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A B S T R A C T

Spectral information of coastal waves and the associated statistical parameters (e.g., the significant wave
height and mean wave period) over large spatial scales is essential for many applications (e.g., coastal safety
assessments, coastal management and developments, etc.). This demand explains the necessity for accurate
yet effective models. A well-known efficient modelling approach is the quadratic approach (often referred
to as frequency-domain models, weakly nonlinear mild-slope models, amplitude models, etc.). The efficiency
of this approach is achieved through modelling reduction of the original governing equations (e.g., Euler
equations). Most significantly, wave nonlinearity is described solely by a single quadratic mode-coupling
term. Therefore, doubts arise with regard to the predictive capabilities of the quadratic approach to reliably
describe the nonlinear development of waves in the coastal environment where nonlinearity is typically
significant. This study attempts to push the limit of the prediction capabilities of nonlinear coastal waves
based on the quadratic approach. To this end, an optimization process is proposed, striving to extract the
quadratic formulation which describes most adequately nonlinear wave developments over water depths and
bathymetrical structures which characterize the coastal environment. The outcome is the model QuadWave1D:
a fully dispersive quadratic model for coastal wave prediction in one-dimension. Based on a wide set of
examples (including monochromatic, bichromatic and irregular wave conditions) and comparing to other
representative quadratic formulations, it is found that QuadWave1D presents superior predictive capabilities
of both the sea-swell components and the infragravity field.
1. Introduction

The prediction of coastal waves over large scales is crucial to
coastal communities and municipalities, as they force nearshore cir-
culation (e.g., Longuet-Higgins, 1970; Bowen, 1969; Ruessink et al.,
2001 and Reniers and Battjes, 1997) and sediment transport pro-
cesses (e.g., Van Rijn, 1993 and Fredsoe and Deigaard, 1992), as
well as controlling shipping operations and associated downtime, and
coastal safety through beach and dune erosion and potential inundation
(e.g., Vellinga, 1982 and Roelvink et al., 2009).

Accurate determination of wave forcing in the coastal environment
requires adequate description of shallow water nonlinearity. Time-
domain models (e.g., Zijlema et al., 2011 and Shi et al., 2012) allow
detailed and accurate modelling of nonlinear wave transformation,
and therefore, enable to study the associated wave impacts nearshore
(e.g., Roeber and Bricker, 2015). However, over coastal regions of large
scales, this detailed wave prediction becomes impractical in terms of
computational time. As a result, practitioners usually rely on wave

∗ Corresponding author.
E-mail address: G.Akrish@tudelft.nl (G. Akrish).

data obtained using spectral models (e.g., SWAN model, Booij et al.,
1999, WAVEWATCH model, Tolman, 1991). Despite the gain in effi-
ciency, spectral modelling of shallow water nonlinearity is significantly
limited. Apart from the constraints and parameterization applied to
limit energy exchanges with higher harmonics (Eldeberky, 1996), en-
ergy transfer to the infragravity band is entirely excluded (spectral
modelling of infragravity response has recently gained progress, see
e.g., Reniers and Zijlema, 2022).

A well-known modelling alternative enabling practical (in terms
of computational time) large scale wave prediction is the quadratic
approach (often referred to as frequency-domain models, nonlinear
mild-slope models, amplitude models, etc.). This modelling approach is
less accurate than time-domain models, but allows for a more adequate
and detailed description of shallow water nonlinearity compared to
spectral models. The efficiency of this approach stems from a significant
modelling reduction of the original governing equations (e.g., Euler
equations). Most significantly, the description of wave nonlinearity
vailable online 5 April 2024
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essentially collapses into a single mode coupling term determined by
the quadratic interaction coefficients. As a result, it is expected that
the efficiency achieved by the quadratic approach is accompanied by a
decrease in prediction accuracy. Minimizing the deterioration in model
accuracy of the quadratic approach is at the centre of interest of this
study.

Besides being a stand-alone model (Sheremet et al., 2016), the
quadratic model is also the starting point for the spectral formulation of
shallow water nonlinearity (e.g., Herbers and Burton, 1997). Therefore,
the minimization of the error accompanied by the quadratic term, will
not only lead to the improvement of the quadratic model itself, but will
also enable a more reliable and accurate formulation of the nonlinear
source term (i.e., the 𝑆𝑛𝑙3 formulation for shallow water nonlinearity)
f spectral models (e.g., Booij et al., 1999).

The quadratic approach was initially formulated on the basis of
ime-domain weakly nonlinear Boussinesq models (e.g., Peregrine,
967 and Madsen and Sørensen, 1992). Well known Boussinesq
ormulations were proposed by Freilich and Guza, 1984 and Madsen
nd Sørensen, 1993. Further developments of the quadratic approach
ere mainly devoted to the improvement of the linear wave description

i.e., dispersion relation and linear shoaling) and eventually led to the
erivation of the so-called fully dispersive formulations (e.g., Agnon
t al., 1993; Kaihatu and Kirby, 1995; Eldeberky and Madsen, 1999;
redmose et al., 2005; Ardani and Kaihatu, 2019 and Kim and Kaihatu,
021).

While there is no doubt that these developments have improved
he linear properties of the quadratic model approach, there is doubt
s to the improvement in the description of nonlinear evolution. This
oubt stems from the fact that the improvement of the linear properties
f the quadratic model is accompanied by a change in the quadratic
oefficients, and therefore, also by a change in the truncation error ob-
ained due to the modelling reduction associated with the formulation
f the quadratic model. An indication for that is revealed through the
xamination of higher-order wave properties. Specifically, it seems that
he existing fully dispersive formulations tend to overestimate the so-
alled amplitude dispersion over water depths that characterizes the
oastal environment (e.g., Kaihatu, 2001; Bredmose et al., 2004, 2005
nd Akrish et al., 2024). Not only does this cause the development of
hase errors (Bredmose et al., 2005), it may also lead to unexpected
volution of energy spectra due to false impact of the modulational
nstability mechanism (Akrish et al., 2024). As a result, the evolution
f both the primary wave field and the secondary components (i.e., the
orced higher harmonics and infragravity band) may be predicted
nadequately over coastal waters, despite the accurate implementation
f linear wave properties.

This study aims to develop a new quadratic formulation that pre-
erves full dispersion, but minimizes the error associated with the
runcation in nonlinearity. In other words, this new formulation aims
o optimize nonlinear model description based on the quadratic term,
nder the constraint of full linear dispersion. Instead of a rigorous
hysical-based formulation, the formulation proposed here is based on
parameterization which relies on available data. To start with, a

eneral introduction of the quadratic modelling approach is presented
n Section 2. Then, the general properties required to be satisfied by
he quadratic coefficients are discussed in Section 3. These properties
ogether with the requirement of full dispersion are used to constrain
he search for the optimal quadratic formulation. The formulation itself
s detailed in Section 4. Subsequently, a wide set of verification exam-
les is considered in Section 5. These examples include monochromatic,
ichromatic and irregular wave conditions. Through these examples,
he predictive capabilities of the new formulation are demonstrated
sing comparisons to measured results, to the well verified SWASH
odel (Zijlema et al., 2011) and to other quadratic formulations.

inally, discussion and concluding remarks are drawn in Section 6.
2

2. The quadratic modelling approach

Generally speaking, the quadratic model derivation starts with an
underlying time-domain model. The latter is usually written as a set
of two equations for the surface elevation, 𝜂, and for the fluid ve-
ocity variable (may be the depth-averaged horizontal velocity or the
orizontal velocity at a certain elevation level or the surface velocity
otential etc.). Under the assumption of periodicity in time and slow
odulation in space, the formulation can be written in terms of the

patially dependent complex amplitudes, 𝑎𝑛, defined by

=
∑

𝑛
𝑎𝑛 exp(−𝑖𝜔𝑛𝑡), (1)

here 𝜔𝑛 is the 𝑛𝑡ℎ wave angular-frequency and 𝑡 represents the tempo-
al coordinate. The usual procedure to derive the quadratic formulation
s through the multiple-scale method. A detailed account for such
erivation can be found for instance in Dingemans (1997), Chapter 7
see also Akrish et al., 2024, Appendix A). Ignoring medium variations,
nd assuming that the waves are long crested (e.g., confining the
iscussion to one spatial dimension), the resulted formulation describes
balance between the slow spatial variation of the amplitudes and the
eak nonlinear quadratic term, written as

𝑥𝑎𝑛 − 𝑖𝑘𝑛𝑎𝑛 = −𝑖
∑

𝑟
𝑉𝑟,𝑛−𝑟𝑎𝑟𝑎𝑛−𝑟, (2)

where 𝑉𝑙,𝑚 are the quadratic interaction coefficients, 𝑘𝑛 is the 𝑛𝑡ℎ

wavenumber and 𝑥 represents the spatial coordinate.
The prediction capabilities of different quadratic formulations are

often initially evaluated based on their embedded linear dispersion,
determined by 𝑘𝑛, and the second-order transfer function which is
determined by both 𝑉𝑙,𝑚 and 𝑘𝑛 (e.g., Madsen and Sørensen, 1993; El-
deberky and Madsen, 1999; Bredmose et al., 2005 and Janssen, 2006).
The latter defines the bound wave response and provides an indication
for the predictive capabilities of weak nonlinearity, i.e., under the
assumption that the so-called Ursell number, 𝑈𝑟, is relatively small. For
small enough Ursell number (𝑈𝑟 < 26, using the definition given by Le
Méhauté, 1976), the accuracy of the second order transfer function can
be measured based on the second-order Stokes theory (expressions of
which are given by, e.g., Hasselmann, 1962; Sharma and Dean, 1981
and Dalzell, 1999).

