
 
 

Delft University of Technology

Uncertainty of thermosphere mass density observations derived from accelerometer and
GNSS tracking data

Siemes, C.; van den IJssel, J.A.A.; Visser, P.N.A.M.

DOI
10.1016/j.asr.2024.02.057
Publication date
2024
Document Version
Final published version
Published in
Advances in Space Research

Citation (APA)
Siemes, C., van den IJssel, J. A. A., & Visser, P. N. A. M. (2024). Uncertainty of thermosphere mass density
observations derived from accelerometer and GNSS tracking data. Advances in Space Research, 73(10),
5043-5063. https://doi.org/10.1016/j.asr.2024.02.057

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.asr.2024.02.057
https://doi.org/10.1016/j.asr.2024.02.057


Available online at www.sciencedirect.com
www.elsevier.com/locate/asr

ScienceDirect

Advances in Space Research 73 (2024) 5043–5063
Uncertainty of thermosphere mass density observations derived
from accelerometer and GNSS tracking data

Christian Siemes ⇑, Jose van den IJssel, Pieter Visser

Delft University of Technology, Kluyverweg 1, Delft 2629 HS, Netherlands

Received 21 January 2024; received in revised form 26 February 2024; accepted 28 February 2024
Available online 5 March 2024
Abstract

Thermosphere mass density and crosswind can be derived from accelerometer and GNSS tracking data. However, present datasets are
often provided without comprehensive uncertainty specifications. We present a newly developed method that propagates measurement
noise and errors in the satellite specification, thermosphere models, and radiation flux data to density observations to quantify their
uncertainty. We focus specifically on density observations derived only from GNSS tracking data, which are limited in resolution along
the orbit due to unavoidable smoothing. While the method can be applied to simulated and real data, making it useful for existing data-
sets and mission design, we demonstrated it using data from the GRACE B satellite. First, we compare the aerodynamic acceleration
derived separately from the accelerometer and GNSS tracking data, highlighting the role of two significant noise sources: noise due
to the differentiation of the positions and noise from the evaluation of the gravity vector at a noisy position. Averaging substantially
reduces the noise in the aerodynamic acceleration as long as the differentiation noise dominates, which is the case at frequencies higher
than the orbital frequency. Below, gravity vector evaluation noise becomes the dominating noise source, and consequently, averaging
over longer periods leads to only marginal uncertainty reduction. Further, we investigate the uncertainty in the radiation pressure accel-
eration and demonstrate that averaging over one orbit substantially reduces the uncertainty in the along-track radiation pressure accel-
eration. We show that the uncertainty of density observations derived from the accelerometer data is about 4% of the density for data
from 2003 when the GRACE B satellite was at 490 km altitude during high solar activity. In 2008, solar activity was very low, and the
altitude was still 476 km, resulting in an uncertainty of 5%–20% because GNSS tracking noise and radiation pressure modeling errors
play a much larger role as the aerodynamic acceleration becomes smaller. In the case of density observations derived only from GNSS
tracking data, the uncertainty is about 5% in 2003 and 20%–50% in 2008 when averaging over one-third orbit. In 2008, GNSS tracking
noise explains nearly all uncertainty in the density observation. Averaging over one orbit reduces the uncertainty to 4% and 5% in 2003
and 2008, respectively.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Accurate knowledge of thermosphere mass density is
essential for orbit predictions at altitudes approximately
below 600 km, which are key to collision risk assessment
and avoidance, mission design and planning, and lifetime
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predictions. Deriving in situ observations of thermosphere
mass density from precise accelerometer measurements is a
well-established technique, which was used to generate sev-
eral density datasets from the measurements of the
CHAMP, GRACE, GOCE, and GRACE-FO satellites
(Bruinsma and Biancale, 2003; Sutton et al., 2007;
Bruinsma et al., 2014; Mehta et al., 2017; Siemes et al.,
2023). Yet, the observational coverage is sparse because
of the limited number of satellites featuring a precise
org/licenses/by/4.0/).
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accelerometer (Bruinsma et al., 2022). More recently,
GNSS tracking data have been used to derive in situ ther-
mosphere mass density observations, albeit at a lower res-
olution along the orbit (van den IJssel et al., 2020). Despite
its lower resolution, GNSS tracking data hold promise for
drastically improving observational coverage as modern
GNSS receivers are used on many satellites.

Density observations derived from accelerometer and
GNSS tracking data are used for several purposes. The
most obvious is the development of new thermosphere
models, for instance, the DTM-2020 model (Bruinsma
and Boniface, 2021). Further, density observations have
been used for assessing, e.g., methods for assimilating den-
sity observations derived from radar tracking (Gondelach
and Linares, 2021) and the SET HASDM density database
(Licata et al., 2021). They have also been used for studying
short periods with stronger than usual geomagnetic activ-
ity, where the density enhancement on 3–4 February
2023, which led to the loss of 38 Starlink satellites launched
in that period, is a more recent example (He et al., 2023).
Several authors investigated the assimilation of near-real-
time density observations into models, although density
observations derived from the accelerometer and GNSS
tracking data have not yet been produced with sufficiently
low latency (Codrescu et al., 2018; Sutton, 2018; Forootan
et al., 2021).

Supplementing density observations with uncertainty
estimates would be useful for all these applications, partic-
ularly for data assimilation. However, most currently avail-
able density observations are provided without uncertainty
estimates, where the only exception known to us is the
GOCE density dataset. For that dataset, the density obser-
vations’ uncertainty is derived assuming an along-track
acceleration accuracy of 0.5nm s�2, noise in the ion thrus-
ter actuation, radiation pressure modeling errors, and wind
model errors (Doornbos et al., 2014). However, this does
not mean that the producers of the other density datasets
have not investigated the uncertainty.

Most research focussed on the CHAMP satellite since it
was the first of several geodetic satellites featuring a precise
accelerometer. Bruinsma and Biancale (2003) evaluated
how instrument noise and errors in the accelerometer data
calibration, drag coefficient modeling, wind, satellite atti-
tude, and satellite mass influence CHAMP density observa-
tions. They focused on September 2000 to May 2002, a
period of high solar activity, and found an uncertainty of
10%–15%. Also, Sutton et al. (2007) and Doornbos et al.
(2010) studied the uncertainty of CHAMP density observa-
tions considering a similar set of noise and error sources,
coming to the same conclusion. Bruinsma et al. (2022) pro-
vide a comprehensive discussion of the error sources, which
is not limited to the CHAMP satellite.

The drag coefficient modeling has been scrutinized in
recent years. In the context of this paper, it is important
to realize that an error in the drag coefficient results in
an incorrect scaling of the density observations
(Doornbos, 2011, Chap. 3). Mehta et al. (2022) discussed
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the impact of several drag coefficient modeling approaches
for the CHAMP, GRACE, and GOCE satellites. While
they found an agreement of the drag coefficients within a
few percent for the CHAMP and GOCE satellites, the dis-
crepancies reached 30% for the GRACE satellites in 2007–
2010. During that period, solar activity was very low, and
the satellite altitude was about 470 km. These results are
consistent with those of Bernstein and Pilinski (2022),
who investigated the uncertainty in the gas-surface interac-
tion modeling, which underlies the drag coefficient
modeling.

Assessing the uncertainty of density observations
derived from GNSS tracking is more complex because it
depends on the smoothing required to counter high-
frequency noise. Van den IJssel et al. (2020) provide a con-
servative uncertainty assessment for the Swarm satellites.
For April–July 2014, a period of high solar activity, they
found an uncertainty of 4% for Swarm A and C, flying
side-by-side at an altitude of about 480 km at that time.
The uncertainty for Swarm B was 7% during the same per-
iod due to the higher altitude of 520 km. In April–July
2019, a period of low solar activity, the uncertainty
increased to 19% for Swarm A and C and even 60% for
Swarm B, noting that the altitude was then about 450 km
for Swarm A and C and 510 km for Swarm B.

The abovementioned uncertainty quantifications have
several shortcomings. While realistic errors were assumed
for the accelerometer data calibration, the relation to the
tracking performance of the GNSS receiver is unclear. Fur-
ther, radiation pressure modeling errors were treated as a
simple fraction of the radiation pressure acceleration, not
depending on, e.g., the absorption and reflection properties
of the satellite surfaces. Also, the acceleration due to the
satellite’s thermal emission was entirely neglected, and
hence, the uncertainty due to this error source was not con-
sidered. In the case of density observations derived from
GNSS tracking data, only empirical uncertainty assess-
ments were carried out.

We present a method for comprehensive uncertainty
quantification for density observations derived from
accelerometer and GNSS tracking data. We consider the
uncertainty in all input parameters in the derivation of
the density observations and propagate that uncertainty
to the density observations. In that process, we establish
a clear link to the accuracy of the GNSS tracking. The
method can be applied not only to real data but also to
simulated data, i.e., the user may define the orbit and
instrument accuracy of a hypothetical satellite mission to
assess its capability of deriving density observations. This
makes the method valuable for existing datasets and for
predicting future missions’ observational accuracy. We will
demonstrate the tool for the GRACE satellites, which
experienced solar maximum and minimum conditions at
similar altitudes of 500 km and 480 km, respectively.

The paper is structured as follows. The method is pre-
sented in detail in Section 2 while Section 4 introduces
the models utilized by the method. The GRACE B data



C. Siemes et al. Advances in Space Research 73 (2024) 5043–5063
and the selection of test periods are presented in Section 5.
Section 6 specifies the uncertainty of the input parameters
of the uncertainty propagation. The results are presented
and discussed in Section 7. We conclude in Section 8 and
give an outlook to future work in Section 9.

