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Diversity-Based Topology Optimization of Soft Robotic
Grippers

Josh Pinskier,* Xing Wang, Lois Liow, Yue Xie, Prabhat Kumar, Matthijs Langelaar,
and David Howard

1. Introduction

Soft gripping has rapidly become the de facto approach for grasp-
ing delicate, compressible, and geometrically diverse objects
across a range of valuable target domains, including the robotic
harvesting, manufacturing, and medical industries. Several

classes of soft gripper including pneumatic
soft fingers (Pneunets),[1] vacuum-driven
universal jamming grippers,[2,3] and pas-
sive soft grippers such as Fin Rays[4] have
been extensively investigated, with several
designs now commercially available.
Regardless of their actuation mechanism,
the aforementioned approaches are united
in leveraging flexible materials to conform
to an object’s surface without applying
large forces,[5] and as such many robotics
researchers aspire to create universal
end-effectors based on this concept. Such
“swiss army knife” grippers that offer high
performance across a broad range of appli-
cations are an attractive proposition, how-
ever recent research points to limitations
with this approach, for example, showing
that “Universal” jamming grippers are in
fact highly amenable to optimization of
both membrane geometry[6] and constitu-
ent granular materials,[7] achieving signifi-
cant performance gains over standard
grippers of the same type. The same is true
of Pneunets, which despite being widely
used as universal soft grippers, exhibit
significant performance gains when both
the material and geometry are optimised
for their task.[8]

Bespoke gripper morphology tuned to unique features of the
task and environment allows for a level of “behavioural niching”
and heightened performance. More specialized soft gripper
designs have therefore emerged in recent years (e.g.,[9–11]).
Despite promising results, a reliance on designer intuition
and manual experimental evaluation means that these design
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Soft grippers are ideal for grasping delicate, deformable objects with complex
geometries. Universal soft grippers have proven effective for grasping common
objects, however complex objects or environments require bespoke gripper
designs. Multi-material printing presents a vast design-space which, when
coupled with an expressive computational design algorithm, can produce
numerous, novel, high-performance soft grippers. Finding high-performing
designs in challenging design spaces requires tools that combine rapid iteration,
simulation accuracy, and fine-grained optimization across a range of gripper
designs to maximize performance, no current tools meet all these criteria. Herein,
a diversity-based soft gripper design framework combining generative design and
topology optimization (TO) are presented. Compositional pattern-producing
networks (CPPNs) seed a diverse set of initial material distributions for the fine-
grained TO. Focusing on vacuum-driven multi-material soft grippers, several
grasping modes (e.g. pinching, scooping) emerging without explicit prompting
are demonstrated. Extensive automated experimentation with printed multi-
material grippers confirms optimized candidates exceed the grasp strength of
comparable commercial designs. Grip strength, durability, and robustness is
evaluated across 15,170 grasps. The combination of fine-grained generative
design, diversity-based design processes, high-fidelity simulation, and automated
experimental evaluation represents a new paradigm for bespoke soft gripper
design which is generalizable across numerous design domains, tasks, and
environments.
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approaches have been unable to scale, both in terms of 1) the
time and effort required to create a gripper for each new appli-
cation, and 2) the ability to explore increasingly expansive design
spaces offered by, for example, multi-material printing, where
the opportunity for bespoke performance is high, if only the
space could be efficiently sampled.[12] Computational design
offers a pathway towards scalable, bespoke gripping for increas-
ingly challenging and diverse domains, which cannot be met by
existing universal and anthropomorphic grippers, nor through
conventional design techniques.[13,14]

The cornerstones of computational soft robotics design are
1) the design algorithm, which governs how the design space
is explored, and 2) the simulator, which allows for rapid in silico
evaluation of successive iterations of potential designs to map the
design space. Two broad approaches to computational soft robot-
ics design can be delineated according to the pairing of simulator
and design algorithm used in each case. Most popularly, topology
optimization (TO), coupled to a finite element analysis (FEA)
model, allows fine-grained, high-resolution optimisation that
accurately captures system features and kinematics (materials,
actuation, etc), and generalizes to myriad applications including
compliant mechanisms[15,16] and self-sensing structures.[17]

However, TO requires slow, expensive solves[12,18–20] and a very
structured problem. It assumes the problem is well-defined, and
that a suitable design domain, loads (forces, voltages, pressure,
etc) and constraints can be specified a priori, from which it gen-
erates only a single solution. A second body of work focuses on
fast simulation coupled with evolutionary or reinforcement learn-
ing, permitting a much wider design exploration, but with a loss
in both simulation accuracy (typically using mass-spring methods
rather than FEA) and in the resolution of the final design,[21–23] for
example, focusing on macro-scale voxel-based abstractions[24]

which do not approach the potential for fine-grained optimization
offered by TO. In short, each approach has its own benefits and
drawbacks, and no soft robotics simulators exist that are both
accurate and fast.[25] Interestingly, these benefits and drawbacks
are frequently mutually exclusive, hinting that combining the two
approaches may be a fruitful avenue of research.