This preliminary assessment can also be used to classify the different
quadratic formulations. At one end, the classical weakly dispersive
Boussinesq formulation of Freilich and Guza (1984) is found. The other
end can be defined by the fully dispersive model of Bredmose et al.
(2005) which considers all possible second-order terms, and therefore,
allows exact second-order transfer (i.e., the bound wave solutions
according to this model match exactly to the solutions according to
Stokes theory). The range of formulations placed in between consists of
Boussinesq formulations with improved dispersion and fully dispersive
formulations with different transfer function definitions. A well-known
representation of the former is the formulation of Madsen and Sørensen
(1993) which also serves as the starting point for the formulation of
phase-averaged shallow water nonlinearity (Eldeberky, 1996) imple-
mented in operational wave models (e.g., the SWAN model, Booij et al.,
1999), while representation of the latter can be the well-known model
of Kaihatu and Kirby (1995). Note that this model range also includes
more advanced generalizations of the fully dispersive approach, such as
the model by Eldeberky and Madsen (1999) and the model by Ardani
and Kaihatu (2019). On the other hand, the model range excludes
models which deviate from the structure defined in (2). Thus, for ex-
ample, recent model generalization by Kim and Kaihatu (2021), which
includes quadratic terms involving amplitude gradients (i.e., terms such
as 𝑎𝑟𝜕𝑥𝑎𝑛−𝑟), is outside the scope of the present investigation.

Over coastal waters, both linear dispersion and nonlinear wave–
wave interaction are important. Specifically, it is essential that these

processes are accurately described for adequate representation of the
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balance between them and, e.g., the associated wave transformation
towards breaking. Therefore, it is expected that the model by Bredmose
et al. (2005), which exhibits accurate linear and nonlinear properties,
will predict most adequately the evolution of coastal waves. However,
a recent study by Akrish et al. (2024) shows otherwise. Particularly,
the evolution of coastal waves was found to be largely determined by
the amplitude dispersion, which is a nonlinear property that arises at
third-order. Moreover, Akrish et al. (2024) showed that the tendency
of fully dispersive models to overestimate the amplitude dispersion
results in unfavourable modifications of the modulational instability
mechanism (see a qualitative description by Lighthill, 2001, page 462,
of the effect of amplitude dispersion on the development of a nonlinear
modulated wave field leading to the emergence of the mechanism
known as modulational instability). Consequently, these models may
become modulationally unstable over much shallower water than ex-
pected and may be subjected to much stronger growth rates and much
larger modulation ranges. As a result, predictions of coastal waves using
fully dispersive models can be characterized by unexpectedly strong
modulations of the sea-swell components and associated unexpected
infragravity response. These results imply the impact of inadequate
representation of wave properties at higher-order, and more generally,
the consequences of the truncation in nonlinearity associated with the
formulation of the quadratic approach.

To conclude, the indication provided by the second-order transfer
function as to model prediction of nonlinearity seems to be inadequate.
At least qualitatively, model prediction of nonlinearity can be said to
be determined by the balance between wave interactions transferring
energy towards super and sub harmonics. This nonlinear balance seems
to be dependent on both the interaction coefficients, 𝑉𝑙,𝑚, and the
ispersion relation defined by 𝑘𝑛. It is hypothesized that under the
onstraint of full linear dispersion, there exist 𝑉𝑙,𝑚 which optimize
his nonlinear balance, leading to superior predictive capabilities of
oth the sea-swell components and the infragravity field over coastal
aters. This study attempts to find these 𝑉𝑙,𝑚. In addition to full linear
ispersion, the search for the optimal 𝑉𝑙,𝑚 is also constrained by general
roperties required for any candidate of 𝑉𝑙,𝑚. These general properties
re detailed next.

. General properties for the quadratic interaction coefficients

The properties required to be satisfied by the quadratic interaction
oefficients are explained in the following. The starting point is the
efinition of 𝜂 based on the Fourier series in (1). Following this starting
oint, the reality of 𝜂 yields the condition

𝑎𝑛)∗ = 𝑎−𝑛 (3)

ased on this condition and assuming that 𝑘𝑛 and 𝑉𝑙,𝑚 are defined
s real functions, the general quadratic formulation (2) leads to the
ollowing properties:
{

𝑘−𝑛 = −𝑘𝑛
𝑉−𝑙,−𝑚 = −𝑉𝑙,𝑚

(4)

ithout loss of generality, it will be convenient to assume the following
ymmetry:

𝑙,𝑚 = 𝑉𝑚,𝑙 (5)

his symmetry indeed holds for all the quadratic formulations discussed
n Section 2 (see details in Akrish et al., 2024, Supplementary material).
s a consequence of the properties defined by (4) and (5), the following
esult is obtained:

𝑙,−𝑙 = −𝑉𝑙,−𝑙 = 0 (6)

n additional property is obtained through the analysis of the dynami-
3

al behaviour of a typical triad interaction of the quadratic system. To
his end, consider the following triad model:

𝜕𝑥𝑎1 − 𝑖𝑘1𝑎1 = −𝑖2𝑉3,−2𝑎3𝑎−2
𝜕𝑥𝑎2 − 𝑖𝑘2𝑎2 = −𝑖2𝑉3,−1𝑎3𝑎−1
𝜕𝑥𝑎3 − 𝑖𝑘3𝑎3 = −𝑖2𝑉1,2𝑎1𝑎2

(7)

This model is derived based on the quadratic model (2), by restricting
the dynamics to three frequencies which satisfy the relation 𝜔1 + 𝜔2 =
3. The corresponding coupled equations for the variance spectrum,
𝑗 = 𝑎𝑗𝑎−𝑗 , are given by

𝜕𝑥𝐸1 = 4𝑉3,−2Im{𝑎3𝑎−2𝑎−1}
𝜕𝑥𝐸2 = 4𝑉3,−1Im{𝑎3𝑎−2𝑎−1}
𝜕𝑥𝐸3 = −4𝑉1,2Im{𝑎3𝑎−2𝑎−1}

(8)

This system leads to the following Manley–Rowe relations (e.g., Craik,
1985):

𝜕𝑥

(

𝐸1
𝑉3,−2

+
𝐸3
𝑉1,2

)

= 0, 𝜕𝑥

(

𝐸2
𝑉3,−1

+
𝐸3
𝑉1,2

)

= 0, 𝜕𝑥

(

𝐸2
𝑉3,−1

−
𝐸1
𝑉3,−2

)

= 0

(9)

As is clearly described by these relations, the evolution of the variance
spectrum is bounded if the quadratic coefficients 𝑉1,2, 𝑉3,−1 and 𝑉3,−2
have the same sign. In that case, the wave components are period-
ically exchanging energy (energy loss by 𝑎1 and 𝑎2 is gained by 𝑎3
and vice versa). Therefore, each variance component, 𝐸𝑗 , is spatially
oscillating, which implies on a conservative interaction (see further
details by Craik, 1985 and Vanneste, 2005). This leads to the general
conclusion that in order to obtain a quadratic formulation that is
characterized by conservative and bounded triad interactions, its super
and sub interaction coefficients should have the same sign, namely,

𝑠𝑔𝑛{𝑉𝑙,𝑚} = 𝑠𝑔𝑛{𝑉𝑙,−𝑚} (10)

for which

𝑠𝑔𝑛{𝑙 + 𝑚} = 𝑠𝑔𝑛{𝑙 − 𝑚} (11)

Finally, an additional property is obtained by requiring that the solu-
tions for the bound super and sub harmonics be in phase and 180◦

out of phase with respect to the primary forcing, respectively. This
requirement means that the second-order transfer function, 𝐺𝑙,𝑚, which
determines the bound solutions through the relation 𝐺𝑙,𝑚 = 𝑉𝑙,𝑚∕(𝑘𝑛 −
𝑘𝑙 + 𝑘𝑚), should obey to the following:
{

𝐺𝑙,𝑚 > 0, 𝑠𝑔𝑛{𝑙} = 𝑠𝑔𝑛{𝑚}
𝐺𝑙,𝑚 < 0, 𝑠𝑔𝑛{𝑙} = −𝑠𝑔𝑛{𝑚}

(12)

which also means that 𝑉𝑙,𝑚 > 0 for 𝑙 + 𝑚 > 0.

4. A parametric derivation of improved fully dispersive quadratic
model

Generally speaking, there are an infinite number of fully dispersive
formulations that can be defined, which satisfy the general properties
of 𝑉𝑙,𝑚 as defined above. Nevertheless, it is attempted here to find the
𝑉𝑙,𝑚 that optimize prediction capabilities of nonlinear wave evolution.
Since the interest here is devoted to the dynamics of coastal waves,
the search is for 𝑉𝑙,𝑚 with optimal performance over water depths that
roughly satisfy 𝜇 ≤ 2, where 𝜇 = 𝑘𝑝ℎ is the so-called depth parameter,
𝑘𝑝 is the characteristic wavenumber of a considered wave field and ℎ
represents the water depth.

