# The technical and economic potential of renewables in Indonesia and scenarios for power system decarbonisation

# Jannis Langer, Jaco Quist, Kornelis Blok

Delft University of Technology, Faculty of Technology, Policy and Management, Department of Engineering Systems and Services, Jaffalaan 5, 2628 BX Delft, The Netherlands

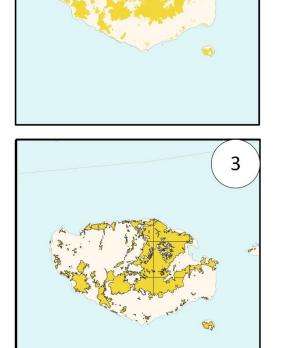


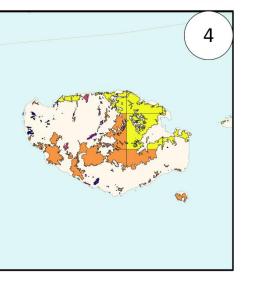


### Introduction

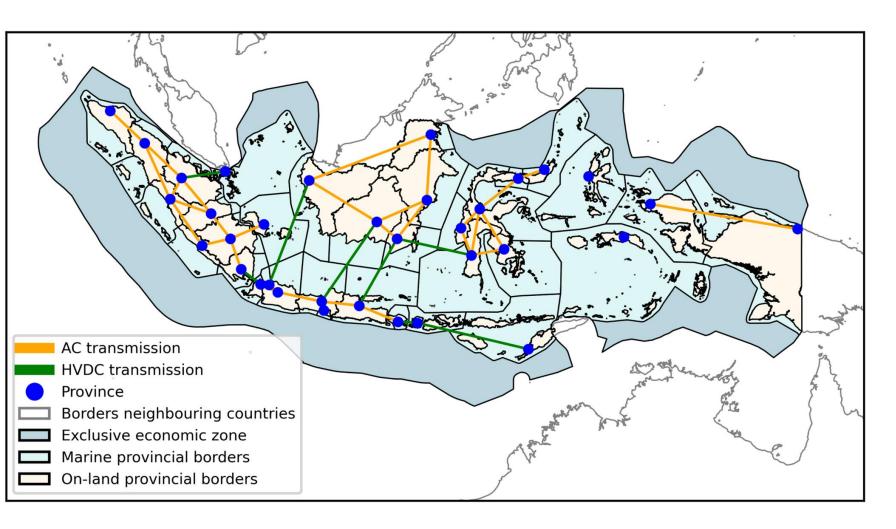
- Indonesia is a strongly growing country in terms of population and economy
- Current electricity demand is mostly met with fossil fuels (82.6% in 2018)
- Nonetheless, Indonesia pledged to become carbon neutral by 2060, amongst others by shifting from fossil fuels to renewables
- There is already evidence that Indonesia's renewable energy resources, or *potentials,* are

