relative velocity that is
required to safely reach one of the two possible solutions (either the left goes first
and the trajectory goes above the collision area, or vice versa).
The minimum and maximum angles for every point on the trajectory make up
two conflict signals, one for the left-first solution (maximum) and one for the right-
first solution (minimum). These signals are inversely related: if one solution be-
comes easier, the other becomes harder. Right-first solutions always require a
clockwise rotation of the slope because the trajectory will go under the collision
area. Therefore, we multiply the right-first (minimum) angles with -1. This ensures
that the conflict signal is always positive if the vehicles are currently on a collision
course, and negative if the conflict is resolved. Finally, we normalize the calcu-
lated angles by dividing them by the maximum possible angle. The headway can
maximally increase with a factor of 2 over the average travelled distance thus the
maximum absolute angle is 𝑎𝑡𝑎𝑛(2). The result is a conflict signal that ranges from
-1 (maximum safety margin) to 1 (maximum conflict).
In the context of the overview figure with case study results (Figure 5.3-D), the
proposed signals illustrate the conflict dynamics to a larger extent than the pro-
posed “headway – average distance” representation (panel C) alone. The level
of conflict for the right-first solution is initially lower, suggesting that it is easier for the
two participants to resolve the conflict in a way where the right vehicle goes first.
This is indeed what happened in this trial: the conflict was resolved when the level
of conflict for the right-first solution reached 0. When the left-first conflict signal
reached 1, that solution was not reachable anymore.
Furthermore, the conflict signals highlight what happened during the rest of the
experiment. In the car following section, the right-first conflict signal becomes
positive indicating that the vehicles are on a collision course again. This can also
be seen in the headway trajectory, which is heading towards the collision area
at that point. While this would have been visible in a time-to-collision plot, it is not
clear in the raw position and velocity data (panels A and B).
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5.4.3. Conflict resolution time
Besides having visual representations of a complete trial of the experiment, it is
vital to have a metric that captures the dynamics of the conflict resolution in a
single number. Such a metric can be used to compare different experimental
conditions and human pairs. We propose to use the conflict resolution time (CRT)
as this metric. We define CRT as the time between the start of the interaction
(tunnel exit) and the first moment the vehicles are no longer on a collision course
(assuming constant velocities).

Figure 5.6: the conflict resolution time (CRT) values for all trials of the experiment, presented per condition.

To calculate the CRT, we use the same three checkpoints along the track that
were used for the conflict signal (the orange lines in Figure 5.5). For every time
step, we calculate if continuing at the current velocity will result in a collision at
any of the checkpoints (for the implementation, see [7]). At the first point in time
where no collision would occur, we assume the conflict is resolved.
To investigate differences between the conditions, we analyzed CRT over all par-
ticipants (Figure 5.6). We found that in some conditions, the conflict was solved
faster than in others, which can be interpreted as the conflict being easier to solve.
The condition 0_0 for example, where neither vehicle had an advantage in terms
of projected headway or velocity, had the highest median CRT. This decreased
for conditions where one of the vehicles did have an advantage. The CRT was
lowest for the conditions where the vehicles had equal velocity, but where one
had a projected headway advantage.

5.5. Discussion and conclusion
In this work, we proposed an experimental framework for investigating themerging
behaviour of a pair of human drivers in a coupled driving simulator. Addition-
ally, we proposed three novel analytic tools to quantify essential characteristics
of merging behaviour: the “headway – average distance” trajectory, the level-
of-conflict signals, and the conflict resolution time (CRT). The results of our case
study show that our proposed visual representation and level-of-conflict signals
provide additional insight in individual trials compared to basic velocity and po-
sition traces. Our proposed CRT metric can be used to expose aggregate differ-
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ences between conditions. Together, these analysis tools can help tomeaningfully
compare joint human-human behaviour in merging interactions between trials
and between conditions.
There are three main limitations to the proposed framework and the setup of our
case study. One major limitation is that it is currently unknown how human be-
haviour in this simplified scenario exactly relates to natural merging behaviour.
Simplifying the scenario in a controlled environment is a necessary first step for
obtaining insight into the merging behaviour. However, future work should focus
on extending the controlled environment to a more natural 3-dimensional space
that includes environmental factors such as right-of-way.
Second, the proposed analysis tools are not yet suitable for use in a 3-dimensional
environment because they are all related to the dimensions of the track and the
vehicles. If steering control is added to the vehicles, and the merge point is con-
verted to a merge line, the fixed collision area in the interaction “headway –
average distance” plane is no longer valid. Thus, how to extend the proposed
analysis tools to a 3-dimensional environment remains an open question.
The final limitation is specific to our case study. In the case study, the same pair of
participants performed 110 trials of the experiment. Participants were aware that
these trials all involved the same opponent. This could have led to participants
anticipating the driving style of the other driver after several trials, somethingwhich
is not possible in natural driving. Future studies could include multiple participants
at the same time, with random pairing of participants at the start of each trial to
account for this.
Despite these limitations, we believe our experimental framework can be a valu-
able asset in future studies of human-human interactivemerging behaviour. It can
therefore support the development and validation of human behaviour models,
advanced driver assistance systems, and autonomous vehicles that interact with
humans.
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6
Humanmerging behaviour in a
coupled driving simulator:
How do we resolve conflicts?



T raffic interactions between merging and highway vehicles are a major
topic of research, yielding many empirical studies and models of driver

behaviour. Most of these studies on merging use naturalistic data. Although
this provides insight into human gap acceptance and traffic flow effects, it
obscures the operational inputs of interacting drivers. Besides that, researchers
have no control over the vehicle kinematics (i.e., positions and velocities) at the
start of the interactions. Therefore the relationship between initial kinematics
and the outcome of the interaction is difficult to investigate. To address these
gaps, we conducted an experiment in a coupled driving simulator with a
simplified, top-down view, merging scenario with two vehicles. We found that
kinematics can explain the outcome (i.e., which driver merges first) and the
duration of the merging conflict. Furthermore, our results show that drivers use
key decision moments combined with constant acceleration inputs (intermittent
piecewise-constant control) during merging. This indicates that they do not
continuously optimise their expected utility. Therefore, these results advocate the
development of interaction models based on intermittent piecewise-constant
control. We hope our work can contribute to this development and to the
fundamental knowledge of interactive driver behaviour.



Humanmerging behaviour in a coupled driving simulator

6.1. Introduction
Interactions between vehicles, such as in highway merging, play a major role in
everyday traffic. Therefore, driving behaviour in these interactions is an essential
aspect of many transportation technologies. Empirical data and microscopic
traffic models of human driving behaviour are thus essential tools for transportation
engineers. Thesemodels and data are used in the design and safety assessment of
highway on-ramps [1], [2] and urban intersections [3]. Microscopic traffic models
can be used to evaluate trafficmanagement systems [4]. And finally, autonomous
vehicle designers are interested in these interactions to develop socially accept-
able and human-like autonomous behaviour [5], [6]. Particularly for the last use
case, a good understanding of the individual negotiations and the continuous
reciprocal actions of the drivers during interactions is essential.
Many recent studies have investigated interactive merging behaviour by mod-
elling this behaviour or by conducting empirical investigations. Most of these stud-
ies use naturalistic data, i.e., data recorded in real-world scenarios. For example,
Daamen et al. [7] and Marczak et al. [8] performed empirical analysis on traffic
data which they recorded with helicopters. Wang et al. [9] and Srinivasan et
al. [10] used existing open datasets to evaluate driver behaviour on merge ramps.
Others have modelled interactive driver behaviour using naturalistic data to gain
insights, e.g., using game theory [11]–[13], acceleration models comparable to
car-following models [14], or machine-learned models [10], [15].

Figure 6.1: The simplified merging scenario used in the experiment. Two
vehicles approach a pre-defined merge point at which their lanes merge
into one. The track consists of three sections of equal length (50 𝑚, total
track length 150 𝑚). The vehicle dimensions are 4.5 𝑚 x 1.8 𝑚. In the tunnel,
participants could observe both vehicles, but not control their vehicles. During
the approach, the participants could control the acceleration of their vehicles
to resolve the merging conflict. During the car-following section, the vehicles
follow each other in the same lane.

Figure 6.2: The
experimental setup as
seen from a participant’s
view. The other
participant in the pair
used an identical setup.
The participants could not
see each other.

The usage of naturalistic data has the advantage that real-world behaviour can
be studied. However, this approach has two main drawbacks. First, it is chal-
lenging to investigate the interacting drivers’ operational behaviour and control
inputs fromnaturalistic data. Thepreviouslymentioned studies use naturalistic data
that was recorded with cameras on helicopters, quad-copters, or high buildings.
Therefore, only sequential positions are recorded. Velocities andaccelerations are
reconstructed from this position data and control inputs are not included. Other
naturalistic datasets that are recorded from within a vehicle (e.g.,[16]–[18]). They
do contain these signals for the ego vehicle. However, these datasets do not
provide the same signals for the surrounding vehicles, which complicates the study
of interactions.
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The second drawback is that although the kinematic differences between sit-
uations can be observed, they cannot be controlled. This makes it difficult to
investigate the relationship between the initial kinematics of the vehicles and the
outcome of the merging conflict (e.g., who merges first and who yields). To gain
a deeper understanding of individual reciprocal interactions, controlled experi-
ments are needed.
However, only a very limited number of studies in a controlled environment (i.e.,
in a driving simulator) targeted interactions during merging (i.e., excluding studies
of autonomous control strategies, gap acceptance, or traffic flow). Stoll et al.
investigated human decision-making in merging scenarios based on videos of a
controlled simulation [19]. Participants had to select their preferred reaction (e.g.,
accelerate or decelerate) after watching videos of vehicles they were ”interact-
ing with”. Shimojo et al. used a driving simulator to investigate how the merging
behaviour of drivers is affected by their perception of other drivers [20]. They used
predetermined controls for one of the vehicles in the interaction, to influence this
perception in a controlled way. In both experiments, the behaviour of one of the
drivers was predetermined. Thus, there was no interaction or dynamic negotiation
between two humandrivers. Weconclude that the existing literaturemisses studies
that investigate the reciprocal merging interactions between at least two human
drivers in a controlled environment.
To address this gap, we conduct an experiment in a top-down view, coupled
driving simulator in which we investigate reciprocal merging interactions between
two human drivers. We investigate the operational behaviour of the drivers in
terms of inputs (acceleration and velocity profiles). Furthermore, we examine the
influence of different initial kinematics (both position and velocity) on the outcome
of the interaction. Both on a high level in terms of which driver merges first, and
in more detail through the metric Conflict Resolution Time (CRT) [21]. The focus of
our work is on the dynamics of interactive behaviour. We hope this experiment ad-
vances the fundamental knowledge about vehicle-vehicle interactions in traffic
and contributes to the development of interaction-aware intelligent transporta-
tion systems.

6.2.Methods
We conducted an experiment in a coupled, top-down view driving simulator with
9 pairs of participants (6 female, 12 male, mean age: 25, std: 2.6). All partic-
ipants met their ”opponent” before the experiment and most participant pairs
knew each other before the experiment. The details of this experiment (including
Figures 6.1 and 6.2), and the analysis tools we developed to gain insight into the
merging behaviour, have been previously published in [21]. This experiment was
approved by TU Delft’s Human Research Ethics Committee (HREC). All participants
gave their consent before participating in the experiment.
The experiment regarded a symmetric simplified merging scenario (Figure 6.1) in
which participants could control the acceleration of their vehicle using the gas
and brake pedal of a steering-wheel game controller (Logitech Driving Force GT).
The headings of the vehicles were always equal to the heading of the road, so no
steering was involved. Participants could see the simulation on a computer screen
(Figure 6.2). However, they could not see the other participant, who was seated
in the same room behind a curtain. To prevent auditory communication, partic-
ipants wore noise-cancelling headsets (Sony WH-1000XM3) with ambient music.
All gathered data, the information letter we provided to participants before the
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experiment, and the informed consent form we used were published in the 4TU
data repository [22]. The software needed to reproduce the experiment can be
found on GitHub1. Interactive plots of all our results can be found in the online
supplementary materials2.
To investigate the effects of the initial vehicle kinematics on the outcome of the
merging conflict we varied the initial positions and initial velocities of the vehicles.
Participants were instructed to ”maintain their initial velocity yet prevent a colli-
sion”. To ensure a merging conflict, all conditions were chosen such that if both
drivers wouldmaintain their initial velocity, they would collide. Furthermore, partic-
ipants were instructed to ”remain seated, use one foot on the gas or brake pedal,
keep both hands on the steering wheel, and not to communicate by making
sounds or noise.” Finally, participants were told that ”this is a scientific experiment,
not a game or a race” and that ”no vehicle has the right of way.”
The participants received visual feedback on their computer screens. Their visuals
were randomly mirrored such that they appeared to approach the merge point
from the left or the right side randomly. While in the experimenter’s view, and in
all results discussed here, we refer to the same participant in a pair as the left or
right driver. If participants deviated from their initial velocity, their steering wheel
provided vibration feedback, increasing with the deviation andwith a dead band
around the initial velocity. The vibration was implemented to facilitate speed per-
ception. If the vehicles collided, the participants got a time penalty of 20 seconds.
This was longer than the duration of a single trial, which took approximately 16
seconds. During this time, the experiment was paused and the participants had
to wait and watch an animation on the screen. This increased the total duration
of the experiment and therefore provided an incentive not to collide.
The vehicles started in a tunnel where participants could observe the initial ve-
locities of both vehicles, but they could not control their vehicles yet. The drivers
gained control when both vehicles exited the tunnel. The tunnel, with its different
background colour, served merely as a visual representation of the possibility of
controlling the vehicles. This section of the track had two purposes. First, it ensured
that drivers could perceive their velocity relative to the velocity of the other ve-
hicle before starting the interaction. In a pilot study, we tested a setup where a
driver could only see their own vehicle in the tunnel. However, in this pilot, drivers
accelerated directly at the tunnel exit to anticipate the appearance of another
vehicle, which is a unilateral decision and thus prevents an interaction. Therefore,
we decided to make both vehicles visible in the tunnel. Second, the tunnel exit
marked an unambiguous moment when the interaction started (i.e., the start of
the interaction).
The vehicles’ initial kinematics were varied to create 11 experimental conditions.
We investigated both differences in velocity and headway (distance from front
bumper to front bumper). For the differences in headway, we used the projected
headway at themerge point as the underlyingmetric to design the conditions and
determine the initial positions for a given velocity difference. The projected head-
way is the headway at the merge point if both drivers would maintain their initial
velocity. We chose this metric because it does not depend on track dimensions
or a snapshot of the vehicle state at an arbitrary point along the track (e.g., at
the tunnel exit). A combination of relative velocity and projected headway fully
defines the positions and velocities of both vehicles at the start of the experiment

1https://github.com/tud-hri/simple-merging-experiment
2https://tud-hri.github.io/simple-merging-experiment
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and at the tunnel exit because the drivers have no control over their vehicles in
the tunnel (see Figure 6.4).
To visualise the differences between conditions, we plotted them in a 2D
projected-headway - relative-velocity plane (Figure 6.3). This figure shows the
conflict space. If the projected headway is larger than the vehicle length, there is
no conflict. These areas are shown in grey on the left and right side of Figure 6.3.
The figure also shows in which areas we expected the right or the left driver to
have an advantage. This expectation was based on a (shorter) pilot experiment
with the same experimental setup but different kinematic conditions.

Figure 6.3: The experimental conditions in their two-dimensional space. The x-axis shows the projected
headway at the merge point if both drivers would keep their initial velocity. If the headway is larger than
the vehicle length (4.5 𝑚) there is no projected collision, this is indicated by the grey areas on the left
and right side. The y-axis shows the initial velocity differences. Positive values mean that the left vehicle is
(projected to be) ahead or moving faster. The diagonal darker area divides the space into areas where
the left or right driver has the advantage of passing the merge point first. This line was estimated by
interpolating the results of a pilot experiment (with different kinematic conditions) to find a 50% distribution
between left and right going first. Note that this does not simply divide the plane into areas where one
driver has the velocity or projected headway advantage.

Weused this expectation to design and spread the conditions evenly over the con-
flict space. The diagonal darker area represents the area in which the (kinematic)
advantage changes from the left to the right driver. Wedecided not to investigate
this area but to (first) focus on driver behaviour in cases where the outcome is
more distinct. Our aim here is to gain insight into the interactions and negotiations
between the two drivers in these situations. However, we did include a baseline
condition where neither driver has a position or velocity advantage. With these
conditions, we aim to obtain a quantitative description of the most likely outcome
(who merges first) based on the initial kinematics. We used the Python package
Pymer4 [23] for all statistical models in this work.
We named the conditions based on the two dimensions that define them: the pro-
jected headway in meters and the velocity difference in decimetres per second.
Positive numbers indicate that the left driver has an advantage. For example, in
condition -2_8, the right driver has a projected headway advantage of 2 𝑚, but
the left driver drives 0.8 𝑚/𝑠 faster. For more visual examples of conditions and their
names, see Figure 6.4. In our experiment, every condition was repeated 10 times
in a random order for every pair of participants.
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Figure 6.4: Three visualisations of experimental conditions. The figures show the relative positions of the
vehicles and the start point, tunnel exit, and merge point. These merge point positions would occur if
both vehicles would maintain their initial velocity. In most conditions, the slower vehicle has a position
advantage at the tunnel exit. The exceptions are conditions 4_8 and −4_− 8, where the vehicles exit the
tunnel at the same time.