In contrast to the conventional rigorous formulation approach, the
search for the optimal 𝑉𝑙,𝑚 is performed here through an alternative
approach using data of laboratory experiments and the well-validated
time-domain model SWASH. Such an approach requires an ensemble
of wave simulations which were conducted under the desired depth
conditions and which describe spatially evolving and stationary (time-
periodic) wave fields. For each such simulation, it is required to extract
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the corresponding complex-amplitude vector and its spatial derivative
at several different locations in order to construct an algebraic sys-
tem which can be solved for 𝑉𝑙,𝑚 (alternatively, it is also possible to
construct similar system based on the energy-flux gradients and the
bispectrum). This complex process requires large data sets with differ-
ent conditions and requires to correctly evaluate numerical derivatives
which pose difficulties due to the presence of noise. An additional
difficulty arises as a result of the dependence of the extracted 𝑉𝑙,𝑚
values on the amplitudes themselves, suggesting different values of
𝑉𝑙,𝑚 for simulations of different Ursell numbers. Given the complexity
of this direct method, an alternative procedure is proposed here. This
procedure would not lead to the ambitious goal of finding the optimal
values of 𝑉𝑙,𝑚, but may allow formulating a satisfactory and robust
solution for 𝑉𝑙,𝑚, which avoids the dependence on the amplitudes.

The alternative procedure proposed here relies on a weight function,
𝑊𝑙,𝑚, that is defined through a basic parameter 𝜒 and through three
dditional parameters, 𝛼1, 𝛼2 and 𝛼3 as follows:

𝑙,𝑚 = exp

[

−
(

𝜒
𝛼3

)𝛼2
]

(13)

here 𝜒 is defined as

= |𝑘𝑙𝑚|ℎ
(

|𝑘𝑙𝑚|
|𝑘𝑛|

)𝛼1
(14)

and where 𝛼1, 𝛼2 and 𝛼3 define ranges of positive numbers over which
the optimization is performed. Finally, 𝑘𝑙𝑚 is defined as 𝑘𝑙𝑚 = 𝑘𝑙 +
𝑘𝑚. The weight function given by (13) together with the quadratic
coefficients suggested by Bredmose et al. (2005) are used to define the
following weighed coefficients:

𝑉 𝑊𝑄𝐶
𝑙,𝑚 = 𝑊𝑙,𝑚𝑉

𝐵𝐶
𝑙,𝑚 (15)

where the superscripts 𝑊𝑄𝐶 and 𝐵𝐶 stand for ‘Weighted Quadratic
Coefficients’ and ‘Bredmose Coefficients’, respectively (for convenience,
the definition for 𝑉 𝐵𝐶

𝑙,𝑚 is included in Appendix A). Thus, instead of
finding many discrete optimal values of 𝑉𝑙,𝑚 directly, the optimization
problem proposed here amounts to finding only three values of 𝛼1, 𝛼2
and 𝛼3 which minimize the prediction errors with respect to data of
laboratory experiments and SWASH. It remains to explain the selected
functional structure of the weight function (which is also defined by 𝜒)
and the choice to use 𝑉 𝐵𝐶

𝑙,𝑚 .
The chosen definition of 𝑊𝑙,𝑚 is based on the following require-

ments. First, it should be defined such that 𝑉 𝑊𝑄𝐶
𝑙,𝑚 complies with the

general properties detailed in Section 3. Second, it is proposed here
that 𝑊𝑙,𝑚 would converge to zero as 𝜇 increases. The motivation behind
this second requirement is to prevent overestimation of the amplitude
dispersion and the associated modifications of the modulational in-
stability mechanism over coastal waters (see discussion in Section 2
and Akrish et al., 2024). In addition, forcing 𝑊𝑙,𝑚 to converge to zero
for high 𝜇 values also aims to avoid other unfavourable nonlinear
mechanisms which seem to characterize models with full dispersion and
which lead to an unwanted dependence on the choice of the maximum
frequency (see Section 4.2). However, attenuating the interaction co-
efficients would also result in unfavourable consequences. Specifically,
this constraint would lead to inaccurate predictive capabilities of the
second-order bound waves in deep to intermediate waters. To conclude,
this second requirement essentially sacrifices the accuracy of the bound
wave response in deep to intermediate waters in favour of adequate
wave evolution in intermediate to shallow waters.

The definition of 𝑊𝑙,𝑚 as given by (13) satisfies the first requirement
due to its symmetry with respect to the indices 𝑙 and 𝑚 and since it is
positive. The second requirement is satisfied as well under the condition
that 𝜒 is positive and represents in a certain way the parameter 𝜇.
The selected exponential structure of 𝑊𝑙,𝑚 indeed preserves weighted
regions that correspond to interactions of waves over relatively shallow
waters and weakens weighted regions that correspond to interactions
4

in deep water. i
Table 1
Physical parameters of the examples considered for the optimization process.

Example 𝐿 (m) ℎ (m) 𝑇 (s) 𝜇 𝑎𝑚𝑝𝐼 (m) 𝑈𝑟

E1 40 0.4 3.3 0.39 0.03 38
E2 25 0.4 2.5 0.53 0.042 29
E3 10 0.4 2 0.68 0.06 26

The specific definition of 𝜒 , as given by (14), is intimately related
to the quadratic interaction coefficients of Freilich and Guza (1984)
(see Freilich and Guza, 1984, Eqs. 16a and 16b). The implementation
of this definition in 𝑊𝑙,𝑚 generates a structure which roughly describes
traight contour lines with a 45◦ decreasing slope for the superhar-
onic interactions and a −45◦ decreasing slope for the subharmonic

nteractions (see Fig. 1). This is more or less the structure of the nor-
alized coefficients and transfer function of Freilich and Guza (1984)

see Janssen, 2006, Fig. 3.6 and Akrish et al., 2024, Fig. 1). Thus, the
eighted coefficients, 𝑉 𝑊𝑄𝐶

𝑙,𝑚 , defined through the functional structure
f 𝑊𝑙,𝑚, the definition of 𝜒 and the coefficients of Bredmose et al.
2005) presents a structure similar to that of Freilich and Guza (1984).
his choice is motivated by the success of the quadratic coefficients
f Freilich and Guza (1984) to accurately describe energy exchanges
ver shallow waters (e.g., Herbers et al., 2000; De Bakker et al.,
015 and Rijnsdorp et al., 2022). Based on this motivation one may
rgue that the quadratic coefficients of Freilich and Guza (1984) could
e used directly. However, following the experience of the present
nvestigation, direct use of the coefficients of Freilich and Guza (1984)
nder fully dispersive conditions would not yield satisfactory results.

At this stage, the roles of 𝛼1, 𝛼2 and 𝛼3 are introduced. The pa-
ameter 𝛼1 allows for some structural deviations of the contour lines
ncluding their rotation (see the different contour pattern obtained for
ifferent values of 𝛼1 in Fig. 1). The parameters 𝛼2 and 𝛼3 determine
he dispersion (similar to the definition of the standard deviation)
nd the steepness (namely, how fast is the transition from 1 to 0) of
he contours, respectively. Different values of 𝛼1, 𝛼2 and 𝛼3 generate
ifferent contour patterns of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 , resulting in different dynamical
alance of superharmonics and subharmonics energy transfers. Finally,
ote that the allowable ranges for 𝛼1, 𝛼2 and 𝛼3 are limited, so that
nly reasonable candidates of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 are included as part of the opti-
ization. For example, to guarantee the convergence of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 to zero
or deep water interactions, it is required that 𝛼1 > 0 (see Fig. 1).
dditionally, to allow for a reliable subharmonic bound wave forcing,
1 should also subjected to an upper bound limit of around 2 (refer
gain to Fig. 1). Similarly, the values for 𝛼2 and 𝛼3 are limited as well
o exclude exceptional and undesirable candidates of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 .

.1. The optimization process

The optimization process is summarized by the following. In total,
ata of three examples of monochromatic wave propagation along a
lume of constant depth are considered. These examples are referred
o as E1, E2, and E3. The physical parameters that define each of the
xamples are summarized in Table 1. These include the length of the
lume 𝐿, the water depth ℎ, the wave period 𝑇 , the depth parameter 𝜇,
he incoming wave amplitude 𝑎𝑚𝑝𝐼 and the Ursell parameter 𝑈𝑟.