Motivated by the clear need for bespoke soft grippers, and the
absence of sufficiently accurate and efficient simulators for auto-
mated soft robotic design, we adopt a reality-coupled computa-
tional design approach to generate diverse sets of soft
grippers. To overcome the infeasibility of capturing every feature
of interest (e.g., size, cost, manufacturability, performance) and
simultaneously optimise all of them, we instead aim to generate
numerous valid designs with distinct features. We hypothesise
that from the diverse set, high-performing designs will emerge,
that are specialized for specific tasks without explicit prompting.
To generate diversity, we couple TO and evolutionary design,
providing a “best of both worlds” approach that permits both
fine-detailed optimization and broad design space exploration.
Compositional pattern producing networks (CPPNs), a compact
design encoding created for evolutionary algorithms, generate
patterns of initial material distribution within a given design
domain; each pattern then permits a unique solution when
solved using TO and allows diverse designs to be produced by
a gradient-based solver. The resulting designs are then 3D
printed using a multi-material Polyjet printer and evaluated
for their grasp strength, robustness and durability using an

automated robotic platform, allowing us to capture extensive
experimental data for evaluation totalling 15,170 grasps – far
more than is seen in the state of the art.

Aside from the core novelty of combining the two main
computational design methods for soft robotics, our automated
experimental platform is also novel in that efficiently gathers vast
amounts of data on grasp quality and robustness and the design’s
durability, enabling an efficient two-stage design process. Rather
than simulating an entire grasp and optimizing in simulation, we
abstract environmental contact away from the optimization, such
that a high-fidelity optimization can be performed using the
finite element method (FEM) and the true grasp performance
verified in an automated experimental process. Two insights
guide this approach: firstly, in the presence of a sufficiently good
object approximation soft grasping quality can be estimated by
the grippers structure without a contact model. Decomposing
grasp quality into appropriate functions of local compliance
and global stiffness can predict the grippers ability to conform
to a surface to ensure stable attachment, and apply sufficient nor-
mal forces to hold the object. Secondly, given the options of fast/
inaccurate physics simulators, slow/restrictive FEM solvers, a
multi-fidelity solution is preferable to any single solver. We dem-
onstrate the efficient design of sets of high-performing soft robotic
grippers and verify their real-world performance. We investigate
multi-material vacuum-based soft grasping, and observe the auto-
mated generation of diverse grasp methods, including pinch grips
and the creation of enveloping basket-like structures, all without
external prompting. Examples of grippers generated using this
approach are presented side-by-side in Figure 1.

The main contributions of this research are: 1) A framework
for generative topology optimization (TO) through CPPN design

Figure 1. 50–50 split of two optimised soft gripper candidates grasping a
spherical object. The two grippers found different grasp modes (envelop
and pinch) which produce high-quality grasps.
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seeding. 2) The establishment of a TO method for multi-material
pneumetic soft robots, which is generalizable across the majority
of pneumatic soft robots. 3) Demonstration of the algorithm
being used to generate a range of morphologically and function-
ally diverse soft grippers that provide high performance across a
range of test cases. 4) The development of a set of benchmarks
and dataset which characterises soft grasping under ideal condi-
tions and their robustness to environmental perturbations. This
second element is rarely featured in robotic grasping literature,
despite it being critical to future use.

2. Related Work

2.1. Computational Gripper Design

In the domain of rigid grasping, computational tools have been
developed to optimize active and passive grippers for specific
objects. Under the assumption that both the object and gripper
are known rigid bodies, these find a geometry[26] or combination
of geometry and path,[27,28] which allows a printed end-effector to
perform grasping operations. This critical assumption is obvi-
ously not valid in soft robotics, where deformability is a key
design feature.

The grasping performance of soft grippers arises from a
strongly non-linear interplay between material properties
(stiffness, Poisson ratio, coefficients of friction), geometry, and
actuation. As a result computational soft gripper design research
has focused on design exploration and optimisation within
established gripper classes, such as jamming grippers[6,7] and
pneumatic bending fingers.[29–31] However, several design
toolkits have recently emerged which enable exploration of large
design spaces using parameterised or implicit geometric
descriptors.[32–34] Whilst vastly increasing tractable search space,
these toolkits remain restricted to designs using hollow pneu-
matic chambers.