2. Density derivation method

2.1. Derivation of density observations from accelerometer

data

The motion of a satellite is governed by the total accel-
eration atotal along the orbit, which we can split into the
gravitational acceleration agrav, the non-gravitational accel-
eration anon�grav, and the acceleration due to thruster
activations:

atotal ¼ agrav þ anon�grav þ athrust ð1Þ
We distinguish between continuous and impulsive thrusts,
which require different handling. In the case of impulse
thrust, thruster activations typically affect only a small
fraction of the orbit and are easy to edit out. Continuous
thrust, on the other hand, needs to be modeled and sub-
tracted. The non-gravitational acceleration is composed
of the aerodynamic acceleration aaero and the radiation
pressure acceleration arp, i.e.

anon�grav ¼ aaero þ arp; ð2Þ
where the latter comprises the effects from solar radiation
(sr), albedo (alb), Earth’s radiation (er), and the satellite’s
thermal emission (te):

arp ¼ asr þ aalb þ aer þ ate ð3Þ
An accelerometer placed in the satellite’s center of mass
will sense the non-gravitational acceleration. State-of-the-
art accelerometers use electrostatic forces to control the
position and orientation of a proof mass inside a cage
(Touboul et al., 2012). Since these instruments are designed
for the micro-gravity environment in space, they cannot be
calibrated on the ground because the electrostatic forces
are too small to lift the proof mass in the 1-g environment
(Touboul et al., 2016). Therefore, we need to calibrate the
measured acceleration ameas;non�grav by applying a bias vec-
tor b and a scale factor matrix S to obtain the calibrated
acceleration acal;non�grav:

acal;non�grav ¼ S ameas;non�grav þ b ð4Þ
Although some authors account for the misalignments of
the accelerometer axes (Klinger and Mayer-Gürr, 2016),
we consider only the accelerometer scale factors since the
effect of misalignments on density observations is very
small, i.e., S is a diagonal matrix in our case. The scale fac-
tors are nearly constant throughout the mission lifetime,
whereas biases may exhibit drifts and temperature-driven
changes at daily time scales (Klinger and Mayer-Gürr,
2016; Teixeira Da Encarnação et al., 2020; Siemes et al.,
2023). The scale factors and biases are typically obtained
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by fitting the calibrated acceleration to GNSS tracking
data using precise orbit determination (van Helleputte
et al., 2009). Thus, the GNSS tracking accuracy is impor-
tant for the accuracy of the calibrated acceleration, as fur-
ther elaborated in Section 3.1.

We extract the aerodynamic acceleration by subtracting
the modeled radiation pressure acceleration:

aaero ¼ acal;non�grav � arp ð5Þ
The atmospheric mass density q is related to the aerody-
namic acceleration by

aaero ¼ � 1

2

q j vrelj2
msat

Caero; ð6Þ

where msat is the satellite’s mass, Caero is the aerodynamic
coefficient vector intrinsically scaled by the cross-section
area, and vrel is the satellite’s velocity relative to the atmo-
sphere. The density is obtained by projecting Eq. (6) onto a
suitable direction specified by unit vector ê:

q ¼ �2
aaero � ê
Caero � ê

msat

j vrelj2
ð7Þ

Logical choices are ê ¼ vrel= j vrel j or setting ê equal to the
accelerometer axis that is most closely aligned with vrel
(Doornbos, 2011; Mehta et al., 2022).

2.2. Derivation of density observations from GNSS tracking

data

Density observations can be derived from GNSS track-
ing data by different methods. For instance, Calabia et al.
(2015) use numerical differentiation based on Lagrangian
interpolation of a precise orbit to obtain the total acceler-
ation. Then, they subtract the modeled gravitational and
radiation pressure accelerations to obtain the aerodynamic
acceleration, which they convert to density observations.
Van den IJssel et al. (2020) use a Kalman smoother to fit
empirical accelerations to a precise orbit, where modeled
gravitational and radiation pressure accelerations are part
of the force model, allowing for the extraction of the aero-
dynamic acceleration. Both approaches require averaging
of the aerodynamic acceleration, i.e., the methods yield
the average aerodynamic acceleration �aaero instead of the
quasi-instantaneous aerodynamic acceleration aaero. The
averaging is performed along the orbit and must be
accounted for in uncertainty propagation. For the sake
of simplicity, we assume an idealized lowpass filter with a
sharp cutoff in the frequency domain, as further explained
in Section 3.3.

2.3. Satellite model

In our method, the satellite geometry is represented by
panels with given surface areas and outward-pointing nor-
mal vectors. Each panel is augmented with surface proper-
ties related to radiation pressure and gas-surface
interaction. The properties are the absorption, diffuse and
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specular reflection coefficients for visible light and infrared
radiation, the heat capacity and conductivity toward the
satellite body, and the energy accommodation coefficient
that describes the momentum exchange between gas parti-
cles and the satellite surface. We assume that the energy
accommodation coefficient is the same for all panels. The
remaining satellite model parameters are the satellite mass,
the inner body’s heat capacitance, and the heat generation
inside the satellite due to electronic components.

2.4. Aerodynamics

We choose the Diffuse Reflections with Incomplete
Accommodation (DRIA) model for gas-surface interaction
since it is reasonably accurate in the altitude range of inter-
est, approximately from 200 km to 1000 km, and because
of its simple analytic form when applied to a panel model
of the satellite (Mehta et al., 2022; Bernstein and Pilinski,
2022). The model is based on the equations for a flat panel
derived by Sentman (1961), with the modified expression
for the velocity ratio of incident and reemitted particles
derived by Koppenwallner (2009). The equations for calcu-
lating the aerodynamic coefficient vector are provided by,
e.g., Doornbos (2011) and are repeated in Appendix A
for convenience. The aerodynamic coefficient vector is a
function of the panel areas Ai, the panel normals n̂i, the
panel temperatures T i, the relative velocity vector vrel, the
atmospheric temperature T atm, the atmospheric composi-
tion given by the mass density qj per atmospheric con-

stituent j, and the energy accommodation coefficient aE,
i.e. CaeroðAi; n̂i; T i; vrel; T atm; qj; aEÞ.

2.5. Radiation pressure

We use a panel model of the satellite to calculate the
radiation pressure as described by, e.g., Doornbos (2011).
The acceleration due to any radiation source can be
expressed as

asrc ¼ � Usrc

msatc

X
i

Aici cw;a;mr̂þ cw;d;mðr̂þ 2

3
n̂iÞ þ 2cicw;s;mn̂i

� �

ð8Þ
where the source indicated by subscript ‘src’ can be solar
radiation, albedo, or Earth’s radiation as in Eq. (3). The
wavelength indicated by subscript ‘w’ can be visible light
(vis) for solar radiation and albedo or infrared radiation
(ir) for Earth’s radiation. Further, Usrc is the radiation flux,
c is the speed of light, and

ci ¼
r̂ � n̂i; r̂ � n̂i P 0

0; r̂ � n̂i < 0

�
; ð9Þ

where r̂ is a unit vector pointing from the satellite to the
radiation source. Since we assign materials to panels, indi-
cated by subscript m, we denote the absorption coefficient
by cw;a;m and the diffuse and specular reflection coefficients
by cw;d;m and cw;s;m, respectively. The relation between the
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panel index i and the material index m is established by a
lookup table. Assigning materials to panels is needed to
account for the fact that radiation pressure acceleration
errors of individual panels may, at least partially, cancel
each other when the panels have the same material but a
different orientation (e.g., the solar arrays of the GRACE
satellites).

Calculating the radiation flux is straightforward for
solar radiation:

Usr ¼ f sf

1AU

j rsun � rsat j
� �2

U1AU ð10Þ

Here, rsun and rsat are the position of the Sun and the satel-

lite, respectively, U1AU ¼ 1367Wm�2 is the solar radiation
flux at a distance of one astronomical unit (1AU), and
f sf is the shadow function. The latter ranges from 0, when
the satellite is inside Earth’s umbra, to 1 when the satellite
is in full sunlight. We use the Solar radiation pressure with
Oblateness and Lower Atmospheric Absorption, Refrac-
tion, and Scattering Curve Fit (SOLAARS-CF) shadow
function developed by Robertson (2015).

The calculation of the radiation fluxes due to albedo and
Earth’s radiation is more complex. In brief, we subdivide
Earth’s surface into a grid and perform the calculations
for each grid cell separately. For albedo, we first calculate
the radiation flux received by the k-th grid cell considering
the angle of incidence. Then, we reduce the received radia-
tion flux by the albedo factor of the grid cell and calculate
the reflected radiation flux Ualb;k in the direction of the
satellite, assuming a diffuse reflection, i.e. Lambert’s cosine
law. For Earth’s radiation, each grid cell represents the
emitted radiation flux. Thus, we calculate the radiation flux
of the k-th grid cell, Uer;k, in the direction of the satellite
according to diffuse emission. We refer to Doornbos
et al. (2014) for a detailed description of the calculations.

2.6. Thermal emission

The satellite’s thermal emission can be calculated using a
panel model, as described by Siemes et al. (2023). In that
model, the panels gain heat by absorbing incident radia-
tion, exchange heat with the satellite body via conduction,
and emit heat to cold space. In addition, the satellite body
generates heat because a fraction of the electric power is
converted to heat by the onboard electrical systems. This

leads to the heat changes _Qi and _Qbody of the i-th panel
and the satellite body, respectively. These heat changes
are determined at every time step tn to update the panels’
and body’s absolute temperatures T i and T body, respec-
tively, of the next time step tnþ1, using the discretised
equations

T iðtnþ1Þ ¼ T iðtnÞ þ
_Qi

Ci
ðtnþ1 � tnÞ ð11Þ

and
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T bodyðtnþ1Þ ¼ T bodyðtnÞ þ
_Qbody

Cbody

ðtnþ1 � tnÞ; ð12Þ

where Ci and Cbody are the heat capacitances of the i-th
panel and the satellite body. The acceleration due to the
satellite’s thermal emission is

ate ¼ � 2

3

X
i

_Qemit;i

msat c
n̂i; ð13Þ

where _Qemit;i is the heat emitted by the i-th panel. According
to the Stefan–Boltzmann law,

_Qemit;i ¼ AieirT 4
i ; ð14Þ

where ei is the panel’s emissivity and r is the Stefan–Boltz-
mann constant. The emissivity is equal to the absorption
coefficient, i.e. ei ¼ cir;a;m, where we need the look-up table
relating the i-th panel to the m-th material to select the cor-
rect coefficient.

From Section 2.5 and 2.6, it is clear that the radiation
pressure acceleration is a function of the time steps, satellite
mass, panel areas and normals, absorption and reflection
coefficients, radiation fluxes, and panel temperatures, i.e.
arpðtn;msat;Ai; n̂i; cvis;a;m; cvis;d;m; cvis;s;m; cir;a;m; cir;d;m; cir;s;m; Usr;
Ualb;k;Uer;k; T iðtnÞÞ. In turn, the panel temperatures are a
function of the time steps, the previous temperature of
the panels and the satellite body, panels heat capacitances
and conductivities to the satellite body, heat generation
of the satellite body, panel areas and normals, absorption
coefficients for visible light and infrared radiation, and
radiation fluxes, i.e. T iðtnþ1; T iðtnÞ; T bodyðtnÞ;Ci;Cbody; ki;
_Qgen;Ai; n̂i; cir;a;m; cvis;a;i; Usr;Ualb;k;Uer;kÞ, where ki is the heat
conductivity of the i-th panel and _Qgen is the heat genera-
tion of the satellite body.

