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Abstract

In this survey, we discuss the definition of a (quasi-)Banach function space. We advertise the original
definition by Zaanen and Luxemburg, which does not have various issues introduced by other, subsequent
definitions. Moreover, we prove versions of well-known basic properties of Banach function spaces in
the setting of quasi-Banach function spaces.
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This is an open access article under the CC BY-NC-ND license
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1. Introduction

Banach spaces of measurable functions, like (weighted) Lebesgue spaces, Orlicz spaces,
Lorentz spaces, Morrey spaces and tent spaces play a central role in many areas of mathematical
analysis. These spaces all fall within the broader class of Banach function spaces, which have
the property that the pointwise order between functions is in some sense compatible with the
norm.

Various definitions of Banach function spaces exist in the literature. A popular choice can be
phrased as follows: A Banach function space X is a subspace of L({2), the space of measurable
functions f: {2 — C for a o-finite measure space ({2, ), equipped with a norm || - ||x such
that it satisfies the following properties:

o Ideal property: If f € X and g € L) with |g| < |f| ae., then g € X with
lgllx < I1flx;

e Fatou property: If 0 < f, 1 f for (fy)u>1 in X and sup,.; || fallx < 0o, then f € X and
I fllx = sup,sy I fallx;

the latter of which implies that X is complete. Moreover, to ensure that X contains a sufficient
number of functions, it is assumed that, for any measurable set E C (2 of finite measure, one
has

1; € X, (1.1)
/|f|du<oofor all f e X, (1.2)
E

the latter being equivalent to the existence of a Cr > 0 such that f gl fldu < Cell fllx. The
definition of a Banach function space with these properties is often attributed to the book by
Bennett and Sharpley [1]. Some variants already appeared earlier in the book by Lindenstrauss
and Tzafriri [2].

The ideal property is the most fundamental property of a Banach function space, making sure
that the natural partial order on L°(£2) is compatible with the norm on X. The Fatou property
can be omitted in the definition of a Banach function space. In this case, one has to ensure the
completeness of X separately, either by assuming it explicitly or through a notion called the
Riesz—Fischer property. This is the approach which we take in this survey, see Section 2.1.

Originally, the Fatou property was introduced as part of the definition in the PhD thesis of
Luxemburg [3], but it was later removed in the series of papers by Luxemburg and Zaanen [4]
and the subsequent book by Zaanen [5]. Unfortunately, it was then reintroduced in [1]. To
give an example where this is problematic, proper closed subspaces of Banach function spaces
such as, e.g., ¢ © £°° do not satisfy the Fatou property (see Proposition 3.10). Nonetheless,
for example in applications in harmonic analysis, this situation is somewhat pathological.
Indeed, any space of functions with the ideal property, but without the Fatou property, can
be continuously embedded in a space that does have the Fatou property (see Proposition 3.7).
Moreover, the Fatou property ensures that the integral pairing with functions in the K&the dual
X', i.e. the space

X ={geLl’2): fge L'() forall f e X}.
248
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with

lglix == sup [ fgll 1)
Iflx=1
recovers the norm of X. Since this allows for the use of duality arguments typical in many
areas of mathematical analysis, the Fatou property is therefore highly desirable.

The main problem with the above definition of a Banach function space from [1], when
working in areas such as harmonic analysis, are properties (1.1) and (1.2). For example, the
weighted Lebesgue space L”(R?, w) for a Muckenhoupt weight w € A p may not be a Banach
function space over R? with the Lebesgue measure in the sense of the definition stated above,
see [6, Section 7.1]. To circumvent this issue, in the work [7] the authors included these spaces
by considering (1.1) and (1.2) with respect to the measure w dx rather than with respect to the
Lebesgue measure. This, however, is inadequate, as it still does not include many important
spaces, such as Musielak—Orlicz spaces and Morrey spaces, even in the unweighted setting.

e A Musielak—Orlicz space L?({2), with ¢: {2 x R, — R such that fE (s, 1) du(s) = oo
for some measurable E C (2 of finite measure and all r > 0, does not satisfy (1.1) (see,
e.g., [8, Chapter IIJ).

e Certain Morrey spaces do not satisfy (1.2), as was shown in [9, Example 3.3].

In recent literature, this issue has led the authors of [10] to develop certain theory for Morrey
spaces in Chapter 7 and afterwards prove analogous results for Banach function spaces (with
assumptions (1.1) and (1.2)) in Chapter 8. The results in Chapter 7 could have been regarded as
a special case of the results in Chapter 8 if a definition of Banach function spaces that includes
Morrey spaces would have been chosen.

A second issue with (1.1) and (1.2) arises when one wants to treat quasi-Banach function
spaces, i.e. replacing the norm on X by a quasi-norm. In this setting, the condition (1.2) is
typically far too restrictive, as can already be seen when considering L?(R¢) for 0 < p < 1.
However, omitting only (1.2) leads to the asymmetric situation in which the K&the dual X’
does not necessarily contain the required indicator functions (see [11, Proposition 2.16] for an
illustration of this phenomenon). Moreover, omitting both (1.1) and (1.2) instead also leads to
pathological situations, as || - ||x» may only be a semi-norm in this case, see Section 2.3.

