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Stochastic Stability of Discrete-Time
Phase-Coupled Oscillators Over
Uncertain and Random Networks

Matin Jafarian , Member, IEEE, Mohammad H. Mamduhi , Senior Member, IEEE,
and Karl H. Johansson , Fellow, IEEE

Abstract—This article studies stochastic relative phase
stability, i.e., stochastic phase-cohesiveness, of discrete-
time phase-coupled oscillators. The stochastic phase-
cohesiveness in two types of networks is studied. First,
we consider oscillators coupled with 2π-periodic odd func-
tions over underlying undirected graphs subject to both
multiplicative and additive stochastic uncertainties. We
prove stochastic phase-cohesiveness of the network with
respect to two specific, namely, in-phase and antiphase,
sets by deriving sufficient coupling conditions. We show
the dependency of these conditions on the size of the
mean values of additive and multiplicative uncertainties,
as well as the sign of the mean values of multiplicative
uncertainties. Furthermore, we discuss the results under
a relaxation of the odd property of the coupling func-
tion. Second, we study an uncertain network in which the
multiplicative uncertainties are governed by the Bernoulli
process representing the well-known Erdös–Rényi net-
work. We assume constant exogenous frequencies and
derive sufficient conditions for achieving both stochastic
phase-cohesive and phase-locked solutions, i.e., stochas-
tic phase-cohesiveness with respect to the origin. For the
latter case, where identical exogenous frequencies are as-
sumed, we prove that any positive probability of connec-
tivity leads to phase-locking. Thorough analyses are pro-
vided, and insights obtained from stochastic analysis are
discussed, along with numerical simulations to validate the
analytical results.

Index Terms—Markov processes, nonlinear systems,
stochastic systems, synchronization of coupled oscillators.
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I. INTRODUCTION

O SCILLATORY behavior is a fundamental feature of com-
plex networks in a wide range of applications from me-

chanical and electrical power networks to biological and neu-
ronal networks [1], [2], [3], [4], [5], [6]. Synchronization is
useful for achieving stable oscillations in these networks [2].
Uncertainties and randomness influence the ability of a network
to synchronize. A prominent example is a network of biological
neurons whose activities govern the underlying mechanisms of
cognition [1] and motion [7]. In such neuronal networks, the
coupling and the input current of neurons are often subject to
fluctuations due to various stochastic uncertainties [8], [9], [10],
[11]. Therefore, studying the stability of stochastic uncertain
oscillatory models is essential.

Analyzing the behavior of coupled oscillators is hard even in
the absence of uncertainties, due to the nonlinear nature of their
dynamics. One approach to reduce the complexity of analyses
is to map the oscillators’ models to their phase dynamics. Such
a transformation is feasible under particular conditions [12],
[13], [14]. The framework has been employed in studying
synchronization of some classes of nonlinear coupled oscilla-
tors, for instance, van der Pol oscillators, and weakly coupled
neurons [1], [15], [16]. Among notions of synchronization is
phase-cohesiveness, a principal desired behavior of oscillatory
networks implying boundedness of relative phases [17]. Phase-
cohesiveness extends the notion of phase-locking (also called
phase-synchronization), and is useful in achieving frequency
synchronization [17]. Despite the importance of stochastic syn-
chronization, thus far, phase-cohesiveness in stochastic models
has not been studied in literature. Our objective is to address
this gap by studying the effects of stochastic uncertainties on
phase-coupled oscillators.

In phase-coupled models, oscillators are interconnected via
nonlinear periodic functions. The most studied model of phase-
coupled oscillators is the well-known Kuramoto model [3], in
which the coupling law is reduced to its leading term in an
odd Fourier expansion, i.e., sine function. The continuous-time
deterministic Kuramoto model has been widely employed to
study synchronization in various applications [17], [18], [19],
[20], [21], [22]. Besides, the importance of more general classes
of coupling functions on synchronization has also been shown
in literature (see [15], [23], [24], [25]).

We study the effects of stochastic multiplicative and addi-
tive uncertainties in a network of phase oscillators coupled via
2π-periodic odd functions. Odd coupling functions generalize
the Kuramoto model, by allowing the addition of some higher

1558-2523 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fourier harmonics (e.g., phase model of the locus coeruleus
neurons [15]), and present a gradient dynamical system, which
has been proven useful in achieving convergence in oscillatory
networks [16], [26], [27]. For instance, phase oscillators coupled
via odd functions have been used in studying the associate mem-
ory feature of integrate-and-fire spiking neuronal networks [16],
as well as recall of oscillatory associative memory networks [25].
The combination of generality, applicability, and mathematical
amenability inspire us to primarily focus on this class of coupling
functions. Furthermore, we discuss an extension of our results
by allowing a relaxation of the odd property of the coupling
function.

This article studies stochastic set stability for phase oscilla-
tors described above, using a discrete-time approximation, and
perform the analyses within the framework of Markov chain
stability [28], [29].

A. Related Works

The effects of uncertainties on the synchronization of oscilla-
tory networks have mainly been investigated in continuous-time
deterministic perturbed models, and stochastic models with only
additive noise. In the stochastic setting, the effects of addi-
tive noise, such as uncertain exogenous frequencies, have been
studied for some classes of continuous-time nonlinear oscilla-
tors using a phase reduction model [30], and a Fokker–Planck
model [26], [31]. Moreover, synchronization of the continuous-
time Kuramoto oscillators with additive uncertainties, modeled
as a Wiener process, has been analyzed in a stochastic game set-
ting [32]. A mean-filed approach to frequency synchronization
of the continuous-time coupled Kuramoto oscillators subject
to random exogenous frequencies has been studied in [33].
Oscillators in the Erdös–Rényi [34], [35] random networks,
in which each two oscillators are decoupled with a nonzero
probability, have also been studied [36], [37], [38], [39]. All
aforementioned studies have focused on the asymptotic full-state
synchronization of continuous-time oscillators in the Euclidean
space using a linear approximation of the network dynamics in
the vicinity of the synchronous state.

The effects of coupling noise have been studied on the full-
state synchronization of a network of continuous-time harmonic
oscillators [40], and interconnected oscillators with a common
or zero intrinsic noise together with state-dependent coupling
noise [41], [42]. These works have analyzed the network be-
havior using stochastic differential equations and discussed the
effects of noise on the synchronization.

Deterministic perturbed Kuramoto model has been studied
considering time-varying exogenous frequencies and coupling
coefficients [43], [44], [45]. The local input–output stability
of the exact synchronization (phase-locking) solution has been
proven imposing an upper-bound on the time-varying exogenous
frequencies [43]. Moreover, phase-cohesiveness of the in-phase
solution in a network with time-varying couplings and exoge-
nous frequencies [44] has been shown imposing conditions on
the time-evolution of the coupling coefficients. Compared with
literature, our contributions, detailed in the following, include:
studying stochastic phase-coupled oscillators; generalizing the
coupling function; considering stochastic multiplicative and ad-
ditive uncertainties (see Remark 1); and studying the stability of
phase-coupled oscillators in random networks. It is worth not-
ing that the deterministic unperturbed discrete-time Kuramoto
oscillators, with applications in communication and robotics

networks, have also been studied [46], [47]. Our construction of
the Lyapunov function for the general connected and undirected
networks, extends the analysis of the aforementioned works, if
we replace the stochastic variables with the deterministic ones.

B. Main Contributions

Our objective is to study the effects of multiplicative, i.e.,
system’s states or a function of them multiplied by stochastic
random variables [48], and additive uncertainties on the stability
of relative phases of discrete-time phase-coupled oscillators.
Our main contributions are highlighted as follows. First, we
introduce the new notions of stochastic phase-cohesiveness and
ultimate stochastic phase-cohesiveness. The notion of phase-
cohesiveness for deterministic models is defined based on the
concept of invariant sets [17]. For stochastic models, we use the
concept of Harris recurrent Markov chains. Basically, a network
of stochastic phase-coupled oscillators is phase-cohesive with
respect to a desired set if the probability that the relative phases
return to this set, after leaving it, is one (see Definition 6). Ulti-
mate stochastic phase-cohesiveness indicates a bounded return
time (see Definition 7). Second, we study the phase-cohesiveness
of discrete-time phase oscillators over an undirected graph sub-
ject to both multiplicative (i.e., coupling weights) and additive
(i.e., exogenous frequencies) stochastic uncertainties. The pres-
ence of multiplicative uncertainties indicates that the underlying
topology is connected in a probabilistic sense. We consider
2π-periodic, bounded, and odd coupling laws, and independent
and identically distributed (i.i.d) random uncertainties obeying
normal distributions. In Theorem 1, we assume either strictly
positive or negative mean values for the uncertain couplings.
By obtaining sufficient conditions in the form of lower bounds
on the common coupling coefficient, we prove that depending
on the sign of the mean values of multiplicative uncertainties,
the uncertain network achieves stochastic phase-cohesiveness
with respect to either in-phase or antiphase sets. These sets are
defined in the vicinity of the roots of the coupling function,
i.e., zero (in-phase) and π (antiphase). We also characterize
the conditions for achieving ultimate phase-cohesiveness (see
Corollary 1). Respecting the discrete-time setting, our results are
derived assuming a sufficiently small sampling-time for which
we also characterize an upper bound.

In Proposition 1, we then allow the coexistence of edges
whose corresponding multiplicative uncertainties possess either
negative or positive mean values. Assuming identical exogenous
frequencies, we study this special case over an underlying line
topology. The conditions under which the network exhibits
clustering behavior are derived by showing its stochastic phase-
cohesiveness with respect to the union of the in-phase and
antiphase sets.

Third, we discuss a relaxation of the odd property of the
coupling function. We allow the coupling function to be non-odd
only on a subset of its domain. This relaxation describes a
more general coupling law which is applicable, for instance,
in studying series arrays of the Josephson junctions [24]. For
oscillators over an undirected tree network with multiplicative
(positive mean-values) and additive uncertainties, conditions un-
der which the network is stochastic phase-cohesive with respect
to the in-phase set are characterized (see Proposition 2). Fourth,
we study phase-coupled oscillators, with 2π-periodic odd cou-
plings, such that each two coupled oscillators are connected
using a common and constant coupling term and with a non-zero
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probability of connection, which represents an Erdös–Rényi ran-
dom network. We obtain conditions for achieving both stochastic
phase-cohesive and phase-locked solutions for this network. For
the case of constant and non-identical frequencies, we show that
the effect of the randomness is to stabilize the in-phase set as the
only absorbing set of the network (see Theorem 2). Furthermore,
we prove that any positive probability of connection will lead
to a phase-locking solution when all oscillators have identical
exogenous frequencies (see Corollary 2).