3. Uncertainty propagation method

We consider that the output parameter vector y is a non-
linear function of the input parameter vector x, i.e.,
y ¼ f ðxÞ. In our case, the output parameter is the density
observation, while the input parameters are the panel
areas, the reflection coefficients, etc. Since uncertainty
propagation requires a linear relationship, we expand the
nonlinear function f ðxÞ in a Taylor series truncated after
the linear term:

f ðxÞ ¼ f ðx0Þ þ JDxþ OðDx2Þ � f ðx0Þ þ JDx; ð15Þ
Here, we assume that the higher order terms OðDx2Þ are
negligible when x is close to the Taylor point x0 since then
Dx ¼ x� x0 is small. Further, J ¼ @f =@xjx¼x0

is the Jaco-

bian matrix evaluated at the Taylor point. The covariance
matrix of the output parameter vector is

Ry ¼ JRxJ
T ; ð16Þ

where Rx is the covariance matrix of input parameter vec-
tor. In the following subsections, we explain how we apply
Eq. (16) to obtain the density observations’ uncertainty.
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3.1. Accuracy of accelerometer measurements

Accelerometer measurements exhibit colored noise
(Touboul et al., 2016), best described by the Power Spectral
Density (PSD) of the noise. The PSD can be regarded as
the variance per frequency, where the integral over the
PSD gives the variance in the time domain according to
Parseval’s theorem (Smith, 2003, Chap. 10). As described
in Section 2.1, accelerometer measurements are calibrated
using GNSS tracking data. Particularly, the low-
frequency content of the accelerometer data is adjusted
by the bias. Therefore, we define the variance of the
accelerometer noise as

r2
acc ¼ 2

Z f s
2

f b

P accðf Þdf ; ð17Þ

where f b is the frequency of the bias estimation, f s is the
sampling frequency, and P accðf Þ is the PSD of the
accelerometer noise, which is a function of frequency f.
In principle, we must integrate from f b to f s=2 and from
�f s=2 to �f b to obtain the variance, where f s=2 is the
Nyquist frequency. However, we can simplify by integrat-
ing from f b to f s=2 and multiplying by 2 since the PSD
is an even function of frequency.

The accelerometers measure the acceleration not equally
accurate in all directions. Typically, one of the directions is
less sensitive and, consequently, noisier due to the design of
the accelerometers, which allows for some ground testing
(Touboul et al., 2012). Therefore, we define the covariance
matrix of the calibrated accelerations as

Racc ¼
r2
acc;x 0 0

0 r2
acc;y 0

0 0 r2
acc;z

2
64

3
75; ð18Þ

where the variances on the diagonal follow from Eq. (17),
using the noise PSD of the sensitive and less sensitive
accelerometer measurement directions.
3.2. Accuracy of GNSS tracking data

Often, we know the variance of the position noise, e.g.
from the specification of the GNSS receiver or orbit valida-
tion via ground-to-satellite laser ranging. Further, position
noise can exhibit time correlations, which is evident from
comparing the orbit calculated by a GNSS receiver
onboard to a precise orbit calculated on the ground or
from comparing accelerations derived from GNSS tracking
to accelerometer data. Therefore, we define the PSD of the
position noise as

P posðf Þ ¼ cf 2a; ð19Þ
where the term f 2a accounts for time correlations and the
constant c is related to the position noise variance. Param-
eter a defines the slope of the PSD in the logarithmic
domain. As in Section 3.1, we find the position noise vari-
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ance r2
pos by calculating the area under the PSD. However,

here we integrate from frequency f ¼ 0 to the Nyquist fre-
quency f s=2:

r2
pos ¼ 2

Z f s
2

0

cf 2adf ¼ 2c
2aþ 1

f 2aþ1
s ð20Þ

By rearranging this equation, we find

c ¼ r2
pos

2aþ 1

2f 2aþ1
s

: ð21Þ

Thus, by specifying r2
pos and a, we define the PSD of the

position noise. Further, by combining Eqs. (19) and (21),
we find that only a > �0:5 is a valid specification because
the PSD must be positive.

Since the x, y, and z components of the position noise
can be correlated, we define the position noise covariance
matrix as

Rpos ¼
r2
pos;x rpos;xy rpos;xz

rpos;xy r2
pos;y rpos;yz

rpos;xz rpos;yz r2
pos;z

2
64

3
75: ð22Þ

The covariances rpos;xy; rpos;xz, and rpos;yz follow from spec-

ifying the variances r2
pos;x; r

2
pos;y, and r2

pos;z and the correla-

tions qpos;xy; qpos;xz, and qpos;yz, and inserting the specified

values in rpos;ij ¼ qpos;ijrpos;irpos;j for ij 2 fxy; xz; yzg.

3.3. Differentiation of positions

Accelerations derived from GNSS tracking data are
conceptually the second derivative of the positions with
respect to time. Thus, we obtain the PSD of the accelera-
tion noise by multiplying the PSD of the position noise

by ð2pf Þ4. Assuming that the position noise is approxi-
mately white noise (a � 0), the acceleration noise PSD will
be small at low frequencies and large at high frequencies.
Therefore, we apply lowpass filtering to counter the noise
at high frequencies. Assuming a lowpass filter with a cutoff
frequency f u, we obtain the variance of the accelerations
derived from GNSS tracking data due to differentiation by

r2
diff ¼ 2

Z f u

0

ð2pf Þ4P posðf Þdf ¼ 32cp4

Z f u

0

f 2aþ4df

¼ 32cp4

2aþ 5
f 2aþ5
u ¼ 16p4r2

pos

2aþ 1

2aþ 5

f 2aþ5
u

f 2aþ1
s

: ð23Þ

To select the cutoff frequency f u, we consider two cases.
The first is deriving density observations from accelerome-
ter data, where the GNSS tracking is used to estimate the
bias. Here, the cutoff frequency is equal to the frequency
of the bias estimation, i.e., f u ¼ f b. We define the period

T b ¼ f �1
b of the bias estimation, where a typical value is

T b ¼ 1d, i.e., biases are estimated daily (van Helleputte
et al., 2009; Siemes et al., 2023). The second case is deriving
density observations from GNSS tracking data only, where
the selection of the cutoff frequency will depend on the
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signal-to-noise ratio. Since the cutoff frequency will limit
the achievable resolution along the orbit and imply the
level of averaging inherent to the lowpass filtering, we set

f u ¼ f a, where T a ¼ f �1
a is the averaging period. Van den

IJssel et al. (2020) report a value of T a � 20min for the
Swarm satellites.

As discussed in Section 3.1, the x, y, and z components
of the position noise can be correlated, leading to corre-
lated acceleration components. We account for correla-
tions between the acceleration components by defining
the covariance matrix of the acceleration noise as

Rdiffðf uÞ ¼
r2
diff ;x rdiff ;xy rdiff ;xz

rdiff ;xy r2
diff ;y rdiff ;yz

rdiff ;xz rdiff ;yz r2
diff;z

2
64

3
75; ð24Þ

where the covariances rdiff ;xy; rdiff ;xz, and rdiff ;yz follow from
inserting the variances from Eq. (23) and the correlations
qdiff ;xy ¼ qpos;xy; qdiff;xz ¼ qpos;xz, and qdiff ;yz ¼ qpos;yz in

rdiff ;ij ¼ qdiff ;ijrdiff ;irdiff ;j for ij 2 fxy; xz; yzg. Note that we

express the covariance matrix as a function of the upper
frequency f u to distinguish between the two cases using
f b and f a.
3.4. Gravity vector evaluation

GNSS tracking noise does not only propagate to accel-
eration noise via differentiation as described in Section 3.3
but also via the position at which the gravitational acceler-
ation Eq. (1) is evaluated. In the latter case, the position
noise propagates to the aerodynamic acceleration largely
via the term

agrav ¼ �GM

j rj3 r; ð25Þ

where r is the position vector and GM is the gravitational
parameter. Higher-order terms of gravity field models have
a negligible effect on the uncertainty propagation. The
Jacobian matrix is

Jgrav ¼ @agrav
@r

¼ �GM

j rj5 j rj2I3�3 � rrT
� �

; ð26Þ

where I 3�3 denotes an identity matrix of size 3� 3. As
described in Section 3, we obtain the covariance matrix
of the gravity vector noise by

Rgrav ¼ JgravRposJ
T
grav; ð27Þ

where Rpos is the position noise covariance matrix defined
in Eq. (22). This equation assumes a pointwise evaluation
of the gravitational acceleration. To account for averaging
over a window of length T u, we rescale

RgravðT uÞ ¼ T s

T u
Rgrav; ð28Þ
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where T s is the sampling frequency. We choose T u ¼ T a for
GNSS tracking and T u ¼ T b for the accelerometer data due
to the bias estimation (cf. Section 3.3).

3.5. Uncertainty propagation for radiation pressure and
density

The uncertainty propagation was developed as a two-
step procedure. First, we calculate the uncertainty of the
sum of the radiation pressure and satellite thermal emission
accelerations, accounting for correlations between the radi-
ation pressure and satellite thermal modeling due to com-
mon input parameters (e.g., the absorption coefficients).
Second, we propagate the uncertainty of the accelerometer
and GNSS tracking data, combined radiation pressure and
satellite thermal emission accelerations, aerodynamic mod-
eling, relative velocity vector, and the thermosphere model
to density observations. Since the linearisation is straight-
forward and unambiguous, we will focus on how the
covariance matrices are structured in the following
sections.

3.5.1. Uncertainty propagation for radiation pressure

We collect the input parameters (cf. Section 3) for the
radiation pressure and satellite thermal modeling
(cf. Section 2.5 and 2.6) in vector xrp;n, which we split into
two subvectors:

xrp;n ¼
xrp;1;n

xrp;2;n

� �
: ð29Þ

The first subvector xrp;1 contains the

� panel temperatures T iðtnÞ,
� satellite body temperature T bodyðtnÞ,
� materials’ absorption and reflection coefficients
cvis;a;m; cvis;d;m; cvis;s;m; cir;a;m; cir;d;m, and cir;s;m,

� panel areas Ai,
� panels’ heat conductivities to the satellite body ki,
� panels’ heat capacitances Ci,
� satellite mass msat,
� satellite body’s heat capacitance Cbody, and

� satellite body’s heat generation _Qgen.

We do not currently model the uncertainty in the panel
normals and the satellite attitude. These omissions are
motivated by the fact that the uncertainty in the panel ori-
entation can, at least partially, be accounted for by the
uncertainty in the panel area, and star sensors measure
the satellite attitude highly accurately. The second subvec-
tor xrp;2;n contains the solar radiation flux UsrðtnÞ, radiation
flux Ualb;kðtnÞ due to albedo, and Earth radiation flux
Uer;kðtnÞ. The covariance matrix of the input parameters is
structured according to the subdivision of vector xrp;n, i.e.