Recognizing these problems with the definition of a (quasi-)Banach function space including
(1.1) and (1.2), the authors of [6] proposed a solution to these issues by introducing so-called
ball quasi-Banach function spaces, in which the arbitrary measurable sets £ in (1.1) and (1.2)
are replaced by metric balls. This definition has since been adopted by various authors, see,
e.g., [12-18]. However, morally speaking, the definition of a (quasi-)Banach function space
should be a measure theoretic one, i.e. not referencing any metric structure of (2. This is,
for example, of paramount importance when working on the intersection between harmonic
analysis and probability theory, as the natural object to work with in that setting is a probability
space without any metric structure.

Furthermore, there is no need to define a new notion (like a ball quasi-Banach function
space) in order to solve the issue with the assumptions in (1.1) and (1.2). Indeed, the solution
is readily available in the literature, dating all the way back to the works of Zaanen and
Luxemburg [3-5]. Indeed, one should replace (1.1) and (1.2) by the assumption that X is
saturated:

e Saturation property: For every measurable E C 2 of positive measure, there exists a
measurable F C E of positive measure with 15 € X.
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Defining quasi-Banach function spaces using the ideal and saturation properties yields a purely
measure-theoretic definition, which includes all aforementioned specific function spaces as
examples:

e For weighted Lebesgue spaces and Morrey spaces, one can use F = E N B for a large
enough ball in R?.

e For Musielak—Orlicz spaces, one can use F = ENT, for large enough n and 7, as in [19,
p. 64].

Moreover, as we shall see, the Kothe dual of such a space automatically satisfies the ideal,
Fatou, and, if X is a Banach function space, the saturation properties.

It should be noted that the saturation property has various equivalent formulations. It is, for
example, equivalent to either of the following assumptions (see Proposition 2.5):

(i) There exists au € X with u > 0 a.e.;
(ii) There is an increasing sequence of sets F, € 2 with 1y, € X and U;O:1 F, = (),

The function u in assumption (i) is called a weak order unit. Generally, its utility is in that the
ideal property of X implies that ulg € X for a/l measurable sets E C (2. Thus, arguments that
require (1.1) can still be done by simply multiplying each function in the space by u~!. We
detail this procedure in Section 3.4. As a matter of fact, there is a weight 0 < w € L'({2) so
that, with respect to the measure w du, the condition (1.2) is also satisfied by this space (see
Proposition 3.21).

The assumption in (ii) is actually the assumption used in [3]. Notably, almost 70 years
later, the authors of the recent book [20] seem to have independently rediscovered the exact
formulation of the assumption (ii), calling the resulting class of spaces generalized Banach
function spaces. However, it would historically be more accurate to refer to this class simply
as Banach function spaces, whereas the class of spaces with properties (1.1) and (1.2) should
be called restricted Banach function spaces.

The goal of this survey is two-fold.

e First of all, we would like to advertise the definition of a (quasi-)Banach function space
using the saturation property instead of (1.1) and (1.2) and the Fatou property as optional
assumption.

e Secondly, we will provide versions of well-known basic properties of Banach function
spaces in the setting of quasi-Banach function spaces.

Our claim to originality in this survey is rather humble. Most of our discussion for Banach
function spaces can, for example, also be found in [5, Chapter 15]. However, we are not aware
of a comprehensive reference work for the guasi-Banach function space case (see, e.g., [21-24]
for some partial results), and hope that this survey may serve as a solid introduction for anyone
working with quasi-Banach function spaces. In particular, multilinear harmonic analysis has in
recent years become a very active research area, in which the quasi-Banach range naturally
makes its appearance.

2. Quasi-Banach function spaces

In this section we will introduce quasi-Banach function spaces and discuss their defining
properties in detail. Let ({2, ) be a measure space, which will always be assumed to be o -finite.
Let L°(£2) denote the space of measurable functions on ({2, 11). Let X € L%(£2) be a complete,
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quasi-normed vector space. Denote the quasi-norm by || - ||x and the optimal constant K > 1
such that

If+sglx = KAl fllx + llglx), fgeX,

by Kx. The space X called a quasi-Banach function space over ({2, ) if it satisfies the
following properties:

o Ideal property: If f € X and g € L°(£2) with |g| < |f], then g € X with |igllx < || flx.
e Saturation property: For every measurable E C 2 of positive measure, there exists a
measurable F C E of positive measure with 15 € X.

If | - |lx is a norm, i.e., if Ky = 1, then X is called a Banach function space over ({2, ).
Since the ideal property is inherently tied to the choice of quasi-norm || - ||x on the space X,
we sometimes emphasize this by writing (X, || - || x) rather than X.

Remark 2.1.

(i) Instead of introducing a quasi-Banach function space as a complete quasi-normed space
with the ideal and saturation properties, one can equivalently start by defining a function
quasi-norm p: L°(2), — [0, co] satisfying corresponding versions of these properties
and afterwards setting

X ={f eL%D): p(If]) < 00}, Ifllx = p(fD.

The equivalence of these approaches can be seen by setting

_JIflx, feX,
p(f) = {OO’ Féx.

(ii) As we will show in Section 2.1, a quasi-normed vector space X C L°(f2) is complete
if and only if it has the Riesz—Fischer property:

e Riesz—Fischer property: If (fu)=1in X and > oo | K% |l fullx < oo, then Y o2 f, €
X with | 0%, full y < Kx X2, Kl fulx.