We used the Conflict Resolution Time (CRT) [21] to analyse the conflict resolution
behaviour of the pairs of participants. The CRT denotes the time from the start
of the interaction until the first moment at which the vehicles are no longer on
a collision course (assuming constant velocity). To calculate the CRT, we post-
process the data and determine for every time step if a collision would occur
on the remaining track if both vehicles would continue their velocity. The time
between the tunnel exit and the first moment where no collision would occur is
the CRT. Drivers had limited time to resolve the conflict after exiting the tunnel;
they reached the merge point (where they would collide if they take no action)
in 4.9 seconds on average. CRT is a measure of the amount of time needed to
resolve the conflict and, therefore, can be used as a measure of the difficulty of
the merging conflict.

6.3. Results

Table 6.1: The number of observed collisions per condition. The total number of trials per condition was
90. Most collisions occurred between 4 and 6 seconds after the vehicles exited the tunnels.

Condition -4_-8 -4_0 -4_8 -2_8 0_8 0_0 0_-8 2_-8 4_-8 4_0 4_8
Collisions 3 1 3 2 4 5 3 2 1 2 2

We structure our investigation of driver conflict resolution behaviour into two parts.
First, we present the analysis of the joint behaviour of two drivers, to analyse the
outcome of the conflict (who gives way) and how quickly each pair of drivers
resolved the merging conflict. Metrics that capture the joint behaviour for each
pair under different conditions include a percentage of who merged first, as well
as the Conflict Resolution Time (CRT). Second, we investigate the contributions of
each individual driver in a pair to resolve the conflict. This includes the actions the
individual drivers took in terms of accelerations and the resulting velocity profiles.

6.3.1. Joint behaviour
Who merged first?
The high-level outcome of a merging conflict can be summarised by which driver
reached the merge point first, except for the trials where the vehicles collided.
However, collisions were rare across all conditions (Table 6.1). We plot the pro-
portion of left and right vehicles that went first as a function of initial conditions in
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Figure 6.5: An overview of the high-level outcome per condition: which driver went first? Every condition
was repeated 10 times for all 9 participant pairs. Therefore, the total number of trials per condition is 90.
The markers show the measured data as the percentage of the left driver merging first, with the vertical
line representing the 95% binomial proportion confidence intervals. Collisions were omitted from these
results (see Table 6.1). The lines and shaded areas represent the (population) predictions of the mixed-
effects logistic regression model (Table 6.2) with the 95% confidence interval.

Table 6.2: Mixed-effects logistic regressionmodel describing the effect of projected headway and relative
velocity on which driver reached the merge point first. Collisions were excluded, the left vehicle going first
was labelled as 1, right first as 0. The model includes a random intercept for participant pairs to account
for between-pair differences.

Confidence interval
Estimate SE Z P-value 0.025 0.975

Intercept -0.32 0.212 -1.50 1.326 × 10−1 -0.73 0.10
Projected headway 1.15 0.080 14.4 6.966 × 10−47 0.99 1.31
Relative velocity -3.4138 0.321 -10.6 2.858 × 10−26 -4.04 -2.78

Figure 6.5. In the ”neutral” 0_0 condition this proportion is almost evenly distributed.
For the other 10 conditions with kinematic differences between the drivers, 5 con-
ditions show a consistent outcome over all pairs and trials. This indicates that the
outcome in these conditions is entirely defined by kinematics, with no variation be-
tween participant pairs. In one other condition (2_−8), only a single trial deviated
from the outcome norm. Four conditions (−4_−8, 4_8, 0_−8, and 0_8) show a large
majority of the outcomes where a particular driver merges first and a minority of
the other driver merging first.
To investigate the relationship between the initial conditions (i.e. the kinematics at
the start of each scenario) and the outcome (which driver merges first), we fitted
a mixed-effects logistic regression model to the data. The model parameters are
shown in Table 6.2, and the model outcome is visualised in Figures 6.5 and 6.6.

Table 6.3: Fixed effects estimates of the random intercept values per pair for the mixed-effects logistic
regression model (Table 6.2).

Participant Pair 1 2 3 4 5 6 7 8 9
Intercept −0.54 −0.42 −1.17 0.06 −0.13 −0.51 0.16 −0.22 −0.13
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These results show that increasing the projected headway advantage increases
the chances of a driver merging first (𝑧 = 14.4, 𝑝 < 10−46). The relative velocity
on the other hand has a negative effect on the probability the driver merges first
(𝑧 = −10.6, 𝑝 < 10−25). This means that, for equal projected headways, a driver
with a higher initial velocity tends to merge behind the driver with a lower initial
velocity. The explanation for this is that drivers with a higher initial velocity exit the
tunnel later than the slower vehicle in most conditions (Figure 6.4). An important
side-note to these effects is that we found these in a symmetric scenario with no
right of way for either of the drivers.

Figure 6.6: A 3-dimensional visualisation of a (population) prediction of the logistic regressionmodel on the
data. All three subplots show the same data for different angles. The model predictions are shown as the
black surface and the background projections. The coloured bars show the data from the experiment.
The 𝑥 and 𝑦-axis represent the condition kinematics. The 𝑧-axis shows the percentage of trials where the
left driver merged first. Collisions were excluded from this data (see Table 6.1). An interactive version of
this plot can be found in the online supplementary materials.

The population level intercept had a negative estimated value that is not signifi-
cant (𝑧 = −1.5, 𝑝 = 0.13). This could be explained by the fact that the intercept
explains a bias in the data towards the left or the right driver. This effect is clearest
in the neutral condition (0_0), where we found that the right driver merged first in
a small majority of the cases. Table 6.3 shows the estimated intercept values for
the individual participant pairs. We expect that with more participants, the bias
on the population level will disappear and the intercept value will approach 0.
To visualise at which locations in the conflict space the left or right driver is more
likely to merge first, we have created a top-down view heat map of the regression
model. This heat map is shown in Figure 6.7 and closely resembles Figure 6.3.

Conflict Resolution Time
Besides how the conflict was resolved (which driver merged first) we investigated
how quickly the conflict was resolved by examining the Conflict Resolution Time
(CRT). This is a measure of the time it took the drivers to resolve the conflict and
therefore resembles the difficulty of the conflict in a specific trial. Figure 6.8 shows
the CRT distributions we found for all experimental conditions. The median CRT is
highest for the neutral condition 0_0. In this condition, no driver has a headway or
velocity advantage. Drivers have to negotiate a solution without a ”most-likely”
candidate solution. The lowest median CRT was found for the conditions where
one driver only had a projected headway difference but the velocity was the
same for both drivers. The conditions with velocities differences but no projected
headway difference had high median CRTs. Thus conflicts where one driver has
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a pure projected headway advantage are easier to resolve than conflicts where
one driver has a pure velocity advantage.

Figure 6.7: A heat map of a logistic regression model prediction for the driver that will merge first. The
conditions where data was gathered are marked with black squares.

Figure 6.8: Distribution of the Conflict Resolution
Time (CRT) for all conditions. The CRT is the
time from the moment at which the drivers
gain control until the first moment when they
are no longer on a collision course (assuming
constant velocities). The coloured horizontal
bars indicate the average time at which the
first vehicle reached the merge point in that
condition. A figure that shows the same CRT
distribution placed in the 2-dimension conflict
space on the locations of the corresponding
conditions is available in the online supplemen-
tary material.

Figure 6.9: Distribution of the Conflict Res-
olution Time (CRT) from the perspective
of the first merging driver. In this plot,
positive numbers for headway and veloc-
ity differences indicate an advantage for
the driver that merged first in that trial.
This results in a different number of trials
per box (see the labels at the top of
the figure). The lines and shaded areas
visualise predictions of the mixed effects
model (Table 6.4) and its 95% confidence
interval.

But besides these high-level observations, Figure 6.8 reveals no clear relationship
between the initial kinematics and the CRT of the merging conflicts. We expected
that the high-level outcome of the conflict (who merged first) might partly explain
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Table 6.4: Mixed-effects linear regression model analysing the Conflict Resolution Time (CRT) as a function
of the kinematic conditions. Positive headways and relative velocities indicate an advantage for the
driver who merged first. Collisions were excluded.

Confidence interval
Estimate SE T-stat P-value 0.025 0.975

Intercept 1.61 0.107 15.2 4.97 × 10−10 1.41 1.83
Projected headway -0.25 0.016 -15.3 2.16 × 10−47 -0.28 -0.22
Relative velocity 0.40 0.080 5.02 6.07 × 10−7 0.25 0.56
Relative velocity :
projected headway

-0.14 0.023 -6.09 1.68 × 10−9 -0.18 -0.09

the CRT of that trial. More concretely, we expected trials where the driver with
the kinematic advantage went first, to be resolved more quickly than trials where
the driver with a disadvantage went first. To investigate this, we analysed CRT as
a function of the kinematic advantage from the perspective of the first merging
driver (Figure 6.9, Table 6.4). The projected headway and velocity differences in
this figure are positive if the first merging driver had the advantage. We found
that trials with a larger headway advantage for the driver that merged first had
a lower CRT (𝑡 = −15.3, 𝑝 < 10−46). Trials with a velocity advantage for the first
merging driver had a higher CRT (𝑡 = 5.02, 𝑝 < 10−6). Moreover, we found that
the association between the CRT and the projected headway advantage was
stronger for larger velocity advantage (𝑡 = −6.09, 𝑝 < 10−8). One important side
note is that drivers with a higher initial velocity have a headway disadvantage
in the approach section, i.e., they are approaching the merge point behind the
other driver.

6.3.2. Individual behaviour
To gain insight into the operational behaviour of the drivers, we investigated the
aggregated velocity traces of all drivers (Figure 6.10). We choose to show the
velocity traces for the neutral condition (0_0) here because this condition has the
widest variety of solutions (in terms of whomerges first). Because of this spread, this
velocity plot is easier to read than the same plot for other conditions. However, the
key aspects identified in this plot are representative of the other conditions (for the
raw data, including plots, see [22]. Interactive versions of these plots are available
in the supplementary material).
One of the striking characteristics of the velocity traces in Figure 6.10 are the tri-
angular patterns that can be observed in many traces. Such triangular-shaped
velocity patterns indicate two things. First, it shows that drivers use blocks of con-
stant acceleration (step inputs on gas/brake) to control their vehicle during an
interaction. Second, in between these step inputs, or straight lines in the velocity
trace, the input changes rapidly, causing a sharp angle in the velocity trace. This
indicates that drivers select an input level and stick to that until something triggers
a new decision resulting in a new input level. We refer to this combination as
intermittent piecewise-constant control, where intermittent refers to the observed
decision moments, and piecewise-constant to the constant acceleration levels in
between.
With this intermittent piecewise-constant control, drivers use key decisionmoments
at which they determine a plan. After this decision, they stick with this plan until
something triggers a new decision. Therefore, Figure 6.10 provides evidence that
drivers do not continuously optimise their acceleration input while interacting in
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Figure 6.10: Velocity traces of the left and right drivers for all trials in the neutral condition 0_0, from the
tunnel exit up until the merge point. The trials of a representative pair are highlighted to provide more
insight into individual traces. The markers at the end of the trials indicate the final outcome of the trial.
These plots show that drivers use triangular velocity patterns while interacting. These triangular patterns
indicate that drivers use blocks of constant acceleration input with key decision moments in between.
Interactive versions of these plots for all conditions are available in the online supplementary material.

Figure 6.11: The outcome of the merging conflict plotted versus the initial acceleration input at tunnel exit
for the left (x-axis) and right (y-axis) drivers for all conditions.
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traffic. Thus, the assumption of continuous utility maximisation that is made inmany
models of driver behaviour (e.g. [6], [24]–[27]) does not hold for these interactions.
Another aspect shown in Figure 6.10 is that in many cases, the drivers immedi-
ately accelerate or decelerate at the moment they gain control. This indicates,
that even in this purely symmetrical condition, drivers exit the tunnel with an in-
tended solution in mind (i.e., they plan to go first or yield). To further investigate if
drivers start the interaction with a mutual solution in mind, and if this solution is also
reached, we plotted the outcome of the merging conflict versus the initial drivers’
actions in Figure 6.11.
Figure 6.11 shows that in the majority of the interactions that do not end in a
collision, the drivers initially cooperate. In most interactions that end in the left
vehicle reaching themergepoint first, the left driver’s initial inputwas to accelerate
and the right driver’s initial input was to decelerate. This indicates two things. First,
it shows that if drivers share the same perspective and observations of a merging
situation, they form compatible ideas about who will merge first before they even
start interacting (in that trial), i.e., drivers use a shared mental model [28]. Second,
even though there are cases where the conflict is resolved by only one of the
drivers (i.e., where the other driver’s input is 0), in most cases, both drivers initially
act simultaneously to prevent a collision.

6.4. Discussion
In this paper, we investigated the conflict-resolving behaviour of pairs of drivers
in a simplified merging scenario. Our four most important findings are: 1) both
the relative velocity and projected headway have a significant effect on which
driver merges first; 2) the time it takes drivers to resolve the conflict (CRT) can
be explained by the kinematics from the perspective of the driver that merges
first; 3) drivers used a shared mental model about which driver merges first based
on observations before the start of the interaction; and 4) drivers use intermittent
piecewise-constant control to resolve the conflict. suggesting they do not con-
stantly optimise some utility function. Rather the observed control behaviour is in
line with satisficing (see [29]): in our experiment drivers seem to search for a plan
that is good enough and stick to that plan until it no longer suffices. At this key
decision moment, they re-plan to find a new input that is good enough, and act
accordingly.

6.4.1. Relation to the existing literature
Our study indicated for the first time that both the relative velocity and the pro-
jected headway significantly influence which driver merges first. When drivers are
on a collision course, a velocity advantage decreases the probability of a vehicle
merging first while a projected headway advantage increases that probability.
Earlier studies mostly used naturalistic data, where these kinematics can not be
controlled (e.g., [7]–[9], [30]), or reduced the analysis of kinematics to one dimen-
sion by studying time to arrival (e.g., [10]).
The finding that humans do not constantly optimise their behaviour corresponds
to previous findings in simple economic games [31], velocity choice for isolated
drivers [32], and high-level skill switching (between manual braking and using
cruise control) during driving [33]. The key-decision moments with constant inputs
in-between have previously been observed in individual truck driver behaviour
in real traffic [34], and in steering behaviour in high-fidelity driving simulators [35].
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However, our results are the first to show that these operational aspects of human
driving are also present in merging interactions in a controlled experiment.
Previous empirical studies on merging behaviour used naturalistic data [7]–[10],
[30], in which these operational aspects are not included. Most of these studies
focus on evaluating gap acceptance behaviour and were inspired by an interest
in the effects of merging behaviour on traffic flow [7], [8], [30]. Among the existing
studies of naturalistic merging conflicts, two –in particular– had a goal similar to
ours: to understand the dynamics of drivers’ conflict-resolving behaviour.
Wang et al. [9] studied social interactions on congested highways in the INTERAC-
TION dataset [36]. They divided merges based on the positions of the vehicles at
(what they define as) the start of the interaction. They label situations based on the
through-lane vehicle initially being aheador behind themerging vehicle. Through-
lane drivers who overtake amerging car before they merge were labelled ”rude”,
while drivers who let the merging vehicle merge in front of them were labelled
”courteous”. Thereby, the authors attribute the outcome of who goes first purely
to driving style. However, our results indicate that the outcome (who goes first)
strongly depends on the vehicles’ kinematic states at the start of the interaction.
In our experiment, both the relative velocity and the size of the initial gap are
important indicators of who merges first; we did not find substantial individual
differences based on driving style. Although driving styles play an important role
in real traffic, we interpret our results as a call for cautiousness when referring to
drivers as rude or courteous purely based on the fact that they overtake each
other.
Srinivasan et al. [10] used naturalistic data to evaluate a machine-learned model
of human merging behaviour. They concluded that this machine-learned model
can successfully predict the trajectories shown by drivers in scenarios where one
of the vehicles has a large kinematic advantage. Compared to our work, they
reduced the kinematic differences to a single dimension: time-to-arrival. A 0.0 𝑠
time-to-arrival difference corresponds to a 0.0 𝑚 projected headway in our work,
but other time-to-arrival differences can be obtained with multiple combinations
of projected headway and relative velocity. Our results show that these both
have a significant impact on the outcome of the conflict in terms of the driver
that merges first (Table 6.2) and on the CRT (Table 6.4). An important difference
between our work and [10] is that we only regarded situations where the drivers
are on a collision course from the start of the interaction while [10] regards large(r)
kinematic differences. Nevertheless, we advocate using both relative velocity
and projected headway for the kinematic analysis, because they have different
effects on the outcome of the interaction. Besides that, we expect no major im-
plications for machine-learned models of human behaviour based on our results.