2.2. Computational Soft Robotics

A body of research exists into computational design of “soft
agents” within the soft robotics, embodied intelligence and arti-
ficial life communities. These typically use inexpensive physics
engines with soft material primatives to evolve or learn high
performing designs for mobile “soft robots” and artificial life
forms.[21,35–38] As the field has developed, evermore accurate
simulators have been developed, increasing modelling fidelity,
expanding environment realism and adding features. The cur-
rent state of the art still lacks physical grounding, however;
generated designs are either unsuited to physical manufacture
or unable to cross the reality gap.[39] A recenly developed platfrom
using reinforcement learning in FEM have begun to challenge
this. But to date, it has only been demonstrated in learning con-
trollers, rather than designs[40]

2.3. Soft Gripper Topology Optimisation

Compliant gripper optimization is a benchmark problem in TO
and has been evaluated for more than 2 decades, producing
numerous scissor-like designs.[41,42] More recently, these have

extended into the soft robotics domain by with single-physics
structural optimizations, which consider the design’s geometry
but not actuation. For example compliant (fin-ray like) structures
have been optimized which deform around an object to perform
grasping.[43,44] Because of their widespread use in soft robotics,
pneumatic soft fingers have also been a popular optimization tar-
get. For convenience it is normally assumed that the inflating
chamber is fixed,[45–47] but multi-physics formulations have also
optimized both the pressure chamber shape and material layout
in 2D[48,49] and 3D.[50,51]

3. Multi-Material Pressure-Driven Topology
Optimisation Formulation

3.1. SIMP Formulation

In this work, we use the solid isotropic material with penalization
(SIMP) TO method as the basis of our multiphysics optimization
framework.[41] Topology optimization is built around FEM. As
such, the problem is specified by a design domain (design geom-
etry), loads, and boundary conditions. SIMP discretises the
design domain into a set of finite elements, each which containts
a continuous “pseudo-density”, ρ between 0 (void space) and 1
(solid material). A penalty exponent is applied to each element
to drive a final result towards a binary solution. In single-material
optimisations this follows the interpolation law:

Ei ¼ ð1� ρi
pÞEmin þ ρi

pEs (1)

where Ei is elastic modulus of element i, Es is the elastic
modulus of the base material, Emin is the modulus of the void
material and is non-zero to avoid singularity, ρi is the filtered
(smoothed) form of the design variable ρi and p is the SIMP
penalty exponent where p ≥ 3. To remove non-physical checker-
board patterns and intermediate (i.e., non-binary) densities from
the final design, we use standard convolutional density filtering
as in.[52]

The SIMP approach generalises to multiple materials by
assigning each material a unique design variable. Rather than
interpolating between solid and void, the SIMP optimization
interpolates between the different material options and void.[53]

For example, the two-material formulation is given by:

Ei ¼ ð1� ρpi1ÞEmin þ ρpi1ðð1� ρpi2ÞE1 þ ρpi2E2Þ (2)

where E1 and E2 are elastic moduli of materials 1 and 2, respec-
tively, ρin and is the filtered density of design variable ρin for
n ∈ f1, 2g. The design variables have a cascading effect, ρi1
(the topology variable) determines the presence of a void or solid
element and ρi2 selects whether a solid element contains material
1 or 2. More formally, fρi1 ¼ 0, ρi2 ¼ 0g results in a void
element, fρi1 ¼ 1, ρi2 ¼ 0g is filled with material 1, and
fρi1 ¼ 1, ρi2 ¼ 1g with material 2.

Increasing the number of materials is achieved by adding new
selector variables, each of which has the effect of switching an
element between material n� 1 and n. For example in the 3
material case:
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Ei ¼ ð1� ρpi1ÞEmin þ ρpi1½ðð1� ρpi2ÞE1 þ ρpi2ðð1� ρpi3ÞE2 þ ρpi3E3ÞÞ�
(3)

where E3 is the modulus of material 3 and ρi1 ¼ 0 selects
between material 2 and 3, given the presence of material 2.
That is: fρi1 ¼ 0, ρi2 ¼ 0, ρi3 ¼ 0g, fρi1 ¼ 1, ρi2 ¼ 0, ρi3 ¼ 0g,
fρi1 ¼ 1, ρi2 ¼ 1, ρi3 ¼ 0g and fρi1 ¼ 1, ρi2 ¼ 1, ρi3 ¼ 1g give
a void, material 1, material 2, and material 3, respectively.

3.2. Darcy Method

The Darcy method for pneumatic soft robot TO is then applied to
the multi-material TO problem, it builds on our previous work
into TO pressure-loaded structures.[51,54,55] The method is
unique in capturing the design-dependency of pneumaticTO,
in which the movement of the fluid–solid interface during the
optimization also changes the loading applied to the structure.
The Darcy method evaluates these coupled problems by solving
two physical systems at each optimization iteration: first it uses a
modified form of Darcy’s law for flow of a fluid through a porous
medium, to evaluate the pressure field in the design domain.
Pressure diffusion is modelled as a function of each elements
pseudo-density, such that it behaves like a porous media. The
pressure field is then applied to the structure to drive deforma-
tion in the domain and evaluate the structures compliance. A
detailed description of the Darcy formulation can be found in[54]

3.3. Cost Function

In this work we aim to automate the design of vacuum based soft
grippers. Given the balance of compliance and stiffness required
in soft grasping, a single optimization parameter cannot
effectively capture the entire problem. Hence we investigate
multi-objective formulations to identify the trade-off between
parameters of interest.