In Remark 1, stochastic analysis is compared with determin-
istic perturbation analysis. To the best of our knowledge, the
stochastic stability of phase-coupled oscillators has not been
studied in literature. A preliminary result for the Kuramoto
oscillators over a tree network was presented in our conference
paper [49].

C. Outline

The rest of this article is organized as follows. Section II
provides the model and the required preliminaries. Section III
presents the problem formulations, and the notions of
stochastic phase-cohesiveness, and ultimate stochastic phase-
cohesiveness. The analyses of uncertain and random networks
are presented in Sections IV and V, respectively. Section VI
presents simulation results. Finally, Section VII concludes this
article.

D. Notation

The notation xi,j is equivalently used for xi − xj . A random
variable x selected from an arbitrary distribution X with mean
μ and variance σ2 is denoted by x ∼ X (μ, σ2). The expected
value and conditional expected value operators are denoted by
E[·] and E[·|·], respectively. The symbol S1 denotes the unit
circle. An angle is a point in S

1 and an arc is a connected subset
of S1. Given a matrix M of real numbers, we denote by R(M)
andN (M) the range and the null space, respectively. Symbol1n

is an n-dimensional vector of all ones. The empty set is denoted
by ∅.

II. MODEL AND PRELIMINARIES

This article considers a network of discrete-time phase-
coupled oscillators governed by dynamics in (1), which is a
discrete-time approximation of its continuous-time counterpart

θi(k + 1) = {θi(k) + τ ω̃i(k)

−
⎛
⎝κτ ∑

j∈Ni

α̃i,j(k)Ψ(θi,j(k))

⎞
⎠
⎫⎬
⎭ (mod 2π)

(1)

where k ∈ Z
+, θi(k) ∈ S

1, θi,j(k), τ > 0, and κ > 0 represent
the time step, the phase of oscillator i, the relative phase of
oscillators i and j, the sampling time, and the common coupling
term, respectively. The set of neighbors of oscillator i is denoted
by Ni. The variables α̃i,j(k) and ω̃i(k) are stochastic variables
representing the uncertain multiplicative coupling weight, and
the uncertain exogenous frequency, respectively. Function Ψ(·)
is the coupling function. For the purpose of brevity, the term

(mod 2π) is omitted from all representations of the discrete-
time dynamics in the rest of this article.

Assumption 1: Function Ψ(·) is 2π-periodic, continuously
differentiable, and odd.1 In the interval [0, π], it holds that
Ψ(0) = Ψ(π) = 0, and |Ψ(ξ)| �= 0∀ξ ∈ (0, π).

SinceΨ(·) is continuously differentiable, hence bounded, i.e.,
|Ψ(ξ)| ≤ Ψmax, the following property immediately follows.
This property indicates that there exits an arc Υ ⊂ [0, π] such
that the value of Ψ(·) for every angle on this arc is greater than
angles which belong to arcs in the vicinity of 0 and π.

Property 1: For any function Ψ(·) satisfying Assumption 1,
there exists an arc Υ = (γ, γmax) ⊂ (0, π), such that ∀ξ, z ∈
[0, π], if ξ �∈ Υ, z ∈ Υ then |Ψ(ξ)| ≤ |Ψ(z)|.

A. Preliminaries

The term |θi(k)− θj(k)| denotes the geodesic distance be-
tween phases θi, θj ∈ S

1. The geodesic distance is the minimum
value between the counter-clockwise and the clockwise arc
lengths connecting θi and θj . The size of the relative phase
θi,j = θi − θj ∈ (−π, π] equals |θi − θj | and its sign is positive
if the counter-clockwise path length from θi to θj is smaller
than that of the clockwise path. The relative phase of the two
oscillators decreases if |θi,j(k + 1)| < |θi,j(k)|.

A. Graph Theory

We here revisit some preliminaries on graph theory mainly
borrowed from [50]. Consider an undirected graph G(V, E),
where V is the set of n nodes and E ⊂ V × V is the set of
m edges. The graph’s incidence matrix is denoted by Bn×m.
The two matrices L(G) � BBT and Le(G) � BTB are called
the graph Laplacian and the edge Laplacian, respectively. If the
underlying graph is connected, then the eigenvalues of L can be
ordered as 0 = λ1(L) < λ2(L) ≤ . . . ≤ λn(L), where λ2(L) is
called the algebraic connectivity of the graph. Moreover, all
nonzero eigenvalues of Le are equal to the nonzero eigenvalues
of L.

A spanning tree of G is a subgraph Gτ (V, Eτ ) which is a
tree (cycle free) graph. Under an appropriate permutation of the
edge indexes, the incidence matrix of a connected graph G can
be partitioned asB = [B(Gτ ) B(Gc)], whereGτ represents a
given spanning tree ofG, andGc represents the remaining edges.
There exists a matrixR such thatLe(G) = R	Le(Gτ )R, where
R = [I T ] with T = L−1

e (G)B	(Gτ )B(Gc). For tree graphs,
the edge Laplacian is positive definite.

A. Markov Chains

A general measurable space is a pair (X,B(X)) withX a set
of points and B(X) a σ-algebra of subsets of X satisfying the
following properties.

1) ∅ ∈ B(X).
2) If D ∈ B(X), then Dc ∈ B(X), where Dc = X \D.
3) IfD1 ∈ B(X) andD2 ∈ B(X), thenD1 ∪D2 ∈ B(X).

A Markov chain is a stochastic process Φ = {Φ0,Φ1, . . .}
such that each Φi is randomly taking values on the measurable
state space X which is endowed by the σ-algebra B(X). The
chain Φ is defined by the triple (Ω,F ,P), such that:

1The relaxation of this assumption is discussed in Section IV.
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1) Ω is the whole state space, i.e., the product of all pairs,
each of which corresponds to Φi and is a subset of
(X,B(X));

2) F is a σ-algebra associated to the measurable space Ω;
3) P :F→ [0, 1] is a probability measure defined on (Ω,F)

that assigns a probability to each outcome of F .
The following definitions are mainly borrowed from [29].
Definition 1: [29, Ch. 3] Let (X,B(X)) be a measurable

space. The state spaceX is called countable ifX is discrete, with
a countable number of elements, and with B(X) the σ-algebra
of all subsets of X . The state space X is called general if it is
assigned a countably generated σ-algebra B(X).2

Definition 2: For a stochastic process Φ={Φ0,Φ1, . . .} de-
fined on (Ω,F ,P), letPn(ω,B)denote the transition probability
that the process enters the set B after n transitions, i.e., Φn+m∈
B, given Φm=ω. Then Φ is a time-homogeneous Markov chain
if transition probabilities{Pn(ω,B), ω ∈ Ω,B ⊂ Ω} exist, such
that for any n,m ∈ Z

+, the following holds:

P(Φn+m ∈ B|Φj , j ≤ m,Φm = ω) = Pn(ω,B).
The independence of the transition probability Pn(ω,B) from
j ≤ m entails the Markov property, and its independence from
m confirms the time-homogeneity.

Definition 3: Let Φ={Φ0,Φ1, . . .} be a Markov chain de-
fined on (Ω,F ,P). Then:

1) for anyD ∈ F , the measurable function τD : Ω → Z
+ ∪

{∞} is the first return time to the set D, i.e.,

τD � min{n ≥ 1 | Φn ∈ D} (2)

2) for any measureϕon theσ-algebraF , the Markov chainΦ
is said to beϕ-irreducible if∀ω ∈ Ω andD ∈ F ,ϕ(D) >
0 implies P(τD <∞) > 0.

According to Definition 3, the entire state space of a Markov
chain is reachable, independent of the initial state, via finite
number of transitions if the Markov chain is ϕ-irreducible.
Moreover, in that case, a unique maximal irreducibility measure
ψ > ϕ exists on F such that Φ is ϕ′-irreducible for any other
measure ϕ′ if and only if ψ > ϕ′. We then say that the Markov
chain is ψ-irreducible.

Definition 4: [51, Ch. 5] Let a = {a(n)} be a probability
measure on Z

+ and Φa be the sampled chain of the Markov
chain Φ at time-points drawn successively according to the
distribution a. Denote the probability transition kernel of Φa

by Ka(ω,D) =
∑∞

n=0K
n(ω,D) a(n), where K(ω,D) and

Kn(ω,D) are the probability transition kernel of Φ, and the
n-step probability transition kernel of Φ, respectively. A set
C ∈ B is a νa-petite set, where νa is a nontrivial measure on
B, if for all ω ∈ C and D ∈ B, Φa satisfies

Ka(ω,D) ≥ νa(D).

Definition 5. [51, Ch. 6]: Let K be the transition probability
kernel of a chain Φ defined on a locally compact and separable
space X acting on a bounded function h(x) : X → R, x ∈ X
via the mapping Kh(x) =

∫
K(x, dy)h(y). Denoting the class

of bounded continuous functions from X to R by C(X), the
chain Φ has the Feller property if K maps C(X) to C(X).

2The smallest σ-algebra on which B is measurable, i.e., the intersection of all
σ-algebras on which B is measurable, is called the generated σ-algebra by B.

TABLE I
MOST USED VARIABLES AND NOTATIONS

III. PROBLEM FORMULATION

This section presents the definition of the stochastic phase-
cohesiveness, and presents the problem statement. A list of
mostly used variables is summarized in Table 1.

A. Stochastic Phase-Cohesiveness

This section introduces two new definitions for stochastic
stability of phase-coupled oscillators based on two notions of
stability of stochastic processes. Our first definition, stochastic
phase-cohesiveness, corresponds to the concept of Harris recur-
rent Markov chains [29, Ch. 9]. A ψ-irreducible chain with state
space X is Harris recurrent if it visits every set A ∈ B+(X) al-
most infinitely, where B+(X) � {A ∈ B(X) : ψ(A) > 0} and
ψ is the maximal irreducibility measure.3 Equivalently, a chain
is Harris recurrent if the probability of its first return time τA to
a desired set A is one [29].