These examples were chosen such that the nonlinearity of the gener-
ted monochromatic wave is relatively weak (all the examples assigned
o similar small 𝑈𝑟 values to avoid wave breaking). Additionally, the
epth parameters of the examples were selected such that a wide range
ample of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 values is generated. Specifically, the sample should be
oncentrated over (𝑘𝑙ℎ, 𝑘𝑚ℎ) region that corresponds to coastal water
epths. The effective sample of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 values over (𝑘𝑙ℎ, 𝑘𝑚ℎ) (including
oints that correspond to interactions of up to 𝑂(𝜖4)) is described
n Fig. 1. These points include 𝑉 𝑊𝑄𝐶

𝑙,𝑚 values that correspond to the
(𝜖2) self interaction of the first harmonic, the 𝑂(𝜖3) super and sub

4
nteractions between the first and the second harmonics, the 𝑂(𝜖 )
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Fig. 1. The weighted quadratic coefficients, 𝑉 𝑊𝑄𝐶
𝑙,𝑚 , normalized by the quadratic coefficients of Bredmose et al. (2005) (or simply the weight function 𝑊𝑙,𝑚) for three values of 𝛼1

and using the parameter values 𝛼2 = 1.4 and 𝛼3 = 5.5. Self interaction coefficients are presented along the main diagonal of each panel, while super and sub interaction coefficients
are presented by the upper and lower triangular of each panel, respectively. The dots represent the sampled interaction coefficients that correspond to interactions of up to 𝑂(𝜖4)
ue to the different considered examples. Red, black and green dots correspond to E1, E2, and E3 respectively.
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elf interaction of the second harmonic and the 𝑂(𝜖4) super and sub
nteractions between the first and the third harmonics.

Based on the above described examples (E1, E2, and E3), the
ptimization process strives to find the weighted quadratic formulation
using the full linear dispersion relation and 𝑉 𝑊𝑄𝐶

𝑙,𝑚 ) which minimizes
he prediction errors (defined by (17)) with respect to given data. The
earch is performed over the following domain:

𝛼1 = [0.5, 2]
𝛼2 = [1, 2]
𝛼2 = [2, 10]

(16)

The accuracy of the results at each point (𝛼1, 𝛼2, 𝛼3) is examined with
espect to experimental data and results of simulation using SWASH. To
his end, the following normalized error is defined:

(𝛼1, 𝛼2, 𝛼3) =
∑

𝑗

∑

𝑖
|𝑎𝑚𝑝𝑖,𝑗 − 𝑎𝑚𝑝𝑅,𝑖,𝑗 |∕𝑎𝑚𝑝𝐼 (17)

here 𝑗 runs over the first three harmonics and 𝑖 runs over the data
ocations. The reference amplitudes, 𝑎𝑚𝑝𝑅,𝑖,𝑗 , are based on SWASH
esults for E1 and E3, and on the experimental results of Chapalain
t al. (1992) for E2. The results through SWASH are obtained using
wo vertical layers, spatial step of 𝛥𝑥 = 0.01 m, time step of 𝛥𝑡 = 0.0025
and simulation time of 10 min. The results of the quadratic model are
omputed based on the RK4 method, using the first six harmonics only
the first harmonic also serves as the frequency step and the maximum
requency is the sixth harmonic) and a spatial step of 𝛥𝑥 = 0.05 m.
inally, the normalized errors obtained through each of the examples
re summed together, providing the point which scores the minimum
otal normalized error with respect to the reference data. This point is
iven by (𝛼1 = 1, 𝛼2 = 1.4, 𝛼3 = 5.5), as partially described (over (𝛼2, 𝛼3)
nly) by Fig. 2.

.2. Nonlinear properties and model sensitivity to the presence of high
requencies

The quadratic model with the optimized weighted quadratic co-
fficients is referred to as the QuadWave1D model (see detailed for-
ulation of its quadratic coefficients in Appendix A). The nonlinear
roperties of QuadWave1D are investigated here through comparisons
o the properties of other representative quadratic formulations. In
ccordance with the classification described in Section 2, the selected
epresentative quadratic formulations are the weakly dispersive Boussi-
esq formulation of Freilich and Guza (1984), the Boussinesq formula-
ions with improved dispersion of Madsen and Sørensen (1993) and
wogu (1993) and the fully dispersive formulations by Kaihatu and
irby (1995) and Bredmose et al. (2005). Note that Nwogu (1993)
ctually presents a time-domain model formulation. Here though, this
5

e

Fig. 2. Normalized total amplitude error with respect to experimental data following
Chapalain et al. (1992) and results of simulation using SWASH for 𝛼1 = 1.

eference is used to refer to the corresponding quadratic formulation.
he derivation of Nwogu’s quadratic formulation and the formulations
f the other quadratic models are summarized in Akrish et al. (2024),
upplementary material.

At first, the bound wave solutions normalized by the solutions
ue to the second-order Stokes theory are considered. The normal-
zed bound solutions due to QuadWave1D are actually given by the
eight function 𝑊𝑙,𝑚, illustrated by the middle panel of Fig. 1. This is
nderstood by recalling that QuadWave1D is fully dispersive and its
uadratic coefficients are defined based on 𝑉 𝐵𝐶

𝑙,𝑚 which lead to exact
econd-order transfer. Therefore, the normalization with respect to the
olutions of the second-order Stokes theory becomes equivalent to the
ormalization of 𝑉 𝑊𝑄𝐶

𝑙,𝑚 with respect to 𝑉 𝐵𝐶
𝑙,𝑚 , which equals to 𝑊𝑙,𝑚. The

ormalized bound solutions of QuadWave1D can be compared to the
ormalized bound solutions of the other quadratic formulations which
re provided by Akrish et al. (2024), Fig. 1. Clearly, QuadWave1D un-
erpredicts bound wave responses. Insignificant deviations appear for
nteractions within the radius 𝜇 < 2, while significant underestimation
rises if one of the forcing waves corresponds to 𝜇 > 2.

In addition, the amplitude dispersion due to self interaction, 𝜔(2)
𝑝,𝑝,

nd the modulational instability threshold are examined. These third-
rder properties are calculated as functions of the interaction coeffi-
ients and the dispersion relation using expressions given by Akrish
t al. (2024) (see Akrish et al., 2024, Eqs. 14–15 and Eq. 25). The results
re shown in Fig. 3. These results are based on the different quadratic
ormulations considered here and are compared to well-known analyti-
al results at third-order (see, e.g., Whitham, 1974, Section 16 and Mei
t al., 2005, Section 13).
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Fig. 3. Normalized amplitude dispersion due self interactions (left panel) and modulationally stable/unstable regions (right panel).
All the considered quadratic formulations show deviations of ampli-
ude dispersion with respect to third-order Stokes theory (represented
y 𝜔(2)

𝑝,𝑝,𝑆𝑡𝑜𝑘𝑒𝑠). QuadWave1D and the Boussinesq formulations appear
o be more consistent with Stokes theory for 𝜇 < 1. However, for
eep waters, these models demonstrate considerable underestimation
f amplitude dispersion effects, indicating significant phase errors in
ave prediction (see, e.g., recent demonstration by Stuhlmeier and
tiassnie, 2021, Figs. 3 and 8, for the added value of the amplitude
ispersion for predicting waves in deep water). The fully dispersive
odels tend to strongly overestimate the contributions of the amplitude
ispersion. Apart from phase errors, this significant overestimation also
eads to significant impact of the modulational instability mechanism
ver regions of 𝜇 where this mechanism is expected to be weak or
bsent (see further details in Akrish et al., 2024). The modifications
n the modulational instability threshold are demonstrated by the right
anel in Fig. 3 through comparison to third-order results provided by
he nonlinear Schrödinger (NLS) equation. The instability threshold
s described using the wavenumber correction due to self interaction,
(2)
𝑝 , which accounts for the stabilizing effect of the wave-induced
urrent (see discussion by Akrish et al., 2024, section 2.3.1). Instability
s expected over 𝑘𝑝ℎ values for which 𝑘(2)𝑝 ∕|𝐴𝑝|

2 > 0, where |𝐴𝑝|
2

s the magnitude square of the carrier wave amplitude. As for the
odels of Freilich and Guza (1984) and Madsen and Sørensen (1993),
uadWave1D is shown to be modulationally stable and is therefore not
xposed to false impact of modulational instability over coastal waters.
owever, as suggested by its deviations at second and third orders,
uadWave1D is not suitable for modelling of nonlinear waves under
eep water conditions.

Returning now to examples E1, E2, and E3. Note that the satisfying
erformance of QuadWave1D for these examples has only been demon-
trated so far based on the normalized error 𝑒(𝛼1, 𝛼2, 𝛼3), but has not
een explicitly shown. An explicit presentation of this performance is
rovided by Figs. 4–6.

The results presented by Figs. 4–6 suggest that QuadWave1D ade-
uately predicts the wave evolution in all of the three monochromatic
xamples considered. The adequate prediction is measured here on the
asis of the magnitude of the amplitudes and the recurrence length,
iven by the beating pattern of the harmonics. The comparison between
he quadratic formulations shows that QuadWave1D and the model by
wogu (1993) present the most satisfying agreement with the data.
he least favourable results are demonstrated by Kaihatu and Kirby
1995) and Bredmose et al. (2005). The deviations presented by these
esults are attributed to inadequate dynamical balance between the
uper and sub interactions which is controlled by the structure of 𝑉𝑙,𝑚

and in particular by its degree of attenuation for increasing values of
𝜇. This implies a dependence of the prediction of these models on
the maximum considered frequency. To demonstrate this dependence,
Fig. 7 shows model predictions for the case E2 due to Kaihatu and Kirby
(1995) and Bredmose et al. (2005) and QuadWave1D, and for two max-
imum frequency values. Besides the unfavourable maximum frequency
dependence of the models by Kaihatu and Kirby (1995) and Bredmose
6

et al. (2005), the results of Fig. 7 also suggests the insensitivity of
QuadWave1D to the maximum frequency. The observed dependence
of model prediction on the maximum considered frequency (which
satisfies the frequency limit due to numerical stability), constitutes a
serious modelling problem. Such a problem requires further analysis
which is beyond the scope of the present study.