The major features of the design relevant to the soft robotic
grasping problem are as follows: 1) Tip displacement: the gripper
must enable sufficient displacement to close around objects of
different sizes. 2) Stiffness: the gripper must be able to exert suf-
ficient normal force on the object to grasp and hold it. 3) Closure:
The gripper should be airtight, preventing energy loss due to
leakage. 4) Adaptability: The design should ideally enable multi-
ple grasping points and adapt to multiple objects.

The first three features are considered directly in the cost func-
tion, whilst the fourth is implicitly addressed by enforcing the use
of soft materials. That is, the cost function comprises three terms:

ϕ1ðρ1,2,3Þ ¼ �Lu (4)

ϕ2ðρ1,2,3Þ ¼
1

SE1=n (5)

ϕ3ðρ1,2,3Þ ¼ ðEl � EldÞ (6)

where u is the design’s global displacement vector; L is a binary
vector which selects relevant nodes in grasping edge; SE ¼ uTKu
is the strain energy of the mechanism under pneumatic loading,
penalising SE restricts the generation of thin design components
and encourages stiffer designs; n is a constant penalty exponent,

which can be tuned to adjust the relative weighing of terms in the
cost function; KðρÞ is the global stiffness matrix; El is the energy
lost due to air flowing across the boundary of the design domain,
and Elt is the target loss (calculated as in[51]). The Darcy formula-
tion permits a small flow even in solid elements, hence El > 0
even in within a closed space.

To evaluate the significance of each of these components, we
investigate three cost functions: Firstly, a formulation which con-
siders only compliance and strain energy, without penalizing
energy loss, enabling the scale of energy to be evaluated:

ϕunpenðρ1,2,3Þ ¼
ϕ1ðρ1,2,3Þ
ϕ2ðρ1,2,3Þ

¼ �Lu
SE1=n

(7)

Then two functions which penalize energy loss, one using a
linear penalty:

ϕlinðρ1,2,3Þ ¼
ϕ1ðρ1,2,3Þ
ϕ2ðρ1,2,3Þ

þ 1
B
ϕ3ðρ1,2,3Þ

¼ �Lu
SE1=n

þ 1
B
ðEl � EldÞ

(8)

and a second using an exponential heat penalty:

ϕexpðρ1,2,3Þ ¼
ϕ1ðρ1,2,3Þ
ϕ2ðρ1,2,3Þ

þ 1
B
ϕ3ðρ1,2,3Þ

¼ �Lu
SE1=n þ Ae

1
BðEl�EldÞ

(9)

where A and B are scaling constants.
The exponential penalty will aggressively drive an initial

design towards one which minimizes energy loss, hence the
exponential and linear penalties are compared to assess the
impact of the convergence rate on the final design. Finally, a con-
straint is placed on the total volume of each material, such that:
X

i

ρin=nele < ρn�max (10)

ρn�max is the volume limit for material n and nele is the total
number of elements in the design domain.

3.4. Design Domain

The design domain of the vacuum gripper is presented in
Figure 2b. It represents one half of the final gripper, with sym-
metry applied to one the mid-plane to reduce computation time.
A vacuum is applied at the upper face, which drives the defor-
mation of the gripper, as measured at the bottom edge. For effi-
ciency a geometrically linear finite element solver is used, with a
small, 150 Pa pressure input.

The design domain is 100mm� 50mm� 50mm. 8 Node hex-
ahedral elements with 2mm sides are used, giving a total of of
nele ¼ 31250 elements for each material. Three materials are
used in this work to, giving a total of 93750 elements. Three
materials are used to spam the three orders of magnitude of elas-
tic moduli which can be printed. The materials have moduli
E1 ¼ 0.46Mpa, E2 ¼ 11.51Mpa, and E3 ¼ 39.98Mpa,

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2024, 6, 2300505 2300505 (4 of 14) © 2024 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202300505 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [29/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advintellsyst.com


corresponding the experimentally derived moduli of three 3D
printable material blends (discussed in Section 10). In this work
ρ1�max ¼ 0.2, ρ2�max ¼ 0.1, and ρ3�max ¼ 0.05, corresponding to
material budgets of 0.1 (10% of the total volume), 0.05 and 0.05,
for materials 1, 2, and 3, respectively.