Let Θ denote the augmented relative phase vector of the
interconnected oscillators with the dynamics in (1)

Θ(k) = HG(θ(k)) (3)

whereθ(k) � [θ1(k), . . . , θn(k)]
	 is the augmented phase state,

and HG is a topology-dependent operator which computes the
relative phases. The state space on whichΘ(k) evolves is defined
by

Π = [−π, π]‖E‖ (4)

where ‖E‖ denotes the number of edges of the underlying
network topology.

Definition 6 (Stochastic phase-cohesiveness): The rela-
tive phase process Θ(k) in (3) is stochastic phase-cohesive if
PΘ(k)(τSΨ

G(γ) <∞) = 1, where SΨ
G(γ) ⊂ Π is a desired com-

pact set, and τSΨ
G(γ) is the first return time of the stochastic

process Θ(k) to the set SΨ
G(γ).

The above definition requires that the Markov chain returns to
a desired setSΨ

G(γ) almost infinitely. In what follows, we present

3The set B+(X) contains all sets of positiveψ-measure subsets of B(X) and
is uniquely defined for ψ-irreducible chains [29, Ch.4].
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Fig. 1. Relative phase of two oscillators i and j and its map on the
arcs Υ, Υ, and Υ.

a stronger notion based on the concept of positive Harris recur-
rent chains [29]. Conceptually, the following definition is the
stochastic counterpart of deterministic ultimate boundedness. It
implies that not only the chain revisits SΨ

G(γ) almost infinitely
but also the return time is bounded and the chain probability
distribution converges to an invariant probability measure in a
stationary regime.

Definition 7 (Ultimate stochastic phase-cohesiveness):
The relative phase process Θ(k) in (3) is ultimate stochastic
phase-cohesive if there exists a constant M <∞ such that
supEx[τSΨ

G(γ)] ≤M for all x ∈ SΨ
G(γ), where Ex denotes the

expectation of events conditional on the chain beginning with
Φ0 = x.

B. In-Phase and Antiphase Sets

Here, we introduce two sets, namely, in-phase and antiphase,
which are useful in our problem statement. For a function
Ψ(·), satisfying Assumption 1 and Property 1, choose γ and
γmax such that 0 < γ < γmax < π, 0 < |Ψ(γ)| = |Ψ(γmax)| <
Ψmax hold. Define the arcs Υ, Υ, and Υ as follows:

Υ = [0, γ] : ∀γi ∈ Υ : 0 ≤ |Ψ(γi)| ≤ |Ψ(γ)| (5)

Υ = (γ, γmax) : ∀γi ∈ Υ : |Ψ(γ)| < |Ψ(γi)| < Ψmax

(6)

Υ = [γmax, π] : ∀γi ∈ Υ : 0 ≤ |Ψ(γi)| ≤ |Ψ(γ)|. (7)

Fig. 1 depicts the introduced arcs together with the relative
phase of two oscillators i and j.

We introduce the in-phase set SΨ
G(γ) ⊂ Π and antiphase

SΨ
G(γmax) ⊂ Π, as

SΨ
G(γ) = {θi ∈ S

1, θj ∈ S
1 : |θi,j(k)| ∈ Υ, ∀(i, j) ∈ E}

(8)

SΨ
G(γmax) = {θi ∈ S

1, θj ∈ S
1: |θi,j(k)| ∈ Υ∀(i, j) ∈ E}.

(9)

C. Problem Statement

Here, we formulate the two problems to be studied in Sections
IV and V, respectively.

Problem 1: Consider a network of n phase-coupled oscilla-
tors, where the dynamics of each oscillator obeys (1). Let

α̃i,j(k) = αi,j + ni,j(k), ω̃i(k) = ωi +�i(k) (10)

where αi,j , ωi ∈ R
+ are constants, ni,j(k) and �i(k) are i.i.d.

stochastic variables at each time step k selected from a contin-
uous distribution with finite mean and variance. Also, assume
that the initial relative phase θi(0)− θj(0) is an arbitrary random

variable, independent from the realizations ofni,j(k) and�i(k),
∀k, and ∀i, j, with a finite moment probability distribution with
a continuous density function.

Denote the relative phase stochastic process corresponding
to this network by Θ(k), as in (3). Our objective is to study
the stability of Θ(k), especially, to characterize coupling, κ,
condition under which the process is stochastic phase-cohesive
with respect to the in-phase and antiphase sets defined in (8) and
(9).

Problem 2: Now, consider a special case of the network in
Problem 1 by assuming that the multiplicative uncertainties
obey the Bernoulli distribution. That is, two oscillators i and
j are coupled with probability p and decoupled with probability
1− p. When two oscillators are coupled, the weight of their cor-
responding edge equals κ > 0. We assume constant exogenous
frequencies. To make a distinction with Problem 1, denote the
multiplicative uncertainty by βi,j . The dynamics of oscillator i
can then be expressed as

θi(k + 1) = θi(k)−
⎛
⎝κτ ∑

j∈Ni

βi,j(k)Ψ(θi,j(k))

⎞
⎠+ τωi

(11)
where ωi ∈ R

+ represents the constant exogenous frequency of
oscillator i.

Our objective is to study the stability of this random network
and obtain coupling conditions under which the relative phase
stochastic process Θ(k) is stochastic phase-cohesive with re-
spect to the in-phase set. Moreover, we study conditions under
which the phase-locked solution, i.e., phase-cohesiveness with
respect to SΨ

G(0), is achieved.

IV. OSCILLATORS IN AN UNCERTAIN NETWORK

This section studies Problem 1 to characterize conditions un-
der which stochastic and ultimate stochastic phase-cohesiveness
are achieved for the network.

Considering the dynamics of individual oscillators in (1) and
stochastic variables in (10), the relative phase dynamics of two
interconnected oscillators i and j follows:

θi,j(k + 1) = θi,j(k) + τ ω̃i,j(k)

−
⎛
⎝κτ ∑

�∈{i,j}

∑
e∈N�

α̃�,e(k)Ψ(θ�,e(k))

⎞
⎠ . (12)

Assumption 2: The underlying deterministic network topol-
ogy G(V, E) is connected. The uncertain interconnections of
oscillators are undirected, i.e., α̃i,j(k) = α̃j,i(k). Each multi-
plicative random variable obeys the normal distribution, i.e.,
α̃i,j ∼ N (μi,j , σ

2). For each of the nominal exogenous frequen-
cies, it holds that E[ω̃i] > 0.

Notice that identical variances for multiplicative uncertainties
are not needed in our analysis. This assumption is only made
for the sake of clarity of representation (see Theorem 1). From
Assumption 2, the relative phase vector for the whole network,
Θ(k) in (3), is equal toB	θ(k), whereB is the incidence matrix
of the underlying deterministic graph G(V, E). The augmented
relative phase dynamics can then be written in the following
compact form:

B	θ(k + 1) = B	 (
θ(k) + τ ω̃(k)− τκB ∼α(k)Ψ(B	θ(k))

)
(13)
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where

ω̃n×1(k) = (ω̃1(k), . . . , ω̃n(k))
	

∼αm×m(k) =

⎛
⎜⎜⎝

α̃l1(k) 0 . . . 0
0 α̃l2(k) . . . 0
...

...
. . .

...
0 0 . . . α̃lm(k)

⎞
⎟⎟⎠

where lp ∈ E , with p ∈ {1, . . . ,m}, denotes the pth edge of the
underlying graph G(V, E).

A. Markov Properties

Before studying the network’s behavior, we discuss essential
properties of the stochastic process described in (13).

Lemma 1: The relative phase stochastic process (13) is a time-
homogeneous and ψ-irreducible Markov chain evolving in a
general space.

The above properties guarantee that a nonzero probability
exists for the Markov chain to make a transition from any initial
state to any state in the whole state space. In the following result,
we show that every compact set in the state space Π is also a
petite set (Definition 4). This equivalence is indeed helpful in
studying stochastic stability of the Markov chain (13), as will
be shown in Section IV-B.

Lemma 2: Every compact set in the state space of the relative
phase stochastic process (13) is a petite set.

B. Stochastic Phase-Cohesiveness

In this section, we study the phase-cohesiveness of the coupled
oscillators modeled in (13) employing the mathematical tools for
the stability analysis of Markov chains. We first derive sufficient
conditions under which the relative phase Markov chain is Harris
recurrent and hence stochastic phase-cohesive. Based on [29,
Th. 9.1.8], a ψ-irreducible chain Φ defined on a state space
X is Harris recurrent if there exists a petite set C ⊂ X , and a
function V : X → R

+, which is unbounded off petite sets (i.e.,
all sublevel sets of V are petite), such that the following drift
condition is satisfied:

ΔV = E[V (Φk+1)|Φk = x]− V (x) < 0 ∀Φk ∈ X \ C.
(14)

Our results are based on an application of the mentioned theorem
for our network problem setting. For the purpose of illustration,
we first provide an example by analyzing the behavior of a
network of two coupled oscillators.

Example 1: Consider a network of two oscillators modeled
as the discrete-time Markov chain in (13)

θ1,2(k + 1) = θ1,2(k)− 2τκ α̃1,2(k)Ψ(θ1,2(k))︸ ︷︷ ︸
a

+τ ω̃1,2(k)︸ ︷︷ ︸
b

with θ1,2 = θ1 − θ2, ω̃1,2 = ω̃1 − ω̃2, and α̃1,2 ∼ N(μ, σ2).
Define Υ = [0, γ],Υ = (γ, γmax),Υ = [γmax, π]. We will
show that SΨ

G(γ) = {θi ∈ S
1, θj ∈ S

1 : |θ1,2| ∈ Υ} is an ab-
sorbing set for the chain, i.e., the chain is Harris recurrent with
respect to this set. We will further show that the chain is transient
on SΨ

G(γmax) = {θi ∈ S
1, θj ∈ S

1 : |θ1,2| ∈ Υ}, meaning that,
the probability that the chain revisits SΨ

G(γmax) infinitely often
is zero.

First, assume that E[α̃1,2] = μ >
√

2σ2

π . We verify the con-

ditions under which the chain returns to SΨ
G(γ) with probability

one. Take V = |θ1,2| and assume that |θ1,2(k)| > γ. Calculating
the drift of V based on (14), we obtain

ΔV (k)=E[V (k + 1)]− V (k)=E[|θ1,2(k+1)|]−|θ1,2(k)|.
We have E[|θ1,2(k + 1)|] ≤ E[|a|] + τE[|b|]. Using the for-
mula for the folded normal distribution [52] [see Lemma 4,
inequality (28)], we obtain

E[|a|] ≤ |E[a]|+ 2κτ

√
2σ2

π
|Ψ(θ1,2(k))|.