Rxrp;n ¼
Rxrp;1;n 0

0 Rxrp;2;n

" #
; ð30Þ
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where 0 denotes a matrix filled with zeros. This approach
allows for accounting for correlations between tempera-
tures T iðtnÞ and the absorption coefficients cvis;a;m and
cir;a;m, while keeping the computational effort due to large
size of Rxrp;2;n reasonable. One could argue that the panel

temperatures are correlated to the radiation fluxes. Never-
theless, we neglect those correlations to facilitate much fas-
ter calculations, benefitting from the zero off-diagonal
blocks of Rxrp;n . We expect that this simplification has no

significant effect on the results.
Before proceeding with defining the output vector, let us

clarify several choices. In principle, the satellite mass msat

and satellite body’s heat generation _Qgen change over time.
However, we assume that the error in these quantities is the
same for all epochs, like an offset that applies to all epochs.
At the present stage of development, we do not consider
uncertainty in the panel normals but instead assign all
uncertainty from the satellite geometry to the panel areas.
Further, we express the standard deviation of the radiation
fluxes UsrðtnÞ;Ualb;kðtnÞ, and Uer;kðtnÞ as a fraction of the sig-
nal, e.g. rUsrðtnÞ ¼ f Usr

UsrðtnÞ with fraction f Usr
> 0, as this

conveniently takes into account that the radiation fluxes
due to albedo and Earth radiation from distant surface ele-
ments will be small. Finally, we initialize Rxrp;n at epoch t0 as
a diagonal matrix based on user-specified variances of all
input parameters.

The output vector yrp;n of the uncertainty propagation

contains the radiation pressure acceleration arpðtnÞ and
the input vector xrp;1;nþ1 for the next epoch. However,
instead of splitting the output vector yrp;n into subvectors

arpðtnÞ and xrp;1;nþ1, it is more advantageous to split it into
two subvectors in a different way that gives direct access to
the covariance matrix of the radiation pressure accelera-
tion, satellite panel and body temperatures so that correla-
tions between these parameters are accounted for:

yrp;n ¼
yrp;1;n

yrp;2;n

" #
ð31Þ

Subvector yrp;1 contains the radiation pressure acceleration

arpðtnÞ, the panel temperatures T iðtnþ1Þ, and the satellite
body temperature T bodyðtnþ1Þ, while subvector yrp;2;n com-

prises the

� absorption and reflection coefficients cvis;a;m; cvis;d;m;
cvis;s;m; cir;a;m; cir;d;m, and cir;s;m,

� panel areas Ai,
� panel heat conductivities ki,
� panel heat capacitances Ci,
� satellite mass msat,
� heat capacitance of the satellite body Cbody, and

� heat generation _Qgen.

As before, we presently do not model the uncertainty in
the panel normals and the satellite attitude.



C. Siemes et al. Advances in Space Research 73 (2024) 5043–5063
With these definitions of the input and output vectors,
we obtain the Jacobian matrix

J rp;n ¼
J rp;11;n J rp;12;n

J rp;21;n J rp;22;n

� �
¼ @yrp;1;n=@xrp;1;n @yrp;1;n=@xrp;2;n

@yrp;2;n=@xrp;1;n @yrp;2;n=@xrp;2;n

" #
:

ð32Þ
Since the reflection coefficients, etc., do not depend on the
radiation fluxes, J rp;22;n ¼ 0. Applying the uncertainty
propagation as in Eq. (16), we find

Ryrp;n ¼
J rp;11;nRxrp;1;nJ

T
rp;11;n þ J rp;12;nRxrp;2;nJ

T
rp;12;n J rp;11;nRxrp;1;nJ

T
rp;21;n

J rp;21;nRxrp;1;nJ
T
rp;11;n J rp;21;nRxrp;1;nJ

T
rp;21;n

" #
:

ð33Þ

The matrix product J rp;12;nRrp;2;nJ
T
rp;12;n can be calculated

efficiently despite the large size of Rxrp;2;n by exploiting that
�J rp;n ¼ 1

2Lþ 1
I3�3 � � � I 3�3½ �

@arp;n�L

xrp;1a;n�L
0 � � � 0

@arp;n�L

xrp;1b

@arp;n�L

xrp;2;n�L
0 � � � 0

0
@arp;n�Lþ1

xrp;1a;n�Lþ1
� � � 0

@arp;n�Lþ1

xrp;1b
0

@arp;n�Lþ1

xrp;2;n�Lþ1
� � � 0

..

. ..
. . .

. ..
. ..

. ..
. ..

. . .
. ..

.

0 0 � � � @arp;nþL

xrp;1a;nþL

@arp;nþL

xrp;1b
0 0 � � � @arp;nþL

xrp;2;nþL

2
6666664

3
7777775
: ð36Þ
the latter is a diagonal matrix. Further, Ryrp;n contains

Rxrp;1;nþ1
, including correlations between temperatures of
�Rxrp;n ¼

Rxrp;1a;n�L 0 � � � 0 Rxrp;1a;n�L;xrp;1b 0 0 � � � 0

0 Rxrp;1a;n�Lþ1
� � � 0 Rxrp;1a;n�Lþ1;xrp;1b 0 0 � � � 0

..

. ..
. . .

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � Rxrp;1a;nþL Rxrp;1a;nþL;xrp;1b 0 0 � � � 0

Rxrp;1b;xrp;1a;n�L Rxxrp;1b ;rp;1a;n�Lþ1
� � � Rxxrp;1b ;rp;1a;nþL Rxrp;1b 0 0 � � � 0

0 0 � � � 0 0 Rxrp;2;n�L 0 � � � 0

0 0 � � � 0 0 0 Rxrp;2;n�Lþ1
� � � 0

..

. ..
. ..

. ..
. ..

. ..
. . .

. ..
.

0 0 � � � 0 0 0 0 � � � Rxrp;2;nþL

2
66666666666666666664

3
77777777777777777775

; ð37Þ
epoch tnþ1 and other input parameters in xrp;1;nþ1, which
we use to construct input parameter covariance matrix
for the next epoch tnþ1.

Until this point, we described how to calculate the
covariance matrix of the radiation pressure acceleration
5050
arp;n. In the case of density observations derived from
GNSS tracking data, we need to account for averaging.
Assuming an average over 2Lþ 1 epochs gives the average
radiation pressure acceleration

�arp;n ¼ 1

2Lþ 1

XL
l¼�L

arp;nþl: ð34Þ

To arrive at a convenient formulation for the uncertainty
propagation, we subdivide vector xrp;1;n into two vectors:

xrp;1;n ¼
xrp;1a;n

xrp;1b

� �
ð35Þ

Vector xrp;1a;n contains the time-dependent temperatures
T iðtnÞ and T bodyðtnÞ and vector xrp;1b the other parameters
of xrp;1;n. Then, the Jacobian matrix of �arp;n is
The covariance matrix of the input parameter vector is
noting that all elements of this matrix are available from
the calculation of covariance matrices Ryrp;n�L

;

Ryrp;n�Lþ1
; . . . ;Ryrp;nþL

. Applying the uncertainty propagation

yields the covariance matrix of the average radiation pres-
sure acceleration:
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R�arp;n ¼ �J rp;n
�Rxrp;n

�JT
rp;n ð38Þ

Obviously, we can exploit the sparseness of the matrices
�J rp;n and �Rxrp;n when calculating the matrix products.
3.5.2. Uncertainty propagation for density

The uncertainty propagation for the density observa-
tions is straightforward. First, we calculate the Jacobian
matrix

Jq ¼ @q=@xq; ð39Þ
where the input parameter vector xq contains the

� mass densities qj of the atmospheric constituents,

� energy accommodation coefficient aE,
� panel areas Ai,
� panel temperatures T i,
� atmospheric temperature T atm,
� satellite mass msat,
� relative velocity vector vrel, and
� aerodynamic acceleration aaero in case of density obser-
vations derived from accelerometer data or

� averaged aerodynamic acceleration �aaero in case of den-
sity observations derived from GNSS tracking data.

Again, we presently do not model the uncertainty in the
panel normals. The variance of the density observations is
then

r2
q ¼ JqRxqJ

T
q ; ð40Þ

where Rxq is the input parameter covariance matrix. When

constructing the latter, we specify the variance of the atmo-
spheric temperature T atm and mass densities qj as fractions

of the signal, in the same way as for the radiation fluxes.
Further, we consider the input parameters to be uncorre-
lated, except for the aerodynamic acceleration aaero and
the averaged aerodynamic acceleration �aaero.

We use the aerodynamic acceleration aaero when deriving
density observations from accelerometer data. In that case,
we account for the accelerometer noise and the uncertain-
ties of the accelerometer bias estimation and radiation
pressure acceleration. Therefore, the covariance matrix of
the aerodynamic acceleration aaero is

Raaero ¼ Racc þ Rdiffðf bÞ þ RgravðT bÞ þ Rarp ; ð41Þ
where the covariance matrices Racc;Rdiffðf bÞ, and RgravðT bÞ,
were defined in Eqs. (18), (24), and (28), and Rarp can be

extracted from Ryrp;n defined in Eq. (33). When deriving

density observations from GNSS tracking data, we use
the average aerodynamic acceleration �aaero, omit the
accelerometer noise, and consider a different averaging per-
iod T a instead of the accelerometer bias estimation period
T b. Thus, the covariance matrix of the averaged aerody-
namic acceleration �aaero is

R�aaero ¼ Rdiffðf aÞ þ RgravðT aÞ þ R�arp ; ð42Þ
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where Rdiffðf aÞ;RgravðT aÞ, and R�arp are defined in Eqs. (24),

(28), and (38).

3.6. Sequence of calculation

Since the uncertainty propagation requires a complex
sequence of calculations, we outline the most important
steps in Fig. 1. First, we have the choice to import real
satellite data or generate simulated satellite data. Then,
we calculate the radiation pressure and aerodynamic accel-
erations, and the mass density, which serve as Taylor
points in the linearization. Next, we calculate the Jacobian
matrix J rp;n and construct the covariance matrix Rrp;n. At
this point, the calculations for the accelerometer and GNSS
tracking data diverge.

For the accelerometer data, the next steps in the calcula-
tions are straightforward. First, we perform the uncertainty
propagation for the radiation pressure to obtain Ryrp;n and

extract the covariance matrix of the radiation pressure
acceleration Rarp;n , which is a submatrix of the former.

Then, we perform the uncertainty propagation for density
using Raaero;n from Eq. (41) as input.

The uncertainty propagation for GNSS tracking data
requires the input variables in a time window covering
2Lþ 1 epochs to generate the output at the center epoch
because of the averaging. Therefore, we store all required
input variables from epochs tn�2L; . . . ; tn and then perform
the calculations for epoch tn�L. In this way, we perform
the calculations for the GNSS tracking data in parallel to
those for the accelerometer data, reducing the runtime of
the software. Once the calculations for epoch tn are com-

pleted, we construct covariance matrix �Rxrp;n�L and calculate

the Jacobian matrix �J rp;n�L to perform the uncertainty
propagation for the average radiation pressure accelera-
tion. Next, we perform the uncertainty propagation for
density using R�aaero;n from Eq. (42) as input.