The derivatives of the cost function and constraints with
respect to the design variables ρ1,2,3 can be derived analytically,
enabling its efficient solution through a large scale gradient-based
solver. In this work we use the method of moving asymptotes.[56]

4. CPPN Initialization

TO emphasizes finding a single optimal designs, but in most
cases finding diverse sets of high-quality designs is a more desir-
able outcome. Regardless of optimization method, some manual
post-processing is required to integrate optimized components
into a larger assembly. Having sets of designs rather than a single

one increases the engineers freedom to select advantageous fea-
tures which are not explicitly targeted in the optimization.
Optimizing for diversity also forces a broader search of the design
space than gradient optimizations, which overcomes local minima
traps and frequently finds higher-performing candidates than a
pure objective optimization.[57] To encourage diverse solutions
we initialise candidates’ density distribution using a compositional
pattern producing network (CPPN),[58] rather than a constant
initial density which is conventionally used. CPPNs are a class
of neural-network which takes a pixel/voxel’s coordinates as an
input and passes it through several layers of weighted functions
(e.g., triganometric functions, sawtooths, sigmoids, and other peri-
odic and aperiodic functions) to generate patterns and images.

In this work we use a 2D CPPN generator to initialize
the topology optimization with patterned pseudo-densities.
To transform them into a 3D shape, the 2D patterns are copied
along the third dimension. The network configuration is the
same as in.[59] It uses four activation functions (sin, gaussian,

Figure 2. Method for generating diverse soft grippers and evaluating their performance. a) A CPPN with randomized weights generates an 2D pattern by
evaluating the density of each pixel after a series of activation functions. The pattern sets the initial distribution for the topology optimization problem.
b) The design domain for the 3 material, 2 physics (pressure/solid) topology optimization problem. c) 2D illustration of Cuboid floodfill method. A point
is randomly selected in the space to be filled (white pixels), the floodfill algorithm then searches left, right, up and down until it encounters a boundary
(gray pixel) in each direction. The process repeats until all pixels are filled. d) Combined results of 100 (5� 20) simulations showing 3 features of interest,
with material distribution shown on overlaid designs: Gray - Agilus30, light blue - Agilus85, dark blue - Agilus95 e) Complete set of experimentally
evaluated optimised grippers, comprising 14 computational designs (left), the Soft Robotics 2 fingered gripper and 3D printed replica (top right), a
2 Fingered Piab gripper and 3D printed replica (middle right), and the optimised gripper with enhanced grasping surface (bottom right).
f ) Experimental Grasp Strength Testing Configuration, it comprises a 7DOF robot arm, load-cell and pneumatic subsystem (not shown) comprising
of compressor, pressure regulator, solenoid valves, and vacuum generator.
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sigmoid, and identity) and 1–10 hidden layers to produce the
patterns, where the number of hidden layers is defined by
taking the floor of the number of design iterations divided by 10.
That is: n1= ⌊ii/10⌋þ 1, where nl is the number of layers and ii
is the design number. Increasing the number of hidden layers
typically results in more complex patterns. To create unique pat-
terns, all weights and activation functions are randomized prior
to each pattern being produced. In this work, 20 designs are eval-
uated for each cost function, giving 2 repeats of each CPPN
configuration.

The generated patterns are exported as grey-scale images with
each pixel having a value between 0 and 1, corresponding to the
material pseudo-densities. Pixel values are linearly scaled such
that the average density of the pattern is equal to the material
limit. The pattern is then set as the initial density distribution
for all three of the materials in the optimization. This process
is illustrated in Figure 2a

5. CAD Geometry Generation

The resulting designs are in the form of a grid of elements with
pseudo-densities in the range 0–1, which need to be processed
into a final design. Applying a threshold of ρ ¼ 0.5 enables the
element list to be constructed into an occupancy grid for each
material. That is, each material in the design domain is trans-
formed into a 3D binary array, representing the presence or
absence of material at each location.

The conversion of a 3D voxel grid to a surface mesh is a com-
mon procedure, which can be performed by meshing algorithms
such as Marching cubes.[60] However the process of meshing
changes the structure, as a surface of triangular elements is
formed from solid voxels.

This creates a number of practical challenges when integrating
the optimised component into an assembly, including: 1) the
large number of triangles needed to create an accurate mesh,
often orders of magnitude larger than the original number of
faces. 2) flat surfaces can become uneven after meshing; parallel
and orthogonal faces don’t retain that relationship. 3) meshing
artefacts often prevent watertight mesh formation.

For engineering purposes, a CAD file format is preferred. The
voxel grid can be converted into CAD geometry either by forming
a mesh from the square faces and enclosing it to make solid
geometry, or by transforming the voxels into geometric primi-
tives and performing boolean operations on them.

The latter approach is used here, as the number of number of
filled voxels is typically fewer than the number of surface faces,
and they are simpler to identify.