First, assumeE[a] > 0. Also, without loss of generality, assume
that θ1,2(k) > 0, thus Ψ(θ1,2(k)) > 0. We obtain

ΔV (k) ≤ −2κμΨ(θ1,2(k)) + 2κ

√
2σ2

π
Ψ(θ1,2(k)) +E[|b|].

Thus, ΔV < 0 holds if

κ >
E[|ω̃1,2(k)|]

2Ψ(θ1,2(k))

(
μ−

√
2σ2

π

) . (15)

To obtain a lower bound for κ, upper-bound of E[ω̃1,2]
and lower-bound of Ψ(θ1,2) are needed in (15). Since we as-
sumed that at time k, |θ1,2(k)| > γ, then either |θ1,2(k)| ∈ Υ or
|θ1,2(k)| ∈ Υ. With the former, we have minΨ(θ1,2) = |Ψ(γ)|.
However, for the latter case,minΨ(θ1,2) = 0 holds, which leads
to the requirement of κ→ ∞ to guarantee a negative drift.
Now, let us set minΨ(θ1,2) = |Ψ(γ)| in (15). As discussed
above, the obtained κ is not sufficiently large to guarantee
the return of the chain from Υ, in this example equivalent to
SΨ
G(γmax), to SG(γ). The question is whether SΨ

G(γmax) is
an absorbing set. To verify, take V̄ = π − |θ1,2| and assume
that at time k, |θ1,2| < γmax. Calculating the drift of V̄ , we
obtain ΔV̄ (k) = |θ1,2(k)| −E[|θ1,2(k + 1)|]. The above gives
ΔV̄ (k) = −ΔV (k). Thus, finding a bound for κ > 0 to guar-
antee ΔV̄ < 0 is not possible. In particular, the lower bound for
κ in (15), with minΨ(θ1,2) = |Ψ(γ)|, guarantees ΔV < 0, and
thus, ΔV̄ > 0. Based on [29, Th. 8.0.2], the chain is transient
on SΨ

G(γmax). This implies that the probability that the chain
revisits SΨ

G(γmax) infinitely often is zero. This example shows
the positive effect of the additive uncertainties in the stabilization
of the chain with respect to the in-phase set SΨ

G(γ). Notice that
for E[α̃1,2] < 0, based on a similar argument, we can prove the
stability of the chain with respect to the antiphase set SΨ

G(γmax).
We are now ready to state our main result.
Theorem 1: Consider the relative phase stochastic process

(13) under Assumptions 1 and 2. The following statements hold.
1) IfE[ ∼α] is positive definite, then the relative phase process

is stochastic phase-cohesive with respect to the in-phase

set SΨ
G(γ), defined in (8), provided that μm >

√
2σ2

π ,

κ >
Emax[|Δω̃|](

μm −
√

2σ2

π

)
|Ψ(γ)|λmin(Le(Gτ ))

(16a)
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and τ satisfies

τ <
γ

κ

(
μM +

√
2σ2

π

)
Ψmaxλmax(Le) +Emax[|Δω̃|]

.

(16b)
2) If E[ ∼α] is negative definite and B	θ ≥ γmax1m is fea-

sible for G(V, E), then the relative phase process is
stochastic phase-cohesive with respect to the antiphase
set SΨ

G(γmax), defined in (9), provided that

κ >
|Emax[Δω̃]|

|Ψ(γ)| μm λmin(Le(Gτ ))
(17a)

and τ satisfies

τ <
(π − γmax)

κΨmax μM λmax(Le) +Emax[|Δω̃|] (17b)

where μm = λmin(|E[ ∼α]|), μM = λmax(|E[ ∼α]|), Emax[·]=
i,j
maxE[·]; λmax(Le) is the largest eigenvalue of Le(G); and
λmin(Le(Gτ )) is the minimum among the smallest eigenvalues
of all spanning trees of G. �

Sketch of the Proof: The proof is based on an application of
[51, Th. 9.1.8] in a network setting. The key is the construction
of a positive and radially unbounded function V : Π → R

+ for
the discrete-time network, such that the one-step drift of V
is negative if sufficient coupling conditions are satisfied. The
detailed proof is provided in Appendix D. �

Theorem 1 presents the coupling conditions under which the
relative phase process is stochastic phase-cohesive. The main
condition is the lower bound on κ. The bound on τ ensures
that the sampling time is sufficiently small such that given a
sufficiently large κ, the expectation of the maximum relative
phase at each time-step is confined within the desired arc. We
now continue by characterizing the coupling conditions under
which ultimate phase-cohesiveness is achieved. We show that for
the ultimate case, the coupling condition depends on τ . Without
loss of generality, the following result is presented for the case
of E[ ∼α] > 0.

Corollary 1 (Ultimate stochastic phase-cohesiveness): Con-
sider the discrete-time Markov chain in (13) representing the
relative phase dynamics of n interconnected oscillators under
Assumptions 1 and 2. Assume that E[ ∼α] > 0 holds. Then,
the relative phase process is ultimate stochastic phase-cohesive
with respect to the in-phase set SΨ

G(γ), in (8), if the following
conditions hold:

κ >

1
τ |Ψ(γ)| +Emax[|Δω̃|](

μm −
√

2σ2

π

)
|Ψ(γ)|λmin(Le(Gτ ))

(18a)

τ <
γ − 1

mΨmax

κ

(
μM +

√
2σ2

π

)
Ψmaxλmax(Le) +Emax[|Δω̃|]

(18b)

where μm = λmin(|E[ ∼α]|), μM = λmax(|E[ ∼α]|), Emax[·]=
i,j
maxE[·]; λmax(Le) is the largest eigenvalue of Le(G); and
λmin(Le(Gτ )) is the minimum among the smallest eigenvalues
of all spanning trees of G. �

C. Mixed Positive and Negative Multiplicative Mean
Values

Theorem 1 has proved that the relative phase Markov chain
is stochastic phase-cohesive with respect to either the in-phase
set SΨ

G(γ) or antiphase set SΨ
G(γmax) depending on the sign

of the mean values of the multiplicative uncertainties. The
presence of mixed positive and negative mean values for the
uncertain couplings could lead to a positive or negative drift
condition. In this section, we study the stochastic stability of
a network with an underlying connected and undirected line
topology, i.e., a subclass of connected graphs without cycles
in which each oscillator is connected to maximum two other
oscillators. We obtain conditions under which all relative phases
with positive multiplicative mean-values are recurrent to the
in-phase set and those with negative mean-values are recurrent to
the antiphase set. We consider identical exogenous frequencies
and assume zero mean value for the additive uncertainties, i.e.,
E[ω̃i,j(k)] = 0∀(i, j). Recall the arcs Υ and Υ, defined in (5)
and (7), respectively. Define,

UΨ
G (γ) = {θi ∈ S

1, θj ∈ S
1: |θi,j(k)| ∈ Υ ∪Υ∀(i, j) ∈ E}.

(19)
Proposition 1: Consider the discrete-time Markov chain in

(13) representing the relative phase dynamics of n intercon-
nected oscillators over a connected and undirected line net-
work under Assumptions 1 and 2. Assume that E[ω̃i,j(k)] =
0∀(i, j), and each of the multiplicative uncertainties obeys
α̃i,j ∼ N (μi,j , σ

2), whereμi,j is either positive or negative such
that |μi,j | = λ > 0, and λ � σ2. If

κ > 0 and τ <
γ

2κλΨmax

holds, then the relative phase process is stochastic phase-
cohesive with respect to UΨ

G (γ) in (19) such that each relative
phase whose uncertain coupling weight has a positive (negative)
mean value is recurrent to the in-phase arc Υ in (5) [antiphase
arc Υ in (7)]. �

D. Relaxation of the Odd Coupling Function

Definition ofΥ in (5) assumes that0 ∈ Υ andΨ(0) = 0. How-
ever, the latter condition can be relaxed such that the coupling
function takes a zero value at a nonzero arc γc : 0 < γc < π.
This allows considering cases where the coupling is not an odd
function on the entire interval [−π, π].

Assumption 1’ Function Ψr(·) is 2π-periodic, and continu-
ously differentiable. There exists an arc Υ ⊂ (0, π) such that
∀ξ, z ∈ [0, π], if ξ �∈ Υ, z ∈ Υ, then |Ψr(ξ)| ≤ |Ψr(z)|. In the
interval (0, π), there exists γc �∈ Υ such that γc < γ∀γ ∈ Υ, and
it holds that γc and π are the only roots of Ψr(·) in [γc, π].
Moreover, function Ψr(·) is odd on [−π,−γc] ∪ [γc, π], and
∀γi ∈ [−γc, γc] : |Ψr(γi)| ≤ Ψ̄ < |Ψr(γ)|.

Following Assumption 1’, we construct the two following
sets:

Υ1 = [0, γc] : {∀γi ∈ Υ1 : 0 ≤ |Ψr(γi)| ≤ Ψ̄} (20)

Υ2 = [γc, γ] : {∀γi ∈ Υ2 : 0 ≤ |Ψr(γi)| ≤ |Ψr(γ)|}. (21)

Accordingly, we modify the definition of SΨ
G(γ) as follows:

SΨr

G (γ) = {θi, θj ∈ S
1 : |θi,j(k)| ∈ Υ1 ∪Υ2∀(i, j) ∈ E}.