## Methods & Materials


## Mapping technical and economic potentials

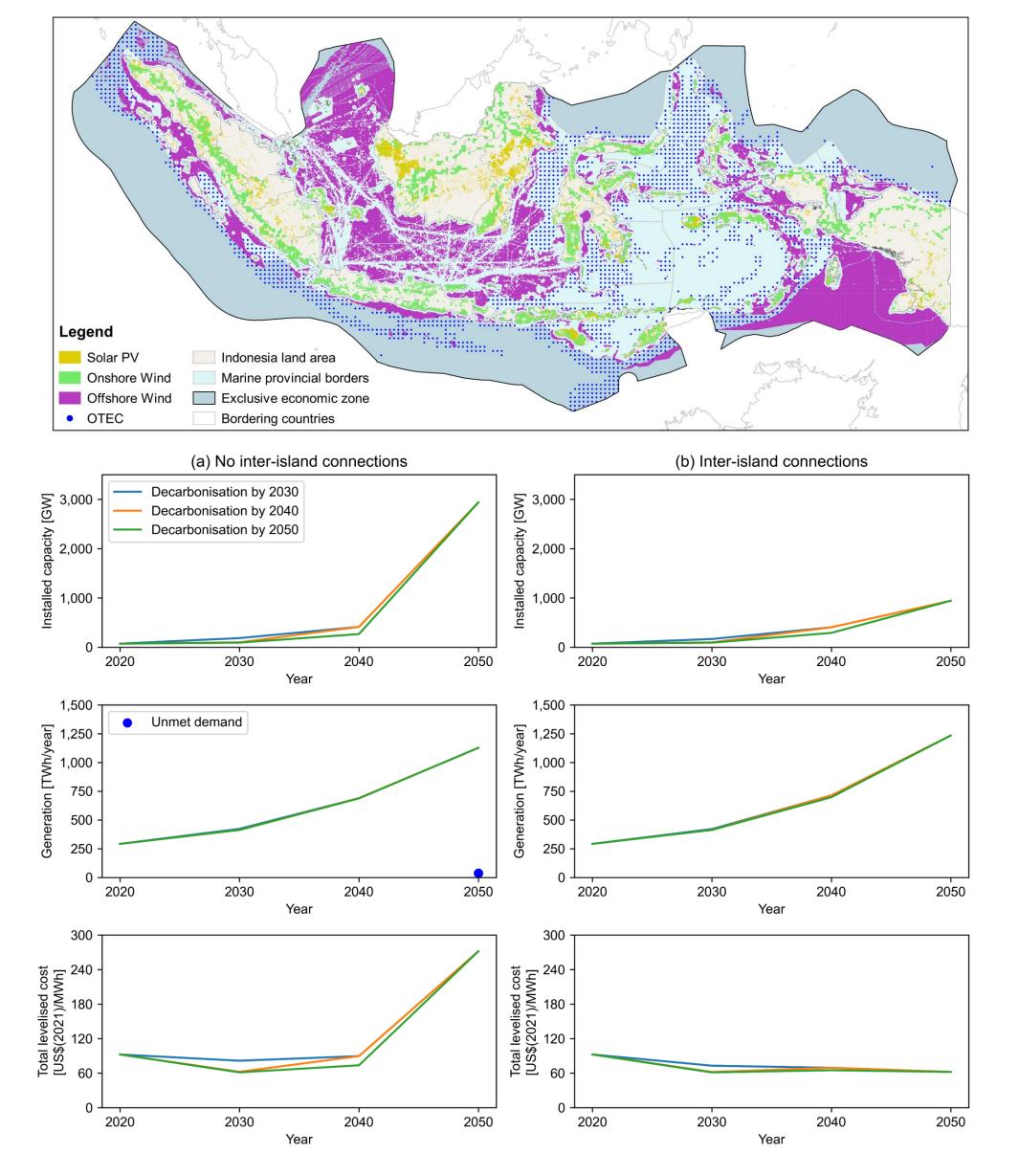

- Studied technologies: onshore wind [2], offshore wind [3], and solar PV [4]
- Ocean Thermal Energy Conversion
   (OTEC) already mapped previously [5]
- 1: All available land/ marine area
- (2): Removal of areas unsuitable for renewables (e.g., conservation zones)