The CAD geometry is hence formed by creating cuboids
from the binary voxel map and then taking the union of all the
cuboids. The merging process used to take the union is computa-
tionally expensive, so to reduce the run time of the algorithm, it is
desirable to find the minimum number of cuboids required to fill
all the voxels without covering any unoccupied spaces. However,
as overlapping voxels are permitted as these are removed during
the merge operation, voxels need not be filled uniquely. That is,
each voxel must be included in a cuboid, but can be in multiple.

This minimum cubes problem is NP-hard, hence a heuristic
is developed which floodfills the space using only cuboids.

The heuristic is illustrated in Figure 2c. It works as follows:
1) Generate a list containing all voxels to be filled,
voxels to f ill. 2) Initialize an empty list of identified cuboids,
min cuboids. 3) While voxels to f ill is not empty: a) Randomly
select a voxel from the list. b) Advance in the positive x-direction
until a boundary voxel is reached. Boundaries are either a voxel
which is not needed to be filled, or the edge of the design domain.
c) Advance in the negative x-direction until a boundary voxel is
reached. d) Advance in the positive y-direction until a boundary
voxel is reached. The 1D line of voxels now forms a 2D rectangle,
hence each voxel along the upper edgemust be checked to ensure
it is within bounds. e) Advance in the negative y-direction until a
boundary voxel is reached. f ) Advance in the positive z-direction
until a boundary voxel is reached. The 2D rectangle now forms a
3D cuboid of voxels, hence each voxel along the advancing plane
must be checked to ensure it is within bounds. g) Finally,
advance in the negative z-direction until a boundary voxel is
reached. h) Generate a new cuboid primitive from the identified
vertices and append to list, min cuboids. i) Remove newly filled
voxels from the voxels to f ill list. 4) Merge all cuboids in
min cuboids into a single design using Boolean “or” operation.

It is implemented using opencascade’s python API, which
enables the geometry to be saved as a multibody STEP file for
integration into a larger assembly.

6. Optimisation Results

5 sets of experiments were undertaken in total, with 20 design
optimisations in each. The 5 sets of experiments consist of one
without an energy penalty; one with a linear energy penalty; and
three with an exponential energy penalty and strain energy expo-
nents n ∈ f1, 2, 4g The combined results of the 5 are presented
in Figure 2d, showing the performance of the optimized designs
across the three features of interest: strain energy, output dis-
placement, and energy loss. The results approximate a pareto
front as displacement and strain energy are conflicting objec-
tives. The ideal design would occupy the lower left corner of
the plot (low strain energy, high displacement), but are clustered
at the top-left (high strain energy, high displacement) and the
bottom-right (low strain energy, low displacement). As is dis-
cussed below, there is significant (and desirable) variability in
the morphology of designs within each set. Notwithstanding this,
a few key features are noticeable by clustering the data: 1) The
cost function parameter n sets the relative contribution of objec-
tives; if n were allowed to occupy a continuous distribution,
rather than integer values, we would likely generate a smooth
front, enabling a design to be found anywhere along the curve.
2) Morphological similar designs emerge throughout the curve
with thinner features in higher displacement designs and thicker
ones in lower strain energy designs. 3) The energy penalty con-
straint does not materially impact the SE or displacement objec-
tives. Within the n ¼ 1 points, there are low and high energy loss
designs clustered closely together. 4) Very low SE is undesirable,
as it leads to impractically thin elements with almost no displace-
ment. The lowest SE designs, have a semi-circular top section
which is optimised to minimise compliance.

The results of each of the 5 sets of experiments are outlined in
the remainder of this section.
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6.1. Linear Pressure Penalty

A set of 20 designs are evaluated using a linear penalty on energy
loss (Equation (8)) and the strain energy penalty n ¼ 1. The
results are presented in Table 1, for each design it shows the ini-
tial CPPN pattern, optimized topology, and reconstructed design,

Table 1. Reconstructed linear heat results. Cost = ϕ, Output
displacement=D, strain energy = SE, pressure Loss = PL. Material
colours: gray - Agilus30, light blue - Agilus85, dark blue - Agilus 95.
Best results indicated in bold.

Iter. Cost Initial
pattern

Optimized
topology

Reconstructed
geometry

0 Failed to converge

1 ϕ: �90.32 SE: 0.099 mJ
D: �1.99 mm EL: 10.15 W

2 ϕ: �80.09 SE: 0.151 mJ
D: �2.69mm EL: 8.86 W

3 ϕ: �83.89 SE: 0.125 mJ
D: �2.38 mm EL: 11.26 W

4 ϕ: �73.37 SE: 0.124 mJ
D: �2.06mm EL: 9.57 W

5 ϕ: �106.45 SE: 0.087 mJ
D: �2.05 mm EL: 10.98 W

6 Failed to Converge

7 Failed to Converge

8 ϕ: �74.33 SE: 0.148 mJ
D: �2.47mm EL: 9.09 W

Table 1. Continued.