6.4.2. Implications
However, when regarding approaches that are not purely data-driven, our results
could have major implications for models and control strategies. Many driver
models make the assumption that humans behave as rational utility maximisers
(e.g., [12], [24], [27], [37]). And because these models make this assumption,
many control strategies for autonomous vehicles in mixed traffic were proposed
that make the same assumption (e.g., [5], [6], [38]–[41]).
Roughly, two kinds of rational utility maximisation are used in driver models. First,
there are the models that regard merging as a single high-level decision about
who merges first, such as Kita already proposed in 1999 [37]. Second, there are
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models that assume drivers continuously optimise some reward function to de-
termine their current input (Naumann et al. showed many examples of reward
functions used for this approach in 2020 [27]). Our results have major implications
for both assumptions.
For models that regard merging as a single decision, our exploration of different
kinematic conditions provides valuable insights into driver behaviour. Our results
confirm that the vehicles’ kinematics at the start of the interaction have a major
impact on which driver merges first. This is in line with the model proposed by
Kita [37]. However, our results also show that the individual differences in outcomes
between pairs of drivers are restricted to a limited range of kinematic scenarios. In
most scenarios, the same driver merges first for all driver pairs. This would indicate
that modelling the decision of who merges first based on individual preferences
(differences in reward function) is only valuable for a limited set of conditionswhere
the kinematic differences are small.
For models that assume continuous optimisation, our results have more far-
reaching implications. The aggregated velocity plot (Figure 6.10) shows that
drivers do not continuously optimise, but re-plan at specific decision moments.
This indicates that the assumptions that drivers continuously either: optimise,
approximately optimise (up to a threshold), or noisily optimise their inputs are
not consistent with driver behaviour. Instead, drivers seem to be triggered to
change their behaviour at a certain point (at which they might partially optimise
to find a new plan). Besides the key-decision moments, Figure 6.10 also shows
piecewise-linear velocity patterns. This indicates that the assumption that drivers
aim to minimise a squared difference between their current and desired velocity
(as used in many models, e.g., [24], [27]) is also inconsistent with driver behaviour
because that would lead to non-linear velocity profiles.
In general, our findings imply that the mathematical convenience related to main
assumptions in game-theoretic models comes at a serious cost to their descrip-
tive power. Thus, although game-theoretic approaches can be very valuable
to determine optimal control decisions between rational agents (e.g., in vehicle-
to-vehicle communication approaches [42]–[44]), we advise caution in applying
them to predicting driver behaviour (either in driver models or in AV control).

6.4.3. Recommendations, limitations, and future work
Therefore, we interpret our results as an encouragement to develop new types of
traffic interaction models that do allow for intermittent piecewise-constant control
in operational behaviour. Siebinga et al. previously proposed a model frame-
work that could describe intermittent control in traffic interactions [45]. But there
are other (existing) lines of research that also hold potential for application to
interactive scenarios, such as evidence accumulation models (e.g., [46]–[48]).
Besides the intermittent control, new interaction models should use piecewise-
constant acceleration as control inputs. Furthermore, they should be able to de-
scribe the most likely outcomes for different initial kinematics, independent of in-
dividual driver differences (Figure 6.5).
Although our work might provide inspiration for the development of novel inter-
action models, it also has some limitations. The main limitation is the simplification
of the merging scenario. We started our investigation into interaction dynamics in
driving simulators with a simplified symmetric merging scenario in a top-down view
simulator. We chose to use this simplified scenario because of the complexity of
real-world merging. Our scenario does not include lateral control (i.e., steering),
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right-of-way or surrounding traffic. This allowed us to focus on the longitudinal
control dynamics of two drivers who are on a collision course. We chose to use the
top-down-view simulator because setting up a high-fidelity coupled simulator is a
complicatedandcostly endeavour. Driver behaviour in our simulator has not been
validated on naturalistic data yet. A detailed investigation into the relationship
between the behaviour in our simulator and real-world merging is left for future
work.
Such validation is complex because, as discussed in the introduction, the available
naturalistic datasets lack insight into control inputs of multiple vehicles and control
over kinematics. Some datasets do include many (uncontrolled) kinematic ex-
amples (e.g., [49]), which could allow validation of high-level outcomes (i.e., who
goes first). Others include the control behaviour of individual drivers (e.g. [16])
enabling validation of the low-level control behaviour observed. However, it is
likely that a custom naturalistic dataset needs to be collected for full validation
of the simulator. A possible intermediate step could be an experiment with real
vehicles on a test track. This would allow for a controlled but real test environment.
But nonetheless, we are confident that our conclusions will generalise to real-world
driving. To explain why, we will discuss the three major differences between our
simulated scenario and real-world driving and their potential effects on the results.
The first major difference between our scenario and the real world is the absence
of traffic rules and customs such as the right of way. These rules govern who can
go first. Therefore, they probably don’t greatly affect the operational behaviour
we found. However, their absence may have affected the results regarding who
goes first, conflict resolution time, and initial actions. Because the traffic rules
effect is absent, the kinematic effects we found in our experiment may have been
exaggerated. However, there is no reason to assume that the effects we found
will not be present in a situation with traffic rules.
The second major difference is the simplification of the control inputs to acceler-
ation and deceleration only. This design choice decreased the possible actions
a driver can take as well as the difficulty of the task. This will have reduced the
variability in our results. The same holds for the third (and maybe largest) major
difference with driving on real roads: the top-down view of the situation. This
perspective makes it easier for participants to estimate relative velocities and dis-
tances. Such a decrease in the inaccuracies in human perception could de-
crease the variability in the results, increasing the statistical power of our model.
However, these factors are unlikely to affect the nature of the acceleration inputs
(intermittent piece-wise constant control). The fact that the same input behaviour
was previously found in real traffic [34] strengthens our belief that the operational
driver behaviour in our simulator resembles that of the real world.
Finally, the interactions in the experiment were not as risky and anonymous as real
highway interactions. Participants knowingly executed 110 merging manoeuvres
against the same opponent with a name and a face, while the consequences of
a collision were not as severe in real life. This could have influenced the outcome
because the participants could have learned the other driver’s behaviour. How-
ever, we found no evidence of learning effects for any participant pair beyond
the familiarisation trials (plots can be found with the online supplementary materi-
als). Furthermore, participants could have changed how risky they behaved. The
decreased severity of a collision could have caused more risky behaviour (which
would explain the large number of collisions we observed) while the identifiable
opponent could have led to more courteous behaviour. However, because we
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only draw conclusions on the operational behaviour and the differences in be-
haviour between conditions, it is unlikely that this influenced our conclusions. In
the future, an experiment with more than two drivers and an experimental setup
with random pairing could be used to verify this.
Another limitation of our work lies in the experimental construct of ”the start of
the interaction”. In our experiment, we control this moment by giving participants
control over their vehicle at a certain point in timewhenweare sure they have had
enough time to observe the kinematics of the situation. This provided us with the
opportunity to investigate a situation where both drivers observe and start acting
at the same time. However, in real traffic, this is mostly not the case. There will be
differences in when drivers see each other and consequently in when they act.
How to extendmetrics such as CRT, and thus how to leverage some of our findings
in the real world, is not trivial. More work is needed to thoroughly investigate this.

6.5. Conclusion
In this paper, we investigated how drivers resolved merging conflicts in a cou-
pled, top-down view driving simulator. We used a simplified merging scenario
that only includes longitudinal control. We investigated driver behaviour under
initial conditions with varying relative velocities and projected headways. We
used mixed effects regression models, the concept of Conflict Resolution Time
(CRT), and aggregated velocity plots to gain insight into driver behaviour. For the
experimental conditions studied, we conclude:

• Drivers used intermittent control (modifying acceleration only at key decision
moments) to resolve merging conflicts. This suggests that drivers do not be-
have as continuous rational utility maximisers in merging interactions.

• Drivers use piecewise-constant acceleration control (blocks of continuous
acceleration) resulting in triangular velocity patterns to control their vehicle.

• Relative velocity andprojected headwayare goodpredictors ofwhichdriver
is most likely to merge first. They have different effects and are thus both
needed for a reliable prediction (instead of reducing the kinematics to a
single time-to-arrival value).

• We used a metric to describe the amount of time the drivers need to resolve
a merging conflict (CRT). We found CRT is associated with the outcome of
the interaction combined with the initial kinematic differences (projected
headway and relative velocity).

• Conditions where one driver has a pure projected headway advantage are
resolved faster than conditions with a pure velocity advantage.

• Drivers used shared mental models and observations before the start of the
interaction to determine which driver will merge first.
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7
Amodel of dyadic merging
interactions explains human
drivers’ behaviour from input
signals to decisions



O ne of the bottlenecks of automated driving technologies is safe and socially
acceptable interactions with human-driven vehicles, for example during

merging. Driver models that provide accurate predictions of joint and individual
driver behaviour of high-level decisions, safety margins, and low-level control
inputs are required to improve the interactive capabilities of automated driving.
Existing driver models typically focus on one of these aspects. Unified models
capturing all aspects are missing which hinders understanding of the principles
that govern human traffic interactions. This in turn limits the ability of automated
vehicles to resolve merging interactions. Here, we present a communication-
enabled interaction model based on risk perception with the potential to capture
merging interactions on all three levels. Our model accurately describes human
behaviour in a simplified merging scenario, addressing both individual actions
(such as velocity adjustments) and joint actions (such as the order of merging).
Contrary to other interaction models, our model does not assume humans
are rational and explicitly accounts for communication between drivers. Our
results demonstrate that communication and risk-based decision-making explain
observed human interactions on multiple levels. This explanation improves our
understanding of the underlying mechanisms of human traffic interactions and
poses a step towards interaction-aware automated driving.



Amodel of dyadic merging interactions

7.1. Introduction
Automated driving holds many potential benefits for society [1]–[3], but, safe and
efficient interactions between Automated Vehicles (AVs) and human-driven vehi-
cles remain an open problem [4]. Such interactions frequently occur in everyday
traffic: at intersections, on roundabouts, and on highways. This work will focus on
merging interactions on highways as they are especially intricate due to the high
speeds and multiple available options to resolve a conflict (Figure 7.1-A).

A potential solution to handling such interactions in AVs is through interaction-
aware controllers (e.g., [5], [6]). These controllers assume that human drivers uni-
laterally respond to the AV’s behaviour and use a model to predict these re-
sponses [7]. However, real-worldmerging interactions are inherently reciprocal [8]:
a driver does not only respond to another driver but also influences their behaviour
through implicit (or even explicit) communication [4], [9]. Individual control in-
puts and decisions of two or more drivers in a merging situation lead to a joint
interaction outcome on multiple levels (Figure 7.1-C): high-level decision-making
(negotiating who goes first), acceptable safety margins, and required individual
control inputs. This makes real-world merging behaviour complex to understand
and model, both from an individual and joint perspective (for a real-world exam-
ple, see Figure 7.1-B). Interaction-aware AVs should use a model that captures this
complexity, which is currently lacking.

Previous work has shown that in merging interactions, high-level individual deci-
sions are made to yield or to go [4], [10], which lead to universal joint outcomes
in terms of who merges first based on the kinematics of a merging scenario [11].
The safety margins (e.g., gaps between two vehicles) are the result of joint be-
haviour [12], but at the same time, these gaps are used by individual drivers to
communicate their intent [9]. Low-level control inputs (i.e., acceleration, velocity,
and position) are used by individual drivers to communicate [9], [13], thereby
playing an essential role in both the outcome of the interaction and the human
perception of other vehicles’ behaviour. These interrelated aspects of individual
and joint behaviours are not well understood, and a driver model capturing all
aspects is missing.

Our work builds on related work in merging and lane-changing models (merging
is often considered a special type of lane change [14]), in which we identified five
classes: 1) gap acceptance; 2) traffic simulation; 3) statistical; 4) acceleration;
and 5) game theoretic models (Figure 7.1-C). Gap acceptancemodels (e.g. [15]–
[19]) describe the decisions made by the individual merging drivers by evaluat-
ing available gaps (safety margins) against a personal minimal acceptable gap
size. Traffic simulation models often rely on the same gap acceptance theory
for making high-level decisions [20]–[22], and are complemented with acceler-
ation models (e.g., the intelligent driver model (IDM) [12]) to include the control
behaviour before and after the merging decision. These acceleration models
describe individual accelerations and do not include interactive or communica-
tive behaviour. We found one acceleration-based model that describes individ-
ual drivers’ control inputs and safety margins during interactions [23]. Statistical
models provide a probability that a certain vehicle will merge or change lanes
based on naturalistic traffic data. Some include desired safety margins [24], [25],
while others do not [26]. Finally, game-theoretic models describe the high-level
outcome and decision-making of multiple drivers in a single model (e.g., [10],
[27]–[29], see [30] for a review). Game theoretic models assume humans to be
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Figure 7.1: Models of highway interactions and the aspects of interaction they describe in a merging
scenario. A: a typical interactivemerging scenario taken from the HighDdataset [31] (dataset 60, vehicles
458 and 468). In this scenario, the driver of the green vehicle wants to merge onto the highway. This
vehicle has a position advantage but a significantly lower velocity compared to the purple vehicle. B:
the vehicles’ position traces, the gap between the vehicles, and the individual velocity traces. In this
example, the joint high-level decision is indicated at I: Green merges ahead of Purple (i.e., Green goes
first). Both vehicles individually contribute to this decision by accelerating and decelerating respectively
(at 1). After the decision has been made, Green keeps accelerating and thereby individually contributes
to maintaining a safety margin while purple stops decelerating (2). The gap between the vehicles, when
Green crosses the lane marker (II), denotes the joint safety margin. Finally, the underlying characteristics
of the individual vehicle control inputs are depicted here as the total velocity traces (3). We evaluate
velocity traces instead of raw accelerations because they are easier to perceive for other drivers and
providemore insight into the trend of the driver’s actions since they are less noisy. These individual and joint
perspectives on the three levels of behaviour are also indicated in panel C.C: the three levels of behaviour
in between Michon’s operational and tactical behaviour [32]. It also shows five modelling strategies for
merging interactions, each with examples from the literature. The icons indicate if the models describe
a single decision at the start of an interaction (one-shot), repeated decisions (multi-shot), or continuous
behaviour. Every modelling strategy captures part of the overall interactive behaviour, but none covers
all five aspects. We postulate that a model capturing all three levels of individual and joint behaviour
simultaneously is likely to have captured the underlying mechanisms of merging behaviour.

rational utility-maximizing agents that do not communicate. However, it is known
that these assumptions do not hold for merging drivers [8].
To achieve predictable, legible [33], acceptable, and safe automated behaviour,
we need to provide interaction-aware AVswith a drivermodel that covers all three
levels. The decision level is important because if automated driving violates the
underlying behavioural norms of human drivers on this level (e.g., it claims the right
of way) its behaviour will be unacceptable to passengers and other drivers [4].
Automated behaviour should adhere to acceptable safety margins (on a joint
level) and understand how individual drivers keep these margins. This way, AVs
will show behaviour that is not just safe but is also perceived as safe. Finally, under-
standing the subtleties of gaps, positions, and velocities can help AVs understand
the communication from other drivers and act accordingly. Since merging is a
reciprocal interaction, such a model should capture the joint behaviour, not just
that of a single driver responding to their environment [8].
Besides direct applications in interaction-aware AVs, a complete model of merg-
ing interactions could also prove to be a valuable step towards theories and a bet-
ter fundamental understanding of human interactive capacities and behaviour in
general [34]. A joint driver model could be used to understand and investigate
how drivers perceive the behaviour of others, how they communicate, and how
they negotiate a safe solution in general traffic interactions. This fundamental un-
derstanding is needed to design automation that can interact in a naturalmanner.
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In a review of automated interactive traffic behaviour, Brown et al. stated: ”De-
signing systems that can understand and react to such [implicit traffic] communi-
cationwill rely upon developing an understanding of that communication beyond
statistical regularity” [4]. Black-box trajectory predictionmodels (e.g., [35]–[37]) do
not provide insight into the underlying mechanisms of merging interactions and
will thus not suffice for this purpose. If a model of merging interactions succeeds
in capturing the underlying mechanisms of merging interactions, which is likely if it
captures behaviour across multiple levels, it could generalise to other interactive
traffic scenarios, helping us gain insight into the fundamentals of interactive human
driving behaviour.
The main contribution of this manuscript is a novel computational model for a
simplified merging scenario with human drivers, based on the Communication-
Enabled Interaction (CEI) framework [8]. The model assumes that drivers have a
deterministic plan for the near future and form a probabilistic belief about another
driver’s intentions based on implicit communication. The plan and belief result
in a perception of risk. If this risk exceeds a personal threshold, a driver updates
their plan to get the risk under control. We validate our model on empirical data
collected in a top-down view driving simulator with pairs of drivers [11], [38]. Our
model accurately describes the (qualitative and quantitative) control input char-
acteristics, safety margins and high-level decisions (i.e., who goes first?) of human
drivers. It captures differences in individual contributions of drivers and joint be-
haviour. Finally, our model does not assume human rationality and explicitly incor-
porates communication between drivers as one of the fundamental aspects of
interactions, making it the first merging interaction model to avoid these common
game-theoretic assumptions.