Finally, the satisfying agreements presented by QuadWave1D
should not provide a firm conclusion regarding its overall performance.
The judgment concerning the predictive capabilities of QuadWave1D
should rather be determined on the basis of independent cases, which
are considered next.

5. Model verification

The prediction capabilities of QuadWave1D are studied here
through comparisons with different laboratory experiments and com-
paring to the predictions of the representative quadratic formulations
introduced in Section 4. For some examples, results due to the SWASH
model are included as an additional reference. The presented verifica-
tion considers first two basic monochromatic cases, and later on, also
more general cases where the incoming wave field is either bichromatic
or described through a continuous spectrum.

Since most of the examples presented here involve bathymetry
changes, the quadratic formulation (2) discussed so far should be
modified to include the effect of wave shoaling. This can be readily
implemented by using the energy-flux related amplitude, 𝑏𝑛 = 𝑎𝑛

√

𝐶𝑔,𝑛
(see details in Akrish et al., 2024, Appendix A, also regarding the
definition of 𝐶𝑔,𝑛 for each of the considered quadratic formulations).
Therefore, the modified quadratic formulation reads

𝜕𝑥𝑏𝑛 − 𝑖𝑘𝑛𝑏𝑛 = −𝑖
∑

𝑟

√

𝐶𝑔,𝑛

𝐶𝑔,𝑟𝐶𝑔,𝑛−𝑟
𝑉𝑟,𝑛−𝑟𝑏𝑟𝑏𝑛−𝑟 (18)

The quadratic model (18) is solved numerically using the RK4 method.
For most of the considered examples, the spatial step being used is
𝛥𝑥 = 0.05 m (the exception is the monochromatic case in Section 5.1.2
for which 𝛥𝑥 = 0.025 m), while the spectral resolution and thus also the
number of realizations are determined for each example specifically.
Similarly, all the computations with SWASH are performed here using
two vertical layers, a spatial step of 𝛥𝑥 = 0.02 m and a time step of
𝛥𝑡 = 0.005 s, while the simulation time is determined separately for
each example.

5.1. Monochromatic wave evolution

The predictive capabilities of QuadWave1D are first tested through
two monochromatic examples. The first example is given by the ‘Trial
D’ experiment conducted by Chapalain et al. (1992). This experiment
describes the evolution of a progressive monochromatic wave in a
flume of constant depth (see schematic illustration in Fig. 8). The
incoming wave generated by the wavemaker is characterized by a
relatively large 𝑈 (see Table 2), implying strong nonlinear effects. Such
𝑟
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Fig. 4. Amplitude evolution of the first four harmonics as obtained by the different quadratic formulations (lines) and the SWASH model (circles) for example E1.

Fig. 5. Amplitude evolution of the first four harmonics as obtained by the different quadratic formulations (lines) and the laboratory results measured by Chapalain et al. (1992)
(circles) for example E2.

Fig. 6. Amplitude evolution of the first four harmonics as obtained by the different quadratic formulations (lines) and the SWASH model (circles) for example E3.
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Fig. 7. Model sensitivity to the maximum considered frequency as obtained for example E2. Results shown at the upper row are based on the maximum frequency 𝑓𝑚𝑎𝑥 = 5𝑓𝑝
where 𝑓𝑝 is the incoming frequency (similar results of Kaihatu and Kirby, 1995 were presented by Kim and Kaihatu, 2021, Fig. 6 and provide verification to the computation
conducted here). Results shown at the lower row are based on 𝑓𝑚𝑎𝑥 = 8𝑓𝑝. These results can be also compared with the results shown in Fig. 5 for which 𝑓𝑚𝑎𝑥 = 6𝑓𝑝.
Fig. 8. Schematic illustration of the experiments conducted by Chapalain et al. (1992) (left panel) and Dingemans (1994) (right panel). The structures of the bathymetries are
described by the thick green lines. The thin vertical lines, plotted along the still water level (ℎ = 0), indicating measurement locations.
incoming wave conditions provide a challenging case for prediction,
especially when the prediction is based on the quadratic formulation
which neglects third and higher order terms.

The second example is an experiment conducted first by Beji and
Battjes (1993) and later by Dingemans (1994), which describes
monochromatic wave propagation over a submerged bar (see illus-
tration in Fig. 8). Specifically, ‘measuring condition A’ (as referred
to by Dingemans, 1994) is considered and detailed in Table 2. The
evolution of the wave field being generated in this example involves
several interesting phenomena, which are briefly described as follows.
The wave adjacent to the wavemaker can be characterizes as a per-
manent second-order Stokes wave. Over the front slope of the bar
the wave steepens, suggesting the development of higher harmonics.
This process is accelerated over the head of the bar, where resonance
due to triad interactions is nearly met. Ultimately, behind the bar,
the increasing water depth decreases the effect of nonlinearity, and
therefore, decouples the mutual forcing between the harmonics. As a
consequence, this de-shoaling process results in completely different
wave conditions than the incoming conditions (compare the incoming
and outgoing amplitudes presented by the panels in Fig. 10). This
combination of phenomena results from the interplay of nonlinearity
and dispersion. The fact that in this example the roles of both of these
wave properties are important makes this example a standard test case
for wave model verification.

The parameters detailed in Table 2 indicate that both of the exam-
ples describe wave evolution in relatively shallow water depth. Note
the distinction between the Ursell number of the incoming wave and
the maximum Ursell number. The latter is estimated based on linear
shoaling of the incoming monochromatic component. The relatively
8

high 𝑈𝑟 value that characterizes the case of Chapalain et al. (1992)
indicates on significant energy exchanges between wave harmonics
along the entire flume. The second case of Dingemans (1994) also
presents high values of 𝑈𝑟, but these are limited only to short segment
of the domain. Specifically, 𝑈𝑟 of the second case is higher than the
validity limit of the second-order Stokes expansion (𝑈𝑟 = 26) over the
region 10.5 ≤ 𝑥 ≤ 14.8, reaching to a very high value (𝑈𝑟,𝑚𝑎𝑥) at the top
of the bar.

These examples are computed with the different quadratic formula-
tions using the first six harmonics for the case of Chapalain et al. (1992)
and using the first eight harmonics for the case of Dingemans (1994)
(the first harmonic serves as the frequency step and the maximum
frequency is the sixth or the eighth harmonic). The comparison between
the different quadratic models and the measurements is discussed in the
following.

5.1.1. Monochromatic wave evolution over constant depth
The predictions of the different quadratic formulations for the case

of Chapalain et al. (1992) are compared to laboratory observations in
Fig. 9. As expected, the high value of 𝑈𝑟 leads to significant energy
exchanges between the harmonics, such that the amplitudes of the
first and the second harmonics become approximately equal to each
other at certain locations. The predictive capabilities of the models are
measured here with respect to the magnitude of the amplitudes and
the beat lengths. Generally speaking, the Boussinesq models tend to
underestimate the magnitude of the amplitudes, while the fully disper-
sive models tend to overestimate those magnitudes. Additionally, most
of the predictions show some discrepancies of the beat lengths with
respect to the measurements. Clearly, the deviations in the predictions
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Table 2
Incoming wave parameters (indicated by the subscript ‘𝐼 ’) and maximum Ursell number (𝑈𝑟,𝑚𝑎𝑥) of the considered
monochromatic examples.

Example 𝑇 (s) 𝜇𝐼 𝑎𝑚𝑝𝐼 (m) 𝑈𝑟,𝐼 𝑈𝑟,𝑚𝑎𝑥

Chapalain et al. (1992) (Trial D) 2.5 0.454 0.0354 45.2 45.2
Dingemans (1994) (Condition A) 2.02 0.67 0.01 4.5 101.5
Fig. 9. Amplitude evolution of the first four harmonics as obtained by the different quadratic formulations (lines) and the laboratory results measured by Chapalain et al. (1992)
(circles).
Fig. 10. Amplitude evolution of the first six harmonics as obtained by the different quadratic formulations (lines) and the laboratory results measured by Dingemans (1994)
circles).
re much more pronounced by the model results of the fully dispersive
ormulations. In part, these pronounced deviations are also attributed
o the unfavourable behaviour of these models in the presence of very
igh frequencies (as briefly discussed in Section 4.2). The exceptional
esults are those of Nwogu (1993) and QuadWave1D. These model
redictions show good agreement with the laboratory observations
n terms of both amplitude values and beat lengths (see also model
erformance metrics in Appendix B, Table 5). Note however that the
esults due to Nwogu (1993) slightly overpredicts the energy transfer
etween the harmonics, leading to more obvious deviations than those
btained through QuadWave1D.