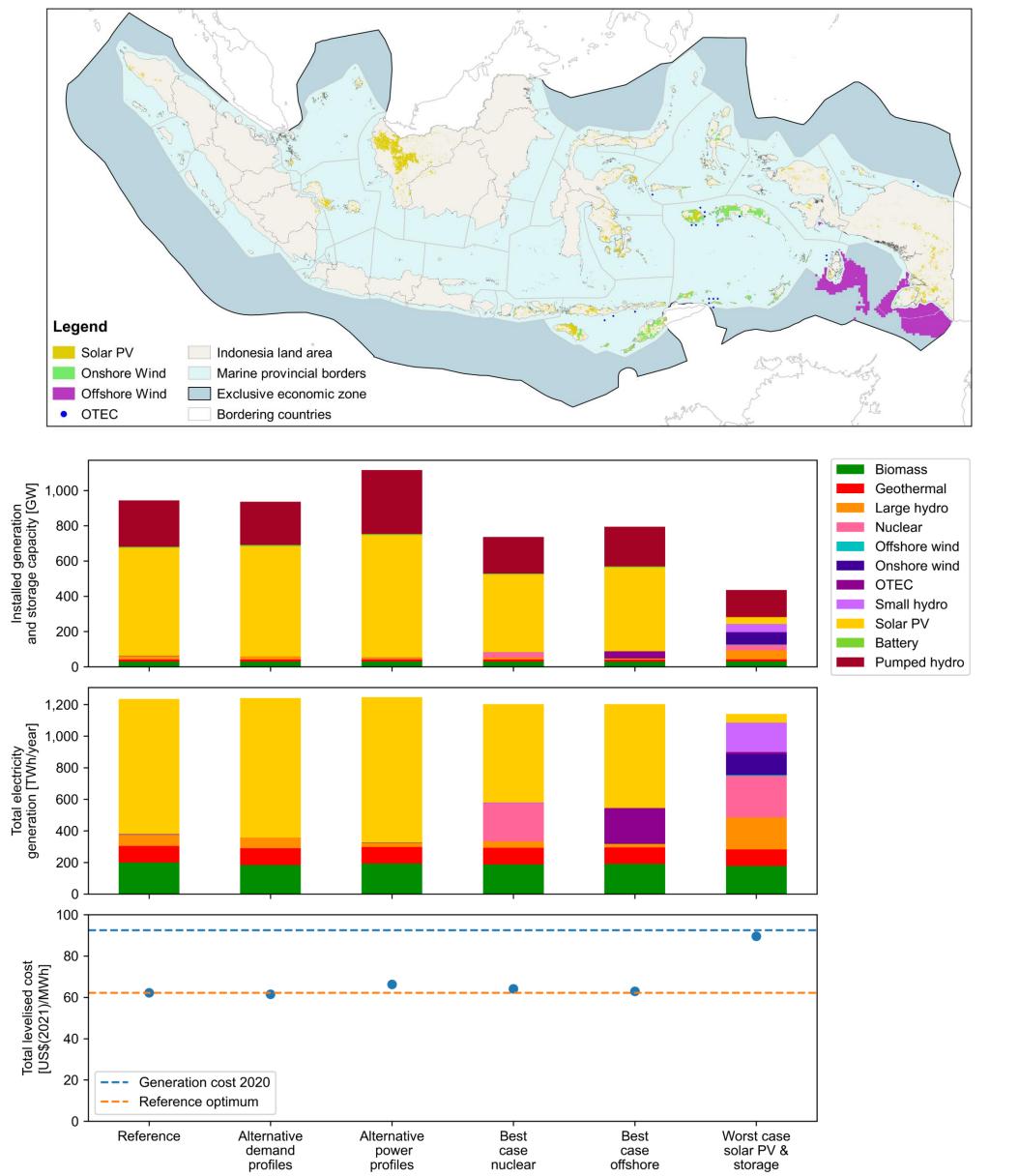
#### Energy system optimization modelling


- Used model: Calliope
- Mapped potentials used as inputs
- For other renewables, datasets from official sources and literature
- Full power system decarbonisation by 2030, 2040, and 2050
- Two studied transmission grid topologies with and without inter-island links

- large in principle [1]
- However, it is unclear how these potentials are distributed across Indonesia's more than 14,000 islands and whether they suffice to meet future demand
- This research addresses these gaps by:
  - 1. Mapping the technical and economic potential of renewables in Indonesia
  - 2. Energy system optimisation modelling of options for full decarbonisation of Indonesia's power system







- ③: Subdivision of remaining areas with grid mesh
  - (4): Sampling of renewable resource data (e.g., wind speed) inside subdivided areas
  - 20 years of hourly ERA5 reanalysis coupled with high-resolution resource maps, e.g., Global Wind Atlas
- PV and wind farm modelling to calculate electricity production at mapped sites
- Technical potential: annual electricity
   production at all technically feasible sites
- Economic potential: Technical potential with Levelised Cost of Electricity (LCOE) ≤ local tariff
- Scenario analysis to reveal differences and commonalities of obtained solutions



#### **Results & Discussion**

- Total tech potential (left map): 17,700 TWh/year (9–14 times the expected 2050 demand)
- Limited available land for solar PV on Java due to competition with other land uses [4]
- Total eco potential (right map): 7,000 TWh/year (3.5–6 times 2050 demand)
- Economic potential mainly in rural East where tariffs are high, but demand is low [2–5]