Iter. Cost Initial
pattern

Optimized
topology

Reconstructed
geometry

9 ϕ: �89.30 SE: 0.106 mJ
D: �2.12 mm EL: 10.72 W

10 ϕ: �83.91 SE: 0.140 mJ
D: �2.60 mm EL: 9.08 W

11 Failed to converge

12 ϕ: �97.50 SE: 0.105 mJ
D: �2.25 mm EL: 9.40 W

13 ϕ: �79.02 SE: 0.147 mJ
D: �2.63 mm EL: 10.34 W

14 ϕ: �80.83 SE: 0.161 mJ
D: �2.87 mm EL: 8.24 W

15 Failed to converge

16 Failed to converge

17 ϕ: �82.25 SE: 0.117 mJ
D: �2.14 mm EL: 9.13W

18 ϕ: �84.98 SE: 0.140 mJ
D: �2.63 mm EL: 8.99 W

19 ϕ: �52.96 SE: 0.168 mJ
D: �2.03 mm EL: 7.57 W
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along with each component of the cost function. The optimized
topology is the density field of ρ1 where red gives ρ1 ¼ 1, blue is
ρ1 ¼ 0.5, and ρ1 < 0.5 is removed. The reconstructed geometry
shows the three materials after thresholding. Gray is the the soft-
est material, Agilus30 (E ¼ 0.46Mpa), light blue is the interme-
diate Agilus85 (E ¼ 11.51Mpa) and dark blue is the stiffest
Agilus95 (E ¼ 39.98Mpa)

Of the 20 optimization runs, 14 succeeded in generating a
final design, whilst 6 failed to find to converge and returned
the initial topology. This occurred where the starting pattern
had a large concentration of black pixels in the CPPN pattern.

The 14 designs produces final costs in the range of �52.96 to
�106.45; Design #5 gave the lowest cost function overall.
Further, the designs had displacements ranging from �1.99
to�2.87mm, strain energies 0.087 to 0.168mJ and energy losses
of 7.57 to 11.26W. However, in all cases, an airtight design
formed in the final reconstructed design, as the soft Agilus30
material formed a contiguous membrane at the vacuum
interface.

Whist it was expected that high-performing designs may have
hollow fingers reminiscent of pneunets, in all cases the optimizer
converged to designs with a flat membrane. The 14 designs all
present a variant on two-fingered pincers, however they exhibit a
significant degree of variability. For example in designs #1 and
#5, all of the Agilus95 (the stiffest material) is located on the
extreme left of the optimized topology. The Agilus95 forms a rel-
atively rigid support, which the softer Agilus85 can rotate around.
Apart from sealing the vacuum chamber, the soft Agilus30 also
formed a cross-bar linkage at the top of the design. This restricts
the designs’ strain energy under vacuum, giving these designs
very lowest SE, with #5 best overall in this feature. In practice,
this should increases grasp force by supporting the link in con-
tact with the object (See Section 6.3 for experimental images of
grasp behaviour).

Designs #4, #8, and #17 have broadly similar morphologies as
#1 and #5 but without this upper cross-bar. Instead they have
large sections of Agilus95 on their left side, which is joined
directly to the input (top) face by an Agilus85 section. In #17 this
Agilus85 section is a single, solid bar. However in #4 it is two
smaller, parallel bars and in #8 it is 3 parallel bars.

Design #12 replaces the soft crossbar with a rigid Agilus95
linkage to connect the grasping arms to the input face, giving
its opening a unique bell shape. Having rigid sections connecting
the grasping arm to both the fixed side and centre of the vacuum
face gives a small SE in the design without limiting displace-
ment. However it narrows the gripper opening and reduces
the size of graspable objects.

Most of the remaining designs invert the “rigid-on-the-
outside” structure discussed above and instead use soft material
to join a relatively rigid grasping arm to the fixed face. This facil-
itates large displacements at the expense of stiffness. Design #14
exemplifies this, it has a narrow, compliant hinge made from
Agilus85 which joins the stiff Agilus95 gripping arms to the fixed
side, and central Agilus85 arms connected the gripping arms to
the fixed face. As a result it has the largest displacement of the
optimised designs. #3 Uses a rigid 4-armed central core to force
rotation of a soft “jaw-like” section of Agilus85, rather than the
whole arm.

Aside from the connection to fixed face, we see considerable
variation in the number and orientation of linkages in the
designs. The simplest designs have just a few beams, whilst
the most complex have several beams along the front and rear
faces, with numerous cross-linkages (#2, #3, #9, #10, #13,
#18, #19).