.1.2. Monochromatic wave evolution over a bar
The evolution of monochromatic wave over a bar is described by

he different quadratic formulations in Fig. 10. Generally speaking, the
omparison of the computed and measured results suggests that all
9

he formulations capture the expected physical phenomena emerging
in this example. Namely, the permanent Stokes behaviour over the
incoming zone, the harmonics’ growth over the bar and the decoupling
of the harmonics in deeper water beyond the bar where they are
essentially propagate as linear waves (this process effectively decom-
poses the initial wave into its harmonics, as nicely described by Beji
and Battjes, 1993). However, the main modelling challenge of this
example is to correctly describe the development of the harmonics
outside the validity range of second-order Stokes theory, i.e., over the
region 10.5 ≤ 𝑥 ≤ 14.8. As shown in Fig. 10, the fully dispersive
models describe excessive energy exchanges between the harmonics
and thus inaccurately describe the development of the different am-
plitudes. As a result, these models mispredict the output spectrum. In
addition, these models also describe rapid oscillations attributed to the
sensitivity of these models to the presence of very high frequencies
(here 𝑓𝑚𝑎𝑥 = 8𝑓𝑝 is used, while slightly better predictions of these
models are obtained when using 𝑓𝑚𝑎𝑥 = 6𝑓𝑝). The predictions of the
Boussinesq models, on the other hand, seem much more adequate and
show better agreement with the measurements. Nevertheless, some
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Fig. 11. Schematic illustration of the experiments conducted by Van Noorloos (2003) (left panel) and Ruessink et al. (2013) (right panel). The structures of the bathymetries
are described by the thick green lines. The thin vertical lines, plotted along the still water level (ℎ = 0), indicating measurement locations. The vertical dashed lines indicate the
locations where computed and measured wave spectra are compared.
deviations are demonstrated by these predictions as well, given by the
underprediction of Freilich and Guza (1984) and Madsen and Sørensen
(1993) and overprediction of Nwogu (1993). Finally, QuadWave1D
demonstrates the most adequate results and accurately agrees with
the measurements. These findings are also supported by the model
performance metrics detailed in Appendix B, Table 6.

To summarize, the two examples considered here provide satisfying
verification for the modelling capabilities of QuadWave1D to describe
the development of a monochromatic wave under significant nonlinear
conditions and under conditions that combine nonlinearity, dispersion
and bathymetry changes. The Boussinesq models also show satisfactory
predictions, demonstrating only limited deviations in comparison with
the measurements. However, the deviations observed through the fully
dispersive models are significant. The unfavourable behaviour of these
models requires further investigation which is beyond the scope of the
present study. It seems though that these formulations are sensitivity
to the presence of very high frequencies, which creates uncertainty
regarding the choice of the maximum frequency considered, and thus,
limiting the capabilities of these models to provide reliable predictions.

5.2. Evolution of bichromatic groups and irregular waves over a slope

The predictive capabilities of Quadwave1D are further investigated
for more general cases involving multi-component wave fields. Specifi-
cally, two sets of laboratory experiments conducted by Van Noorloos
(2003) and Ruessink et al. (2013) are considered. Generally speak-
ing, these experiments describe one-dimensional, nonlinear shoaling of
wave fields over a mild slope. The settings of these experiments are
described schematically in Fig. 11 and the parameters of the incoming
wave fields are detailed in Tables 3 and 4. Model capabilities are
examined by comparisons to measured results and to the predictions
of SWASH up to the breaking points beyond which the quadratic
formulations become invalid. The comparison focuses on the evolution
of the primary components and the generation and development of the
secondary components (the super and sub harmonics). Special attention
is devoted to the modelling performance of the different quadratic
formulations to predict the generation and growth of the subharmonics
(the infragravity components). Finally, recall that the quadratic for-
mulations only account for the incoming wave components. Therefore,
the examined cases considered here are such that the effect of wave
reflection on the evolution of the primary and secondary components
is negligible (see results by Rijnsdorp et al., 2014 and De Bakker et al.,
2015). Accordingly, the measured data is not separated into incoming
and reflected wave components. Nevertheless, the simulations con-
ducted with SWASH attempt to avoid the contribution of the reflected
part. This is performed by applying a radiation condition on the down-
wave side of the domain at a depth of ℎ ∼ 0.057 m accompanied by a
sponge layer of 5 m in front of it. The combination of these measures
allows an effective absorption of both the long and the short wave
components, as verified in Figs. 12 and 15.
10
5.2.1. Bichromatic groups over a slope
Three bichromatic examples introduced by Van Noorloos (2003)

(i.e., A1, B3 and B5) are considered. Wave predictions for these exam-
ples as obtained by the different quadratic formulations are compared
to measured and SWASH results in Fig. 12. The comparison is presented
in terms of the 𝐻𝑠 of the primary and super harmonics (defined by
𝑓 > 𝑓𝑖𝑔,𝑚𝑎𝑥 and referred to as the sea-swell components) and the 𝐻𝑠
of the sub harmonics (defined by 𝑓 ≤ 𝑓𝑖𝑔,𝑚𝑎𝑥 and referred to as the
infragravity (IG) components), where the separating frequency takes
the following value: 𝑓𝑖𝑔,𝑚𝑎𝑥 = 0.3 Hz. Additionally, the results using
the quadratic approach are computed through spectral resolution of
𝛥𝑓 = 0.025 Hz and maximum frequency of 𝑓𝑚𝑎𝑥 = 4𝑓𝑝 (recall that
𝑓𝑝 is the peak frequency). Furthermore, these results use an ensemble
average of 10 realizations. Finally, the results according to SWASH are
time-averaged over the last 6 min, where the total simulation time is
chosen to be 10 min.

The values given in Table 3 indicate that the considered examples
describe incoming wave groups over intermediate water depth. Addi-
tionally, these groups are characterized by relatively small incoming
𝑈𝑟 value (see 𝑈𝑟,𝐼 in Table 3). Therefore, it is expected that wave
evolution up to 𝑥 ∼ 10 would agree with the second-order permanent
Stokes solution. In fact, the Ursell number only becomes significant
around the breaking area. Thus, the evolution is expected to be quasi-
linear, namely, dominated by linear dispersion and shoaling along most
of the domain (up to 𝑥 ∼ 𝑥𝑠,𝑚𝑎𝑥) for all the considered examples.
Based on these expectations, the predictions presented by the fully
dispersive models are surprising. These predictions describe significant
energy transfers from the primary component (i.e., the component with
frequency 𝑓3) to secondary components, as implied by the decrease
of the sea-swell 𝐻𝑠 and the relatively rapid 𝐻𝑠 growth of the IG
components. The mechanism which triggers these energy exchanges
is attributed to modulational instability, as explained by Akrish et al.
(2024).

On the other hand, the Boussinesq formulations agree better with
the measured and SWASH results and with the expectation of quasi-
linear evolution. Nevertheless, exceptional Boussinesq results are de-
scribed by the predictions of Freilich and Guza (1984) and Madsen and
Sørensen (1993). The former overpredicts the sea-swell 𝐻𝑠 due to an
overestimation of the linear shoaling (as a consequence of the weak
dispersion assumption). Whereas the latter overpredicts the infragravity
𝐻𝑠 as a result of the nonlinear balance generated by the quadratic
coefficients, 𝑉𝑙,𝑚, which is characterized by relatively strong tendency
towards sub interactions (as also described by the bound wave solutions
of Madsen and Sørensen, 1993, see Akrish et al., 2024, Fig. 1). In
summary, it seems that the model by Nwogu (1993) and QuadWave1D
describe most adequately the development of the wave groups for the
considered examples (similar conclusion can also be drawn based on
the model performance metrics given by Appendix B, Table 7). These
adequate predictions are obtained due to a combination of accurate
linear formulation (dispersion and shoaling) and adequate nonlinear
balance provided by the quadratic coefficients.
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Table 3
Incoming wave parameters for the bichromatic examples of Van Noorloos (2003). The incoming forced amplitude
𝑎𝑚𝑝1 of the sub harmonic indicated by 𝑓1 is calculated based on second-order Stokes theory. Additionally, 𝑈𝑟,𝑚𝑎𝑥
estimates the Ursell number at the breaking point and 𝑥𝑠,𝑚𝑎𝑥 estimates the maximum location for which 𝑈𝑟 < 26.