7.2. Results
Simplified merging scenario and experiment To study and model merging inter-
actions between two human drivers, we used data previously gathered in an ex-
periment using a simplifiedmerging scenario (Figure 7.2-A) in a coupled, top-down
view driving simulator [11], [38]. The scenario simplifies merging by simulating two
roads (or lanes) that merge into one at a single point. The vehicles start in a tunnel
where the drivers can only observe both vehicles travelling at constant velocity
to facilitate velocity perception before the interaction. Once both vehicles have
exited the tunnel, the drivers gain control over the accelerations of their vehicles
(steering is not possible) to resolve a merging conflict. The drivers (9 pairs of partic-
ipants) were instructed to maintain their initial velocity yet prevent a collision. The
experiment used 11 different experimental conditions that would end in a collision
if the vehicles kept their initial velocity (10 repetitions per condition). A condition
consisted of a combination of initial relative velocity (−0.8, 0.0, or 0.8 𝑚/𝑠) and the
projected headway at the merge point if both vehicles would continue their initial
velocity (−4,−2, 0, 2, or 4 𝑚). The names of the conditions denote projected head-
way_relative velocity (e.g., 4_-8). Positive numbers indicate an advantage for the
left driver. We refer to an individual driver as either the left or right driver throughout
all trials, based on their physical location during the experiment. The scenario
was completely symmetrical (i.e., there was no right of way). Note that from the
drivers’ view, they randomly perceived approaching themerge point from the left
or right side of the track – to account for potential biases due to traffic rules. They
were seated in the same room but could not see each other or communicate in
any other way than via vehicle motion. For a more extensive description of the
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Figure 7.2: A: the simplified merging scenario used both in model simulations and the experiment in a
coupled top-down-view driving simulator [11]. Two vehicles start on different roads, which they follow to
a single merge point of those roads. They start in a tunnel where the driver (i.e., either human participants
or themodel) can observe both vehicles and their initial velocities but have no control yet. After exiting the
tunnel, the drivers can now control the vehicles’ acceleration (no steering control is needed or available).
Beyond the merge point is a short road where the vehicles follow each other. B and C: typical examples
of human and model interactions in this scenario (participant pair 3, the model behaviour resulted from
a fit on the human behaviour across all conditions and all trials; the model trial shown here was not
fitted specifically to this human trial). D: The Communication-Enabled-Interaction (CEI) framework. For
clarity, the panel only visualises the three model components for the green vehicle, but the model is
symmetrical, so the purple vehicle has the same three components. Each driver has a deterministic plan
for their own behaviour and a probabilistic belief of the positions of the other driver in the near future.
Combined, the plan and belief result in a continuous perception of risk. If this perceived risk exceeds a
risk threshold the driver alters their plan to return the risk under the threshold. Each driver communicates
their plan (intention) implicitly (e.g., through vehicle motion) to the other driver, who bases their belief on
the received communication. Thus, this communication links one driver’s plan to the belief of the other
driver.

experimental protocol, see [11], [38]. Figure 7.2-C shows a typical trial outcome
with human participants.

Model and Communication-Enabled Interaction (CEI) framework We created a
novel model based on the Communication-Enabled Interaction (CEI) framework
in [8] to describe the joint behaviour of a pair of merging drivers1. At the core of
the CEI framework lies the idea that drivers communicate their plans (intentions) to
others using implicit or explicit communication. Empirical evidence has shown that
this kind of communication plays an important role in traffic interactions (e.g. [9],
[39]), which to date has beenabsent in interactive drivingmodels. Weassume that
drivers formaprobabilistic belief about the other driver’s futuremovements (intent)
based on this communication. Combined with their own deterministic plan, this
belief underlies a driver’s perceived risk. We assume that if the risk exceeds the
driver’s individual risk threshold, they will unilaterally alter their plan to get the risk
1Themodel in this chapter differs substantially from themodel presented in Chapter 4. For a full description
of the model discussed here, please see the methods section of this chapter.
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under control. The CEI framework [8] describes this overall structure consisting of
four modules: communication, plan, belief, and risk perception. The model pro-
posed here instantiates the CEI framework by implementing these four modules.
Themethods section provides a full specification of all modules of our model (plan,
communication, belief, and risk), yet we give a summary here to help interpret the
results. In our model (Figure 7.2-D), drivers plan a deterministic trajectory (i.e., a set
of waypoints) by optimising comfort and speed over a time horizon. They com-
municate this plan implicitly through vehicle kinematics (current position, velocity,
and acceleration). Drivers’ velocity perception is assumed to be noisy. The drivers’
belief about the actions of the other vehicle is represented as a set of probability
distributions for the other vehicle’s positions at specific times in the future. The
recent behaviour of the other vehicle influences the variability in the belief (i.e.,
inconsistent behaviour increases the variance). The perceived risk is calculated
by evaluating the probability that the positions of the ego and the other vehicle
(plan and belief) overlap (i.e., the probability of a collision).
We assume every driver has two dynamic risk thresholds: an upper threshold and
a lower threshold. The plan is updated either when a) the upper threshold is ex-
ceeded (to prevent a collision) or when b) the perceived risk stays below the lower
threshold for a certain amount of time 𝜏 (to revert to ”normal” behaviour when
the conflict is resolved). Both thresholds are dynamically adjusted by an incentive
function reflecting traffic rules and customs. The rationale behind this is that two
drivers perceive the same amount of risk, but traffic rules and customs provide
a higher incentive for one of them to act. For example, the following vehicle is
usually responsible for preventing collisions in a car-following scenario.

7.2.1.Model simulations
The model uses 10 parameters designed to reflect the scenario, which were equal
for all simulations2. We used a grid search to find individual risk threshold param-
eters to describe the nine pairs (18 drivers) from the experiment [11] (i.e., one
upper and lower threshold per driver is used across conditions). The incentive
functions are the same for all drivers and were fitted to all experimental data using
linear regression. We simulated the same number of trials as in the experiment: 9
participant pairs, 11 conditions, and 10 repetitions of each condition per pair (990
total trials). The model simulations run faster than real-time with an average run
time of 2.6 𝑠 (Intel Xeon E5 quad-core) for an average real-time duration of 14.2 𝑠.
An example of a simulated trial for participant pair 3 can be found in Figure 7.2-B.
In the remainder of this section, we will evaluate the model behaviour on the
three behavioural levels presented in Figure 7.1-C, both for individual and joint
behaviour. Some trials ended in a collision; these are excluded from the results
because they represent edge cases. Collisions happened infrequently and in all
conditions for human drivers (28/990) and model simulations (29/990). The on-
line supplementary materials contain more details on how the collisions were dis-
tributed over conditions [40].

Characteristics and magnitude of control inputs
Empirical evidence showed that human drivers use intermittent piece-wise con-
stant acceleration control to solve merging conflicts in the simplified merging sce-
nario [11]. This type of control results in piece-wise linear velocity patterns (roughly
triangular in the plots) that indicate clear decision moments when drivers change
2Please see the methods section for more information.
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their control input to help resolve the merging conflict. The model’s control be-
haviour is qualitatively similar to that of the humandrivers (Figure 7.3-A); it replicates
the characteristic patterns in the velocity plots.
Pair 3 is highlighted in Figure 7.3-A to facilitate comparison. In this pair, the left
human driver mostly decelerated at the tunnel exit to prevent a collision, although
in some cases, they accelerated. The model replicates this behaviour. In one trial
(each), the left model and left human maintained their initial velocity for about
one second before accelerating. Both the timing of the re-planning (i.e., the
location of the peak of the velocity profile) and the absolute maximum deviation
from the initial velocity were consistent between the left driver and the left model.
Contrary to the left driver, the right driver in pair three barely acted to mitigate the
risk. Only in one case (each) the right model and the human driver decelerated
at the tunnel exit to prevent a collision. This happened in the same trial where the
left driver delayed their initial response and then accelerated for both the model
and the human driver pair.
The magnitude of control inputs applied by each driver was consistent between
the model and human behaviour for most pairs (Figure 7.3-B). Some drivers con-
sistently provided very little input (e.g., the left driver in pair 2), while others used
higher input levels (e.g., the right driver in pair 7). The model accurately reflected
this quantitative difference through the personalised risk thresholds. However, in
some specific conditions for specific pairs, the model produced different aver-
age behaviour caused by outliers (e.g., pair 1, left driver, condition 0_8). In this
specific example, the simulated left driver came to a complete stop in 2 out of
10 trials. In both cases, the simulated left driver initially accelerated but quickly
changed strategies and started to brake. At this point, the right driver had already
responded to the initial acceleration and had also started braking. Thus, both
vehicles were braking, and the only safe solution was for the left driver to come
to a complete standstill. This sequence of events can be understood as a mis-
communication caused by a strategy switch. Thesemiscommunications also hap-
pened with human drivers (e.g., in Figure 7.3-A, the right human driver sometimes
decelerates briefly before accelerating and going first). However, with human
drivers, these trials ended in a collision or with a less extreme maximum deviation;
complete standstills do not occur in the human data. This difference could be due
to the velocity perception noise or how communication is translated to a belief in
the model. However, since these are edge cases that happen infrequently, a
more detailed investigation is needed to understand these miscommunications
fully.
Across all participants, both human drivers and the model used lower-magnitude
inputs with increasing absolute projected headways (Figure 7.3-C). Absolute rela-
tive velocities, however, had opposite effects on human and model behaviour.
This can partly be explained by the fact that only for human behaviour there
is a significant interaction effect. We believe the absence of this effect in the
model stems from the independent effects velocity andposition have on the belief
(i.e., there is no interaction effect in the belief construction). The origins and inner
workings of this phenomenon in human behaviour are unknown. In general, there
is a strong correlation between the model’s and human drivers’ inputs (Figure 7.3-
D) across all conditions and participants. The model exhibited slightly higher max-
imum absolute deviations from the initial velocity than human drivers (difference
0.31 𝑚/𝑠, 95 % CI [0.23 𝑚/𝑠 − 0.40 𝑚/𝑠]). We believe this difference is due to the
earlier explained outliers.
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Figure 7.3: An overview of a comparison of the control inputs performed by 9 pairs of human drivers, and
by the model fit to capture these pair’s merging behaviour. Trials that ended in a collision were excluded
here. A: all velocity traces for the model (top row) and human drivers (bottom row) in condition 0_0
(i.e., no initial velocity or position difference between the vehicles), for each driver (left/right) in the pair,
divided into the high-level outcome of the trial (i.e., which driver merged first). To facilitate the comparison
for a single pair, the velocities of pair 3 are highlighted. B: mean absolute maximum deviation from the
initial velocity for the left and right driver in all participant pairs for all experimental conditions. We use
the absolute deviation to compare conditions because a single condition can contain both outcomes
within one pair (left going first and right going first, e.g., see panel A). Thus a single driver could accelerate
in some trials and decelerate in others within one condition. The minimum and maximum deviations will
be studied separately in section 7.2.1 as individual contributions to the decision. For pair 3, all underlying
data are visualised (10 trials per condition). One outlier (9.5 𝑚/𝑠, model trial, condition 4_0) is not shown.
C: mean absolute maximum deviation from the initial velocity, aggregated over all drivers for different
relative velocities and projected headways. The error bars represent interquartile ranges. The headway
and velocity values in panel C are shown from the perspective of the individual driver. This means that a
projected headway of 4 𝑚 represents an advantage from the driver’s perspective, while −4 𝑚 represents
a disadvantage. The inset indicates coefficients of mixed-effects linear regression models predicting the
mean absolute maximum deviation from initial velocity as a function of projected headway and relative
velocity (∗ ∶ 𝑝 <= 0.05, ∗∗ ∶ 𝑝 <= 0.01, ∗∗∗ ∶ 𝑝 <= 0.001). Full results of the statistical analyses are available in
the supplementary materials. D: the relationship between human andmodel behaviour for all participant
pairs and all conditions (i.e., all points from panel B).
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Figure 7.4: An overview of the joint gap-keeping behaviour of the model and human drivers. A: mean
gap (safety margin) at the merge point for all participant pairs and all conditions, excluding collisions.
For pair 3, all data points (i.e., all trials) are shown. B: mean gaps per condition (aggregated over all
drivers); the error bars represent interquartile ranges. The inset indicates coefficients ofmixed-effects linear
regression models predicting the mean gap as a function of projected headway and relative velocity
(∗ ∶ 𝑝 <= 0.05, ∗∗ ∶ 𝑝 <= 0.01, ∗ ∗ ∗ ∶ 𝑝 <= 0.001); full results of the statistical analysis are available in the
supplementary materials. C: the relationship between mean gaps of human drivers and those produced
by the model for all participant pairs and all conditions (i.e., all points from panel A).

Safety margin in terms of the size of the gap between the vehicles
Safety margins can be evaluated individually or at a joint level (Figure 7.1); drivers
individually contribute to achieving a certain realised safety margin (i.e., gap) on
the joint level. These individual contributions can be observed from the absolute
control input behaviour shown in Figure 7.3-B. We use the absolute deviation from
the initial velocity to compare conditions because in some conditions drivers ac-
celerate in some trials and decelerate in other trials.
In participant pair 3, the left driver mostly contributed to the safe solution; the right
driver did not greatly deviate from their initial velocity (Figure 7.3-B). The model
replicates these unequal contributions for this and other pairs (e.g., pairs 2 and 7,
and to a lesser extent in pair 5). For the other participant pairs, keeping the safety
margin is more of a joint effort, a phenomenon described by the model as well.
Themodel reflects these differences in individual contribution through the baseline
risk threshold levels (Table 7.2). Drivers with a lower tolerance for risk (i.e., upper
risk threshold) will act to mitigate their perceived risk, while drivers with a higher
tolerance will remain passive. Drivers in pairs with equal contributions (e.g., pairs
4, 6, and 9) have similar upper risk thresholds, while drivers in pairs with unequal
contributions (e.g., pairs 2, 3, and 7) have larger individual differences (Table 7.2).
In some human pairs, the drivers contribute equally to the safety margin, but their
relative contributions differ for different conditions (Figure 7.3-B). For example, in
pair 6, both drivers always act. However, in the conditions with a projected head-
way advantage for the left driver (i.e. a positive number), the right driver tends
to do more, while for the negative projected headways, the left driver acts. This
aligns with the assumption that the following driver has more incentive to solve a
conflict. The model captures this behaviour (Figure 7.3-B) through the incentive
functions. However, in pair 6, the differences between conditions are smaller in
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the model than in the human behaviour. The limited extent to which the model
shows this phenomenon can be attributed to the assumption of identical incentive
functions for all pairs. Because only some human pairs show this type of behaviour,
the averaged incentive functions reduce the extent to which this phenomenon is
visible in the model. A method to estimate individual incentive functions could
improve this in future versions of the model.
In terms of joint gap-keeping behaviour, the human data showed no substantial
qualitative differences between pairs (Figure 7.4-A); the effects of kinematic con-
ditions on the gap are significant but small (Figure 7.4-B). There is much variability
within pairs, where gaps range between 0 − 9 𝑚 within one condition (pair 3,
Figure 7.4-A) and within conditions, with interquartile ranges of 2 − 3 𝑚 (Figure 7.4-
B). This large variability results in a limited correlation between the model and
human behaviour, where the model overestimates some smaller gaps and un-
derestimates some larger gaps (Figure 7.4-C). However, overall the model keeps
gaps that are comparable in size to human behaviour for all participant pairs and
all conditions (Figure 7.4-B). The mean gap for the model was only slightly larger
than that of humandrivers (4.8𝑚 vs 4.5𝑚; difference 0.3𝑚, 95%CI [0.09𝑚−0.51𝑚]).

Figure 7.5: An overview of the decision-making behaviour of the model and human drivers. A: mean
individual contributions of drivers to the high-level outcome of a trial as the maximum or minimum
deviation from the initial velocity (i.e., amount of acceleration or deceleration); collisions are excluded.
All trials are shown for a representative participant pair (pair 3). B: joint interaction outcome (i.e., who
merged first) for all pairs in every condition. The error bars represent the 95% confidence intervals. The inset
indicates coefficients of mixed-effects linear regression models predicting the mean gap as a function of
projected headway and relative velocity (∗ ∶ 𝑝 <= 0.05, ∗∗ ∶ 𝑝 <= 0.01, ∗ ∗ ∗ ∶ 𝑝 <= 0.001); full results of the
statistical analysis are available in the supplementary materials. C: the relationship between human and
model behaviour for all participant pairs and all conditions (i.e., all points from panel A).