In many examples, X actually satisfies the stronger Fatou property:

e Fatou property: It 0 < f, 1 f for (fy)u>1 in X and sup,. || fullx < oo, then
feXand | flix =sup,-; [l fullx-

One readily checks that the Fatou property implies the Riesz—Fischer property and thus
completeness. Indeed, by the quasi-triangle inequality and induction on N > 1 we have

N
|

n=1

N
<D Kl fulix.
X
n=1

The Riesz—Fischer property then follows by using the Fatou property on the partial sums
Yoo Ll

(iii) In some parts of the literature, the underlying measure space ({2, u) is assumed to
be complete. We do not assume completeness as this assumption is superfluous in the
following sense. Suppose that ({2, i), with the o-algebra X, is not complete. Denoting
its completion (which is again o-finite) by X* with measure p*, there is a natural one-
to-one correspondence between the measurable functions with respect to X' and with
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respect to X*. Indeed, for each f* that is measurable with respect to X* there exists an
f that is measurable with respect to X' such that f* = f u-a.e. Thus, any quasi-Banach
function space over ({2, 1) may as well be considered over ({2, u*).

By the Aoki—Rolewicz theorem [25,26]

' n 1/p n
A= inf] (3 0AIE) 2 fioo fo € X such that Y i = 7] @.1)
k=1 k=1
is an equivalent p-norm on X for p € (0, 1] with 2!/? = 2Ky, i.e. ||| -||| is a quasi-norm on
X such that
N+ gll? < AP+ g, figeX
47PN F e < A< 1SNl feX,
see, e.g., [27]. It is a straightforward check to see that (X, |||-|||) is again a quasi-Banach

function space.
2.1. Completeness

Let us discuss the defining properties of a quasi-Banach function space X in some detail. To
start, we note that the assumed completeness can be reformulated as the Riesz—Fischer property
(see Remark 2.1(ii) for the definition). Indeed, if a quasi-Banach space X is complete, then it
satisfies the Riesz—Fischer property. To see this, note that by the quasi-triangle inequality and
induction on N > 1 we have

uﬁfn

A standard argument then shows that the partial sums Fy = Z,]:]:l fn are a Cauchy sequence
in X, proving that F := ) 7~ f, € X. The assertion then follows from noting that

N

< Y KXl fullx-
X 1
n=

oo
IFlx < KxIIF — Fyllx + Kx Y Kxll fullx
n=1
and letting N — oo. The converse statement is also true. For a proof, we refer the reader
to [28, Theorem 1.1].

Proposition 2.2. Let X be a quasi-normed space. Then X is complete if and only if X satisfies
the Riesz—Fischer property.

For X C L°(f2) the Riesz—Fischer property ensures that convergence in the norm of X
implies local convergence in measure, i.e., the embedding X — LO(2) is continuous. As LO(£2)
equipped with the topology of local convergence in measure is a Hausdorff space, this ensures
uniqueness of limits. More precisely, convergence in the quasi-norm of X implies pointwise a.e.
convergence for a subsequence, so that the pointwise a.e. limit and the limit in the quasi-norm
of X coincide whenever both exist.

Proposition 2.3. Let X be a quasi-Banach function space over (2, 11), let (f,)u>1 be a
sequence in X and let f € X.
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(i) If (fu)u>1 is Cauchy in X, then (f,),>1 is locally Cauchy in measure.
(ii) If (fu)n>1 converges to f in X, then (f,)n>1 converges locally in measure to f.

In particular, if f, — f in X and f, — g pointwise a.e., then f = g a.e.

Proof. We will only prove (i), the proof of (ii) is similar. Fix a measurable E C {2 with
U(E) < 00, let ¢ > 0 and define for j, k > 1

Ajr={x € E:|fj(x) = filx)| = &}.

We need to show that lim; o (A ) = 0.
Since (f,),>1 is Cauchy in X, we know by the ideal property that

. . -1
dim |14, lIx = lim e | f; — fellx =0.
J.k—00 ’ Jjk—00

Suppose that u(A;x) # 0 for j,k — oo. Then we can find a § > 0 and a sequence of
measurable sets (B,),>1 in {Aj;} such that u(B,) > § for all n > 1 and |1p,[|lx — O
for n — oo. By considering a subsequence if necessary, we may furthermore assume that
1p,llx <277 K;”’l for all n > 1. By the Riesz—Fischer property, it follows for m > 1 that
IUrCZO:m B, € X with

o0 oo
xS Kx Y Ky, I < Y 2 =27

n=m n=m

Define B = (,_; U,-,, B.. Then we have, by the ideal property, that for all m > 1

” IUSIim B

—m+1
||1B||X S ||1U3.;m By X S 2

and thus ||15||x = 0. This means that 15 = 0 a.e. and consequently u(B) = 0. But w(B,) > §
for all n > 1 and therefore M(UOO B,,) > § for all m > 1. Since

n=m
o0
w(UBn) = k) < o0,
n=1
we conclude that w(B) > 6, a contradiction. Thus, we must have lim; ;oo (A; ) =0. 0O

Remark 2.4. The local Cauchy (or convergence) in measure in Proposition 2.3 cannot be
replaced by global Cauchy (or convergence) in measure. Indeed, take {2 = R equipped with
the Lebesgue measure dx and define w(x) := e ™. Let X = L! (R), i.e. the space of all
fe L°(R) such that

I = [ 11w dr < co.
R
The sequence of functions (1j, ,+17)s>1 converges to zero in X, but

[{x € R: (1 ;4 (x) = g0 = 1} =2

for j # k, i.e. 1j, 4417 is not globally Cauchy in measure.
2.2. The ideal property

The first property of a quasi-Banach function space is called the ideal property, since it
ensures that X is a so-called order ideal in the vector lattice L%(£2). This implies that X is a
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quasi-Banach lattice, which explains why a quasi-Banach function space is sometimes called
an ideal quasi-Banach lattice of functions [29]. In particular, any result for (quasi-)Banach
lattices also holds for (quasi-)Banach function spaces. We refer the reader to e.g. [2,30,31] for
a thorough study of Banach lattices.