Exp. 𝑓3 (Hz) 𝑓2 (Hz) 𝑓1 (Hz) 𝑎𝑚𝑝3 (m) 𝑎𝑚𝑝2 (m) 𝜇𝐼 𝑈𝑟,𝐼 𝑈𝑟,𝑚𝑎𝑥 𝑥𝑠,𝑚𝑎𝑥 (m)

A1 0.6714 0.4761 0.1953 0.06 0.012 1.43 4.7 41.8 21
B3 0.6470 0.5005 0.1465 0.06 0.024 1.35 5.6 39.2 20
B5 0.6470 0.5005 0.1465 0.06 0.036 1.35 6.0 38.6 19
Fig. 12. A comparison of computed and measured 𝐻𝑠 for the bichromatic examples A1 (upper row), B3 (middle row) and B5 (lower row) of Van Noorloos (2003). The vertical
dashed lines provide estimation for the wave breaking locations.
Fig. 13. A comparison of amplitude spectra as obtained by the measurements, SWASH and the fully dispersive models.
The prediction capabilities of QuadWave1D in comparison to the
ther quadratic formulations is further investigated using example
5, which describes the most significant incoming wave conditions

n terms of nonlinearity. Further insight is gained by considering the
redicted spectral development of the group along the flume. To this
nd, Figs. 13–14 present the amplitude spectra at two different loca-
ions in the vicinity of the breaking point. This spectral point of view
rovides further evidence to the impact of modulational instability on
he evolution of the wave group. Especially, the results of Bredmose
t al. (2005), but also less prominently the results of Kaihatu and Kirby
1995), show significant energy transfer from the primary component
o the side-bands, providing explanation to the amplitude increase of
he modulation frequency (as apparent in Fig. 13 at 𝑥 = 18 m). This

initial stage is followed by a significant spectrum broadening towards
11

sub and super harmonics (as presented in Fig. 13 at 𝑥 = 22 m). The
predictions of the rest of the models agree well with the measured
and SWASH results. Especially, the results of Freilich and Guza (1984)
and Nwogu (1993) and QuadWave1D show accurate development of
the complete spectrum. The prediction of Madsen and Sørensen (1993)
though, tend to underpredict the development of the super harmonics
(as also demonstrated earlier for the monochromatic cases).

5.2.2. Irregular waves over a slope
The last verification examples of QuadWave1D are devoted to the

evolution of irregular wave fields. The considered examples are the
irregular cases which were experimentally investigated by Ruessink
et al. (2013). The choice of these examples is motivated by the rela-
tively shallow water and mild slope conditions that characterize them.
Under these conditions, nonlinear wave transformation occurs over

a relatively long domain (compared to conditions characterized by
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Fig. 14. A comparison of amplitude spectra as obtained by the measurements, SWASH and the Boussinesq models.
Table 4
Wave parameters for the irregular examples of Ruessink et al. (2013). The incoming
wave fields are defined based on the JONSWAP spectrum requiring the values of 𝑓𝑝,

𝑠 and 𝛾 (𝛾 stands for the peak-enhancement factor). Also here, 𝑈𝑟,𝑚𝑎𝑥 represents the
rsell number at the breaking point and 𝑥𝑠,𝑚𝑎𝑥 indicates the maximum location for

which 𝑈𝑟 < 26.
Exp. 𝑓𝑝 (Hz) 𝐻𝑠 (m) 𝛾 𝑓𝑖𝑔,𝑚𝑎𝑥 𝜇𝐼 𝑈𝑟,𝐼 𝑈𝑟,𝑚𝑎𝑥 𝑥𝑠,𝑚𝑎𝑥 (m)

A1 0.6329 0.1 3.3 0.37 1.5 2.1 47.5 61
A2 0.4444 0.2 3.3 0.26 0.9 11.4 52.5 37
A3 0.4444 0.1 20 0.26 0.9 5.7 77.3 49

relatively steep slopes for which the nonlinear transformation is quite
local) and is governed by the quadratic term. Consequently, these
conditions allow to highlight the predictive capabilities of the different
quadratic formulations to describe the nonlinear development of the
sea-swell components and the associated infragravity response over
depths that characterize the coastal environment.

The generated wave fields for these examples are defined based
on the JONSWAP spectrum using the parameters detailed in Table 4.
The computations through the quadratic formulations are based on a
spectral resolution of 𝛥𝑓 = 0.015 Hz, maximum frequency of 𝑓𝑚𝑎𝑥 = 4𝑓𝑝
and averaging over 60 realizations. The computations through SWASH
is based on a simulation time of 60 min, where the results presented
are time-averaged over the last 54 min.

The computed and measured results are compared in Fig. 15 in
erms of 𝐻𝑠. Here again, the values of 𝐻𝑠 are presented separately

for the shorter waves (denoted as the sea-swell components and satisfy
𝑓 > 𝑓𝑖𝑔,𝑚𝑎𝑥) and for the longer waves (denoted as the infragravity (IG)
components and satisfy 𝑓 ≤ 𝑓𝑖𝑔,𝑚𝑎𝑥), where the separation frequency,
𝑓𝑖𝑔,𝑚𝑎𝑥, is provided in Table 4 for each of the considered examples. For
the intermediate to shallow water depth conditions that characterize
these examples, the values of 𝑥𝑠,𝑚𝑎𝑥 define the regions over which
second-order Stokes theory is expected to be valid. Over these regions,
wave evolution is expected to be dominated by linear dispersion and
shoaling, while evidence of nonlinear exchanges of energy is expected
to be weak. This highlights again the abnormal infragravity responses
shown by the fully dispersive formulations in Fig. 15. These results
are explained by the spurious impact of modulational instability, as
discussed in detail by Akrish et al. (2024). Furthermore, the results
of Fig. 15 provides an additional evidence to the reliability of wave
prediction using QuadWave1D and the Boussinesq models for water
depths which characterize the coastal environment. These models agree
well with the measured and SWASH results up until the breaking points.
However, also here, the inaccurate shoaling prediction of Freilich and
12

Guza (1984) and the inadequate nonlinear balance due to the quadratic
coefficients of Madsen and Sørensen (1993) result in overprediction of
the sea-swell 𝐻𝑠 and the infragravity 𝐻𝑠, respectively.

Further details explaining the prediction capabilities of
QuadWave1D in comparison to other quadratic formulations are pre-
sented in Figs. 16–17. These results provide a limited view on the
spectral evolution as obtained for example A2 close to the breaking
point. In order to highlight the modelling capabilities of the infragravity
components, the spectra are plotted through logarithmic scales. The
results provide another perspective on the effect of modulational insta-
bility, which induces much faster spectral broadening than predicted by
the measurements (especially notable by the results of Bredmose et al.,
2005, but also seen less obviously through the results of Kaihatu and
Kirby, 1995, as presented in Fig. 16). In addition, the tendency of the
model by Madsen and Sørensen (1993) to overpredict the subharmonic
responses and to underpredict the superharmonic responses is revealed
again through Fig. 17. In summary, QuadWave1D and the model by
Nwogu (1993) seems to generate the most accurate prediction for this
example, as also suggested by the model performance metrics presented
in Appendix B, Table 8.

To summarize, the verification conducted for both bichromatic an
irregular wave conditions shows the preferable prediction capabilities
of QuadWave1D and the Boussinesq models. However, all the exam-
ples considered showed the tendency of Freilich and Guza (1984) to
overpredict the sea-swell components due to inaccurate formulation of
linear shoaling and the tendency of Madsen and Sørensen (1993) to
underpredict the sea-swell components and to overpredict the IG com-
ponents due to inadequate nonlinear balance provided by the quadratic
coefficients. QuadWave1D and the model of Nwogu (1993) present
the most satisfying general agreement with the measured and SWASH
results, and together with the model of Freilich and Guza (1984)
showed the most accurate prediction of the infragravity response (see
also the results of the performance metrics in Tables 7–8, which provide
additional support to this conclusion). Finally, as observed for the
monochromatic cases, also here the predictions of the fully disper-
sive formulations deviated considerably from the measurement results.
However here, the observed deviations are explained by Akrish et al.
(2024) to arise due to false impact of the modulational instability
mechanism.

Ultimately, the model verification presented along this section
demonstrates the accuracy of QuadWave1D to predict the nonlin-
ear evolution of one-dimensional wave fields over coastal waters.
Specifically, comparing to other quadratic formulations and based on
a wide set of examples (including monochromatic, bichromatic and
irregular wave conditions), it is found that QuadWave1D presents
superior predictive capabilities of both the sea-swell components and
the infragravity field.
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Fig. 15. A comparison of computed and measured 𝐻𝑠 for the irregular examples A1 (upper row), A2 (middle row) and A3 (lower row) of Ruessink et al. (2013). The vertical
dashed lines provide estimation for the wave breaking locations.

Fig. 16. A comparison of variance spectra as obtained by the measurements, SWASH and the fully dispersive models.

Fig. 17. A comparison of variance spectra as obtained by the measurements, SWASH and the Boussinesq models.
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6. Discussion and concluding remarks

This study presents an attempt to find the quadratic formulation
that describes most adequately nonlinear wave developments over
water depths and bathymetrical structures that characterize the coastal
environment. To this end, an optimization process was proposed to
search for the quadratic formulation that minimize evolution errors
comparing to experimental data and data obtained based on the SWASH
model (Zijlema et al., 2011). The outcome is the model QuadWave1D:
a fully dispersive quadratic model for coastal wave prediction in one-
dimension.

The validation study of QuadWave1D consisted of different cases
involving different incoming wave conditions and bottom topographies.
Based on the considered examples and comparing to other quadratic
formulations, it is found that QuadWave1D presents superior predictive
capabilities of both the sea-swell components and the infragravity field.

Interestingly, the satisfying predictive capabilities of QuadWave1D
seem to consistently hold for examples with significant bathymetrical
changes despite the fact that it was formulated based on constant
depth conditions. This finding supports the commonly used assumption
(which is taken here as well) that the linear shoaling term is typically
of the same order as the quadratic nonlinear term, and therefore, the
contributions of the two can be analysed independently.