Decisions
Finally, there is the high-level outcome of a merging interaction, which on a joint
level can be summarised by the answer to the question: ”Who merged first?”. In
humanmerging interactions, theprobability that adrivermerges first increaseswith
their projected headway advantage and decreases with their relative velocity
advantage [11]. The model replicates these effects (Figure 7.5-B), although the
velocity effect is smaller for the model than for human drivers. The difference in
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this effect size is especially evident in conditions with pure velocity differences (i.e.,
a 0 𝑚 projected headway) (Figure 7.5-B). In these conditions, the slower vehicle
(i.e., the one that merges first most often) approaches the merge point ahead of
the other vehicle (so that they arrive simultaneously). Potential explanations for
the discrepancy in effect size between the humans and the model could be that
humans systematically underestimate velocity differences or that following vehi-
cles prefer braking over accelerating to prevent collisions. The noise on velocity
and the cost of accelerating or decelerating are both assumed to be symmetrical
in the model. The similar effect sizes indicate that our proposed combination of
kinematics-based probabilistic beliefs and the concept of risk-based control in
individual drivers is a strong potential explanation of the underlying principles that
govern the high-level outcome in merging interactions.
The intercept of the logistic regression (Figure 7.5-B) quantifies the asymmetry be-
tween outcomes (and participants). The model’s intercept is closer to zero than
the human drivers’, although this effect is insignificant (Figure 7.5-B). This can be
explained by the fact that the model uses the same symmetrical functions for the
belief and incentive across all drivers; therefore, the high-level outcome can be
expected to be symmetrical as well (i.e., have an intercept of 0.0).
The individual contributions of the drivers to the high-level outcomes can be seen
as the question for an individual driver to ”go or yield”; i.e., the decision to accel-
erate or to brake (Figure 7.5-A). As with the individual contributions to the safety
margins, some drivers consistently contribute very little to the high-level outcome
(e.g., the left driver in pair 2). The model reflects this phenomenon for multiple
drivers using their individual thresholds (left in pairs 2 and 7, right in pairs 3, 5, and
8). However, some drivers only contribute to the high-level outcomewhen they go
second (e.g., the right driver in pair 1), which is reflected by the model through the
incentive function. Finally, some drivers always contribute to the outcome (mostly
in interactions with drivers that do nothing, e.g., the left driver in pair 3). The model
reflects all these three qualitative phenomena (Figure 7.5-A). Quantitatively, there
is a strong correlation between the humans’ and models’ decision behaviour (Fig-
ure 7.5-C).
Besides the individual decisions that lead to a joint high-level outcome, the model
also describes how long the drivers take to reach a decision on a safe outcome.
This duration can be measured with the Conflict Resolution Time (CRT) [38]. We
found that the model captured the previously observed relationship between ini-
tial kinematics and CRT (see supplementary materials for details [40]).

7.3. Discussion
We presented a model based on the Communication-Enabled Interaction (CEI)
framework [8] that accurately describes driver behaviour in a simplified interactive
merging scenario (Figure 7.2-A). Our model captures the driver behaviour on three
levels (Figure 7.1-C): the control input behaviour of individual drivers, the safety
margins kept by pairs of drivers and how individual contributions establish these,
and the high-level decisions of individual drivers (i.e., to merge or yield) and the
pair (i.e., whogoes first?). Because themodel quantitatively andqualitatively cap-
tures individual and joint driver behaviour on all three levels we consider it likely that
the underlying mechanisms of the model (communication-based belief and risk-
based re-planning) correspond to the mechanisms underlying human interactive
driving behaviour.
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These underlyingmechanisms bear a resemblance tomechanisms previously used
in models of traffic interactions. The communication-based belief is related to the
concept of Theory of Mind (ToM) [41], used in other models of traffic interactions
(e.g. [42], [43]). The main difference is that ToM assumes humans to have an
internal representation of the motivations of others, while our model uses a more
basic belief of future kinematics; i.e., our model does not care if another driver
prioritises speed over safety, it observes a higher velocity and updates a kinematic
belief.
Risk-based re-planning is a mechanism previously used by Kolekar et al. to model
isolated driver behaviour in 7 real-world driving scenarios [44]. Our model extends
the concept of re-planning when the perceived risk exceeds a threshold to an
interactive scenario. However, our definition of risk (perceived probability of a
collision) is much more simplified than the Driver Risk Field (DRF) used by Kolekar
et al. The DRF considers the risk posed by different events (e.g. going off-road
or colliding with a tree) and includes steering behaviour. Our simplified scenario
does not require such a sophisticated definition. However, including the DRF in a
newmodel based on the CEI framework could enable the modelling of real-world
merging scenarios.
Finally, the prevalent approach tomodellingmultiple drivers in interactions is game
theory (e.g., [43], [45]–[48]). Our results have shown that including multiple drivers
in a single model (rather than modelling a single driver that responds to their envi-
ronment) is important because the same joint behaviour can stem frommultiple in-
dividual contributions, andboth drivers continuously update their behaviour based
on the other driver’s actions. However, for traffic interactions between vehicles
and pedestrians, it has been shown that using game theory to optimise a short-
term payoff value is not enough to explain the complex phenomena observed in
the real world; instead, a range of more complex mechanisms such as a ToM and
implicit communication were needed [42].
Our model and the CEI framework can have important further implications on
multiple fronts. The model could be used to further improve our understanding
of interactive driving behaviour for the development of automated driving tech-
nologies, and our model could potentially be generalised to other scenarios with
traffic interactions.
The underlying mechanisms of the model enabled it to replicate human driving
behaviour on multiple levels. Therefore, the model could help researchers to un-
derstand better how these mechanisms function in human behaviour [34]. For
example, implicit communication (through vehicle movements) and how it influ-
ences a driver’s belief is observed often but only partly understood [9], [39]. The
same holds for the perception of risk, which has been investigated for isolated
drivers [44], [49], but our model could help extend this to interactions. Our model
could facilitate research in these directions, leading to an increase in fundamental
knowledge.
This knowledge could facilitate more practical applications, such as the design
of movements that convey a clear message about the intent of an automated
vehicle [4]. These movements could consider other drivers’ expectations regard-
ing high-level outcomes and communicative actions. Matching the automated
vehicle behaviour with expectations might increase behavioural acceptance, al-
though this should be investigated further. Second, the model might be used to
inform the real-time interaction planning of automated vehicles. In particular, it
could inform the AV about the potential future actions of other drivers (as predic-
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tion models are generally being used [5], [6], [50]). Finally, our model could also
be valuable in the development phase of automated behaviour by being part
of an interactive and dynamic environment for benchmark testing where models
are used to evaluate the behaviour of autonomous vehicles (e.g., [29], [51]).
Finally, the scenario we modelled in this work bears a resemblance to other inter-
active scenarios. In essence, the scenario in Figure 7.2-A entails a continuous and
dynamic interaction where participants search for a mutually beneficial solution.
Although there are minor individual advantages to be gained regarding speed
and comfort, the most important goal is mutual: to prevent a collision. These
aspects are comparable to other interactive scenarios such as traffic interactions
between vehicles and pedestrians (e.g., [42], [46]), pedestrian interactions in a
crowd [52], or physical human-robot interactive tasks [53] (e.g., [47], [54]). The
shortcomings of othermodels that led to thedevelopment of theCEI framework [8]
– the assumption of rationality, absence of communication, and difficulties in ex-
tending game theory beyond high-level decisions – also apply to these related
scenarios. Thus, exploring CEI-based models, such as the one presented here, for
other interactive scenarios can be an interesting topic for future work.
Our work has three important limitations: the simplified scenario, the manually
chosen model parameters, and the complexity of fitting an intermittent behaviour
model. To start with the first limitation, we have used a simplified merging scenario
in this work to gain insight into the complex dynamics of driver interactions [38]. This
scenario enabled us to uncover the characteristics of human behaviour regarding
accelerations but does not include two important aspects of merging: steering
and traffic rules (such as the right of way). We previously found that the charac-
teristics of humanbehaviour in our simplified simulator correspond to those found in
real-world driving [11], [55], [56]. Therefore, we are confident that our model cap-
tures an important aspect of human behaviour in real traffic: intermittent piece-
wise constant control. Since the other underlying principles of the model (i.e., risk
perception [44], communication [9], [39], and a belief about intent [42]) have
also been observed in real traffic and used in other successful models we believe
that our model can be generalised to realistic merging scenarios. Nonetheless,
extending the model to realistic scenarios (especially realistic beliefs that cover
multiple tactical responses to the same situation [57]) remains a topic for future
work.
Second, the model uses 10 manually chosen parameters to match the scenario
(these were heuristically determined, based on literature, or tuned to fit the data;
see the Methods section for details). Among these parameters are the length of
the planning horizon for the drivers and the saturation time 𝜏 that governs how
long it takes drivers to re-plan when the conflict is resolved. Although we found
the model robust to changes in these parameters, how they generalise to other
scenarios (e.g., with different dimensions of the track) is unknown. It is possible
that all scenarios need a specific set of parameters and that to generalise the
model to work in multiple scenarios simultaneously, these parameters need to be
dynamically adjusted.
Finally, due to the intermittent nature of our model, it is complex to fit it to human
data. Because of the mechanism where a risk threshold triggers a planning up-
date, individual trials only provide limited information about the threshold value
that would describe a driver best. If the driver acts, the threshold is exceeded,
and if they don’t act, the threshold is not exceeded. The amount of action is not
related to the upper risk threshold. Therefore, we used a grid searchmethod to ob-
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tain individual values for risk thresholds. However, this method is computationally
inefficient, imprecise, and hard to use with more complex scenarios with multiple
control inputs (i.e., when including steering). Because intermittent control is a key
aspect of the CEI framework and our model, this is a fundamental limitation to the
potential to generalise the model. More work is needed to develop a more robust
method to fit intermittent models such as ours.
In conclusion, our model hypothesised that a communication-enabled kinematic
belief combined with risk-based intermittent actions underlie human interactive
behaviour in merging. In contrast to the currently prevalent game-theoretic mod-
els of traffic interactions, our model does not rely on the assumption of rationality
and explicitly includes implicit communication between drivers. Despite its simplic-
ity, our model could accurately describe the joint behaviour of human drivers and
their individual contributions in merging interactions on three levels: control inputs,
safety margins, and decisions. We believe our model could be a useful tool to
increase the fundamental understanding of the effects a vehicle’s kinematics ac-
tions have on the beliefs of other drivers. Therefore, we hope our model represents
a step towards understanding driving interactions and developing interaction-
aware automated driving.

7.4.Methods
In this work, we evaluate a Communication-Enabled Interaction (CEI) model in a
simulated environment and compare it to human behaviour data that was pre-
viously collected in a simulator experiment. Here we reiterate the details of the
experiment, present the design of the four modules of the CEI model (plan, com-
munication, belief, and risk perception), and discuss the parameters we used for
themodel and the fitting procedure. Finally, we present the details of the software
and data we used in this work which is all available online from public repositories.

7.4.1. Experiment and simulation environment
The data on human driver behaviour we used in this work was previously gathered
in an experiment in a coupled top-down-view driving simulator [11], [38]. Eighteen
volunteers (6 female, 12 male, mean age: 25, std: 2.6) participated in the study
andwere divided into 9 fixed pairs (i.e., each participant interactedwith the same
counterpart in all trials). This experiment was approved by TU Delft’s Human Re-
search Ethics Committee and all participants gave their informed consent before
participating.
The participants controlled the acceleration of their vehicle using the gas and
brake pedal of a steering-wheel game controller (Logitech Driving Force GT). The
headings of the vehicles were fixed (i.e., equal to the heading of the road). Par-
ticipants each sat behind a computer screen that showed a top-down view of
the simulation. They were seated in the same room behind a curtain to prevent
them from seeing each other. The drivers wore noise-cancelling headsets (Sony
WH-1000XM3) with ambient music to prevent them from communicating in any
other way than through vehicle kinematics.
In the experiment, the drivers followed a track consisting of three sections of equal
length (50 𝑚 each, total track length 150 𝑚): a tunnel, an approach and a car-
following section. The vehicle dimensions were 4.5 𝑚 x 1.8 𝑚. In the tunnel, the
drivers could observe both vehicles and their initial velocity. The initial velocities
were either equal (10 𝑚/𝑠) for both vehicles or one of the vehicles had a 0.8 𝑚/𝑠
advantage (9.6 𝑚/𝑠 - 10.4 𝑚/𝑠). If the vehicles maintained their velocity, they
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would collide at the merge point with varying headways (i.e., distance from front
bumper to front bumper). We called this the projected headway and varied it
between 0, 2, and 4 𝑚 for each vehicle. Conditions were labelled according to
the projected headway and relative velocity (e.g., −4_8) where positive numbers
denote an advantage for the left vehicle. Drivers were told: ”Maintain your initial
velocity yet prevent a collision. No vehicle has the right of way. Remain seated,
use one foot on the gas or brake pedal, keep both hands on the steering wheel,
and do not communicate by making sounds or noise. Remember that this is a
scientific experiment, not a game or a race.”
The participants approached the merge point from the left or the right side (ran-
domised before each trial). However, only their own viewwas varied; in the exper-
imenter’s view, and in all results discussed here, the same driver in a pair is referred
to as the left or right driver. To facilitate velocity perception, the steering wheels
provided vibration feedback when vehicles deviated from their initial velocity. This
feedback increased with the magnitude of the deviation. In case of a collision,
the simulation was paused for 20 seconds. This time penalty lasted longer than the
duration of a single trial (∼ 16 seconds), thereby providing an incentive to avoid
collisions.
Both in the experiment and the model simulations, we simulated the vehicles as
point mass objects, their dimensions were only used for collision detection. The
vehicles were subject to a negative acceleration due to resistance of 𝑎𝑟 = 0.5 +
0.005𝑣2, where 𝑣 is the vehicle’s velocity. Vehicle velocities were always positive.

7.4.2.Model
Our proposed model is based on the CEI modelling framework [8]. According to
this framework, joint driver behaviour can be understood as a combination of four
modules: plan, communication, belief, and risk perception.

Plan The drivers are assumed to have a deterministic plan for the near future. The
model plans to maintain a constant acceleration input over its planning horizon;
the acceleration value is obtained by minimising a cost function over this horizon
(Equation 7.1). This cost function 𝑐 penalises deviating from the desired velocity
𝑣𝑑 (which in the experiment is equal to the initial velocity) and large values of the
acceleration input 𝑎𝑡

𝑐 =
𝑇

∑(𝑣𝑡 − 𝑣𝑑)2 + 𝑎2𝑡 , (7.1)

where 𝑣𝑡 denotes the velocity at time 𝑡, and 𝑇 is the time horizon. Importantly,
the cost function does not include a term for collision avoidance; instead, the CEI
framework assumes that drivers manage safety by keeping the risk below the risk
threshold, which is imposed as an optimisation constraint on the planning module
of the model [8].
With the optimal constant acceleration, a trajectory (i.e., a set of waypoints over
time) is constructed over the time horizon 𝑇. This trajectory is later used to evaluate
the perceived risk. The planned constant acceleration is appliedwith added noise
to execute the plan. This noise represents the discrepancy between a planned
acceleration and the gas pedal input (i.e., inaccuracies in the driver’s neuromus-
cular system and internal model). The noise is added after the optimisation in the
planning phase and remains constant until the next re-plan. Noise is drawn from
a scaled normal distribution: 𝒩(𝜇𝑛 = 0, 𝜎2𝑛 =

1
402 ).
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If the optimisation fails because no solution can be found within the constraints,
the model falls back to either full braking or full acceleration. If the ego vehicle is
behind the other vehicle, heading for a collision, and no solution to the planning
problem can be found, the model applies full braking. Similarly, if the ego vehicle
is ahead of the other vehicle but cannot find a feasible plan, it applies full accel-
eration. In both cases, a new optimisation is triggered at the next time step until a
valid solution can be found again.

Communication In our model, drivers communicate through vehicle kinematics.
Explicit communication (e.g., with indicator lights) is not included in the model or
the experiment for simplicity. Drivers observe the other vehicle’s position, velocity,
and acceleration at every time step. Position and acceleration observations are
assumed to be perfect. Velocity perception is assumed to be noisy to account
for the fact that drivers sometimes accelerate and sometimes decelerate at the
tunnel exit in the same condition (Figure 7.3-A). This behaviour can be explained
by the fact that drivers under- or overestimate the other vehicle’s velocity in the
tunnel.
The noise in the velocity perception is inspired by evidence accumulation, a con-
cept used in driver decision-making studies before [42], [58]. Specifically, we as-
sume that drivers update their perceived velocity of the other vehicle 𝑣𝑝 at every
time step with an observation affected by noise

𝑣𝑝𝑡 = 𝑣𝑝𝑡−1 + 𝑑𝑣𝑝 (7.2)
𝑑𝑣𝑝 = 𝛼(𝑣𝑡 − 𝑣𝑝𝑡−1) + 𝛽𝑑𝑊. (7.3)

In Equations 7.2 and 7.3, subscript 𝑡 denotes time, the superscript 𝑝 denotes the
perception of the other vehicle’s velocity, 𝑑𝑣𝑝 is the perception update, 𝑣 is the
other vehicles true velocity, 𝛼 denotes the update rate, 𝛽 the noise level, and
𝑊 is a stochastic Wiener process (thus 𝑑𝑊 is a sample from a normal distribution
𝒩(𝜇 = 0, 𝜎2 = 𝑑𝑡)).