(22)
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Proposition 2: Consider the discrete-time Markov chain in
(13) over a tree network topology and under Assumptions 1’
and 2. Assume thatE[ ∼α] is positive definite, and λmin(E[ ∼α]) =

μm � σ2 holds. If λ̂ = μm|Ψr(γ)| − μM Ψ̄
√
(m− 1) > 0,

then the relative phase process is stochastic phase-cohesive, with
the absorbing set SΨr

G (γ) in (22) provided that

κ >

(
λ̂1 + λ̂2(m− 1)

)
Emax[|Δω̃|]

λ̂λmin(Le)
(
λ̂1 + λ̂2

√
(m− 1)

) (23a)

τ <
γ

κΨmaxλmax(Le) μM +Emax[|Δω̃|] (23b)

where μm = λmin(E[ ∼α]), μM = λmax(E[ ∼α]), Emax[·]=
i,j
maxE[·], λ̂1 = μm|Ψr(γ)|, λ̂2 = μM Ψ̄, and λmax(Le) and
λmin(Le) are, respectively, the largest and smallest eigenvalues
of the underlying tree graph’s edge Laplacian. �

Remark 1: [Insights from stochastic stability analysis] Prob-
lem 1 considers stochastic uncertainties, with continuous prob-
ability distributions, which can take positive, negative, or zero
values at every sample time with no restriction on their ampli-
tudes. Compared with the deterministic stability, which depends
on either the upper bound [43] (for additive), or the bound, sign,
and behavior (for multiplicative) of the time-evolution of distur-
bances [44], our results only require finite means and bounded
variances. To elaborate further, consider phase oscillators in a
network where the mean-values of multiplicative uncertainties
are positive, and the mean values of additive noises are zero,
i.e., E[ ∼α] > 0 and Emax[|Δω̃|] = 0. Based on Theorem 1,
for any κ > 0, the in-phase set is stochastic phase-cohesive.
This also includes the case of γ = 0, indicating stability of
the phase-locked (exact synchronization) solution, despite the
fact that the samples of all uncertainties can take any value at
any time step. In comparison, for the deterministic Kuramoto
model with the all-to-all topology, local input-to-state stability of
the phase-locked solution given bounded additive perturbations,
has been proved [43]. We also notice that despite the effects
of multiplicative uncertainties on the network topology at each
sample time, our stochastic analysis does not require considering
various possible time-varying typologies. Next section studies a
specific model of multiplicative uncertainties, i.e., random con-
nections. We show that stochastic phase-cohesiveness depends
on the probability of interconnections of oscillators, comparable
with results to the stochastic linear consensus problem [35], and
different from the deterministic setting, where stability depends
on the time-varying graphs.

V. OSCILLATORS IN A RANDOM NETWORK

In this section, we investigate Problem 2 in order to charac-
terize conditions under which the stochastic phase-cohesiveness
is achieved for the coupled oscillators over an Erdös–Rényi
random network. Considering each oscillator’s dynamics in (11),
the relative phase dynamics of oscillators i and j obeys

θi,j(k + 1) = θi,j(k) + τωi,j

−
⎛
⎝κτ ∑

�∈{i,j}

∑
e∈N�

β�,e(k)Ψ(θ�,e(k))

⎞
⎠ (24)

where θi,j(k) and ωi,j ∈ R represent the relative phase and
relative exogenous frequency of the two oscillators i and j,
respectively. The random variable β�,e(k) obeys the Bernoulli
distribution, i.e.,

β�,e(k) =

{
1 with probability p
0 with probability 1− p.

(25)

Considering a probable absence of each edge in the network,
a graph with the incidence matrix Bk presents the topology of
the network at time k. We denote the set of incidence matrices
associated with random graphs, with n nodes and probability of
link failure of 1− p, by B(n, p). Thus, Bk ∈ B(n, p). To stay
consistent with the problem formulation of the previous section
and without loss of generality, we assume the existence of a
maximal graph for the given problem, for instance a complete
graph, denoted by G whose incidence matrix is B. We then
model the randomness with the term Bβ(k), where βm×m(k)
is a diagonal matrix capturing the random interconnections.

Thus, the relative phase vector for the whole network,Θ(k) in
(3), is equal toB	θ(k). The compact form of the relative phase
dynamics follows

B	θ(k + 1) = B	 (
θ(k) + τω(k)− τκBβ(k)Ψ(B	θ(k))

)
(26)

where β(k) is a diagonal matrix whose diagonal elements
obey (25) and

ωn×1(k) = (ω1(k), . . . , ωn(k))
	 .

The above model allows us to study the stochastic phase-
cohesiveness of the network by using the developed setting in
the previous sections. Different from Section IV, this section
focuses on the case of constant exogenous frequencies. We now
discuss the chain properties and show that SΨ

G(γ) in (5) is the
stable set for this model as well.

Lemma 3: The relative phase stochastic process in (24) is a
ψ-irreducible Markov chain on a countable space.

The following result presents a counterpart of Theorem 1 for
the case of random networks.

Theorem 2: Consider the discrete-time Markov chain in (26)
under Assumption 1. Assume that ωi,j �= 0∀i, j. If p is strictly
positive, then the relative phase process is stochastic phase-
cohesive with respect to SΨ

G(γ) in (8) if the following conditions
hold

κ >
|Δmaxω|

|Ψ(γ)| p λmin(Le(Gτ ))
(27a)

τ <
γ

κ Ψmax λmax(Le)
(27b)

where |Δmaxω| =
i,j
max|ωi − ωj |, λmax(Le) is the largest

eigenvalue of L(G), and λmin(Le(Gτ )) is the minimum among
the smallest eigenvalues of the spanning trees of G. �

We now assume identical exogenous frequencies and
derive conditions under which the chain achieves phase-
synchronization (or phase-locking). With this, we show the
applicability of our definition of stochastic phase-cohesiveness
for a stronger notion of synchronization, i.e., phase-locking.

Corollary 2: Consider the discrete-time Markov chain in (26)
under Assumption 1 and with identical exogenous frequencies.
Assuming a sufficiently small τ , the relative phase Markov chain
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Fig. 2. Plot of Ψ(θ) (left) and Ψr(θ) (right). The “x” axis ranges over
[−π, π]. The red dots on Ψ(θ) show the minimum and maximum possible
values for γ. The red circle on Ψr(θ) shows where the interval in which
function is not odd, and the red dot shows γc.

Fig. 3. Network of five oscillators subject to multiplicative and addi-
tive uncertainties. Dashed arrows illustrate assignment of exogenous
frequencies.

is stochastic phase-cohesive with respect to the origin provided
that p > 0 and κ > 0. �

Remark 2: It is worth noting the difference between the
probability spaces for the uncertain network (Problem 1) and
the random network (Problem 2). In Problem 1, the relative
phases at time k evolve in a general space which is generated by
independent stochastic processes governing their corresponding
exogenous frequencies and couplings. In Problem 2, however,
the randomness only affects the interconnection topology. As
a result, the relative phases at time k will transit to a new
state within a countable set of states generated by independent
Bernoulli processes determining the interconnection topology.

VI. SIMULATION RESULTS

This section presents numerical simulations to validate our
theoretical results on the stochastic phase-cohesive behavior of
interconnected oscillators for both uncertain (Section IV) and
random (Section V) networks. We assume that the coupling law
obeys Ψ(θ) = sin(θ) + 0.3 sin(3θ) which meets Assumption 1.
We also define the arcs Υ = [0, π8 ],Υ = [ π

1.14 , π]. Fig. 2 shows
the plot of function Ψ(θ) as well as Ψr(θ). The latter, Ψr(θ) =
1.5 sin(1.1θ)− 0.7 cos(3.3θ − 0.4π), is not an odd function on
the entire interval [−π, π]. This function is used in simulations
designed for the verification of Proposition 2.

A. Uncertain Network

Fig. 3 shows a network composed of five oscillators. The
constant components of the exogenous frequencies are set to
ω1 = 1, ω2 = 2, ω3 = 3, ω4 = 4, ω5 = 5. The initial conditions

Fig. 4. Phases, relative phases and the maximum relative phase:
uncertain couplings (positive mean), and exogenous frequencies (The-
orem 1.1).

for the oscillators are set to θ(0) = [π4 ,
π
8 ,

−π
8 ,

−π
5 ,

π
5 ]. The

multiplicative and additive stochastic uncertainties are modeled
by the Gaussian random variables and reported by α̃

(m,v)
�,e =

(Mean value,Variance) and �(m,v)
i = (Mean value,Variance).

For the first experiment, the mean values and variances are set
based on the following table. Calculating the bound for κ based
on Theorem 1, we obtain κ>39.8 by replacing Emax[|Δω̃|]=3,

μm−
√

2σ2

π s=0.3, |Ψ(γ)|=0.66, and λmin(Le(Gτ ))=0.38.
The latter is the minimum eigenvalue of the network’s spanning
tree, which is a line graph obtained by removing the edge (3,4).
We set κ = 40 and τ = 0.001 meeting the requirements of
Theorem 1.

The time-evolution of the oscillators’ phases, the relative
phases, and the maximum relative phase are shown in Fig. 4.
As shown the relative phases are confined in the desired set.

In order to examine the effects of multiplicative uncertainties
with negative mean values, we keep the settings of the first
experiment but replace the mean values of the multiplicative
randomness with negative values. The time evolution of relative
phases, where all multiplicative mean values are set to negative
ones are shown in Fig. 5. The results confirm the stochastic
phase-cohesiveness w.r.t the antiphase set.

To verify Propositions 1 and 2, we consider a line graph
obtained by removing the edge (3,4) of the graph shown in Fig. 3.
We examine the results of Proposition 1 by setting the size of all
mean values of the multiplicative uncertainties equal to one. We
set α̃(m,v)

1,2 = (−1, 0.5); α̃
(m,v)
2,3 = (−1, 0.5) and keep the rest of

the mean values positive. We also setE[ω̃i] = 0∀i. The coupling
coefficient κ > 0 is set to κ = 2. As shown in Fig. 6, the relative
phases form two clusters.

To verify the result of Proposition 2, we use the setting of the
first experiment but with a nonodd coupling function Ψr(θ). We
set Ψr(γ = 0.4π) = 2 and Ψ̄ = 0.2. We have μm = 1;μM =

3;m = 4, which gives λ̂ = 0.98 and κ > 10. We set κ = 10. As
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Fig. 5. Phases, relative phases and the maximum relative phase: cou-
plings (negative mean values), and uncertain exogenous frequencies
(Theorem 1.2).

Fig. 6. Phases and relative phases over a line network with multi-
plicative uncertainties with mixed positive and negative mean values
(Proposition 1).

Fig. 7. Phases, relative phases, the maximum relative phase: Coupled
by Ψr(θ), uncertain exogenous frequencies, and couplings with positive
mean values (Proposition 2).

shown in Fig. 7, the relative phases are bounded and the network
behavior follows the result of Proposition 2.