Furthermore, let us note that it follows from the ideal property that for any f € L°({2) we
have f € X if and only if |f| € X with ||| f|llx = || fllx-

2.3. The saturation property

The second property of a quasi-Banach function space X, the saturation property, has already
been discussed in the introduction. It is imposed to avoid trivialities. Indeed, it ensures that
there are no measurable sets £ C 2 on which all elements of X vanish a.e. This assumption
is not restrictive, as any quasi-normed vector space of measurable functions on {2 can be made
saturated by removing the part of {2 on which all functions in X vanish a.e. (cf. [5, Section
67]).

To illustrate this, consider the space X C L°(R) defined as the subspace of L'(R) consisting
of the integrable functions supported in [0, 1]. When equipped with the norm

1
1fllx :=/O \f1dx,

the space (X, || - ||x) is complete and satisfies the ideal property, but not the saturation property.
We also note that any g € L°(R) supported outside of [0, 1] satisfies le fgldx = 0 for all
f € X. These problems can easily be rectified by considering this as a space over 2 = [0, 1]
rather than over {2 = R, in which case it is saturated, and we simply have X = L'([0, 1]).

There are various equivalent formulations of the saturation property. Especially the existence
of a weak order unit is often useful in applications, see also Section 3.4.

Proposition 2.5. Let (2, i) be a o-finite measure space and let X < L°(12) be a quasi-Banach
space satisfying the ideal property. Then the following are equivalent:

(i) X satisfies the saturation property;

(ii) There is an increasing sequence of sets F, C (2 with 1y, € X and U;’;l F, = ;
(iii) X has a weak order unit, i.e., there is a u € X withu > 0 a.e.;
(iv) If g € L%(02) with fQ|fg|du =0forall f e X, then g =0 a.e.

Proof. We start by proving (i)=>(ii). Assume that X has the saturation property. Since {2 is -
finite, it follows from [5, Theorem 67.4] that there exists an increasing sequence of measurable
sets F,, € {2 with 15, € X and Uf;o:] F, = (2. Note that while this result is stated for normed
spaces, the proof also holds without change in quasi-normed spaces.

For (ii)=(iii), we define

21 1

n

U= . .
Z CKx)* 1+ |1g,lIx

n=1

By the Riesz—Fischer property, we have u € X. So (iii) follows from the fact that u > 0 on (2.

For (iii)=(iv), let g € L°(42) such that | fgll 1) =0forall f € X. In particular, we have
lugll ;1) = 0. This means that ug = 0 a.e. and hence, since u > 0 a.e., we must have g =0
a.e., as desired.
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It remains to show (iv)=>(i). Assume that X does not have the saturation property. Then
there is a set £ C {2 of positive measure such that 1z ¢ X for all F C E of positive measure.
For f € X, consider the sets F, :={x € E : |f(x)| > %} for n > 1. Since

lpn Sl’leX,

it follows from the ideal property of X that 1, € X for all » > 1. But this means that
w(F,) =0 and hence,

[e¢]

M({x eEE:|f(x) > 0}) = ,LL(U F,,) < ZM(Fn) =0.
n=1

n=1

As this means that every function f € X vanishes a.e. on E, we have |, ol fI1gdu = 0 for all
f € X. Since 1z # 0, this proves the result by contraposition. [J

Remark 2.6. By Proposition 2.5 and our discussion in Section 2.2, using the terminology
from Banach lattice theory, one could equivalently define a (quasi)-Banach function space as
a (quasi)-Banach lattice of measurable functions such that:

e X is an order ideal in L°(£2);
e X has a weak order unit.

Remark 2.7. After the first chapter on general Banach function spaces, the book of Bennett
and Sharpley [1] is mainly focused on the case of so-called rearrangement-invariant Banach
function spaces, i.e. Banach function spaces X such that any f,g € X with the same
distribution function have equal norm. In such spaces, it is easy to see that the saturation
property is equivalent to the assumption (1.1) and therefore also to (1.2) by Theorem 3.2 below.
This explains the choice for the “simpler” setup of Banach function spaces using (1.1) and (1.2)
in [1].

Remark 2.8. Let ({2, u) be a metric measure space. Ball quasi-Banach function spaces, as
introduced in [6], satisfy the saturation property. Indeed, the sets F,, = B(x, n) satisfy property
(ii) in Proposition 2.5, where B(x, n) denotes the ball around a point x € {2 with radius n. In
particular, every ball quasi-Banach function space is a quasi-Banach function space. Since the
measure space over which a quasi-Banach function space is defined does not necessarily need
to have a metric structure, the notion of a quasi-Banach function space is more general than
that of a ball quasi-Banach function space.

Conversely, if X is a quasi-Banach function space on which the Hardy-Littlewood maximal
operator is bounded, it is easy to see that 13 € X for all balls B. So in this specific case, X is
automatically a ball quasi-Banach function space.

3. Properties of Banach function spaces

Having discussed the definition of quasi-Banach function spaces at length in the previous
section, we will discuss some basic properties of quasi-Banach function spaces in this section.
We start by introducing the notion of Koéthe duality, which is the notion of duality within the
category of Banach function spaces.