Belief The observed communication is used to create a belief about the future
positions of the other vehicle. This belief consists of belief points at a specific belief
frequency 𝑓𝑏 over the same time horizon 𝑇 as the one used in the plan. Every
belief point is a probability distribution over positions. Each of these belief points
are represented by the sum of two normal distributions:

𝑏𝑡 =
1
2𝒩(𝜇𝑡 , 𝜎

2
𝑡 ) +

1
2𝒩(𝜇𝑡 , 𝜙𝜎

2
𝑡 ), (7.4)

where 𝑏 is the belief point representing the probability distribution over positions for
the other vehicle at time 𝑡 and 𝜙 is a scaling factor. The first part of this equation
represents the positions of the other vehicle that are kinematically feasible within
the bounds of comfortable acceleration. The second part is kinematically infeasi-
ble within comfortable bounds and can be interpreted as a belief that something
unexpected will happen (e.g., an emergency braking). The motivation behind
including two components to the belief distribution was that a single normal dis-
tribution either assigns similar probabilities to the kinematically likely and unlikely
positions (when 𝜎𝑡 is high) or only considers high-risk scenarios (when 𝜎𝑡 is low). Our
belief model addresses this issue by emphasising the kinematically likely outcomes,
but at the same time including a safety margin in case of errors or unlikely events
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(e.g., emergency braking, long reaction times, or a perception error of the other
driver).
The parameters 𝜇𝑡 and 𝜎𝑡 are based on a normally distributed expected accel-
eration (𝒩(𝜇𝑎 , 𝜎2𝑎)) which is constructed based on driver’s memory about recent
acceleration observations. Drivers keep a memory of recent acceleration obser-
vations of the other vehicle 𝑀𝑎

𝑀𝑎 = [𝑎−𝑇𝑚 , .., 𝑎𝑡] (7.5)
𝜇𝑎 = �̄�𝑎 (7.6)

𝜎2𝑎 = (
1
3𝑎𝑐)

2 + var(𝑀𝑎) (7.7)

Here, the mean expected acceleration 𝜇𝑎 is calculated as the average of the
remembered values over the past 𝑇𝑚 seconds (Equation 7.5). The standard de-
viation 𝜎𝑎 of the expected acceleration is based on the maximum comfortable
acceleration 𝑎𝑐 (assuming that 99.7% of observed accelerations fall within ±𝑎𝑐)
and an added variance var(𝑀𝑎). The latter part increases the expected variance
in future accelerations if inconsistent behaviour has recently been observed.
The parameters for the belief point distributions are then constructed using point
mass kinematics with this normally distributed acceleration

𝜇𝑡 =
1
2(𝑡 − 𝑡0)

2𝜇𝑎 + 𝑣0(𝑡 − 𝑡0) + 𝑝0, (7.8)

𝜎2𝑡 =
1
2(𝑡 − 𝑡0)

2𝜎2𝑎 , (7.9)

where 𝑝0 denotes the observed position of the other vehicle, 𝑣0 is the perceived
(noisy) velocity of the other vehicle, and 𝑡 denotes the time of this belief point and
𝑡0 the current time.

Risk perception Risk perception combines the planned trajectory and the belief
about the future positions of the other vehicle to calculate the probability of a
collision. For every belief point, the model determines the bounds of collisions [8];
these are the extremum positions of the other vehicle that will result in a collision.
Thebelievedprobability that the other vehicleswill be between thesebounds is the
perceived probability of a collision. This probability is assumed to be the perceived
risk.
The perceived risk is evaluated against two dynamic risk thresholds, the upper (𝜌𝑢)
and the lower (𝜌𝑙) threshold. Both thresholds consist of a driver’s individual base
value (𝜃), which is adjusted with an incentive function:

𝜌𝑑𝑢 = 𝜃𝑑𝑢 + 𝜆𝑢,1Δ𝑝 + 𝜆𝑢,2Δ𝑣 + 𝜆𝑢,3Δ𝑝Δ𝑣 (7.10)
𝜌𝑑𝑙 = 𝜃𝑑𝑙 + 𝜆𝑙,1Δ𝑝 + 𝜆𝑙,2Δ𝑣 + 𝜆𝑙,3Δ𝑝Δ𝑣. (7.11)

In these equations, superscript 𝑑 denotes a specific driver, Δ𝑝 and Δ𝑣 are the
relative position and velocity from this driver’s perspective, and 𝜆 are the incentive
parameters which are assumed to be constant over the population.
A re-plan is triggered if the upper risk threshold 𝜌𝑢 is exceeded. This re-plan aims
to find an acceleration that brings the perceived risk below 0.8𝜌𝑙. If the perceived
risk stays below the lower threshold 𝜌𝑙 for longer than the saturation time 𝜏, the
conflict is assumed to be resolved, and another re-plan is triggered to revert to
”normal” behaviour. In this case, the risk is constrained to be below 0.6𝜌𝑢. Finally,
if the desired velocity is reached while the vehicle is accelerating or decelerating,
another re-plan is triggered to allow the vehicle to maintain the preferred velocity.
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7.4.3.Model parameter fitting
Our model and simulation use 10 parameters with values that were manually de-
signed, their values are shown in Table 7.1a. The timing parameters for the simula-
tion (𝑑𝑡), planning (𝑇), and belief (𝑇𝑚 , 𝑓𝑏) were chosen such that they are suitable
for the scenario yet enable reasonable computation times. The noise parameters
𝜎𝑛 and 𝛽, and saturation time 𝜏 were manually tuned to reflect the human data.
The belief scaling factor 𝜙 was designed to obtain sufficient resolution in the risk
signals. The parameters 𝛼 (which denotes how long drivers need to observe a
vehicle to estimate its velocity) and 𝑎𝑐 (the maximal comfortable acceleration)
were based on empirical literature: 𝛼 [59], [60], 𝑎𝑐 [61].

Table 7.1: Model and simulation parameters with constant values for all participants

(a) Manually designed parameters

𝑇 6.0 𝑠 𝑑𝑡 0.05 𝑠
𝑇𝑚 4.0 𝑠 𝑓𝑏 4 𝐻𝑧
𝜎𝑛

1
40 𝛽 0.6

𝜏 1.6 𝑠 𝜙 3.0
𝛼 0.5 𝑎𝑐 1.0 𝑚

𝑠2

(b) The fitted population-level parameters for the incentive functions

Parameter Value Std. Err. z p
𝜆𝑢,1 0.003 0.001 3.27 0.001
𝜆𝑢,2 0.018 0.006 2.97 0.003
𝜆𝑢,3 -0.006 0.001 -6.38 0.000
𝜆𝑙,1 0.004 0.001 3.55 0.000
𝜆𝑙,2 0.016 0.008 1.95 0.051
𝜆𝑙,3 -0.003 0.001 -2.03 0.042

The risk thresholds and incentive function parameters were fitted to the data using
a grid search. We created a 25×25 grid for every kinematic condition using upper
thresholds in the range [0.3, 0.9] and lower thresholds in the range [0.01, 0.4]. For
these grids, we disabled the incentive functions and only used the base thresholds
(𝜃 in Equations 7.10 and 7.11). We ran one simulated trial per set of thresholds per
condition with all the noise in the model disabled, resulting in 11 grids of 625 trials.
In every trial, we simulated the behaviour of a single CEI driver against a vehicle
travelling at constant velocity to obtain the immediate response of the (CEI) driver
at the tunnel exit before any interaction takes place. For every such trial, we
recorded the modelled driver’s deviation from the initial velocity after 1.0 second.
Then, for every trial of every human participant, we searched the grid for the
risk threshold values that best described that driver’s velocity deviation after 1.0
second. This resulted in individual base threshold values (𝜌𝑢 and 𝜌𝑙) for every trial,
in total 110 sets of thresholds for every participant. With 18 participants, this gave
us 1980 upper and lower threshold values for 11 different kinematic conditions.
To determine participant-level thresholds based on these trial-level thresholds, we
used two linear mixed-effect models, one for the lower and one for the upper
threshold. Both models used the form: 𝜌 ∼ Δ𝑝 ∗ Δ𝑣, where 𝜌 denotes the threshold
and Δ𝑝 and Δ𝑣 are the relative position and relative velocity respectively. Random
intercepts were included per participant. The resulting fixed-effect coefficients
(Table 7.1b) were used as incentive parameters (𝑙𝑎𝑚𝑏𝑑𝑎 in Equations 7.10 and
7.11), and the random-effect coefficients (Table 7.2) were used as participant-
level base values 𝜃𝑙 and 𝜃𝑢.

7.4.4. Software and data
We implementedacustom simulation environment in Python to run the experiment
and simulate the model. The optimisation in the planning part of the model was
implemented with Casadi [62]. The statistical analyses were performed in python
using the statsmodels package [63].
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Table 7.2: Personal base values for the upper and lower thresholds for each driver

Pair Driver 𝜃𝑙 𝜃𝑢
1 left 0.165 0.495

right 0.260 0.562
2 left 0.245 0.635

right 0.058 0.493
3 left 0.058 0.488

right 0.245 0.631
4 left 0.183 0.537

right 0.201 0.524
5 left 0.113 0.498

right 0.269 0.585
6 left 0.246 0.550

right 0.161 0.546
7 left 0.320 0.736

right 0.201 0.522
8 left 0.165 0.525

right 0.246 0.586
9 left 0.178 0.519

right 0.227 0.543

Our code is publicly available on Github [64]. The data from the experiment [65]
and model simulations [66] are available on the 4TU data repository. Interactive
plots of the human data are available online [67].
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T hree main contributions form the foundation of this thesis (Figure 8.1): 1) re-
search on usingavailable naturalistic highwaydata for drivermodel validation,

2) a novel model framework for interactive driving, and 3) a controlled experiment
with a simplified merging scenario that yielded new empirical evidence on joint
driver behaviour which aided to validate and improve that model. Combined,
these contributions supported the aim of this thesis: to increase the fundamental
understanding ofmerging and lane-changing interactions and capture this knowl-
edge in a joint driver model.
Regarding the first main contribution, Chapters 2 and 3 focused on using
available naturalistic highway data for driver model validation. Chapter 2
proposed a framework to validate driver models underlying interaction-aware
controllers. A case study using the framework showed that a state-of-the-art
inverse-reinforcement-learning-based model, which was used in interaction-
aware control, failed to accurately describe operational and tactical driver
behaviour in a large number of real-world lane changes. This chapter highlighted
the importance of separately evaluating driver behaviour models’ tactical and
operational aspects. Chapter 3 revealed that these two levels of behaviour also
play an important role in the variability in drivers’ responses to similar situations.
This chapter proposed a method to obtain similar situations from naturalistic
datasets automatically. In a real-world situation where drivers had to respond to
a slower-moving vehicle in their lane, there was variability in tactical responses
(e.g., some slowed down, others changed lanes) and operational responses
(e.g., in the amount of acceleration). These findings motivate the need for a new
type of driver model which can accurately describe behaviour on multiple levels.
Regarding the second main contribution, Chapter 4 provided a more extensive
investigation into what type of driver model would be suitable to capture inter-
active driver behaviour. In this chapter, we identified the most important char-
acteristics of driver behaviour in traffic interactions and discussed to what extent
existing modelling approaches can capture these characteristics. The chapter
argued that no existing model type could simultaneously capture the joint dy-
namics of multiple drivers, include communicative actions, and account for the
idea that drivers are not rational decision-makers. These limitations of existing ap-
proaches strengthened the motivation for developing a new type of driver model
specifically suitable for interactions. To meet those requirements, we proposed
the Communication-Enabled-Interaction (CEI) framework to describe driver be-
haviour in merging interactions. Chapter 4 outlined the CEI-modelling framework
and presented an example of a model implementation that showed plausible
human-like behaviour in 4 simplified merging simulations. In a 5th car-following
scenario, human-like gap-keeping behaviour emerged from the probabilistic be-
lief and risk perception in the model.
Chapters 5 and 6 were part of the third main contribution and investigated using
controlled experiments to study driver behaviour in interactions. Previous con-
trolled experiments focusedon thebehaviour of a single driver, therefore a suitable
simulator scenario and analysis tools for experiments with multiple drivers were not
available. Chapter 5 laid the necessary foundation for interaction experiments
by proposing a scenario and three new analysis tools. In this scenario, two drivers
resolve a simplified, top-down-view merging conflict in a coupled driving simula-
tor. Chapter 6 utilised the experiment’s results for an empirical analysis of driver
behaviour. This analysis revealed that the scenario’s kinematics, and not indi-
vidual differences between drivers, mostly determined the interaction’s high-level
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Figure 8.1: The three pillars in which the work in this thesis was divided.

outcome (who merges first) and that individual drivers use intermittent piecewise-
constant control to solve the merging conflict. These empirical findings served as
a basis for improving the model proposed in Chapter 4.
Finally, Chapter 7 brought the three main contributions together in a new CEI
model and validated this model on the empirical findings from the experiment.
The new version of the model accurately reproduces quantitative and qualitative
aspects of driver behaviour on multiple levels. The model captures the high-level
joint outcome of the interactions (whomerges first) and how this outcome is estab-
lished from individual decisions (e.g. to yield or not). The model describes the gap
between the vehicles, jointly kept by the drivers, and their individual contributions
to this gap. Finally, the intermittent piece-wise-constant control that drivers use for
their vehicle inputs is also captured by the model.

8.1. Overarching conclusions
All chapters contain specific conclusions relevant to their content; these will not
be repeated here. However, based on the combined results of all chapters, I draw
three overarching conclusions:

1. Different drivers respond with different tactical and operational behaviours to
similar interactive situations; therefore, driver models should capture operational
and tactical variability, which should be assessed independently.
In Chapter 2, we argued, based on theory and literature, that driver models should
be compared with human behaviour on both tactical and operational levels sep-
arately. The main argument was the particular importance of regarding multiple
levels of behaviour in models used for interaction-aware automated driving. Tradi-
tional driver models (e.g. the Intelligent Driver Model [1]), typically regard a single
tactical behaviour (e.g., car following). This is sufficient for studying traffic flow or
the transportation system as a whole becausemultiple models of different tactical
behaviours can be combined to describe the population. However, interaction-
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aware automated driving has to cope with individual interactions with unique
drivers. These drivers might respond in different ways to the automated vehicle.
A driver might first follow the AV and then decide to change lanes. Therefore,
we argued that for a model to be useful to inform automated driving decisions, it
should be able to express multiple tactical behaviours as a unified model.
The empirical evidence thatdrivers respondwith different tactical and operational
behaviours to similar situationswas provided in Chapter 3 (Figure 3.5). The results of
a case study, in which we studied the responses of 250 drivers to similar interactive
car-following scenarios, showed variability on both the tactical and operational
levels. In the same scenario, somedrivers change laneswhile others keep following
the vehicle in front of them. Earlier studies into variability focused on operational
variability within one tactical behaviour (e.g., [2]–[4]) or on tactical variability in
the population instead of in responses to a particular scenario (e.g., [5]).
Going back to Chapter 2, the case study there showed that distinguishing
between operational and tactical behaviour is important when evaluating a
driver model that aims to capture multiple tactical behaviours (Figure 2.5). An
inverse-reinforcement-learning model showed different tactical behaviour than
human drivers in the same situations. On an operational level, the model always
showed behaviour with the same characteristics, independent of its tactical
behaviour. This operational behaviour corresponded to human behaviour during
lane changes but differed from that during car following. This meant that no
matter if the model changed lanes or followed another car, it always used the
same acceleration profile that human drivers use to change lanes. To make
this observation, these operational behaviours should not be aggregated when
evaluating the model but should be assessed separately. Thus, operational
variability should be assessed independently of tactical variability.
This conclusion has two implications in light of recent literature. First, many
machine-learning-based approaches to driver modelling or trajectory prediction
use single metrics such as Final Displacement Error (FDE) or Root Mean Squared
Error (RMSE) to evaluate their performance [6]. These approaches are agnostic to
levels of behaviour and learn their behaviour automatically from large datasets
containing many behaviours; therefore, they often describe multiple tactical
behaviours. Using a single metric to evaluate their behaviour will thus aggregate
the operational behaviour over multiple tactical behaviours. While this issue has
been described and investigated earlier [6], [7], the findings in this thesis show
that it is a practical concern in the development of interaction-aware AVs and
further underline its importance. Some machine-learning-based approaches for
trajectory prediction even explicitly aim to predict multiple tactical behaviours
(e.g. [8]–[10]). In machine-learning literature, this is referred to as ”multi-modal”
prediction, where tactical behaviours are regarded as (behavioural) modes.
How to evaluate these modes and their predicted distribution and how to
compare different prediction approaches is still an open problem [6]. The
proposed approach of Chapter 2 could provide a solution for validating the
machine-learned trajectory prediction approaches (beyond models used in
IAC) because it shows how knowledge from driver behaviour literature can be
combined with open datasets to validate models that capture multiple tactical
behaviours.
Finally, many interaction-aware automated driving approaches regard human
behaviour as ”noisy” (e.g., [11]) or ”uncertain” (e.g., [12]). However, based on
this first overarching conclusion, I argue that human behaviour is variable, but
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not uncertain or noisy. The main difference is that variability can be understood,
quantified, and explained, while noise and uncertainty are inherently random.
Chapters 2 and 3 have shown that we can extract and quantify operational and
tactical variability in human behaviour from naturalistic datasets. This could help
us gain a better understanding of the variability in driver behaviour, which in turn
could help develop better interaction-aware automated driving.
To conclude, this first conclusion provided three main insights. First of all, Chap-
ter 3 provided more evidence to support what we argued for in Chapter 2: it is
important for interaction-aware AVs to regard multiple tactical behaviours in a
model of interactions. Chapter 2 showed that a model used in an IAC does not
generalise well to real-world scenarios; therefore, new models describing multiple
tactical behaviours should be developed for this use case. Finally, the empirical
evidence in this thesis shows that it is important to validate these driver models on
both levels and regard these levels separately during the validation.