B. Random Network

We now present the simulation results for a random net-
work with five oscillators. We use the coupling function Ψ(·),
Υ = [0, π8 ], and the initial conditions of the oscillators similar
to the first experiment of the previous section. If all links are
connected, then the graph depicted in Fig. 3 is obtained, hence
the maximal graph. The nonzero and nonidentical constant ex-
ogenous frequencies are equal toω1 = 1, ω2 = 2, ω3 = 3, ω4 =
4, and ω5 = 5. Sampling time is set to 0.01 s to elaborate the
effects of the randomness. We first assume that p = 0.8. Using
the condition in (27), we calculate κ > 15 and set κ = 19. The
evolution of the oscillators’ phases, the relative phases, and the
maximum relative phase over time are shown in Fig. 8(a). As
shown, the relative phases are confined in the set SΨ

G(γ = π
8 ).

We then decrease the connectivity probability to 0.3. The
results, reported in Fig. 8(b), show that the relative phases are not
bounded. We update the value ofκwith respect to the decrease in
the connection probability toκ = 30. The plots in Fig. 8(c) show
that the maximum relative phase is now within the desired set.

Fig. 8. Phases, relative phases and the maximum relative phase over
random network: nonidentical exogenous frequencies: (a) p = 0.8, κ =
19, (b) p = 0.3, κ = 12, (c) p = 0.3, κ = 30 (Theorem 2).

Fig. 9. Phases, relative phases and the maximum relative phase over
random network: identical exogenous frequencies, κ = 0.5: (a) p = 0.8,
(b) p = 0.1.

Next, we assume all exogenous frequencies are set to one. We
set κ = 0.5 > 0, and consider two probabilities of connection:
p = 0.8 and p = 0.1. Plots in Fig. 9 show the time-evolution
of the phases, the relative phases, and the maximum relative
phase over time for these two cases. As shown, all oscillators’
relative phases converge to zero and the rate of convergence is
proportional to the probability of connection.

VII. CONCLUSION

This article studies the stochastic relative phase stability for
a class of discrete-time coupled oscillators. The two notions
of stochastic phase-cohesiveness and ultimate stochastic phase-
cohesiveness are introduced. Stochastic phase-cohesiveness of
oscillators, with a general class of 2π-periodic, and odd coupling
functions, with respect to the two, in-phase and antiphase, sets
were studied. We investigated undirected networks subject to
both multiplicative and additive stochastic uncertainties. We
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proved stochastic phase-cohesiveness with respect to the in-
phase set when the mean values of all multiplicative uncertainties
were positive, and with respect to the antiphase set for the
case of negative mean values. In addition, we have discussed
the relaxation of the odd property of the coupling function by
allowing this function to be nonodd on a subset of its domain.
Moreover, we proved a clustering behavior for a network with an
underlying line topology subject to mixed negative and positive
mean values for the multiplicative uncertainties and zero mean
value for the additive uncertainties. Further, the stochastic phase-
cohesiveness of oscillators with constant exogenous frequencies
in an Erdös–Rényi random network was studied. Sufficient
conditions for achieving both stochastic phase-cohesive and
phase-locked solutions were derived. It was proved that oscil-
lators with equal exogenous frequencies in a random network
with any positive possibility of connection will achieve phase-
locking. Our results emphasize the importance of the coupling
function in synchronization, discuss the stabilizing effects of the
additive stochastic uncertainties, and the effects of multiplicative
uncertainties in achieving stochastic phase-cohesiveness.

APPENDIX A
PROOF OF LEMMA 1

Proof: The relative phase processΘ(k) = B	θ(k)with i.i.d.
stochastic variables, generated by continuous distributions, sat-
isfies all properties in Lemma 1 according to the definition of
the Markov chains, and Definitions 2 and 3. �

APPENDIX B
PROOF OF LEMMA 2

Proof: Based on [29, Proposition 6.2.8], the satisfaction of
the Feller property (Definition 5) together with the nonempti-
ness of the support of the irreducibility measure leads to the
conclusion that every compact set in the state space is also
petite. The Feller property of the Markov chain (13) can be
readily concluded according to [29, Proposition 6.1.2], since
the right-side of the Markov chain (13) is a continuous function
in θ(k) for each fixed pair of i.i.d. realizations (ω̃(k), ∼α(k)). In
addition, the uncertainties are capable of forcing transitions from
any subset of theσ-algebra to an open petite set in the state space,
hence, there exists no set in the σ-algebra in which if the Markov
state enters, it always remains there with the absolute probability
of one. This concludes that the support of the irreducibility
measure has a nonempty interior, which completes the proof. �

APPENDIX C
LEMMA 3: STATEMENT AND PROOF

Lemma 4: Consider the random vector

y(k) = B	θ(k)− τκB	B ∼α(k)Ψ(B	θ(k))

where y(k) ∈ R
m×1 and ∼α(k) is a diagonal matrix whose ele-

ments are i.i.d Gaussian random variables, as in Assumption 2.
Then, the following inequality holds:

E[|y(k)|∣∣θ(k)] ≤ |E[y(k)
∣∣θ(k)]|

+ κτ

√
2σ2

π
|B	BΨ(B	θ(k))|.

Proof: The proof is based on an application of the folded
normal distribution [52], for calculation of the expectation of the
absolute value of a random variable Z ∼ N(μ, σ2). We have

E[|Z|] =
√

2σ2

π
exp

(−μ2

2σ2

)
+ μ erf

(
μ√
2σ2

)

where erf, the error function [52], is an odd function such that
|erf(.)| ≤ 1. As a result, we can write

E[|Z|] ≤
√

2σ2

π
+ |μ|. (28)

Now, each element of y(k) = [y1(k) . . . ym(k)]	 is a ran-
dom variable obeying the normal distribution. Calculating
E[|y(k)|∣∣θ(k)], requires computation of the expectation of abso-
lute value of each element of y(k), i.e., E[|yi(k)|

∣∣θ(k)]. Denote
B	BΨ(B	θ(k)) by x = [x1 . . . xm]	. We have

E[|yi(k)|
∣∣θ(k)] ≤ |E[yi(k)

∣∣θ(k)]|+
√

2σ2κ2τ2x2i
π

.

The proof is completed by stacking all yi into vector y(k), and
all xi into x. �

APPENDIX D
PROOF OF THEOREM 1

Proof: The proof is based on an application of [51, Th.
9.1.8] in a network setting. We first assume that E[ ∼α] is positive
definite and prove that the Markov chain in (13) is stochastic
phase-cohesive with respect to the in-phase set SΨ

G(γ). Let us
assume that the chain lives in the set

U1 = {θi, θj ∈ S
1 : |θi,j(k)| ∈ Υ ∪Υ∀(i, j) ∈ E}

where Υ and Υ are defined in (5) and (6), respectively.
Let us first assume that E[ ∼α] is positive definite and define

the positive and radially unbounded function

V (Θ(k)) = |Ψ(γ)|
∑

|θi,j(k)|∈Υ
|θi,j(k)|+Ψo

∑
|θi,j(k)|∈Υ

|θi,j(k)| (29)

where Θ(k) = B	θ(k), Ψo = Ψ(0+), and V : Π → R
+, with

m the total number of edges of the underlying graph. Notice that
in the view of Lemma 2, the level sets of V are petite. Let us
assume that {∃(�, q) s.t. |θ�(k)− θq(k)| ∈ Υ}. We now derive
conditions under which the one-step drift of V , i.e.,

ΔV (Θ) = E[V (Θ(k + 1))
∣∣Θ(k)]− V (Θ(k)) (30)

is negative. Notice that the oscillators’ phases at time k, i.e.,
θ(k) is known. Let us denote the coefficients of V (Θ(k)) by
C ∈ R

m×1. Then, we can writeV (Θ(k)) = C	|B	θ(k)|. From
the relative phase dynamics in (13), we have

E[V (Θ(k + 1))
∣∣Θ(k)] = C	E[|B	θ(k + 1)|∣∣θ(k)]

= C	E[|B	θ(k)− τκB	B ∼α(k)Ψ(B	θ(k)) + τB	ω̃(k)|]

≤C	

⎛
⎜⎝E[|B	θ(k)−τκB	B ∼α(k)Ψ(B	θ(k))︸ ︷︷ ︸

I1

|+τ |B	ω̃(k)|︸ ︷︷ ︸
I2

⎞
⎟⎠

(31)
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where I1 = (I11 , . . . , I
m
1 )	 ∈ R

1×m and I2 ∈ R
m×1. According

to Lemma 4, we have

E[|I1|
∣∣θ(k)] ≤ |E[I1

∣∣θ(k)]|+ κτ

√
2σ2

π
|B	BΨ(B	θ(k))|.

(32)
For the clarity of presentation, we denote V (Θ(k)) and
Ψ	(B	θ(k)) by V (k) and Ψ	(k), respectively. Also, define

r = κτ
√

2σ2

π . Therefore from (30), we can write

ΔV (Θ) ≤ C	 (|E[I1]|+ r|B	BΨ	(k)|+E[I2]
)− V (k).

(33)
Based on the definition of Ψo, Ψo ≤ |Ψ(θi,j(k))| for edges
with a nonzero Ψ(·) at each time k. Also, since Ψ(·) is an odd
function, and Ψ(0) = 0, if θi,j(k) = 0, we can replace Ψo with
Ψ(θi,j(k)) = 0. Thus, C ≤ |Ψ(B	θ(k))| holds elementwise,
and we can write

ΔV (Θ)≤|Ψ	(k)| (|E[I1]|+r|B	BΨ	(k)|+E[I2]
)−V (k).

(34)
Considering the definition of V (Θ(k)) in (29), at each time k
it holds that Vm(Θ(k)) ≤ V (Θ(k)) ≤ VM (Θ(k)), where Vm
represents the case in which at time k only one relative phase
belongs to Υ, and all other relative phases are equal to zero, and
VM is the case where all relative phases at time k belong to Υ. In
what follows, we continue the proof by obtaining the conditions
under which both Vm and VM decrease at one time-step. Thus,
V necessarily decreases.