- A carbon tax of 50 US\$/tCO2e [2] or a feed-in tariff of 11.50 US¢/kWh [4] could boost the eco potential in high-demand regions like Java
- Solar PV and pumped hydroelectric storage key techs for full system decarbonisation
- Inter-island links to Java essential as local renewable resources are not enough to meet long-term demand (see unmet demand)
- Inter-island links help reducing total system cost
- Low-solar systems are possible with little surplus cost and distinct benefits (e.g., less installed capacity)
- Biomass, geothermal, and large hydro deployed in all scenarios as baseload generators

#### Conclusions

- Indonesia has abundant renewable resources, especially offshore
- Land use competition can inhibit the potential of technologies like solar PV
- Indonesia has many options for full power system decarbonisation
- Short-term measures Medium
- Reduce fossil (over)capacity
   Temporary lift of local content for solar PV modules
   Reduce fossil (over)capacity
   Reduce fossil (over)capacity
- solar PV modules
   Expand domestic solar PV manufacturing capacity (with international expertise)
   Cultivate power crops
   Develop storage capacity further (PHES if feasible, alternatively battery storage)
- Implementation of technologies with
   Strengthen on-land transmission
   and distribution grid
- Medium-term measures Long-term measures
- Ramp up solar PV implementation (manufactured domestically)
   GW-scale implementation of solar PV and storage
  - ally) PV and storageDevelop inter-island connections
    - rther between Java, Kalimantan, and ely Sumatera
      - If commercially available, develop novel technologies like OTEC for last mile decarbonisation

#### Acknowledgements

The work reported here is funded by a grant from the Dutch research council NWO for the project

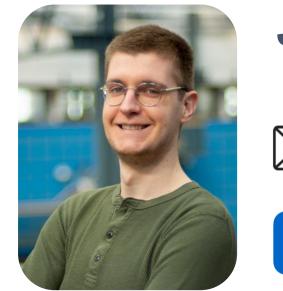
- These options foot on technologies that are not yet established in Indonesia, like solar PV
- Still, full power system decarbonisation could be possible earlier than 2060, e.g., with the measures proposed here

|      | <ul> <li>PHES, nuclear, geothermal)</li> <li>Concept for nuclear waste disposal</li> <li>Land acquisition for biomass, solar<br/>PV, etc.</li> </ul> | <ul> <li>Establish first inter-island<br/>connections once nuclear power<br/>online and/or strong demand growth</li> </ul> |                       |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|
|      | Power sys                                                                                                                                            | stem decarbonisation                                                                                                       | roadmap               |
|      |                                                                                                                                                      |                                                                                                                            |                       |
| Pres | sent                                                                                                                                                 |                                                                                                                            | Year X<br>(e.g. 2040) |

entitled "Regional Development Planning and Ideal Lifestyle of Future Indonesia", under the NWO Merian Fund call on collaboration with Indonesia.

#### References

[1] J. Langer, J. Quist, K. Blok, Review of renewable energy potentials in Indonesia and their contribution to a 100% renewable electricity system, Energies. 14 (2021). https://doi.org/10.3390/en14217033.


[2] J. Langer, S. Simanjuntak, S. Pfenninger, A.J. Laguna, G. Lavidas, H. Polinder, J. Quist, H.P. Rahayu, K. Blok, How offshore wind could become economically attractive in low-resource regions like Indonesia, IScience. 25 (2022) 104945. https://doi.org/10.1016/j.isci.2022.104945.

[3] J. Langer, M. Zaaijer, J. Quist, K. Blok, Introducing site selection flexibility to technical and economic onshore wind potential assessments: New method with application to Indonesia, Renew. Energy. 202 (2023) 320–335. https://doi.org/10.1016/j.renene.2022.11.084.

[4] J. Langer, Z. Kwee, Y. Zhou, O. Isabella, Z. Ashqar, J. Quist, A. Praktiknjo, K. Blok, Geospatial analysis of Indonesia 's bankable utility-scale solar PV potential using elements of project finance, Energy. 283 (2023) 128555. https://doi.org/10.1016/j.energy.2023.128555.

[5] J. Langer, A.A. Cahyaningwidi, C. Chalkiadakis, J. Quist, O. Hoes, K. Blok, Plant siting and economic potential of ocean thermal energy conversion in Indonesia a novel GIS-based methodology, Energy. 224 (2021) 120121. https://doi.org/10.1016/j.energy.2021.120121.

#### **Contact Information**



Jannis Langer

j.k.a.langer@tudelft.nl