2. An important requirement for a joint driver model is the ability to capture that
drivers do not continuously (rationally) optimise their acceleration inputs; instead,
they use intermittent piece-wise constant control – as was empirically observed in
a simplified merging scenario.
Chapters 5 and 6 are dedicated to using a controlled experiment in a driving
simulator to study the interactive behaviours of drivers. Chapter 5 introduced the
necessary novel scenario and analysis tools. The empirical analysis in Chapter 6
revealed that humans do not continuously rationally (in a game theoretic sense)
optimize their control inputs during interactions (Figure 6.10). Instead, they apply a
constant control input until something triggers a decision. At this decisionmoment,
the continuous input suddenly changes. We refer to this control behaviour as:
”intermittent piecewise-constant control, where intermittent refers to the observed
decision moments, and piecewise-constant to the constant acceleration levels in
between.” Both the absence of rationality in human behaviour and the intermit-
tent control have been found previously in other (driving) tasks.
Previous experiments have shown that humans do not continuously and rationally
optimize their decisions when playing simple economic games [13] or when choos-
ing their velocity during driving [14]. Instead, the concept of bounded rationality,
as introduced by Simon [15], seems to provide a better explanation for the be-
haviour of isolated drivers [14], [16] and car-following drivers [17]. This thesis is the
first to show that these findings generalise to interactive driving behaviour. Further-
more, it is the first to present a model of traffic interaction based on satisficing (a
form of bounded rationality [18]).
Intermittent control behaviour in humans is a long-standing topic of research. The
results are many observations, theories, and models of general intermittent (mo-
tor) control (e.g. [19], [20]) and intermittent control in isolated driving (e.g., [21],
[22]). For example, intermittent control behaviour has previously been observed
in the acceleration inputs of truck drivers in naturalistic data [23]. However, as
with bounded rationality, this thesis generalises these findings to traffic interactions
during merging and presents a model of such interactions that integrates these
characteristics.
This second conclusion has implications for research and applications in two as-
pects. First, driver models that aim to capture the operational control behaviour
of interacting drivers must consider intermittent piecewise-constant control. This is
needed to describe specific subtle communicative actions such as the miscom-
munication example in Chapter 7 (Section 7.2.1), which was caused by a strategy
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switch (i.e., intermittent behaviour). Models that only target to describe higher
levels of behaviour could ignore this conclusion and assume rational continuous
control. However, as argued in Chapter 7, a unified model that can accurately
describe multiple levels of behaviour is more likely to have actually captured the
underlying mechanisms of driver behaviour. I will revisit the distinction between
operational and tactical behaviour in rationality in the Further Outlook section:
Section 8.5.
The second implication relates to control approaches for interaction-aware auto-
mated driving. For interaction-aware control, it is particularly important to consider
the identified characteristics of human behaviour. Understanding the finesses of
human operational (intermittent) control is important when trying to understand
and interpret implicit communication (through vehicle motion). We need to un-
derstand nominal behaviour before we can distinguish implicit communication in
that behaviour. Furthermore, the intermittent nature of human operational control
could also play a role in theacceptanceof autonomous behaviour, i.e., behaviour
that deviates too much from human behaviour might not be understood and thus
not be acceptable. Further investigations in this direction could be interesting
opportunities for future research.
Finally, the assumption that interacting humans behave rationally is commonly
made in interaction-aware control literature. However, violations of this assump-
tion (e.g., Chapter 6) could have implications for the safety of interaction-aware
autonomous vehicles. Other drivers might respond differently than the AV ex-
pected, and passengers might perceive the AV behaviour as unsafe if it drives
too competitively. If, and to what extent, these issues are problems to consider
should be further investigated. I will revisit how we could potentially leverage the
CEI-model for such investigations in Section 8.4.

3. With communication-enabled, risk-based intermittent control, the proposed CEI-
model can describe abstract merging interactions between two drivers, including
their decisions (who goes first), safetymargins over time, and underlying individual
contributions and control inputs (brake/accelerate).
Chapter 4 outlined the Communication-Enabled Interaction (CEI) model frame-
work based on theory and literature (Figure 4.1). This chapter demonstrated the
potential of a CEI model to produce plausible, human-like interactions. In Chap-
ter 7, a CEI model implementation was presented based on the empirical find-
ings of Chapter 6. Chapter 7 showed that the CEI model can not only produce
plausible behaviours but can also accurately reproduce the high-level outcome
of merging trials, the safety margins drivers maintain, the input characteristics of
individual drivers, and the individual differences between participant pairs.
The CEI framework is a unique and novel approach to implementing interaction
models. Three key features specifically distinguish the CEI model from other driver
and interaction models. First, it explicitly incorporates communication between
drivers, an important aspect of traffic interactions [24]. This is a unique feature for
a model of driving interactions. Second, it models risk perception and assumes
drivers act based on their perceived risk. This assumption was previously used in a
model that could explain driver behaviour in seven non-interactive scenarios [25].
Finally, the CEI model uses intermittent piecewise constant control, consistent with
the findings in Chapter 6.
The final CEI model presented in Chapter 7 covers several phenomena observed
in human behaviour in the driving simulator experiment (Chapter 6). Of these
phenomena, five canbedirectly linked to features of themodel’s implementation.
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These model features could provide insight into the underlying principles of how
human drivers interact.
First, the individual differences between drivers (i.e., when they act and howmuch
they do to prevent a collision) are reflected in the model by adjusting a single pa-
rameter: the risk threshold. The model assumes that all drivers perceive the same
amount of risk but that some drivers have a higher tolerance for perceived risk.
Because changing the risk threshold is enough to describe individual differences
accurately, this assumption might explain the differences between drivers in risk-
based actions. A study on risk perception by Kolekar et al. also showed that a uni-
fied definition of perceived risk could explain the behaviour of multiple drivers [26]
(they used uniform parameters for a risk model although they assumed that risk
perception would differ per individual). However, untangling risk perception (i.e.,
how risky a situation is in one’s perception) and risk thresholds (i.e., at which level
of risk one acts) in experiments can be challenging since the amount of action
(e.g., steering angle) is often used as the measured signal [26], [27]. A certain
action can therefore happen at a low perceived risk with a low risk threshold
or a high perceived risk with a high threshold. Untangling risk perception and
the resulting risk-based action, as well as the differences between drivers in this
respect, is needed to investigate if the model’s assumption is valid. This could be
an opportunity for future research.
Second, the probabilistic belief of the modelled drivers results in two phenomena
being replicated by the model. First, the assumption that the other vehicle will
travel at constant velocity while considering that it might accelerate or decelerate
is the leading mechanism behind the high-level outcome of the simulations. That
is, it explains the relationship between the kinematics of a scenario and which
vehicle merges first. Second, the human-like, velocity-dependent, gap-keeping
behaviour in Chapter 4 emerged from this belief representation.
The third model feature directly linked to observed behaviour is the planning of a
constant acceleration value (or gas pedal input). This model feature resulted in
the characteristic intermittent piecewise-constant control. However, this feature
is not unique to our model; it has been used before in models of non-interacting
drivers [22], [23].
The final phenomenon is only partially explained by the model: it is the fact that
some drivers in an interaction (e.g., the following driver in car following) act more
often to lower the risk. This is connected to the first phenomenon in the sense that
the model assumes dynamic risk thresholds which cause the driver to act once
they are in a certain position: we named this the incentive function. The model
uses the same incentive function for all drivers. However, for some individuals,
the model could not accurately reflect the differences in behaviour between
conditions. More work is needed to investigate if a personal incentive function
could explain this.
TheCEI model could have several applications related to automated driving tech-
nologies. It could be used online, in an automated vehicle, offline during the
development of new technologies, or in scientific research to understand driver
actions and communication better. A more extensive discussion on the possible
applications of the model is presented in section 8.4.

8.2. General limitations
Every chapter reported and discussed the limitations specific to the work it de-
scribed. However, there are two overarching limitations of the work in this thesis
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–primarily regarding its scope– that deserve an extended discussion here. The
first limitation concerns driver behaviour in the simulation environment and how
it could be generalised to the real world. The second is related to the scope of the
interactions that are studied.
The simulation used throughout this thesis consists of a simplified merging scenario.
The major simplification in this scenario is the fact that only the vehicles’ velocities
can be controlled. There is no steering involved. As explained in Chapter 5, this
simplification was needed to enable the analysis of the actions of an interacting
pair of human drivers, which is a novelt contribution of this thesis. Furthermore, the
human participants in the experiment viewed the simulation in a top-down view.
These are two simplifications to the scenario, and the task drivers were facing.
Therefore, they could have affected the humanbehaviour discussed inChapters 5
and 6.
The experimental scenario simplified the control task of the drivers by reducing
the controlled degrees of freedom from two to one. The visual representation
of the scenario was also simplified by reducing the two areas of interest in a first-
person view (i.e., the road in front of the vehicle and the rear-viewmirror) to a single
top-down view containing all necessary information. These simplified controls and
observations could have decreased the operational variability in the observed be-
haviour compared to real-world driving. However, the characteristics of the found
behaviour likely resemble real-world traffic interactions because of the similarity of
the real-world task, the task instructions (i.e., ”this is a scientific experiment, not a
race or a game”), the requirement that participants had to have a valid driver’s
license, and the gas pedals that were used as input devices.
The simplification of the control inputs had another effect. By reducing the de-
grees of freedom of the inputs, the driver’s options regarding tactical decisions
were also reduced. The only tactical decision a driver had to make was whether
they go first. Other tactical behaviours that can be used in real-world scenarios,
such as making a courtesy lane change or overtaking a vehicle before merging,
were impossible in the simulation. Although the model successfully reproduced
the tactical behaviour in this simplified scenario, it is an open question of how it will
handle the larger tactical variability in real-world driving.
The second limitation is related to the type of traffic participants and the interac-
tion in the simulation in general. This thesis only considered a highway merging in-
teraction between two car drivers. This is only a small part of the traffic interactions
present in the real world. These interactions can occur between many different
types of traffic participants (e.g., pedestrians, (motor)cyclists, truck drivers, etc.)
in many different situations (e.g., on the highway, an urban intersection, a round-
about, etc.). How the findings in this thesis generalise to other traffic participants
and other situations has to be investigated.
In the specific case of a one-on-one highway merging interaction, the work only
considered a subset of the kinematic possibilities. In the simulations in this thesis,
the vehicles were always on a collision course at the start of the simulation (except
for Scenario A in Chapter 4). While in real-life interactions, this is not always the
case [7]. The underlying assumption is that driver behaviour in the more critical sit-
uations (i.e., with an impending collision) will generalise to the less critical situations.
However, it is important to note that these situations were not so critical that only
an emergency action could solve them. Whether this assumption of generalisation
holds should be investigated.
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8.3. Communication
The concept of communication in traffic and its role throughout this thesis also
deserves some further discussion. The title of this thesis stems from the framework
presented in Chapter 4 and indicates how big this role is. The proposed framework
explicitly incorporates the possibility of communication between drivers in traffic
interactions, which is a fundamental difference from the prevalent modelling ap-
proach using game theory where the absence of communication is one of the
fundamental assumptions. When John Nash presented his famous equilibrium in
1951 [28], the fourth sentence of his paper stated:

”Our theory, in contradistinction [to von Neumann and Morgen-
stern [29]], is based on the absence of coalitions in that it is assumed
that each participant acts independently, without collaboration or
communication with any of the others.”

Despite this fundamental assumption of the Nash equilibrium, the continuous ob-
servation of the state of the world in some game-theoretic models bears resem-
blance to the CEI-based models in Chapters 4 and 7. The main differences were
already discussed in the discussion section of Chapter 4: ”The communication in
our framework allows drivers to construct and update a belief about the other ve-
hicle’s plan without the need for any prior information about the other driver” and
”in game theory, observations are not remembered. They only serve to determine
the current state, which is enough to reason about the other players’ actions”. So,
the difference lies not only in the fundamental assumption but it propagates to the
practical implementation of models.
However, it must be noted that the models presented in the case study in Chap-
ter 4 and in Chapter 7 are only basic implementations of the CEI framework when
it comes to communication: they do not leverage the full potential (and freedom)
provided by the framework. These models only consider implicit communica-
tion and do not provide the possibility of actions that are performed purely to be
communicative. Both models allow for communication through motion, without
assuming that all motion is (meant as) communication. This makes it impossible to
precisely identify which part of the (modelled) human behaviour is actually meant
as communication. Therefore, I must conclude that theCEI framework holdsmuch
unused potential for future studies targeting formalizedmodels of communication-
enabled traffic interactions (as will be discussed in the following section).

8.4. Practical applications
The scientific work presented in this thesis could have practical applications. The
main motivation behind the work was to improve interaction-aware autonomous
driving, but other fields could also benefit from the results. The main practical
potential lies with the proposed CEI model, but also the experimental framework
and its analysis methods and the developed software have potential for further
practical applications. All three aspects will be discussed in this section.

8.4.1. Applications of the model
There are many possible extensions and potential applications of the model that
could be worth investigating. This section will outline some possible practical and
scientific applications of the model. An overview of the potential applications of
the model is shown in Figure 8.2. This section will follow the structure with three ap-
plication areas mentioned in the figure (Autonomous Driving (AD), development,
and scientific applications) to discuss the potential use cases.
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Figure 8.2: An overview of the potential applications of the model. This figure shows three potential
application areas: online application in Autonomous Driving (AD), offline application during the
development of controllers, and scientific applications. Each has multiple potential use cases for the
model. Combined, some of these applications could lead to control for acceptance.

One important remark in this discussion of future applications is that the CEI model
is a model of human behaviour. It was designed to capture and predict human
behaviour, including all aspects of human behaviour that are undesirable in AV
behaviour (such as collisions in the simulated environment). Therefore, the model
should not be used for direct control in automated driving. Instead, it could be
leveraged to predict and understand how humans interact in traffic to create
better AV behaviour.

AD application
The first application area of interest is the online Autonomous Driving (AD) appli-
cation. This encompasses all applications of the model where the model is used
onboard an intelligent vehicle. Based on existing literature, I formulated three
potential use cases.

Prediction The first potential use case is to make predictions about other drivers
to inform an existing AD controller. This would be comparable to the interaction-
aware controllers discussed earlier (e.g., [11], [30]–[32]). To achieve this, themodel
must be split into two separate drivers. One of the two will be swapped with
the vehicle’s controller. The predicted response of the other vehicle could be
obtainedby inserting the controller’s future plan into themodel and simulating it for
a short time. The controller can then use this prediction to make better decisions.
There are two main drawbacks to this approach. First, because the controller’s
future plan does not depend on the other participant’s observed (future) com-
munication, this would mean making the one-way interaction (Chapter 4), de-
fying the whole reason for the development of the model. Second, most exist-
ing interaction-aware controllers use game theory to efficiently construct a plan
based on the predictions. However, since the model abandoned the most impor-
tant assumptions of game theory (rationality and no communication), finding a
feasible plan based on the predictionwill bemathematically and computationally
challenging.
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The main advantage of using the proposed model over the existing approaches
is that it could provide better predictions of human behaviour during interactions.
As demonstrated in Chapter 2, this could mean a substantial improvement com-
pared to existing approaches.

Online evaluation Another potential online application of themodel would be to
evaluate an existing AV controller’s future plan. Instead of directly using themodel
to obtain predictions of the other drivers’ future actions, we could use themodel to
predict their perceived risk. This different prediction would allow an AV controller
to reason about how their behaviour is perceived. This way, an AV controller could
actively try to minimise the perceived risk by passengers and other road users.
Another option would be to adapt the AV behaviour (online) to actively minimise
the Conflict Resolution Time (CRT). To the best of our knowledge, using a model
to control for such high-level interaction metrics has not been proposed before
for interactions between vehicles. More research is needed to determine which
metrics would be useful to predict. How to alter the AV’s plan to optimise for these
metrics is also an open question.

Tactical control The final proposal for an online application of themodel is based
on a paper by Fisac et al. published in 2019 [33]. In this work, they propose to
use a hierarchical controller for autonomous vehicles. A low-level, high-frequency
controller is used for operational control. This controller works much like traditional
AV controllers. It maximises safety while providing passengers with a fast and
comfortable ride. On top of this operational controller, Fisac proposes to use a
tactical control loop. This is a more high-level control loop that runs at a lower
frequency.
The job of this tactical control loop is to make higher-level driving decisions in a
human-like way, which is hypothesised to increase acceptance. a CEI model
could take the job of this tactical control loop. For example, in amerging scenario,
the tactical control loop can decide to yield to another vehicle or decide into
which gap to merge. This information is passed on to the operational control
loop, which tries to stick to the plan of the tactical loop yet prioritises safety. This
would allow for safe AVcontrol while adhering to human-like interactive behaviour
whenever possible.