Proof of ΔVm(Θ) ≤ 0: Given the conditions of this case,
only one relative phase at time k belongs to Υ, and all other
relative phases are equal to zero, i.e., |(θ�,q(k))| ≥ γ and
|θp,s(k)| = 0∀(p, s) �= (�, q). From (34), all elements of the vec-
tor |Ψ	(k)||E[I1]| are zero except the element corresponding to
θ�,q. Therefore, the following equality holds:

|Ψ	(k)||E[I1]| = |Ψ	(k)E[I1]|.
From (31) and (34), the on-step drift of Vm obeys

ΔVm(Θ) ≤ |Ψ	(k)B	θ(k)︸ ︷︷ ︸
a

− τκ Ψ	(k)B	B E[ ∼α(k)]Ψ(k)︸ ︷︷ ︸
b

|

+E[ τ |Ψ	(k)||B	ω̃(k)|︸ ︷︷ ︸
c

]+r|Ψ	(k)||B	BΨ	(k)|︸ ︷︷ ︸
d

−Vm(k).

(35)

To have ΔVm < 0, the following should hold:

[1] E[a− b+ c] + d < Vm(k) when E[a− b] > 0

[2] E[−a+ b+ c] + d < Vm(k) when E[a− b] < 0. (36)

We now discuss that the expectation of the term denoted by
b is positive. Assume E[ ∼α] is positive definite. Since B	B ≥
0 holds for a connected graph [50], and also Ψ(·) is an odd
function, we obtain

E[b] ≥ κ τλmin(E[ ∼α]) Ψ	(k) B	B Ψ(k). (37)

Notice that inequality (37) is greater than zero. The reason is
that the range space of B	 (i.e., R(B	)) and null space of B
(i.e., N (B)) are perpendicular. As a result, BΨ(B	θ(k)) = 0

holds if and only if Ψ(B	θ(k)) = 0. Since we assumed that
at time k, there is at least one edge of the graph whose cor-
responding relative phase belongs to Υ, B	θ(k) �= 0 holds.
Thus, E[b] > 0. Now, consider the term d in (35). Since only
one element of Ψ(k) is nonzero and B	B ≥ 0, we can write
d = rΨ	(k)B	BΨ	(k).

Consider the first inequality in (36). Recall that |(θ�,q(k))| ≥
γ and |θp,s(k)| = 0∀(p, s) �= (�, q). This gives a = γΨ(γ). Cal-
culating the term Vm(k) under the same condition, we obtain
γ|Ψ(γ)| which cancels out with a. We now proceed to char-
acterize conditions which guarantee ΔVm < 0. From (36), two
following criteria should hold:

min {E[b]} − d > max E[c]

−min {a}+max {E[b] +E[c]}+ d < min {Vm(k)}.
(38)

To obtain the lower bound of b, we writeB	B = R	Le(Gτ )R,
where Le(Gτ ) = B	

τ Bτ > 0 is the corresponding edge Lapla-
cian of a spanning tree of graph G at time k, and R = [I T ]
([50, Th. 4.3], see Section II). Thus,

E[b] ≥ τκλmin(E[ ∼α])λmin(Le(Gτ ))Ψ
	(k)RTRΨ(k) > 0.

(39)
Under conditions |(θ�,q(k))| = γ and |θp,s(k)| =
0∀(p, s) �= (�, q) and assuming that (�, q) ∈ Gτ , we have
Ψ	(k)RTRΨ(k) = Ψ2(γ). Let μm denote λmin(E[ ∼α]).
Computing the first inequality in (38), gives

(τκμm − r)Ψ2(γ)λmin(Le(Gτ )) > τ |Ψ(γ)|Emax[|Δω̃|].
(40)

Considering the second inequality in (38), max{b} is obtained
if Ψ(θ�,q(k)) = Ψmax. In this case, we have

E[b] ≤ τκλmax(E[ ∼α])λmax(Le)Ψ
	(k)Ψ(k). (41)

Denoting λmax(E[ ∼α]) by μM , we obtain

d+E[b] ≤ (τκμM + r)λmax(Le)Ψ
2
max.

Also, calculating min {a}, where a is defined in (35), gives
a ≥ Ψmaxγ. The reason is that for the edge belonging to Υ, the
minimum angle is γ, and its corresponding Ψ(·) value follows
same as in calculation of b, hence Ψmax. We notice that based
on the definition of d in (29), for all edges that belong to Υ,
min{d} = γ|Ψ(γ)|. Hence,

−γ+(τκμM+r)λmax(Le)Ψmax+τEmax[|Δω̃|]︸ ︷︷ ︸
f

<
|Ψ(γ)|
Ψmax

γ

(42)

should hold. Since |Ψ(γ)| < Ψmax, we can replace (42) with
f < γ. Thus, we obtain the second condition in (16).

Proof of ΔVM (Θ) ≤ 0: Given the conditions of this case, all
relative phases at time k belong to Υ, i.e., ∀(�, q) : |(θ�,q(k))| ≥
γ. In fact, each element of vector E[I1] in (33) is posi-
tive if either the sign of its corresponding term in vector
κτB	BE[ ∼α(k)]Ψ(k) (31) is negative or the sign is positive and
the size is smaller than γ. Hence, γ > κτ(dmax + 1)μMΨmax

should hold, where dmax is the maximum degree of the nodes of
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the underlying graph. Since λmax(Le) ≥ (dmax + 1), the bound
in (42) gives a smaller τ , hence, it satisfies the required condition.
Thus, |Ψ	(k)||E[I1]| = Ψ	(k)E[I1]. We now write ΔVM and
argue similar to the case of Vm which gives (16).

The sufficient coupling condition κ in the above result de-
pends on |Ψ(γ)|. For relative phases belonging to Υ, |Ψ(γ)| is
the minimum of Ψ(γi), γi ∈ Υ. That is, the obtained condition
guarantees that the chain will return toSΨ

G(γ) fromΥ. We notice
that even if the chain initiates from SΨ

G(γ), the presence of
stochastic uncertainties can transfer the relative phase of each
two oscillators fromSΨ

G(γ) to not onlyΥbut alsoΥ. Considering
returning of the relative phases from Υ to SΨ

G(γ), we shall
replace |Ψ(γ)| in (16) withΨ(γmin) = minΨ(γi), γi ∈ Υ. This
substitution leads to κ→ ∞ (see Example 1). To verify whether
the arc set Υ is absorbing, we shall study the evolution of the
relative phase after exitingΥ. We can prove that ifE[ ∼α] > 0, the
chain is transient with respect to SΨ

G(γmax). Recall that similar
to Υ, the maximum value of Ψ(·) for the arcs in Υ is |Ψ(γ)|.
Define,

V̄ (Θ(k)) = C	(π1m − |B	θ(k)|).
Computing the one-step drift, we obtain

ΔV̄ (Θ) = −ΔV (Θ). (43)

Therefore, assuming E[ ∼α] is positive definite, the lower bound
for κ in (16), which guarantees ΔV < 0, leads to ΔV̄ > 0.
Based on [29, Th. 8.0.2], the chain is transient on SΨ

G(γmax).
That is, the probability that the chain revisitsSΨ

G(γmax) infinitely
often is zero. From the analyses using both V and V̄ , the condi-
tions in (16) guarantee that the chain is stochastic phase-cohesive
with respect to SΨ

G(γ).
Now, assume that E[ ∼α] is negative definite, and the underly-

ing deterministic topology satisfiesB	θ ≥ γmax1m ∈ R(B	).
The latter assumption is imposed dealing with the existence
of graph cycles (see [50]) composed of an odd number of
oscillators. In such a case, independent of the stochastic nature
of our problem setting, it is not feasible to have all relative phases
greater than some predefined limits, e.g., if γmax >

π
2 . Hence,

at least one of the relative phases should be confined to the arc
Υ by the topological restrictions. Here, we exempt the latter
case. To have ΔV̄ (Θ) < 0, C	|B	θ(k)| ≥ C	E[|B	θ(k +
1)|] should hold. Since E[|B	θ(k + 1)|] ≥ |E[B	θ(k + 1)]|
elementwise, therefore we should have

C	|B	θ(k)| ≥ C	|E[B	θ(k + 1)]|. (44)

Similar to the previous case, we study two cases of one edge
V̄m and all edges V̄M belonging to Υ. Considering the case of
V̄m, we assume |(θ�,q(k))| ≤ γmax and |θp,s(k)| = π∀(p, s) �=
(�, q). Since Ψ(π) = 0, we can replace C with |Ψ	(k)| in both
sides of (44). As a result, the following should hold:

|Ψ	(k)B	θ(k)︸ ︷︷ ︸
a

+ τκ Ψ	(k)B	B|E[ ∼α(k)]|Ψ(k)︸ ︷︷ ︸
b

+ τΨ	(k)E[B	ω̃(k)]︸ ︷︷ ︸
c

| ≥ Ψ	(k)B	θ(k). (45)

Since Ψ(·) is an odd function, b > 0 holds (as discussed above).
Then, if a+ b± |c| > 0, to have a negative drift, min{b} >
max{|c|} should hold, which gives the condition on κ, as in
(17). If the latter condition holds, a+ b± |c| is always positive.
However, the relative phase at each time should be smaller
than π (definition of geodesic distance), thus max{b+ c} <
Ψmax(π − γmax) should hold, which completes the proof. �

APPENDIX E
PROOF OF COROLLARY 1

Proof: The proof is based on [29, Th. 11.0.1]. We derive the
conditions under which the following inequality holds:

E[V (Φk+1)|Φk = x]− V (x) < −1 ∀Φk ∈ Π \ SΨ
G(γ).