Next, we will discuss important lattice properties that a Banach function space has through
analogues of the classical convergence theorems in integration theory. We will start by dis-
cussing the Fatou property, which is the replacement of the monotone convergence theorem and
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Fatou’s lemma. Then we discuss the notion of order-continuity, which serves as a replacement
of the dominated convergence theorem.

Finally, we will discuss how the theory naturally includes weighted spaces (such as weighted
Lebesgue spaces) in its definition through the saturation property. We show two ways of
considering weights; by adding them to the underlying measure space, or by considering them
as a multiplier.

3.1. Duality

Duality arguments play an important role in mathematical analysis. For example, when
working in L? (Rd), duality often allows one to translate results for 1 < p <2to2 < p < o0
and vice versa. Unfortunately, the Banach dual X* of a quasi-Banach function space X is not
necessarily isomorphic to a space of functions. For example, the Banach dual of L>®(R?) is a
space of measures.

Motivated by this phenomenon, we define the Kdthe dual or associate space X' of a
quasi-Banach function space X C L°({2) as the space

X ={geL’): fg e L'(») for all f e X}.
For g € X’ we define
lgllx == sup [IfgllL1(q)
Iflx=1

which is a norm on X’. Indeed, as shown in Proposition 2.5, the saturation property ensures (and
is equivalent to the statement) that || g||x» = O if and only if g = 0 a.e. Moreover, |g|lx’ < oo.
Indeed, suppose ||g|lx» = oo. Then, for each n > 1, there is an f,, € X with | f,|lx = 1 for
which || fugll 1) > K “n3. By the Riesz-Fischer property, we have

However, since also

||fng||L1(Q)
————>n

IFgllio = K;l(nz

for all n > 1, we deduce that Fg ¢ L'({2). By contraposition, we conclude that |g|lxs < oo
for all g € X'.

The ideal property of L!({2) implies that X’ also satisfies the ideal property. Moreover,
X' satisfies the Fatou property (see Remark 2.1(ii) or Section 3.2 for the definition), which
implies the Riesz—Fischer property and, hence, by Proposition 2.2 that X’ is complete. Indeed,
if 0 < g, 1 g for (g,)n>1 in X' and sup,,., [lgxllx* < 00, then, by the monotone convergence
theorem, for every f € X we have fg € L'(2) with

/gl =supllfenll iy = I fllx sup lIgnllx,
n>1

n>1

and therefore g € X’ with | g|lx’ = sup,-; gl x

The map f +— [, fgdu defines a bounded linear functional on X for every g € X'. Thus,
we can naturally identify X’ with a closed subspace of X*. Indeed, we have the following
result:
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Proposition 3.1. Let X be a quasi-Banach function space over (§2, u). The embedding
t: X' — X* given by

Ug)(f) = /Qfgdu, feXx,
satisfies ||(g)l x+ = lIgllx for all g € X'.

Proof. For g € X’ we have

/fgdu <

so it remains to show || gllys < ||L(g)||x* Fix f € X and define f | fglg~"' where g is
non-zero and zero elsewhere. Then f g =1|fgl| and | f | < |f] so that by the ideal property of
X we have f € X with

lle(@)lix< = sup
Ifx=1

sup /Ifgldu= llgllx,
I/ lx=1

fﬂlfgldiC = (L)) = (@) llx= 11 Fllx < eCe)llx= 11 £ 11 x-

Taking a supremum over all f € X with || f||x = 1 proves the result. [J

Next, we wish to determine when X’ is a Banach function space. We have already shown
that X’ has the ideal property and is complete. Therefore, to check that X’ is a Banach function
space, it suffices to show that X’ has the saturation property. This, however, turns out to not
always be the case. Indeed, for X = L”({2) with 0 < p < 1 we have L?({2) = {0}, which
is not saturated. Our goal is to characterize for which quasi-Banach function spaces X the
associate space X’ is a Banach function space.

When X is a Banach function space, X* is non-trivial by the Hahn—Banach theorem. In fact,
it turns out that in this case X’ is automatically saturated, and, hence, is a Banach function
space:

Theorem 3.2. Let X be a Banach function space over ({2, ;). Then X' is also a Banach
function space over ({2, ).

Proof. By the above discussion, we need only prove that X’ satisfies the saturation property.
This follows from [5, Theorem 71.4(a)] [

This result allows us to prove the following characterization of when X’ is a Banach function
space for a quasi-Banach function space X:

Theorem 3.3. Let X be a quasi-Banach function space over (2, u). Then the following are
equivalent:

(i) X' is a Banach function space over ({2, v);
(ii) There is a Banach function space E over ({2, u) such that X — E.

Proof. To prove (i)=(ii), assume X’ is a Banach function space, so X" is well-defined. Since
X «— X” with

[fllxr = sup Nfgllie = sup [Iflxlglx = Iflx
gl =1 gl =1
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and X has the saturation property, X” has the saturation property as well. Thus, X” is a Banach
function space. Therefore (ii) is satisfied with E = X"

For the converse, let E be as in (ii) and let C > 0 such that || f||g < C| f|lx for all f € X.
Then, by Theorem 3.2, the space E’ has the saturation property. Since

lgllx = sup [Ifgliie = sup [fglio =Cligle
IflIx=1 Ifle=c

for all g € E’, we have that E’ € X’. This means that X’ has the saturation property as well,
proving (i). [

3.2. The Fatou property

The Fatou property is essentially an X-version of the monotone convergence theorem and
Fatou’s lemma from integration theory, and reduces back to these classical results in the case
that X = L'(02).