Finally, we store all variables of interest and create a set
of visualizations (see Section 7), which enable us to inter-
pret the results of the uncertainty propagation.

4. Models

As outlined in Section 2.4, we need the atmospheric
composition and temperature to calculate the aerodynamic
coefficient. Therefore, we need a thermosphere model to
specify these quantities. Further, accounting for albedo
and Earth radiation pressure requires radiation flux data
as explained in Section 2.5. In the following, we introduce
the models and data we use for these purposes. They do not
have to be very accurate because they will only serve as the
Taylor point in the linearization of the nonlinear relation-
ship between the input parameters and the density observa-
tions. Further, it is instructive to specify the uncertainty of
the density observations as a fraction of the density (cf.
Section 1), where we use the thermosphere model to specify
the density.



Fig. 1. Flowchart of the most important calculation steps in the uncertainty propagation.
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4.1. Atmosphere

We selected the semi-empirical NRLMSISE-00 model to
specify the atmosphere because it provides the mass den-
sity, mass fraction of eight major atmospheric constituents,
and atmospheric temperature in a wide altitude range from
the ground to exobase (Picone et al., 2002). Another reason
for the selection was convenience since we already had this
model integrated into our software. The model inputs are
the F10.7 index and its 81-day centered mean as proxies
for solar activity, and the 3-hourly ap index and its daily
average, the Ap index, indicating the geomagnetic activity.

The NRLMSISE-00 model was constructed using atmo-
spheric composition observations derived from mass spec-
trometer measurements, thermosphere temperature
observations derived from incoherent scatter radar mea-
surements, and molecular oxygen (O2) number density
derived from solar ultraviolet occultation data, amongst
others. Also, neutral mass density observations derived
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from the accelerometer measurements and orbital decay
data from the 1970s and 1980s were used to construct the
model.

While we account for the corotation of the atmosphere
as described in Montenbruck and Gill (2012), we presently
neglect thermospheric winds when calculating the density
observations and only account for their uncertainty when
specifying the accuracy of the relative velocity vector. This
simplification is justified for the uncertainty propagation
because winds are much smaller than the satellite velocity
and, consequently, do not significantly change the relative
velocity vector. Thus, neglecting winds has no significant
effect on the linearization defined in Section 3 because the
Taylor point changes only marginally.

4.2. Radiation flux

We use the radiation flux data of the Clouds and the
Earth’s Radiant Energy System (CERES) project’s Energy



Fig. 2. Maps of the albedo factors (left) and Earth’s thermal emission (right) for the month of March.
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Balanced and Filled (EBAF) Top-Of-Atmosphere (TOA)
all-sky fluxes, edition 4.21 (Loeb et al., 2018; Kato et al.,
2018). The data is provided as a time series of monthly
averaged maps of the longwave and shortwave flux, cover-
ing the period from March 2000 until the present. Instead
of using the data directly, we calculated averages for each
month (January – December) from the data from March
2000 to December 2022 and resampled them from the orig-
inal 1� � 1� grid to a 2:5� � 2:5� grid to substantially reduce
the data volume. Again, we emphasize that we only need a
realistic representation of the radiation fluxes, while their
accuracy is uncritical for the uncertainty propagation.
For Earth’s radiation pressure, we use the longwave flux
to represent Earth’s thermal emission. For albedo, we
divide the shortwave flux by the incoming solar flux to
obtain albedo factors, to be consistent with the method
by Doornbos et al. (2014). To avoid unrealistically large
albedo factors, we set incoming solar flux values to 9
Wm�2 whenever they are smaller than that value, avoiding
a division by small values. As an example, we show the
resulting maps of Earth’s thermal emission and albedo fac-
tors for the month of March in Fig. 2.
5. GRACE data

We will use one of the GRACE satellites to demonstrate
the uncertainty propagation. They were launched in March
2002 into near-circular, polar orbits with a mean altitude
just above 500 km, separated by about 220 km along the
orbit. The mission objective was to map the temporal vari-
ations in Earth’s gravity field that can be associated with
mass change on or near Earth’s surface (Tapley et al.,
2004). Although the reentry of the satellites due to natural
orbital decay was close, the mission operations ended in
October 2017 due to age-related battery issues on the
GRACE B satellite. The satellites were equipped with
1 CERES data is available on the CERES webpage: https://ceres.
larc.nasa.gov/data/
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GPS receivers enabling positioning at cm-accuracy and
precise accelerometers to measure the non-gravitational
accelerations, where the precision of 1 nm s�2 was limited
by perturbations caused by the satellite system (Flury
et al., 2008). The satellites’ attitude was tightly controlled
for the precise ranging between the satellites. Conse-
quently, the satellites’ x-axes were pointing toward the
other satellite, i.e. in the flight or anti-flight direction,
depending on which satellite was leading, and the z-axes
were pointing in the nadir direction, i.e. toward Earth
(Bandikova et al., 2019).

We arbitrarily chose the GRACE B satellite, for which
we retrieved the satellite position, velocity, attitude, and
mass data from the GRACE Level 1B data repository2.
The calibrated accelerations are taken from Siemes et al.
(2023).

In this study, we use the panel model provided by
Bettadpur (2012), supplemented with the thermal model
described by Siemes et al. (2023). The panel model param-
eters are listed in Table 1. The heat capacity of the satellite

body was set to Cbody ¼ 100 kJK�1 and the satellite’s inter-

nal heat generation to _Qgen ¼ 70 W. Further, we note that
cw;s;k ¼ 1� cw;a;k � cw;d;k and that the panels’ normal vectors
are defined in the satellite body frame. We use the energy
accommodation coefficient aE ¼ 0:85 proposed by March
et al. (2021) for all panels.

We selected November 2003 and November 2008 as
periods for demonstration. In November 2003, the mean
altitude of the GRACE satellites was 490 km, and solar
activity was high, with an average F10.7 index of 141. In
November 2008, the mean altitude of 476 km was only
slightly lower, whereas solar activity was very low, with
an average F10.7 index of 69. Thus, these periods are char-
acterized by solar maximum and minimum conditions
while the satellite orbited at similar altitudes. These con-
2 GRACE Level 1B data is available on NASA JPL’s Physical
Oceanography Distributed Active Archive Center: https://podaac.
jpl.nasa.gov/

https://ceres.larc.nasa.gov/data/
https://ceres.larc.nasa.gov/data/
https://podaac.jpl.nasa.gov/
https://podaac.jpl.nasa.gov/


Table 1
GRACE panel model (Bettadpur, 2012), supplemented with thermal model parameters (Siemes et al., 2023). The heat capacity of the satellite body is set to
100 kJ K�1 and the satellite internal heat generation to 70W.

Panel Front Rear Starboard Port Nadir Zenith

Panel ID, i 1 2 3 4 5 6
Material ID, m 1 1 2 2 3 2
Area, Ai (m

2) 0.955 0.955 3.155 3.155 6.071 2.167

Normal vector, ni

1
0
0

2
4
3
5 �1

0
0

2
4

3
5 0

0:7660
�0:6428

2
4

3
5 0

�0:7660
�0:6428

2
4

3
5 0

0
1

2
4
3
5 0

0
�1

2
4

3
5

Visible light
Absorption, cv;a;m (-) 0.34 0.34 0.65 0.65 0.12 0.65
Diffuse reflection, cv;d;m (-) 0.40 0.40 0.05 0.05 0.68 0.05

Infrared radiation
Absorption, ci;a;m (-) 0.62 0.62 0.81 0.81 0.75 0.81
Diffuse reflection, ci;d;m (-) 0.23 0.23 0.03 0.03 0.19 0.03

Initial temperature, T i (K) 300 300 300 300 300 300
Heat conductivity, ki (W K�1) 0.1 0.1 0.1 0.1 0.5 0.1
Heat capacitance, Ci (J K�1) 1000 1000 5000 5000 10000 5000
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trasting conditions enable us to highlight the influence of
solar radiation pressure modeling errors and GNSS track-
ing noise on the density observation uncertainty, aspects
that were not treated thoroughly in the preceding studies
by Bruinsma and Biancale (2003), Sutton et al. (2007),
and Doornbos et al. (2010) as they focused on high solar
activity and a satellite orbiting at lower altitudes. The local
time of the orbit’s ascending node was about 15h in
November 2003 and 23h in November 2008, i.e. the
GRACE satellites make eclipse transitions during both
periods. Further criteria for selecting these periods encom-
pass the radio occultation instrument operations, satellite
temperature control, the presence of data gaps, and the
absence of satellite maneuvers.
6. Input parameter uncertainty

We need to define realistic uncertainty values for the
input parameters to obtain realistic uncertainty values for
the density observations. Table 2 lists the values we use
in this study. We group the values into three categories:
measurement noise, radiation pressure, and aerodynamics.
In Section 7, we will investigate how much each category
contributes to the uncertainty of the density observations.

The precision of the accelerometer measurements is
about 1nm s�1, limited by perturbations stemming from
the satellite (Flury et al., 2008). The orbit accuracy is set
to 1.2cm in each direction, based on a comparison of the
precise orbit of the Level 1B data and our own precise
orbit. The position error in the cross-track direction is
assumed to be uncorrelated to the error in the along-
track and vertical directions. However, the position errors
in the along-track and vertical directions are highly corre-
lated (van Helleputte et al., 2009), which we account for
by setting the correlation coefficient to 0.9. Further, we
assume a temporal correlation by setting a ¼ �0:4, justified
by the results presented in Section 7.1. Since the accelerom-
eter bias has been estimated daily, T b ¼ 1d. For the density
5054
observations derived from GNSS tracking data, we assume
averaging periods of one-third and one orbit to demon-
strate the effect of different averaging periods. Further,
the sampling frequency of the GNSS tracking is
f s ¼ 0:1 Hz.

Since high-fidelity satellite geometry models are avail-
able for the GRACE satellites (Mehta et al., 2013; March
et al., 2019), we set the uncertainty of the panel areas to
2%. At the current stage of development, we assume that
the normal vector is free of errors. Also, the satellite mass
is well-known, as the satellite mass, with and without fuel,
was accurately determined before launch. The main uncer-
tainty is then related to the uncertainty in propellant con-
sumption, where we assume an uncertainty of 2 kg,
which is conservative considering the total amount of 15
kg propellant.