Development application
Besides using the model onboard intelligent vehicles, there is potential in using
the model during the development of new automated driving technologies. This
includes use in laboratories and driving simulators during the development of new
AV controllers. These applications show similarities with onboard use, but the main
difference is that the simulation outcomes here are used to simulate human be-
haviour, not to predict it.

Benchmark Benchmark testing for autonomous vehicles is a topic for which mul-
tiple driver models were specifically proposed (e.g., [34], [35]). The general idea
is to create a simulation with ”human” traffic participants whose behaviour is gen-
erated by models to test newly developed AV controllers. The main advantage
of this method is that it is possible to test new controllers in a repeatable, time and
cost-efficient way without the need for extensive human-in-the-loop experiments.
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The CEI model could be used for benchmark testing in two ways. First, in the
traditional way for generating human behaviour. The main advantage over ex-
isting models could be that our model was specifically developed for interactive
scenarios and thus might produce more realistic interactive behaviour. Second,
the model could be used to compare the controller’s behaviour to generated
human behaviour. This would allow developers to evaluate to what extent the
controller’s behaviour is human-like in interactive traffic. Such an evaluation could
give valuable insights into how to improve the controller.

Acceptance evaluation The evaluation of acceptance metrics, such as
perceived risk and CRT, was already discussed for online applications. This
same idea could also be applied during development. Instead of using the
outcome to improve the controller’s plan directly, it could be used to improve the
design of the controller. For example, suppose two AV controllers are designed
specifically to target merging scenarios. Using the CEI model, developers could
easily create hundreds or thousands of hypothetical merging scenarios. The
model can produce metrics such as CRT or perceived risk in interaction with the
new controllers. These metrics can then be used to evaluate the differences
between the controllers. This would allow engineers to select and improve the
best-performing controller.

Scientific application
Finally, there are specific opportunities formodel applications in scientific research.
First and foremost, the model can help understand the communication between
traffic participants. Communication is an important part of both the model and
human driving. The model can help us understand how humans translate their
plans into communicative actions and how they observe such actions to form a
belief. This can be done by letting humans interact with different versions of the
model and by trying to replicate human behaviour in simulations.
A good understanding of drivers’ communicative actions could greatly help de-
sign better AV control algorithms. Other traffic participants will better understand
an AV controller that can communicate its plan to others. This could mean it will
be accepted more easily. Furthermore, an AV controller that can understand
the communication sent by other traffic participants can act accordingly, which
could also help to be accepted. However, previous models mostly regard the
behaviour of a single driver without considering the possibility of them communi-
cating through their actions. The main advantage of using the CEI model over
combining two existing models is that the CEI framework explicitly includes con-
verting a plan to a communicative action and converting this communication to
a belief. This allows the study of these mechanisms. Current approaches to under-
standing communication in traffic mostly rely on the use of naturalistic data from
real traffic (e.g., [24]), making it difficult to obtain (causal) relationships between
drivers’ beliefs, plans, and communication, and impossible to gain insight into a
driver’s belief.
Besides understanding communication, the model could help us understand hu-
man traffic interactions in general. There are many potential research directions
to be pursued. Potential research questions could be: What is the influence of
different acceleration profiles? (E.g., does the asymptotic velocity profile often
used in reward functions have implications?) How do risk thresholds relate to other
drivers’ perceptions of the interaction? Can we measure perceived acceptance
with a metric other than interviews/surveys?
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Control for Acceptance

By leveraging the proposed applications for online and offline evaluation and
understanding communication, a higher-level research goal could be to develop
control for acceptance. Control for acceptance means developing AV con-
trollers that actively optimise their plan to be accepted by their passengers and
other road users. This could be done alongside the current optimisation for safety
and comfort. By actively increasing acceptance, AV behaviour could be better
understood and, therefore safer.

The three proposed applications are needed to develop control for acceptance
for different reasons. Online evaluation will teach us how to optimise the plan
of a controller for acceptance metrics, such as perceived risk. Offline evalua-
tion will provide the opportunity to experiment with many controllers, metrics and
strategies to increase acceptance. Finally, understanding communication will
allow the design of controllers that can efficiently communicate with other drivers,
which is most likely a key aspect of being accepted. By aiming for control for
acceptance, we hope the CEI framework can eventually contribute to safe and
more acceptable AV behaviour.

8.4.2. Experimental framework and CRT

The experimental framework presented inChapter 5 and used inChapter 6 proved
to be a useful way to study traffic interactions. It enabled controlled experiments in
a coupled simulator, providing insight into the underlying mechanisms of merging
interactions. The simplification to a single input dimension allowed the usage of
multiple analysis tools (see Chapter 5). More insight into human interactions could
be obtainedwith this experiment and these tools. For example, the generalisability
of the findings in this thesis could be investigated by extending the experiment to
other interactive scenarios, such as intersections or roundabouts.

One of the new analysis tools is the Conflict Resolution Time (CRT). This metric
provides insight into the duration of a conflict and, therefore, into the difficulty of
solving the conflict. Currently, the CRT is only defined in the simplified scenario, but
if it can be extended to real-world scenarios with longitudinal and lateral control,
there are three potential use cases.

TheCRTmetric could provea usefulmetric in the design of autonomous behaviour.
It can serve as a performance metric in benchmark tests. For example, it could
be used to compare multiple controllers to see which version solves conflicts the
fastest. But also to compare AV behaviour to human behaviour, especially since
we found a correlation between CRT and kinematic conditions in Chapter 6. AVs
might be able to replicate this behaviour or improve it. Besides benchmarks, there
might be a possibility of actively controlling an automated vehicle based on the
CRT (i.e., the duration of the conflict). However, how other drivers and AV passen-
gers perceive such optimized behaviour is unknown and should be investigated.

There is also potential for using CRT in traffic control if the relationship between
vehicle kinematics and CRT is known for real-world traffic interactions. Signalized
intersections and highway on-ramps, or vehicle-to-infrastructure communication
schemes could be used to control vehicle kinematics to lower the CRT actively.
This lowers the duration of the conflicts and could therefore potentially increase
safety, decrease control effort, and increase traffic flow.
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8.4.3. Software and data
Large parts of this thesis rely on software simulations or the processing of naturalistic
data. Specific software has been developed for both use cases. To increase the
potential for re-use of the work, all software developed for the work in this thesis
has been published online 1.
The most extensive software package has also been published as a paper which
is included in Appendix A. This package is called TraViA, which stands for Traffic
Visualisation and Annotation tool. It has been used in Chapters 2 and 3. TraViA
was developed to visualise and annotate open naturalistic datasets. It supports
the HighD [36], ExiD [37], PNeuma [38], and NGSim [39] datasets. Extension pack-
ages for TraViA, which provide implementations of the IRL validation framework of
Chapter 2, and the Hausdorff method of Chapter 3, are available.
Besides TraViA, the environment to conduct the simplifiedmerging experiment has
been published online, along with scripts for the analysis tools of Chapter 5. All
scripts to reproduce the statistical analysis and plots of Chapter 6 are available
online. Finally, the implementations of both versions of the CEI model (Chapters 4
and 7) and its simulation environment can be found online.
All data gathered in the driving simulator experiment and the model simulations
are available on the 4TU data repository. Please see the respective chapters for
links to all data and software repositories.

8.5. Further outlook
Besides the thesis’ conclusions, immediate possibilities for future work, and the
potential applications and impact of the CEI model, three topics deserve further
discussion. First, the distinction between levels of driver behaviour in rationality and
control; second, the commonly-used underlying assumptions of modelling vari-
ability in driver behaviour; and third, the usage of naturalistic data to understand
individual interactions. These topics have been touched upon in this thesis but
were not themain subjects of discussion. However, these three topics pose difficult
open problems that need to be solved and understood to reach a level of driving
automation (andmaybe robotic automation in general) where technology is truly
capable of handling non-verbal contact-less interactions with humans. Therefore,
they deserve a (brief) discussion on the final pages of this thesis.

Levels of behaviour The role of tactical and operational behaviour in driver
model validation has been discussed extensively in previous chapters. However,
other aspects of driver modelling might benefit from an analysis from the
perspective of levels of behaviour as well. Two –in particular– have been touched
upon but have not been discussed or explored before: the role of levels of
behaviour in human rationality and in the variability within predictions.
The scientific discussion of whether humans behave rationally –and if so, to what
extent– has been going on for decades and is still not settled. The debate stems
from an early assumption in economics and game theory that humans are ratio-
nal. These early studies mostly considered high-level choices: for example, if a
human would buy product A or B or if a player would play strategy X or Y. This
statement already reveals that these original studies mostly considered strategic
behaviour. This is reflected in early game theoretic driving interaction models
(e.g., Kita’s model from 1999 [40]). These early models showed promising results

1github.com/tud-hri
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in explaining human one-shot decision-making in traffic, arguing in favour of the
rationality assumption regarding tactical driving behaviour.
However, when the focus is shifted to operational behaviour, as in this thesis, hu-
mans do not seem to optimize their behaviour continuously (see Chapter 6 or [14],
[16]). Based on these studies, it is tempting to conclude that humans do not
behave rationally, period. However, the diversity in levels of behaviour between
studies might (partly) explain why the rationality debate is still not settled. A hy-
pothesis could be that humans behave more like rational utility maximisers when
making high-level tactical decisions (where the implications of a decision are often
easier to comprehend), but that this rationality declines when operational be-
haviour is considered. More fundamental research into this topic could increase
our understanding of driving behaviour and human behaviour in general. This
could allow for models that make different assumptions for the different levels of
behaviour.
Another aspect that might benefit from existing knowledge on levels of behaviour
is the predictions that AVs make of human driver behaviour. As discussed before,
traditional driver models mostly describe the operational behaviour of drivers for a
specific tactical behaviour. Interaction-awareAVs need to considermultiple tacti-
cal responses and, therefore, mostly rely on predictionsmadebymachine-learned
models, such as the inverse-reinforcement-learning-based model in Chapter 2.
These machine-learned models are usually agnostic to the levels of behaviour.
The inverse-reinforcement-learning-based model in Chapter 2 is a good example.
This model learns a single reward function that has to explain all human behaviour.
Other examples are deep-learning-based models that predict multiple future tra-
jectories (e.g., [8], [10]) without distinguishing between tactical and operational
variations in these trajectories. Incorporating knowledge of the levels of behaviour
could potentially improve the predictions of these machine-learned driver models
for two reasons: first, human operational behaviour differs for different tactical
behaviours (Chapter 2), and second, there is a lot of literature on operational
behaviour within specific tactical behaviours (Chapter 2).

Assumptions of behavioural variability Another potential benefit of incorporating
levels of behaviour in machine-learned driver models would be to add structure to
the underlying assumptions of variability. Many deep-learning-based approaches
assume that the variability in behaviour can be modelled with parametric distri-
butions (often a Gaussian distribution) (e.g., [8], [10]). This assumption is agnostic
to the levels of behaviour. However, the results of the case study in Chapter 3
(specifically Figure 3.5) could be interpreted as a sign that this assumption will not
hold for all tactical behaviours. Especially for lane-changing vehicles, the trajec-
tory waypoints at the same points in time (measured from the selected scene)
do not seem to be normally distributed. This is, of course, only an example from a
single case study on a naturalistic dataset, which poses no definitive proof that the
assumption of Gaussian distributions is invalid. It shouldmerely be interpreted as an
encouragement for more research into the underlying distributions of behavioural
variability for different tactical behaviours.

Naturalistic datasets The same chapter (Chapter 3) also illustrated the difficul-
ties of working with naturalistic data. We needed to develop a sophisticated
method to compare human responses to similar traffic scenes and get insight into
behavioural variability in real traffic data. However, this chapter also showed that
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naturalistic data can bemore than just training data for machine-learnedmodels.
It can be a rich study ground to understand driver behaviour in the real world
better. While there have been extensive empirical studies into the traffic system as
a whole [5], [41] (mostly focused on traffic flow), the current literature lacks tools
to study individual interactions between drivers in naturalistic data. In this thesis,
we made a start with developing such tools for simulator studies (Chapter 5) and
naturalistic data (Chapter 3). But there is much more work to be done on this
front before we can fully leverage the large amounts of naturalistic data recently
published [36], [38], [39].

8.6. Final remarks
To conclude, although much more work remains to be done on the model pro-
posed in this thesis, I hope it will prove to be a substantial step towards interaction-
aware automated driving and interaction-aware robotics in general. Creating
automation that can interact with humans in a natural and safe manner is one
of the major modern-day challenges in robotics. The ability to interact will make
or break the potential for robots to make an impact in the real world, not only for
automated driving but also for robots in public spaces and the workplace. Even
though this thesis only considered a very small subset of human-robot interactions,
that of interactions on the road, it outlined the importance of understanding and
modelling human behaviour to improve our technology. We can still learn a lot
from –and about– ”the human controller”.
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A
TraViA: a Traffic data
Visualization and Annotation
tool in Python



I n recent years, multiple datasets containing traffic recorded in the real world
and containing human-driven trajectories have been made available to re-

searchers. Among these datasets are the HighD, pNEUMA, and NGSIM datasets.
TraViA, an open-source Traffic data Visualization and Annotation tool was created
to provide a single environment for working with data from these three datasets.
Combining the data in a single visualization tool enables researchers to easily
study data from all sources. TraViA was designed in such a way that it can easily
be extended to visualize data from other datasets and that specific needs for
research projects are easily implemented.



TraViA: a Traffic data Visualization and Annotation tool in Python

A.1. Statement of need
The combination of drones, cameras, and image recognition techniques might
sound like a recipe for a spy movie. But actually, this combination allows for the
collection of rich traffic datasets. The recipe is straightforward: hover a drone
above a location with traffic, record a video, and use image recognition to gen-
erate bounding boxes for all vehicles. The result is a dataset containing human-
driven trajectories at the location of interest that can be used for many scientific
purposes, e.g., to study traffic flow, model human behavior, or design autonomous
vehicle controllers.
Because the required ingredients are easily accessed all over the world, multi-
ple such datasets have been published in recent years. In Germany, the highD
project [1] recorded all traffic at 6 different high-way locations; in Athens, Greece,
all traffic in the city’s business district was recorded using 10 drones for 5 days
in the pNEUMA project [2]; and American highway traffic was recorded using
fixed base cameras in the NGSIM project [3]. Combined, these datasets span
different countries, types of vehicles, and environments, a combination valuable
for researchers with different backgrounds. Example usages of these datasets
are validating human behavior models (e.g., [4] and [5]) or testing autonomous
vehicle controllers (e.g., [6]).
Currently, it is difficult to leverage the powerful combination of multiple datasets
because all the datasets come in different formats, and it is often difficult to get
a good and real-time visualization of the data. Some visualization tools exist (one
is provided with the highD data [1] and another example for NGSIM data can be
found in [7]) but they are specifically made for only one of these datasets and
are very basic in the sense that they provide little control over simulation time
and no insight in raw values per vehicle per frame. In addition to difficulties with
visualization, finding, andannotating situations of interest in thesemassive datasets
is a time-consuming task and keeping track of the annotations for the different
datasets requires some bookkeeping skills.
TraViA was developed to provide a solution for these problems. TraViA can be
used to visualize and annotate data from highD, pNEUMA, and NGSIM and uses
generic vehicle objects to store the state of vehicles at a specific time. This makes
it possible to validate and test models or controllers onmultiple datasets in parallel,
without having to cope with the different dataset formats.

A.2. Software functionality
TraViA is written in Python 3 and has a graphical user interface developed in PyQt5.
A screenshot of TraViA is provided in Figure A.1. This screenshot shows the capa-
bilities of TraViA in a single image. The main features of TraViA are:

• Advanced information display based on raw data for every vehicle in every
dataset by leveraging generic vehicle objects

• Dynamic visualization of the traffic scene with possibilities to zoom, pan, and
rotate for an optimal view

• Exporting the visualization to a video or single image

• An interactive timeline that shows dataset annotations, which are saved as
Python objects for easy manipulation
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Usage of TraViA in science and education

Figure A.1: A screenshot of the TraViA software visualizing a frame of the highD dataset. Themain features
of TraViA are highlighted in this image.

TraViA was designed for use as a stand-alone program. It uses abstract classes
as a basis for all dataset-specific objects to enable easy implementation of new
datasets (for a class diagram and more information on how to do this, please see
the readme file in the repository). It was specifically created to serve as a tool for
generic visualization and annotation such that it can be used by researchers from
different fields. To show the capabilities of TraViA and to provide a starting point for
other researchers who want to use TraViA for their work, three example implemen-
tations of tools for specific purposes are included with TraVia. The first example is
the functionality to automatically detect and annotate particular scenarios (e.g.,
lane changes), the second is the functionality to plot specific vehicle signals over
the course of an annotation, and the third is a function to plot a heatmap overlay
for use in autonomous vehicle reward function development. All of these example
tools are only implemented for use with the highD dataset.

A.3. Usage of TraViA in science and education
Currently, TraVia is being used by the author for model validation of an inverse-
reinforcement-learning-based driver model. A publication on this validation is cur-
rently being prepared for submission. Besides that, TraViA is used for educational
purposes, allowing students at TU Delft to explore big naturalistic datasets by pro-
viding them with an accessible, GUI-based starting point.

Acknowledgements
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