Definition 3.4. Let X be a quasi-Banach function space over ({2, ;). We say that X satisfies
the Fatou property if it satisfies the following condition: if 0 < f, 1+ f for (f,),>1 in X and

Sup,=y I fullx < oo, then f € X and [|f|lx = sup,- [l fullx-

The Fatou property is equivalent to an X-version of Fatou’s lemma, which explains the
nomenclature.

Lemma 3.5. Let X be a quasi-Banach function space over ({2, 1). Then X has the Fatou
property if and only if for any sequence of positive-valued functions (f,),>1 in X with
liminf, o || fullx < 00, one has liminf,_, » f, € X and

| liminf £, ||, <liminf || f; ||x.
n—o00 n—o00
Proof. We only need to prove the forward implication, for which we define g, = infy>, f; for

n > 1. Then, by the ideal property, we have g, € X and for all m > n we have || g,|lx < || fiullx-
In particular,

lgnllx < inf || fonllx.
m=>n

Since 0 < g, 1 liminf,,_,  f, it follows from the Fatou property that liminf,, o fi, € X
and

[timinf £, |, = || lim g, |, = sup llgallx < sup inf || fullx = liminf [| £, ] x.
m—00 n— o0 nZl nZl m=>n n— o0

This finishes the proof. [

When X is a quasi-Banach function space, it follows from the monotone convergence
theorem that X’ satisfies the Fatou property. This proves one direction of the so-called
Lorentz—Luxemburg theorem:

Theorem 3.6. Let X be a Banach function space over (§2, ). Then X satisfies the Fatou
property if and only if we have X" = X with equal norm.
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For a full proof of this result we refer the reader to [5, Theorem 71.1]. In particular this
result implies that for a Banach function space X, its Kothe dual X’ is norming, i.e., we have

Ifllx = sup Nfglliica-
lglxr=1
We point out that this result means that the Fatou property is equivalent to reflexivity in terms
of Kéthe duality.
Even if a quasi-Banach function space does not have the Fatou property, it always embeds
into one that does. This explains why one often assumes the Fatou property as part of the
definition of a quasi-Banach function space.

Proposition 3.7. Let X be a quasi-Banach function space over (§2, i1). Then there is a quasi-
Banach function space Y over (§2, ) that satisfies the Fatou property for which X — Y with

I flly < |Ifllx for all f € X.

According to Zaanen (see [5, Section 66]), the following construction was originally
introduced by G. G. Lorentz in an unpublished work.

Proof. We let Y C L(f2) denote the space of f € L°({2) for which there exists a sequence
(fin=1 in X for which 0 < f, 1 |f| a.e. and sup,; || fullx < co. We equip this space with
the Lorentz quasi-norm

I £lly = inf{sup || fullx : 0 < fu 1 I f1}.

n>1

For f € X we can set f, .= |f| forn > 1, so we have X C Y with || flly < |Ifllx.

In the case that || - ||x is a norm, the proof that || - ||y is also a norm satisfying the Fatou
property can be found in [5, Section 66]. These proofs remain valid, mutatis mutandis, when
I - llx is a quasi-norm. [

Remark 3.8. When X' is saturated, one can note that X” is a Banach function space with
the Fatou property that X embeds into. As a matter of fact, it is shown in [5, Theorem 71.2]
that when X is a Banach function space, then the Y constructed in the above proof is equal to
X"”. Remarkably, the above construction remains valid even when X’ is not saturated (in which
case || - ||x» would only be a seminorm).

Remark 3.9. Sometimes one only has a weaker version of the Fatou property:

o Weak Fatou property: There is a C > 0 such that if 0 < f, 1+ f for (fu)s>1 in X and
sup,-; [l fallx < oo, then f € X and || fllx < Csup,~ Il fullx-

For a quasi-Banach function space with the weak Fatou property, one actually has ¥ = X
isomorphically in Proposition 3.7. A typical example where one runs into the weak Fatou
property, is when one passes to an equivalent quasi-norm on a space with the Fatou property.
For example, this happens when one equips a quasi-Banach function space with the Aoki—
Rolewicz p-norm as defined in (2.1). If one then wants to retain the Fatou property, one can
then apply the construction in Proposition 3.7 on this p-norm and check that this is again a
p-norm, this time with the Fatou property.

Finally, we show that quasi-Banach function spaces with the Fatou property are, in some
sense, maximal. In particular, we show that if a quasi-Banach function space X isometrically
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embeds as a proper subspace into a quasi-Banach function space Y, then X cannot have the
Fatou property. For example, this means that ¢y does not have the Fatou property, as it is a
proper closed subspace of the Banach function space £*°.

Proposition 3.10. Suppose X and Y are quasi-Banach function spaces over (£2, 1), X C Y
and || fllx = | flly for all f € X. If X has the Fatou property, then X =Y.

Proof. Let f € Y,let 0 < u € X be a weak order unit, and define g, := min(| f|, nu) for
n > 1. Then, by the ideal property of X, we have g, € X for all n > 1. Moreover, g, 1 |f|
a.e. and, by the ideal property of Y,

sup [1gnllx = sup lignlly = IIflly-

n>1 n>1

Hence, | f| € X by the Fatou property of X so that f € X by the ideal property of X. [
3.3. Order continuity

Having dealt with X-valued versions of the monotone convergence theorem and Fatou’s
lemma through the Fatou property, we now wish to discuss the third main convergence theorem
of integration theory: the dominated convergence theorem. To make sense of this theorem in
a quasi-Banach function space setting, we introduce the notion of order convergence. We say
that a sequence (f,),>1 in X order converges to f € X if there is a sequence (g,),>1 in X such
that g, | O and | f — f,| < g, for all n > 1. Using this terminology, the dominated convergence
theorem is equivalent to the statement that order convergence implies norm convergence for
X = L'(£2), which can be seen by taking g, = sup.,|f — fi| forn > 1.