Since the thermal model was determined empirically
(Siemes et al., 2023), we set the uncertainty of the heat
capacitances (Ci and Cbody) and heat conductivities (ki) to
20%. This value can be easily updated once we gain better
insight into the accuracy of the thermal model, which is
subject to an ongoing investigation. The initial uncertainty
in the temperatures (T i and T body) is of subordinate impor-
tance because their influence fades away as we propagate
the temperatures and their uncertainties over time. The
absorption and reflection coefficients have an uncertainty
of about 10%, which is supported by the findings of
Siemes et al. (2023). Further, we set the solar flux uncer-
tainty to 0.1% because the solar radiation flux is near-
constant and accurately known (Dewitte and Clerbaux,
2017). The radiation fluxes due to albedo and Earth radia-
tion are less accurately known. Therefore, we set their
uncertainty to 10%, which we interpret as a conservative
assumption (Loeb et al., 2018).

Thermosphere models have an uncertainty of a few
tenths in predicting the mass density (Bruinsma et al.,
2018). Therefore, we set the uncertainty of the atmospheric
temperature and mass density per constituent to 20%. We



Table 2
Uncertainty specification for the input parameters, which are grouped into three categories: measurement noise,
radiation pressure, and aerodynamics.

Category and parameter groups Uncertainty specification

Measurement noise
Accelerometer (satellite frame) racc;x ¼ 1nms�2, racc;y ¼ 1nms�2, racc;z ¼ 1nms�2

GNSS-tracking (local orbit frame) rpos;x ¼ 1:2cm, rpos;y ¼ 1:2cm, rpos;z ¼ 1:2cm
qdiff;xy ¼ 0, qdiff;xz ¼ 0:9, qdiff;yz ¼ 0, a ¼ �0:4

Averaging for accelerometer bias T b ¼ 1d
Averaging for GNSS tracking T a ¼ 0:33 orbits and T a ¼ 1:0 orbit
Sampling frequency of GNSS tracking f s ¼ 0:1Hz
Radiation pressure
Satellite rAi ¼ 1

50Ai, rmsat
¼ 2kg

Thermal model rki ¼ 1
5 ki, rCi ¼ 1

5Ci, rCbody
¼ 1

5Cbody

r _Qbody
¼ 1

5
_Qbody, rT iðt0Þ ¼ 10K, rT bodyðt0Þ ¼ 20K

Absorption and reflection coefficients rcv;a;i ¼ 0:1, rcv;d;i ¼ 0:1, rcv;s;i ¼ 0:1
rci;a;i ¼ 0:1, rci;d;i ¼ 0:1, rci;s;i ¼ 0:1

Radiation fluxes rUsr ¼ 1
1000Usr, rUalb;k ¼ 1

10Ualb;k , rUer;k ¼ 1
10Uer;k

Aerodynamics
Satellite rAi ¼ 1

50Ai, rmsat
¼ 2kg

Gas-surface interaction rT atmðtnÞ ¼ 1
5 T atmðtnÞ, rqjðtnÞ ¼ 1

5 qjðtnÞ, raE ¼ 0:05
Relative velocity (satellite frame) rvrel;x ¼ 50ms�1, rvrel;y ¼ 50ms�1, rvrel;z ¼ 10ms�1
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assume an uncertainty of 0.05 for the energy accommoda-
tion coefficient, which is an optimistic assumption consid-
ering the satellite altitude of the test months and the
results by Bernstein and Pilinski (2022). Although we
neglect wind when calculating density (cf. Section 4), we
do consider the uncertainty of models that could be used
to account for wind, such as the Horizontal Wind Model
by Drob et al. (2015). The uncertainty of the wind model
is included in the standard deviation of the relative velocity
vector, which we set to 50 m s�1 for the horizontal (x and
y) components and 10 m s�1 for the vertical (z) component.
More research is required to replace these rather simple
assumptions with a more complex and substantiated
approach to specify the uncertainty of the atmospheric
temperature, composition, and wind obtained from ther-
mosphere models.

7. Results and discussion

7.1. Aerodynamic acceleration from accelerometer and

GNSS-tracking data

First, we compare the aerodynamic acceleration
derived from the accelerometer and GNSS tracking data,
which gives insight into how appropriate the noise model-
ing is for the GNSS tracking data. We obtained the aero-
dynamic acceleration derived from the GNSS tracking
data with the Kalman smoother described by van den
IJssel et al. (2020). In this approach, the aerodynamic
acceleration is modeled as a first-order Gauss–Markov
process, defined by a steady-state variance, process noise
variance, and correlation time. We selected a correlation
time of 5400s for the along-track direction and 360s for
the cross-track and radial directions. While van den
IJssel et al. (2020) used constant values for the process
noise variance, we applied variable values for the along-
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track direction to account for the large variations in the
aerodynamic acceleration that the GRACE satellites
experienced during their mission lifetime. Here, we set
the process noise variance equal to the daily variance of
the along-track aerodynamic acceleration deduced from
the NRLMSISE-00 model using Eq. (6), which ensures
that the Kalman smoother automatically adapts to the
aerodynamic acceleration signal size. For the cross-track
and radial directions, we maintained the same constant
value of 5 nm s�2 for the process noise standard deviation
as used by van den IJssel et al. (2020). Fig. 3 shows the
Amplitude Spectral Density (ASD), i.e., the square root
of the PSD, of the aerodynamic acceleration signal
together with the double-differentiation and gravity vec-
tor evaluation noise. Since the accelerometer biases are
estimated daily using the same GNSS tracking data, the
assessment is limited to periods shorter than one day.

The aerodynamic acceleration derived from the
accelerometer data (blue curve, partially hidden by the yel-
low curve above 0.5 mHz and the red curve below) reflects
the signal over the entire frequency range. In contrast, the
aerodynamic acceleration derived from the GNSS tracking
data (red curve) is low-pass filtered due to the Kalman
smoother used to obtain the acceleration (van den IJssel
et al., 2020), which causes the ASD to drop at frequencies
higher than 0.5 mHz, meaning that the high-frequency sig-
nal content has been filtered out. Therefore, the difference
in the aerodynamic acceleration derived from the
accelerometer and GNSS tracking data (yellow curve) clo-
sely follows the accelerometer data at high frequencies. At
frequencies lower than 0.5 mHz, the difference drops to
about 1 � 10�7 m s�2 Hz�0.5, which is well above the
accelerometer precision of 1 � 10�9 m s�2 Hz�0.5 and the
size of the radiation pressure acceleration (cf. Fig. 4). Thus,
it largely reflects noise in the GNSS tracking data below
that frequency.



Fig. 3. Aerodynamic accelerations derived from the accelerometer and GNSS tracking data, their difference, and the noise model for accelerations derived
from GNSS tracking data, assuming 2.5 cm position noise, a 1 Hz sampling frequency, and a noise shape parameter a ¼ �0:2.
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The ASD of the double-differentiation noise (purple
curve) and gravity vector evaluation noise (green curve)
and their combined effect (cyan curve) are shown for refer-
ence. At frequencies below 0.1 mHz, the ASD of the differ-
ence matches very well the ASD of the gravity vector
evaluation noise. In the frequency range from 0.1 mHz to
Fig. 4. Radiation pressure acceleration (solid lines) and its standard deviatio
(bottom left). For improved readability, the standard deviations are presented
satellite traverses Earth’s umbra.
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0.5 mHz, we observe an increase in the ASD of the differ-
ence, which closely follows the ASD of the double-
differentiation noise. Thus, double-differentiation and grav-
ity vector evaluation noise play important roles in model-
ing the noise in the aerodynamic acceleration derived
from GNSS tracking data.
n (shaded areas) in the along-track (top left) and cross-track directions
separately in the right column. The grey-shaded areas indicate when the
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Fig. 3 allows us to determine the along-track resolution
of the aerodynamic acceleration and, hence, the density
observations derived from GNSS tracking data. We clearly
see a sequence of spikes at harmonics of the orbital fre-
quency of about 0.18 mHz. These spikes largely reflect
the aerodynamic acceleration signal variation due to
dayside-nightside differences in density and density changes
due to altitude variations. The accelerations derived from
the accelerometer and GNSS tracking data agree well at
the first three orbital harmonics (peaks in red and blue
curves agree), but starting at the fourth orbital harmonic,
the GNSS tracking data does not capture the signal any-
more. Therefore, the along-track resolution is 3.5 times
the orbital period of 95 min, i.e. 27 min or about
12000 km. This along-track resolution is specific to the con-
ditions experienced by the GRACE B satellite in November
2003. The conditions, particularly the density and altitude,
will change over time, leading to a varying along-track
resolution.

Further, the combined noise from the double-
differentiation and gravity vector evaluation is still lower
than the acceleration signal at the third orbital harmonic
but larger at the fourth. On the one hand, this means that
the Kalman smoother settings were selected optimally to
suppress GNSS tracking noise. On the other hand, we
may calculate the aerodynamic acceleration signal ASD
using a thermosphere model and compare that to the noise
ASD of the accelerations derived from GNSS tracking data
to predict the achievable along-track resolution of density
observations derived from GNSS tracking data.

7.2. Radiation pressure and averaging

We show the radiation pressure acceleration as solid
lines and its uncertainty (one standard deviation) as shaded
areas for two arbitrary orbits on 1 November 2003 in
Fig. 4, in the left column. For better readability, we show
the standard deviation of the radiation pressure accelera-
tion in the right column. The grey-shaded areas indicate
when the satellite traverses Earth’s umbra, whereas it is
in sunlight otherwise.

First, we discuss the acceleration in the along-track
direction (top left panel), which varies between -20 nm
s�2 and 20 nm s�2. When no averaging is applied (blue
curve), the standard deviation reaches 2.3 nm s�2 on the
dayside and drops to 0.1 nm s�2 on the nightside. The fact
that the standard deviation does not drop to zero is largely
due to the front and rear panels’ temperatures, which only
gradually reduce as heat is emitted. Consequently, the
uncertainty in the thermal emission acceleration remains
notable as the satellite traverses Earth’s umbra. We can
see this effect even better in the standard deviation of the
cross-track acceleration (bottom right panel).

When averaging over one-third of an orbit (orange
curve), the peak values in the standard deviation reduce
to 1.7 nm s�2, however, at the cost of increased uncertainty
in the umbra due to the averaging. These standard devia-
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tions are in good agreement with the results for the Swarm
satellites presented by van den IJssel et al. (2020), who
assessed that the solar radiation pressure acceleration in
the along-track acceleration has an accuracy of 2.6 nm
s�2. The slightly larger standard deviation for the Swarm
satellites can be explained by their more complex geometry
compared to the GRACE satellites, noting that van den
IJssel et al. (2020) used a panel model to represent the
geometry.