(46)
The rest of the proof is similar to the proof of Theorem 1. �

APPENDIX F
PROOF OF PROPOSITION1

Proof: Take V̄ =
i,j
max|Ψ(θi,j)| and assume that at time

k, {∃(�, e) ∈ E : |θ�,e| ∈ Υ, V̄ (k) = |Ψ(θ�,e)|}. To prove the
stochastic phase-cohesiveness w.r.t.UΨ

G (γ), we use a drift-based
argument to derive conditions under which ΔV̄ = E[V̄ (k +
1)]− |Ψ(θ�,e)(k)| is negative. Recall that from the definition
of the desired sets in Section III-B, Ψ(·) for all arcs that
belong to Υ is larger than the arcs in Υ or Υ. So, instead
of computing Ψ(θ�,e(k + 1)), we use an equivalent argument.
We compute the evolution of edge (relative phase) θ�,e, that
is, Δθ�,e = E[|θ�,e(k + 1)|]− |θ�,e(k)|. We prove that an edge
for which sign(E[α̃�,e]) > 0 holds is recurrent to Υ while if
sign(E[α̃�,e]) < 0 holds, it is recurrent to Υ. In both cases,
ΔV̄ < 0 is guaranteed. Assume θ�,e(k) > 0. First consider the
case E[|θ�,e(k + 1)|] = E[θ�,e(k + 1)]. Since the underlying
topology is a line graph, based on (12), we have

Δθ�,e = E[θ�,e(k + 1)]− θ�,e(k)

= −2 τ κ sign(E[α̃�,e(k)])|E[α̃�,e(k)]|Ψ(θ�,e(k))

− τ κ sign(E[α̃p,q(k)])|E[α̃p,q(k)]|Ψ(θp,q(k))

− τ κ sign(E[α̃d,s(k)])|E[α̃d,s(k)]|Ψ(θd,s(k)) (47)

where (p, q) and (d, s) denote the neighboring edges. Our
aim is to prove that sign(E[α̃�,e(k)])Δθ�,e < 0. Recall
that |Ψ(θ�,e(k))| ≥ Ψ(γ), where |Ψ(θ�,e(k))| is the maxi-
mum. That is, |Ψ(θd,s(k))| ≤ |Ψ(θ�,e(k))| and |Ψ(θp,q(k))| ≤
|Ψ(θ�,e(k))|. Since the size of all mean-values are equal to λ

and Ψ(θ�,e(k)) is maximum, the sign of Δθ�,e is always equal
to −sign(E[α̃�,e(k)]) unless |Δθ�,e| = 0. In fact, depending on
the sign and size of Ψ(θp,q(k)) and Ψ(θd,s(k)), we have

0 ≤ |Δθ�,e| ≤ 4τκλΨmax.

Let us look at the case of |Δθ�,e| = 0. In this case, theΨ(·) of the
neighboring edges are equal to Ψ(θ�,e(k)). We consider the dy-
namics of either of them and write their evolution similar to (47).
Now, either the same situation occurs or the maximum relative
phase is dominant w.r.t. its neighbors. In case of a zero difference,
we continue with a neighboring edge and repeat this process till
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reaching the tail of the graph or if we find a maximum edge
whose neighbors (at least one neighbor) do not possess a cor-
responding maximum Ψ(·). Since the graph is a line graph, the
final edge of the graph has only one neighbor. Then we can write,

Δθ�,e = E[θ�,e(k + 1)]− θ�,e(k)

= −2 τ κ sign(E[α̃�,e(k)])|E[α̃�,e(k)]|Ψ(θ�,e(k))

− τ κ sign(E[α̃p,q(k)])|E[α̃p,q(k)]|Ψ(θp,q(k)).
(48)

From the above we conclude that forκ > 0, |Δθ�,e| ≥ τκλΨγ �=
0 and sign(Δθ�,e) = −sign(E[α̃�,e]). This gives ΔV̄ < 0.
Now, consider the case of E[|θ�,e(k + 1)|] = −E[θ�,e(k + 1)].
Writing the inequality in (47) for the maximum case, we obtain
the condition on the sampling time, i.e., −γ + 4τκλΨmax < γ
which completes the proof. �

APPENDIX G
PROOF OF PROPOSITION 2

Proof: Similar to the proof of Theorem 1, define

V (Θ(k)) = |Ψr(γ)|
∑

|θi,j(k)|∈Υ
μi,j |θi,j(k)|

+Ψo
∑

|θi,j(k)|∈Υ1∪Υ2

μi,j |θi,j(k)|

where μi,j = E[α̃i,j ]. Assume that at time k, there exists an
edge θ�,e such that |θ�,e| ∈ Υ. To characterize the lower bound
on κ, we assume the worst condition, i.e., |(θ�,q(k))| = γ and
|θp,s(k)| ≤ γc∀(p, s) �= (�, q) andΨ(θp,s(k)) = −Ψ̄. Similar to
the proof of Theorem 1, it holds V (Θ(k + 1)) ≤ V̄ (Θ(k + 1)),
where

V̄ (Θ(k + 1)) = |Ψ	
r,μ(B

	θ(k))||B	θ(k + 1)|

with Ψr,μ(B
	θ(k)) = μΨr(B

	θ(k)), and μm×m is a constant
matrix equal to μ = E[ ∼α]. Different from Theorem 1, there ex-
ists an arc in [0, π] on which Ψr(·) may take positive or negative
values. Hence, Ψ	

r,μ(B
	θ(k))B	θ(k) ≥ 0 does not necessarily

hold. Denote V̄ (Θ(k)), Ψ	
r,μ(B

	θ(k)), and Ψr(B
	θ(k)) by

V̄ (k), Ψ	
r,μ(k), and Ψr(k), respectively. Since, the variances

are assumed to be small, we have

ΔV̄ (Θ) ≤ −V̄ (k) +E[ τ |Ψ	
r,μ(k)| |B	ω̃(k)︸ ︷︷ ︸

c

| ∣∣θ(k)]

+E[|Ψ	
r,μ(k)|B	θ(k)︸ ︷︷ ︸

a

−τκ |Ψ	
r,μ(k)|B	B ∼α(k)Ψr(k)︸ ︷︷ ︸

b

∣∣θ(k)].
(49)

Similar to the proof of Theorem 1, to have ΔV̄ < 0, the in-
equalities in (36) should hold. Now, we continue by charac-
terizing the lower bound on κ, we assume the worst condi-
tion, i.e., |(θ�,q(k))| = γ and |θp,s(k)| < γc∀(p, s) �= (�, q) and
Ψ(θp,s(k)) = −Ψ̄. Considering the worst condition, assume that
E[α̃�,q] = λmin(E[ ∼α]) and E[α̃p,s] = λmax(E[ ∼α]). From the

definition of V̄ (θ(k)), we obtain a = V̄ (k). Define,

x = λmin(E[ ∼α])[|Ψr(γ)| 0 . . . 0]	

y = λmax(E[ ∼α])[0 Ψ̄ Ψ̄ . . . Ψ̄]	.

Then, we can write |Ψr,μ(k)| = x+ y and E[ ∼α(k)]Ψr(k) =
x− y. Thus, computing the term b in (49) gives

E[b] = (x	 + y	)B	B(x− y) = x	B	Bx− y	B	By.

Notice thatB	B is symmetric, and for a tree graph Le = B	B
is positive definite. Define λ̂1 = λmin(E[ ∼α])|Ψr(γ)| and λ̂2 =
λmax(E[ ∼α])Ψ̄. Assume that

λ̂ = λ̂1 − λ̂2

√
(m− 1) > 0.

Denote f = λ̂1 + λ̂2

√
(m− 1) > 0. As a result, E[b] ≥

λmin(Le)λ̂f > 0. To obtain κ, we should have κmin {E[b]} >
max E[c]. This gives,

κ >

(
λ̂1 + λ̂2(m− 1)

)
Emax[|Δω̃|]

λmin(Le)λ̂
(
λ̂1 + λ̂2

√
(m− 1)

) .
To obtain the bound on τ , we assume that all edges of the network
belong to Υ. The rest of the proof follows from the proof of
Theorem 1 which leads to the conditions in (23). �

APPENDIX H
PROOF OF LEMMA 3

Proof: The network topology is a random graph, therefore,
at each time step k, the set of randomly established edges deter-
mines the space wherein the relative phases evolve until k + 1.
Thus, the probability space is the countable set of spaces that are
randomly selected by multiple independent Bernoulli processes.
The probability space may contain at least one space (correspond
to the null graph) and at most 2m spaces (corresponding to the
maximal graph). Since p is a fixed nonzero probability and the
topology of the network at a time k is independent of the states
θi(t), t < k, the dynamics θi(k + 1) only depends on θi(k), and
the random topology determined by p and hence (24) is a Markov
chain. Due to the independence of the Bernoulli processes over
time and also p being a nonzero probability, the countable set
of probability spaces is ψ-irreducible (Definition 3, also [29,
Ch.4]). �

APPENDIX I
PROOF OF THEOREM 2

Proof: The proof is based on [29, Th. 11.0.1] for chains
evolving in a countable space. Notice that here, all compact
sets are petite since the space is countable. The trend of the
proof is similar to the proof of Theorem 1. Define function
V (Θ(k)), as in (29). Different from Theorem 1, here, the
randomness is governed by the Bernoulli distribution and we
can compute the finite set of all possible outcomes. In order
to compute the one-step drift for Vm and VM (as defined in
the proof of Theorem 1), we need to calculate E[|I1|], with
I1 = B	θ(k)− τκB	Bβ(k)Ψ(B	θ(k)). Since each of the
two oscillators, if connected, are linked undirectedly, we can
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write B such that B	θ(k) � 0 holds. Recall that based on the
definition of Vm, only one edge is nonzero, and for VM , all are
nonzero. Now, consider I1, also in the view of dynamics in (26).
If τ is sufficiently small, for a given κ, we can assure that all
elements of I1 are positive, hence, E[|I1|] = E[I1] holds. To
characterize the condition on τ , we write

γ = min |θi,j(k)| ≥ τκ dmaxΨmax

where dmax is the maximum degree, and dmax ≤ λmax(Le).
This gives the bound on τ . Then, based on a similar argument
as the proof of Theorem 1, we show that the one-step drift of V
from Υ in (6) to Υ in (5) is negative if κ is sufficiently large,
as in (27). Furthermore, since ∀i, j, ωi,j �= 0 and the oscillators
are randomly connected, if the maximum relative phase enters
Υ, the probability that it exits this set is nonzero. In a similar
fashion to Example 1 and Theorem 1, we argue that SΨ

G(γmax)
is transient which ends the proof. �

APPENDIX J
PROOF OF COROLLARY 2

Proof: The proof follows a similar trend as of Theorem
2. Set γ = 0+ which gives SΨ

G(0) = {θi, θj ∈ S
1 : |θi,j(k)| =

γ∀(i, j) ∈ E}. From the result of Theorem 2, we have

κ τ |Ψ(γ)| p λmin(Le) > |Δmaxω|. (50)

Notice that the above holds for any γ ∈ [0+, π−]. By substituting
|Δmaxω| = 0, we conclude that the condition is satisfied ∀κ >
0. From the proof of Theorem 2, we have τ ∼ γ

κ , and hence
sufficiently small. This indicates that if the chain exits the origin,
it revisits the origin with probability one. Notice that this does
not hold for the antiphase arc Υ = π. Since, exiting this arc, the
relative phases will return to the origin, as explained above. This
completes the proof. �
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