Not all quasi-Banach function spaces have the property that order convergence implies
norm convergence. Indeed, if X = L°°({2), order convergence corresponds to pointwise a.e.
convergence for a bounded sequence of functions, whereas norm convergence corresponds to
uniform a.e. convergence. This motivates the following definition.

Definition 3.11. A quasi-Banach function space X over ({2, w) is called order-continuous if
for sequences (f,),>1 in X with f, | O pointwise a.e. we have || f,|x | O.

We note that in an order-continuous quasi-Banach function space, order convergence implies
norm convergence, which explains the nomenclature. Rephrasing, a quasi-Banach function
space X is order-continuous if and only if an X-version of the dominated convergence theorem
holds, i.e. for any sequence (f,),>1 in X such that f, — f pointwise a.e. and |f,| < g € X
for all n > 1, it follows that

lim || f, — fllx =0.
n—o0

As already noted, L°°({2) is not order-continuous. In particular, the sequence space £ is
not order-continuous. This space is actually the prototypical space that is not order-continuous
in the following sense: Any quasi-Banach function space that is not order continuous contains
a (lattice) isomorphic copy of £°°. For Banach lattices, this can be found in [32] (see also [2,
Theorem 1.a.7]), which can be adapted to the quasi-Banach function space setting using the
Aoki-Rolewicz theorem.

Various authors use a different, but equivalent notion instead of order-continuity. A quasi-
Banach function space X is said to have absolutely continuous quasi-norm if, for all f € X
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and for all decreasing sequences of measurable sets (E,),>; with 1z, | 0 a.e,, we have

| f1g,llx 4 O.

Proposition 3.12.  Let X be a quasi-Banach function space over ({2, ). Then X is
order-continuous if and only if X has an absolutely continuous quasi-norm.

Proof. It is clear that order-continuity implies that X has an absolutely continuous quasi-norm
by taking f, = |f|1g,. For the converse, let (f,),>1 be a sequence in X with f, | 0 pointwise
a.e. Take € > 0, let u € X be a weak order unit, and define

E,:={x€Q: fi(ux) ™" > @Kxullx)e}.

Since f,u~!' | 0 pointwise a.e., we know that E, decreases to a set of measure zero. By the
absolute continuity of the quasi-norm of X, we can find an N > 1 such that
€
1 < —.
Il filey llx Ky
By the ideal property, this implies for all n > N

I fillx < Kxll falovey llx + Kx |l fuley lIx
< Kx - QKxllullx)™"e - llulg\gy llx + Kx |l filey llx
g ¢
-+ - =c.
<2%3
The assertion follows. [

We say that the measure space ({2, i) is separable if there is a countable collection of
measurable sets .4 such that for every measurable set E C (2 with u(E) < oo and every ¢ > 0
one can find an A € A with u(AAE) < e. Note that, in particular, the Lebesgue measure on
R? is separable. For separable ({2, 1), the order-continuity of a quasi-Banach function space
X over ({2, ) implies the separability of X.

Proposition 3.13. Let X be a quasi-Banach function space over a separable measure space
(2, w). If X is order-continuous, then X is separable.

Proof. Let A be a countable collection of measurable sets such that for every measurable
set E C {2 with u(E) < oo and every ¢ > 0 there is an A € A with u(AAE) < ¢. By
Proposition 2.5, there is a weak order unit u € X, i.e. a function u € X such that u > 0 a.e.
We claim that the countable set of functions

n
{Zak~u1Ak a4, € QBiQ, Ay € A} cX

k=1
is dense in X. Indeed, for any f € X, we can find a sequence of simple functions (f;)>
such that |f,| < |flu~' for all » > 1 and f, — fu~' pointwise a.e. Therefore, by the
order-continuity of X, we have that f,u — f in X. Hence, by the density of Q in R and the
quasi-triangle inequality, it suffices to show that for all measurable E C {2 there is a sequence
(Aw)p=1 in A such that lim,_ [[ulg — ulys,|lx = 0 Moreover, since ({2, ) is o-finite, it

suffices to consider u(E) < 0o

Fix a measurable £ C (2 with u(E) < oo and let (A,),>1 be a sequence of measurable sets
in A such that u(A,AE) — 0 as n — oo, i.e. 14, — 1g (locally) in measure. Then there is a
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subsequence such that ul,, — ulg pointwise a.e. By the order-continuity of X, we conclude
that limy_, oo ||“1Ank —ulg||lx = 0, finishing the proof. [J

Remark 3.14. The converse of Proposition 3.13 also holds: if X is a separable quasi-Banach
function space over ({2, u), then X is order-continuous and ({2, i) is separable. The order-
continuity of X follows from the fact that X contains an isomorphic copy of £ if it is not
order-continuous and for the separability of ({2, i), one can adapt the proof of [1, Theorem
1.5.5]

By Proposition 3.1, X’ can be identified with a closed subspace in X*. In the next proposition
we will characterize when X' = X*.
Proposition 3.15. Let X be a quasi-Banach function space over ({2, ).

(i) If X is order-continuous, then X' = X*.