In contrast, the acceleration and, consequently, its stan-
dard deviation reduce substantially when averaging over
one orbit. The latter reduces to a constant value of about
0.2 nm s�2. We also tested averaging over four orbits
(not shown), for which one might suspect a further
decrease in standard deviation. However, the standard
deviation was virtually identical to the case of averaging
over one orbit, meaning that some radiation pressure accel-
eration modeling errors do not average out. This is due to
errors, e.g., in the absorption coefficient for visible light,
which are treated as uncorrelated errors in the thermal
model. This reflects reality well, as the front and rear panels
of the GRACE satellites are not identical. Since one panel
hosts the K-band ranging antenna and the other the radio
occultation antenna, we should expect different errors for
the front and rear panels that will not cancel when averag-
ing over one orbit, even when employing accurate radiation
pressure modeling as described by Siemes et al. (2023).

The acceleration in the cross-track direction (bottom left
panel) ranges from 0 nm s�2 and 60 nm s�2. Therefore,
averaging will not result in a close-to-zero acceleration,
as was the case for the along-track acceleration. Conse-
quently, averaging over one orbit does not substantially
reduce the standard deviation, which remains at a constant
value of 4.2 nm s�2.

7.3. Density from accelerometers and GNSS-tracking

The effect of averaging on the density observations is
illustrated in Fig. 5. The solid lines represent the simulated
density based on the thermosphere model and GRACE B
orbit, attitude, and mass data, while the shaded areas in
the same color indicate the uncertainty (one standard devi-
ation). The grey-shaded areas show when the satellite tran-
sits Earth’s umbra. We apply no averaging in the case of
accelerometer data and averaging over one-third and one
orbit in the case of GNSS tracking data to showcase the
trade-off between countering GNSS tracking noise and
maximizing the resolution along the orbit. We show results
for two arbitrary orbits on 1 November 2003 and 2008 to
highlight that this trade-off depends on the density, i.e.,
on the signal-to-noise ratio rather than solely on the noise.

As supporting information, Fig. 6 shows the standard
deviation as a percentage of the density for the same two
orbits in 2003 and 2008. In addition, the figure illustrates
how much aerodynamic and radiation pressure modeling
errors and measurement noise contribute to the standard
deviation in a stacked representation, i.e., the shaded areas
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represent the contribution of these error and noise sources.
When a shaded area is much larger than the others, it
means that it is the dominating error source. On the con-
trary, when a shaded area is barely visible, the respective
error source is negligible. Table 2 clarifies which parame-
ters contribute to aerodynamic and radiation pressure
modeling errors and measurement noise. We note that we
include the uncertainty due to incorrectly modeled wind
(represented by standard deviations rvrel;x ; rvrel;y , and rvrel;z

in Table 2), which was found to be significant in past stud-
ies (Bruinsma and Biancale, 2003; Sutton et al., 2007;
Doornbos et al., 2010), into aerodynamic modeling errors.

Inspecting the results for 2003 in Fig. 5, we observe den-
sity values in the range from 1.1 � 10�12 kg m�3 to
2.9 � 10�12 kg m�3 when no averaging is applied, i.e. for
accelerometer data (blue curve). The uncertainty is 4%–
4.5% of the density for the accelerometer data and the
GNSS tracking data when averaging over one orbit (see
Fig. 6), which hints that a common error source dominates.
In the case of GNSS tracking data, averaging over one-
third orbit, the uncertainty of the density is slightly larger
with 5%–7.5% due to a more significant contribution of
the measurement noise. Averaging over one-third of the
orbit reduces the peak values to 2.4 � 10�12 kg m�3 and
trough values to 1.3 � 10�12 kg m�3, i.e., extreme values
are reduced by 15%–20% due to the averaging. One should
expect that such an underestimation of extreme values is
more pronounced during geomagnetic storms when the
density becomes more variable due to localized heating
processes (Lühr et al., 2004). Averaging over one orbit
obviously smoothes out density variations shorter than
one orbit.

Comparing the results for 2003 and 2008, we first notice
that the density values range from 8.0 � 10�14 kg m�3 to
3.0 � 10�13 kg m�3 in 2008, i.e. the density is ten times
smaller than in 2003. Further, we observe that averaging
has the same smoothing effect, reducing the extreme values
as in 2003. In the results for 2008, the standard deviation of
the accelerometer-derived density observations (blue curve)
Fig. 5. Density signal along the GRACE B orbit (solid lines) and uncertainty o
and GNSS tracking data for two arbitrary orbits on 1 November 2003 (left)
GRACE B satellite transits Earth’s umbra.
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is more variable. It exceeds 10% of the density in 20-min
time windows centered at, e.g., 11:00 and 12:30 and is only
6% outside these time windows (cf. Fig. 6). However, the
largest difference is the uncertainty when averaging over
one-third orbit (orange-shaded areas), which is roughly
ten times larger in the results for 2008 compared to 2003.
When averaging over one orbit, the uncertainty in the den-
sity is about 6.5% in 2008, which is close to the 4%–4.5% in
2003.

The contributions of the modeling errors and measure-
ment noise sources, visualized in Fig. 6, demonstrate that
the uncertainty quantification is intricate. First, we focus
on the density observations derived from accelerometer
data (top row). The density observations’ uncertainty was
about 4%–4.5% in 2003 (top left), of which more than
3% can be attributed to aerodynamic modeling errors.
GNSS tracking errors contribute 0.2%–0.3% via the
accelerometer bias estimation, and radiation pressure mod-
eling errors account for another 0.5% when the satellite is
illuminated by the Sun and 0% otherwise. We may also
note that radiation pressure errors make no contribution
in the center of the time window when the satellite is in
the Sun. That can be explained by the Sun being in the
plane perpendicular to the flight direction and, hence, the
radiation pressure acceleration being zero in the flight
direction. Thus, aerodynamic modeling errors are the dom-
inating error source when the GRACE B satellite orbits at
an altitude of about 500 km during a period of high solar
activity.

These results are consistent with earlier findings by
Bruinsma and Biancale (2003), Sutton et al. (2007), and
Doornbos et al. (2010), who identified modeling errors in
the aerodynamic coefficient vector and thermospheric wind
as the most significant error sources for density observa-
tions derived from CHAMP accelerometer data. However,
these authors predict a larger uncertainty of 10%–15% for
the density observations as opposed to the 4%–4.5% in our
results. This can be explained by our much more optimistic
assumption on the accuracy of the satellite geometry,
f density observations (color-shaded areas) derived from the accelerometer
and 1 November 2008 (right). The grey-shaded areas indicate when the



Fig. 6. Standard deviation of density observations derived from the accelerometer (top row) and GNSS tracking data applying averaging over one-third
orbit (middle row) and one orbit (bottom row) for two arbitrary orbits on 1 November 2003 (left column) and 1 November 2008 (right column). The
standard deviation is expressed as a percentage of the density. The color-shaded areas represent the contribution of aerodynamic and radiation pressure
modeling errors and GNSS tracking noise, including accelerometer noise in the top row, in a stacked representation. The grey shaded area indicates when
the GRACE B satellite transits Earth’s umbra.
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justified by high-fidelity modeling as applied by Mehta
et al. (2013) and March et al. (2019), whereas the older
studies assumed the less accurate panel models (cf.
Doornbos et al., 2010). It is worth noting that Sutton
et al. (2007) reports that the contribution of radiation pres-
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sure modeling errors to the CHAMP density observations’
uncertainty is less than 0.54%, which is in perfect agree-
ment with our results for GRACE B.

Examining the uncertainty of density observations in
2008 (top right), when the altitude of GRACE B was still
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476 km, but solar activity was very low, we find completely
different error and noise contributions. First of all, the
uncertainty is 5%–20%, which is substantially larger than
the uncertainty in 2003. This large range is caused by the
highly variable contribution of radiation pressure modeling
errors, which is almost zero when the satellite transits
Earth’s umbra but makes a peak contribution of 15% when
the satellite enters sunlight after transiting Earth’s umbra,
e.g., at 11:45. Also, GNSS tracking errors contribute 2%–
5% as opposed to 0.2%–0.3% in 2003. The larger role of
radiation pressure modeling errors and GNSS tracking
noise can be explained by the much smaller density in
2008 due to the much lower solar activity, resulting in a
much smaller aerodynamic acceleration and, therefore, a
much-degraded signal-to-noise ratio for the latter.

Now, we turn our attention to the uncertainty of the
density observations derived from GNSS tracking data.
When averaging over one-third orbit (middle row), we
observe a slightly larger uncertainty of 5%–7.5% in 2003
compared to the results for accelerometer data. However,
the contribution of measurement noise, i.e. GNSS tracking
noise, is 3%–6%, which is substantially larger than for the
density observations derived from accelerometer data.
The reason is the much shorter averaging over one-third
orbit compared to the daily bias estimation for the
accelerometer data. As a side effect of the increased GNSS
tracking noise, the relative contribution of radiation pres-
sure modeling errors decreases so much that it becomes
negligible. Nevertheless, aerodynamic modeling errors still
account for 1.5%–2% of the uncertainty, i.e. approximately
a third of the density observations’ uncertainty. This bal-
ance changes in the results for 2008, where the aerody-
namic acceleration is much smaller, leading to a much
larger contribution of the GNSS tracking noise. In fact,
aerodynamic and radiation pressure modeling errors are
completely negligible in this case. Further, the uncertainty
in the density observations drastically increased to 33%–
82%, which is a consequence of the aerodynamic accelera-
tion being smaller in 2008, while the GNSS tracking noise
increased due to the shorter averaging period of one-third
orbit, again compared to the daily bias estimation.

By increasing the averaging period to one orbit, we
achieve a substantial reduction of GNSS tracking noise
because of the shape of the noise PSD (cf. Fig. 3). For
the uncertainty of the density observation in 2003, this
reduces the contribution of GNSS tracking noise to 0.4%,
resulting in an overall uncertainty of about 4%–4.5%,
which is very similar to the results for the density observa-
tions derived from accelerometer data. For the results for
2008, the overall uncertainty is about 6.2%–7%, which is
mostly due to GNSS tracking noise, which contributes
slightly more than 5%, while aerodynamic modeling errors
account for 1%–1.8%, and radiation pressure errors only
0.1%. Radiation pressure modeling errors play only a
minor role in the results in 2003 and 2008 because the aver-
aging over one orbit eliminates them effectively, as demon-
strated in Section 7.2.
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We may compare our results for GRACE B to those by
van den IJssel et al. (2020), who investigated the uncer-
tainty of density observations derived from GNSS tracking
data of the Swarm satellites, whose GNSS tracking accu-
racy, satellite cross-section and mass are similar to those
of the GRACE satellites. They assessed that the Swarm
B density observations’ uncertainty was 7% in April–July
2014, when the satellite was at an altitude of 480 km, which
is close to the altitude of the GRACE B satellite. Further,
that period was characterized by high solar activity, com-
parable to the solar activity in 2003. The claimed resolution
of the Swarm density observations is about 20min, i.e.
approximately 0.2 orbits. Thus, the uncertainty of the
GRACE B density observations presented in Fig. 6 in the
mid-left panel is representative of the Swarm B density
observations’ uncertainty. The uncertainty for the GRACE
B density observations is 5%–7.5%, which agrees very well
with the 7% for Swarm B. The slightly higher uncertainty
for Swarm B can be explained by the usage of a panel
model for this satellite and the difference in the averaging
period. Due to the shorter averaging period for Swarm B,
we expect a higher contribution of GNSS tracking noise
and, therefore, less accurate density observations. How-
ever, we consider the 1% difference in the uncertainties
for GRACE B and Swarm B to be marginal.