Although seem promising, the predictive capabilities of
QuadWave1D are limited. Some limitations arise due to the definition
of its quadratic coefficients (the so-called Weighted Quadratic Coef-
ficients). Generally speaking, this definition is based on two types of
requirements: the formal type (e.g., full dispersion, conservative triad
interactions, etc.) and the heuristic type which further constraint the
search of suitable coefficients. The additional constraints created by
the latter led to the choice of a specific functional structure for the
quadratic coefficients of QuadWave1D. As a consequence, the original
optimization problem was reduced to a much simpler problem of
finding only three unknowns (i.e., 𝛼1, 𝛼2 and 𝛼3). Despite the resulting
onvenience, reducing the problem also limits the search space, and
onsequently, limits the accuracy of the optimal result in comparison
ith the solution of the original problem. For example, modifications
f the heuristic requirements and of the representative functional
tructure would inevitably lead to a different definition of the quadratic
oefficients and may even improve the prediction accuracy comparing
o QuadWave1D.

Despite the doubts concerning the use of the heuristic requirements,
t seems that the heuristic requirement (also implemented by Quad-

ave1D) to limit the values of the interaction coefficients that involve
igh frequencies is essential for reliable prediction of coastal waves.
his requirement is based on the experience gained working with fully
ispersive formulations for which such interaction coefficients tent
o be high valued and lead to the emergence of unfavourable and
nexpected energy exchanges (partially explained in Akrish et al., 2024
hrough the impact of modulational instability). Note, however, that
his requirement also dictates a trade-off between reliable prediction
f wave evolution over shallower waters and known nonlinear wave
roperties over deeper water (e.g., bound wave solutions and amplitude
ispersion). Consequently, QuadWave1D which is based on this heuris-
ic requirement would not be suitable to describe wave nonlinearity
n deep water. Additionally, as applies to other quadratic models,
uadWave1D cannot describe wave reflection and the development of

tanding wave patterns in front of structures. For problems involving
uch phenomena, QuadWave1D should be coupled with a different type
f model. However, as considered for other quadratic formulations in
he past (e.g., Kaihatu and Kirby, 1995 and Kim and Kaihatu, 2021),
uadWave1D can be potentially generalized to allow for wave breaking
nd directional wave propagation over two-dimensional bottom topog-
aphy. Finally, it should be noted that apart from being a stand-alone
odel, QuadWave1D also serves as a reliable and accurate starting
oint for the stochastic formulation of shallow water nonlinearity. As
uch, QuadWave1D provides an opportunity to improve the nonlinear
ource term (i.e., 𝑆 ) that is currently implemented in spectral models.
14
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ppendix A. The quadratic coefficients of QuadWave1D

QuadWave1D is a fully dispersive quadratic model defined with the
ollowing parameterized quadratic coefficients:
𝑊𝑄𝐶
𝑙,𝑚 = 𝑊𝑙,𝑚𝑉

𝐵𝐶
𝑙,𝑚 (19)

ecall that 𝑊𝑄𝐶 and 𝐵𝐶 stand for ‘Weighted Quadratic Coefficients’
nd ‘Bredmose Coefficients’, respectively. The weight function, 𝑊𝑙,𝑚,

is defined by (13) and (14) and using the coefficient values 𝛼1 =
, 𝛼2 = 1.4, 𝛼3 = 5.5. The quadratic coefficients 𝑉 𝐵𝐶

𝑙,𝑚 were introduced
y Bredmose et al. (2005) and can be written as follows (see further
etails by Akrish et al., 2024, Supplementary material):

𝑙,𝑚 = −𝑁𝑙,𝑚∕𝐻𝑙𝑚 (20)

here 𝑁𝑙,𝑚 and 𝐻𝑙𝑚 are defined as

𝑙,𝑚 = −1
2

𝑔
𝜔𝑙𝜔𝑚

(

𝜔2
𝑙𝑚𝑘𝑙𝑘𝑚 + 𝜔𝑛𝑘𝑙𝑚(𝑘𝑙𝜔𝑚 + 𝑘𝑚𝜔𝑙)

)

− 1
2
𝜔2
𝑛
𝑔

(𝜔2
𝑙𝑚

𝜔2
𝑛
𝜔𝑙𝜔𝑚 − 𝜔2

𝑙𝑚

)

(21)

𝐻𝑙𝑚 =
𝜔2
𝑛 − 𝜔2

𝑙𝑚
𝑘𝑛 − 𝑘𝑙𝑚

(22)

nd 𝑘𝑙𝑚 and 𝜔2
𝑙𝑚 are given by

𝑙𝑚 = 𝑘𝑙 + 𝑘𝑚 (23)

𝜔2
𝑙𝑚 = 𝑘𝑙𝑚𝑔 tanh(𝑘𝑙𝑚ℎ). (24)

Appendix B. Model performance metrics

This appendix provides a quantitative comparison of the results
presented in Section 5. Specifically, the results detailed here aim to
provide additional formal indication to the predictive capabilities of
the different model formulations, which have so far been presented
only visually. To this end, formal metrics are defined to determine
model performance for the two monochromatic examples of Chapalain
et al. (1992) and Dingemans (1994), and for the more general B5
and A1 examples of Van Noorloos (2003) and Ruessink et al. (2013),
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Table 5
Model errors for the monochromatic example of Chapalain et al. (1992), calculated for
each frequency as a sum over the available measurement points.

Frequency FG84 MS93 N93 KK95 B05 QW1D

𝑓𝑝 1.045 0.887 1.387 2.014 3.464 0.585
2𝑓𝑝 1.937 1.316 1.722 2.424 4.043 0.975
3𝑓𝑝 0.901 1.573 0.886 2.348 3.214 0.795
4𝑓𝑝 0.516 1.084 0.341 1.317 2.016 0.380

Table 6
Model errors for the monochromatic example of Dingemans (1994), calculated for each
frequency as a sum over the available measurement points.

Frequency FG84 MS93 N93 KK95 B05 QW1D

𝑓𝑝 0.567 0.572 0.518 1.069 0.978 0.362
2𝑓𝑝 0.818 0.247 0.381 0.748 0.948 0.247
3𝑓𝑝 0.547 0.987 0.808 1.782 2.580 0.077
4𝑓𝑝 0.298 0.635 0.307 1.197 1.028 0.122
5𝑓𝑝 0.090 0.345 0.153 0.372 0.713 0.129
6𝑓𝑝 0.123 0.232 0.095 0.224 0.474 0.057

Table 7
Model errors for example B5 of Van Noorloos (2003), calculated as a sum over the
points 𝑥 = 12 (m), 𝑥 = 18 (m) and 𝑥 = 22 (m) and a sum over the specified frequency
and.
Frequency band FG84 MS93 N93 KK95 B05 QW1D SWASH

Infragravity (0.05 ≤ 𝑓 ≤ 0.30) 0.513 0.729 0.462 0.633 1.291 0.454 0.211
Sea-Swell (0.30 < 𝑓 ≤ 2.25) 1.612 1.863 1.579 1.517 3.579 1.239 0.768

Table 8
Model errors for example A2 of Ruessink et al. (2013), calculated as a sum over the
points 𝑥 = 30 (m), 𝑥 = 40 (m) and 𝑥 = 50 (m) and a sum over the specified frequency
and.
Frequency band FG84 MS93 N93 KK95 B05 QW1D SWASH

Infragravity (0.015 ≤ 𝑓 ≤ 0.26) 0.179 0.586 0.220 0.503 0.997 0.153 0.157
Sea-Swell (0.26 < 𝑓 ≤ 1.755) 2.549 1.567 1.193 1.556 2.504 1.526 1.237

respectively. The performance metrics used here are based on the error
definition given by (17), which for convenience, is rewritten as

𝑒 =
∑

𝑗

∑

𝑖
|𝑎𝑚𝑝𝑖,𝑗 − 𝑎𝑚𝑝𝑅,𝑖,𝑗 |∕𝑎𝑚𝑝𝐼 (25)

where 𝑗 runs over the desired wave frequencies and 𝑖 runs over the
data locations. Recall that 𝑎𝑚𝑝𝑖,𝑗 and 𝑎𝑚𝑝𝑅,𝑖,𝑗 represent the amplitude
results as given by the model prediction and by the measurements,
respectively. Finally, 𝑎𝑚𝑝𝐼 indicates the incoming amplitude, which is
defined by the amplitude of the primary frequency (i.e., 𝑓𝑝) for the
monochromatic cases or by 𝐻𝑠∕2 for the more general cases.

To ease the presentation, the different model formulations are re-
erred to here using the first letter of their developers and the last
wo digits of their publication year (e.g., the model by Freilich and
uza, 1984 is referred to as FG84). The only exception is the model
y Bredmose et al. (2005) which is referred to only based on the first
uthor (i.e., B05). Finally, QuadWave1D is referred to here as QW1D.

The model errors for the monochromatic cases are detailed in Ta-
les 5–6. The errors are defined for each harmonic separately. Namely,
hese errors are calculated through (25), as a sum over 𝑖 locations for

each of the considered 𝑗. On the other hand, the model errors obtained
for the more general cases in Tables 7–8 are defined for a frequency
range, and therefore, defined as a sum over 𝑖 and as a sum over the
specified frequency band (specified by the first column of the tables).
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