(ii) If X is a Banach function space and X' = X*, then X is order-continuous.
P

Proof. For (i) assume that X is order-continuous and let # € X be a weak order unit, i.e. u > 0
a.e. Take x* € X* and for all measurable E C (2 define A(E) = x*(1gu). Then A is a complex

measure, since for disjoint, measurable E, E;, ... C {2 we have
o) N 00 o0
— 3 * _
x(U E) = lim Y AE) +x ( 3 lEnu) = ME.
n=1 n=1 n=N+1 n=1

where the last step follows from )"\ 1,u | O pointwise a.e. as N — oo and the order
continuity of X. Moreover, note that A is absolutely continuous with respect to u du, so by the
Radon—Nikodym theorem there is a g € LO(f2) such that x*(1zu) = A(E) = fE gu du for all
measurable E C (2.

Now let f € X be arbitrary and let (f,),>1 be a sequence of simple functions such that
|ful <|flu=!foralln > 1 and f, — fu~! pointwise a.e. By the order-continuity of X, we
have f,u — f in X and thus, by the dominated convergence theorem,

X*(f) = lim x*(fuu) = 1imf Jn8u dlL:/ fgdu.
n—00 n—oo | 0

We conclude that g € X’ and «(g) = x*, which shows that X* = X’.

For (ii) assume that X is a Banach function space and X’ = X*. Let (f;,),>1 be a sequence
in X such that f,, | 0 pointwise a.e. For any g € X’ we have, by the dominated convergence
theorem, that

lim fngdu =0.

n—0o0 Q
Since X’ = X*, we deduce that {f, : n > 1} U0 is weakly closed. Thus, by the Hahn—
Banach separation theorem, its convex hull is norm closed. Therefore, for any ¢ > 0, there are
ap,...,a, >0 with Y }_, ax = 1 such that || Y }_, ax fellx < &. Since (f,),>1 is decreasing,
this implies that || f;||x < & for all j > n, finishing the proof. [

We note that, if X is a quasi-Banach function space, it can happen that X* = {0}. In this
case the assumption X’ = X* is trivial, which explains the need for the assumption that X is
a Banach function space in Proposition 3.15(ii). For an example of a quasi-Banach function
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space X with trivial dual and which is not order-continuous, we refer the reader to [11, Example
2.19].

We end this subsection with a corollary on the connection between order-continuity and
reflexivity.

Corollary 3.16. Let X be a Banach function space over ({2, ). Then X is reflexive if and
only if X has the Fatou property and X and X' are order-continuous.

Proof. If X has the Fatou property and X and X’ are order-continuous, we immediately obtain
X** — X/* — X// — X

by Proposition 3.15(i) and Theorem 3.6, so X is reflexive.
For the converse, assume that X is reflexive. By Theorem 3.2 the space X’ is saturated, so
by Proposition 3.1 and Proposition 2.5(iv), we have

(X/)T={feX:fdfgdx=0forallgeX’}={0},
R

As X is reflexive and X’ is closed, this proves that X" = X*. Thus, Proposition 3.15(ii) implies
that X is order-continuous. Moreover, we obtain

X/* — X** — X.

By Proposition 3.1 we have X” C X’* and, as in the proof of Theorem 3.3, we have X C X",
both with embedding constant 1. We conclude that actually

X// — X/* — X

The first equality implies that X’ is order-continuous by Proposition 3.15(ii), and the second
equality implies that X has the Fatou property by Theorem 3.6. This proves the result. [

3.4. Weighted Banach function spaces

In this final subsection, we want to make clear that the saturation property naturally allows
one to consider weighted spaces without having to change any of the defining properties of a
quasi-Banach function space to weighted versions (cf. [7]). Moreover, we will provide a general
strategy which can be used to transfer results in the literature for quasi-Banach function spaces
(and their Kothe duals) assumed to contain all indicator functions of sets of finite measure to
results for quasi-Banach function spaces satisfying the saturation property.

To do so, we discuss two ways of introducing a weight to a quasi-Banach function space:
as a multiplier and as a change of measure. For the multiplier viewpoint, we take a weight
0<welL'(N),a quasi-Banach function space X over ({2, u), and define a new space X(w)
as the space of those f € L°(f2) for which fw € X, equipped with the quasi-norm

I/ lxaw) =l fwlx.
This is again a quasi-Banach function space over ({2, u):
Proposition 3.17. Let X be a quasi-Banach function space over (§2, ) and let 0 < w €
LO$2). Then X(w) is a quasi-Banach function space over (§2, u) with Kxq, = Kx and
Xw) = X'(w™h.
Moreover, if X has the Fatou property or is order-continuous, then the same holds for X(w).
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Proof. We observe that the map f +— fw~! is an order preserving isometric isomorphism
between X and X(w). Hence, the ideal, Riesz—Fischer and Fatou properties, as well as order-
continuity, respectively, are possessed by X(w) if and only if they are by X. Similarly, for the
saturation property, note that if 0 < u € X is a weak order unit, then its image under this map
uw™! € X(w) is also a weak order unit. This concludes the proof of the first result.

For the equality X(w) = X'(w™"), we note that

lglxwy = sup /|f|w|g|w—1du= sup f|h||g|w—'du
1l xy=1/$2 Il x=1J 2

—1
= llgw " llx = lgllxq@-1)-
This proves the result. [

Instead of adding a weight as a multiplier, we can also take a weight 0 < w € L°({2) and
consider it as a change of measure through

w(E) :=/wdu,
E

whic