In April–July 2019, van den IJssel et al. (2020) assessed
the uncertainty of the Swarm A and B satellites to be 19%
and 60%, respectively. That period coincided with very low
solar activity, similar to that in 2008. The altitudes of the
Swarm A and B satellites were 440 km and 510 km in that
period. Since the altitude of the GRACE B satellite was
about 476 km in November 2008, the uncertainty of its
density observations should fall within 19%–60%, where
we expect a value in the center of that range. However,
we find an average uncertainty of 57% when considering
averaging over one-third orbit (mid-right panel of Fig. 6),
which is very close to the uncertainty of Swarm B. Thus,
our results for GRACE B indicate a larger uncertainty than
those for Swarm, although the differences are not
substantial.

8. Conclusions

We developed a new method that propagates the mea-
surement noise and errors in the satellite specification, ther-
mosphere models, and radiation flux data (cf. Table 2) to
the uncertainty of density observations derived from the
accelerometer and GNSS tracking data. The software ver-
sion that was used for this publication has been published
on the 4TU.ResearchData repository (Siemes, 2024). The
most recent software version is available on the Delft
University of Technology GitLab repository (https://git-
lab.tudelft.nl/csiemes/usato).

The method can be used for multiple purposes. The
most obvious is to supplement the existing density and
crosswind datasets derived from the accelerometer and
GNSS tracking data, which will be beneficial for data

https://gitlab.tudelft.nl/csiemes/usato
https://gitlab.tudelft.nl/csiemes/usato
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assimilation and studies in which these data are used as
ground truth to validate other data or methods. Further,
the method can be used within mission planning for pre-
dicting the along-track resolution of density observations
derived from GNSS tracking data and studying what limits
the density observations’ accuracy. Alternatively, the
method allows for assessing the value of commercial GNSS
data for the purpose of deriving density observations
before the purchase.

When analyzing the effect of GNSS tracking noise in
Section 7.1, we found that averaging over longer periods
reduces the noise as long as differentiation noise dominates.
Once the gravity vector evaluation noise is larger than the
differentiation noise, averaging over longer periods will
reduce the effect of GNSS tracking noise according to theffiffiffi
n

p
law. Therefore, averaging over more than one orbit

has only limited benefit, also because radiation pressure
modeling errors do not decrease much, as discussed in Sec-
tion 7.2. This has repercussions for deriving density from
satellites orbiting at altitudes above approximately
800 km, noting that this value for the altitude depends
on the density and, therefore, solar activity. Further, we
found in Section 7.2 that the radiation pressure modeling
errors in the cross-track direction do not average out,
which makes deriving crosswind observations from GNSS
tracking data very challenging.

The uncertainty analysis for density observations
derived from accelerometer data in Section 7.3 revealed a
good agreement with earlier studies, except that we find a
smaller uncertainty due to advances in satellite geometry
modeling. While earlier studies focused on the uncertainty
of CHAMP and GRACE density observations collected
during high solar activity, we included November 2008 as
a test period with low solar activity. The GRACE B satel-
lite was still at 476 km altitude, resulting in a much smaller
aerodynamic acceleration than during high solar activity
earlier in the mission. In these conditions, radiation pres-
sure modeling errors contributed substantially to the
uncertainty of the density observations. The aerodynamic
acceleration decreases exponentially with altitude while
radiation pressure remains constant. Thus, the contribu-
tion of radiation pressure modeling errors will exponen-
tially grow with altitude, rendering accelerometer data
useless for deriving density observations at altitudes higher
than approximately 600 km, at least outside Earth’s umbra,
even when substantially reducing the accelerometer mea-
surement noise.

Caution must be applied when using density observa-
tions derived from GNSS tracking data to study dynamic
events such as geomagnetic storms. The unavoidable aver-
aging will reduce the excursion of extreme values from the
mean density. Furthermore, this reduction will affect the
standard deviation defined by Sutton (2018), which is often
used to assess the agreement between density observations
and thermosphere models.
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Finally, we emphasize that the presented method only
propagates the uncertainty of known models and error
sources to the uncertainty of the density observations,
whereas incorrect models and unknown error sources are
not considered. An example is the gas-surface interaction,
where we assume a DRIA model, i.e., atmospheric particles
are reflected diffusely on the satellite surfaces. If a quasi-
specular reflection was closer to physical reality, one could
use the model proposed by (Lord, 1991), used by Mehta
et al. (2017) to generate density datasets for the CHAMP
and GRACE satellites. Consequently, the method may
underestimate the uncertainty of density observations,
although it is much more sophisticated than earlier
methods.

9. Outlook

In its current development state, the method treats
errors in atmospheric conditions (temperature, density of
constituents, and wind) and gas-surface interaction in a
simplistic way. More investigations are needed for more
realistic modeling of these error sources, which are likely
correlated, and functions of solar and geomagnetic activity,
magnetic latitude, and local solar time. Similarly, the accu-
racy of the radiation fluxes and satellite parameters related
to radiation pressure modeling (absorption and reflection
coefficients and heat capacitance and conduction parame-
ters) must be investigated to make more realistic assump-
tions about these noise sources. These investigations will
be the next logical step to improve the method, after which
it will be extended to quantify the uncertainty of crosswind
observations. Once these important steps are completed,
the method will be used to augment the existing density
and crosswind datasets available on http://thermosphere.-
tudelft.nl. In this context, we intend to include CERES
radiation flux data directly instead of using monthly aver-
age maps.

Satellite attitude errors are presently not accounted
for since all satellites with accelerometers also have star
sensors, leading to such accurate attitude knowledge
that attitude errors may be safely neglected (Bruinsma
and Biancale, 2003). Nevertheless, accounting for atti-
tude noise is straightforward via specifying the uncer-
tainty in vector ê in Eq. (7). This will be an important
extension for satellites that feature a GNSS receiver
but no highly accurate attitude sensor, such as star
sensors.

Finally, we found in Section 7.1 that the achievable res-
olution of density observations derived from GNSS track-
ing data depends on the signal-to-noise ratio of the
aerodynamic acceleration. This motivates an adaptive
selection of the averaging period in the method presented
by van den IJssel et al. (2020) that will not only depend
on the GNSS tracking accuracy but also on the orbit and
solar activity.
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Appendix A. Aerodynamic coefficient vector

The calculation of the aerodynamic coefficient vector
based on the equations provided by Sentman (1961) is
explained by Doornbos (2011). We provide here a brief
summary of the equations.

The drag and lift coefficients of the i-th panel are

Cdrag;i;j ¼ Ai
1ffiffiffi
p

p P i;j þ di 1þ 1

2S2
j

 !
Zi;j þ di

2
Ri;j di

ffiffiffi
p

p
Zi;j


 �þ P i;j

 !

ðA:1Þ
and

Clift;i;j ¼ Ai
li
2S2

j

Zi;j þ li
2
Ri;j di

ffiffiffi
p

p
Zi;j þ P i;j


 � !
; ðA:2Þ

respectively, where index j indicates the atmosphere con-
stituent (e.g., atomic oxygen). The parameters P i;j and Zi;j

are defined as

P i;j ¼ 1

Sj
expð�d2

i S
2
j Þ ðA:3Þ

and

Zi;j ¼ 1þ erfðdiSjÞ; ðA:4Þ
respectively, where ‘exp’ and ‘erf’ are the exponential and
error functions, respectively. The parameter Ri;j is the ratio
of reemitted and incident velocity of gas particles, which we
calculate according to Koppenwallner (2009):

Ri;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ aE

2

4RT i

mj j vrelj2
� 1

 !vuut ðA:5Þ

Here, aE is the energy accommodation coefficient, vrel the
relative velocity vector, T i the panel temperature, mj the
molar mass of the atmospheric constituent, and R the gas
constant. The other parameters are the speed ratio

Sj ¼ j vrel j
vmp;j

; ðA:6Þ

the most probable speed

vmp;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2RT atm

mj

s
; ðA:7Þ
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and the negative dot products of the drag and lift vectors,
ûdrag and ûlift, with the panel normal ni,

di ¼ �ûdrag � ni ðA:8Þ
and

li ¼ �ûlift � ni; ðA:9Þ
respectively. The drag and lift vectors of the i-th panel are
defined by the panel normal and relative velocity vector:

ûdrag ¼ vrel
j vrel j ðA:10Þ

and

ûlift;i ¼ � ðvrel � n̂iÞ � vrel
j ðvrel � n̂iÞ � vrel j : ðA:11Þ

The aerodynamic coefficient vector is the mass-weighted
average of the aerodynamic coefficients for the atmospheric
constituents:

Caero ¼
X
i

X
j

qj

q
Cdrag;i;jûD þ Clift;i;jûlift;i

 �

: ðA:12Þ
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Klinger, B., Mayer-Gürr, T., 2016. The role of accelerometer data
calibration within GRACE gravity field recovery: Results from ITSG-
Grace2016. Adv. Space Res. 458, 1597–1609. https://doi.org/10.1016/j.
asr.2016.08.007.

Koppenwallner, G., 2009. Energy accommodation coefficient and momen-
tum transfer modeling. Technical report HTG–TN–08–11 HTG.
Technical report HTG–TN–08–11 HTG, Katlenburg, Lindau.

Licata, R.J., Mehta, P.M., Tobiska, W.K., et al., 2021. Qualitative and
quantitative assessment of the SET HASDM database. Space
Weather, p. 19. https://doi.org/10.1016/10.1029/2021SW002798,
e2021SW002798.

Loeb, N.G., Doelling, D.R., Wang, H., et al., 2018. Clouds and the
Earth’s Radiant Energy System (CERES) Energy Balanced and Filled
(EBAF) Top-Of-Atmosphere (TOA) Edition-4.0 data product. J.
Clim. 31, 895–918. https://doi.org/10.1175/JCLI-D-17-0208.1.

Lord, R.G., 1991. Some extensions to the Cercignani-Lampis gas–surface
scattering kernel. Phys. Fluids A 3 (4), 706–710. https://doi.org/
10.1063/1.858076.
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