6.2. No Energy Penalty

For comparison, the 18 coverged designs resulting from 20 runs
of the cost function ϕunpen (Equation (10)) are presented in
Figure 3. Note the grippers here show simulated material distri-
bution, rather than the final reconstructed design, giving a
smoother appearance than the reconstructed designs in
Table 1. Without an explicit energy penalty the simulation places
no limits on airflow through the vacuum and the solver is able to
create leaky (non-airtight) designs. These create a pressure gra-
dient throughout the design domain, rather than a discrete
boundary, which applies forces directly onto the grasping limbs.
However, its effect on performance is relatively small as the loss
of pressure prevents large forces being transferred to the design.
Whilst the resulting designs are have similar features to the pre-
vious results, they contain noticeably thicker linkages. This is a
result of the fixed material budget used in the optimisations;
instead of Agilus30 forming a membrane at the vacuum inter-
face, it is distributed throughout the design domain to reinforce
linkages. However, the relatively soft material (an order of mag-
nitude lower elastic modulus than Agilus95) only marginally
increases the stiffness of these sections.

6.3. Exponential Energy Penalty

To assess the impact of convergence rate on the final designs, an
exponential penalty on energy loss is also evaluated. As the pen-
alty term is initially very large, the optimizer is driven to seal the
design domain within a few iterations. In most cases this con-
vergence rate does not significantly influence gripper morphol-
ogy. Most of the designs produced with n ¼ 1 have visibly similar
structures to those produced with a linear heat penalty. However,
in a few cases the exponential penalty generated designs with
semicircular upper sections, rather than flat membranes.
These designs have strong similarities to those used to minimize
compliance in pressure loaded structures. The semicircular sec-
tion is very stiff and results in very low SE in the actuated design
at the expense of displacement. Clearly these extreme restriction
of SE is undesirable and do not result in a usable soft gripper.

Reducing the penalty on SE (increasing n) removes this effect
and results in more compliant, higher displacement designs.
At n ¼ 2, a set of relatively homogeneous designs emerge with
a triangular opening and 3 or 4 arms on each side of the gripper.
However, at n ¼ 4 the penalty is insufficient to generate
contiguous, sealed designs. In several cases, regions of low
pseudo-density increase simulated displacement, but are
removed during discretisation, leaving disconnected linkages
and unsealed designs. However, a number of high-displacement
designs emerge which would be beneficial for grasping light-
weight objects with complex geometries.
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7. Experimental Grasp Performance

The TO process uses highly accurate finite element modelling,
but still requires linear assumptions to be made to tractability
produce a design. Geometric non-linearities and contact
mechanics are essential features of soft grasping, which are only
coarsely approximated in the optimisation.

Further, salient features of the gripper such as contact
surface and grasping mode are not explicitly optimized and
instead emerge indirectly. Optimizing an end-effector which
performs well across an array of objects and poses is an
intractable task. However, by leveraging compliance in each
design and diversity in the set of designs, these features emerge
naturally.

To assess the correlation between design features and grasp
performance, we print and test the 14 linear energy penalty
designs (Table 1) in an automated robotic grasping facility
(Figure 2f ). Details of the manufacturing process and automated
experimental facility can be found in Section 10.

We assess the grasping performance of the 14 linear energy
penalty optimized gripper designs and 4 reference designs
(Figure 2e). The 4 reference designs comprise 3D printed

replicas of commercially available soft grippers: a Piab
piSOFTGRIP 2 fingered vacuum gripper (P850), and a Soft
Robotics MGrip 2 fingered inflatable finger (S850). Printing
the designs geometry in-house allows us to isolate the effects
of geometry from material, both were printed in shore 70 mate-
rial. A final reference design manually post-processes the highest
performing optimized gripper to further improve grasp quality
(17–30 and 17–85). This extends gripper 17 by increasing the
contact surface with flat gripping pads made from Agilus30
and Agilus85, respectively.

Each of the 18 grippers is tested across 410 grasps on each
object, comprising 41 grasp positions with 10 repeats of each.
The grippers were each tested on the three objects: coin, cube
and sphere, sequentially.

This allows 4 features of the grippers to be evaluated: 1) Grasp
Strength: The maximum vertical force the gripper can apply to an
object to support its mass. 2) Durability: The number of cycles to
failure. 3) Robustness: The variation in grasp strength due to
uncertainty in the position of the object. 4) Generality: The
change in grasp strength across objects.

For each set of tests the process is: 1) Centre the gripper on the
object. 2) With the end-effector oriented vertically, grasp 10 times

Figure 3. Converged results for the remaining 4 cost functions: No energy penalty; and strain energy penalty with n ¼ 1, n ¼ 2, and n ¼ 3. Material
colours: Gray - Agilus30, light blue - Agilus85, dark blue - Agilus 95.
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from centre point. 3) Test translation sensitivity: For
x, y ∈ f0mm, 2.5mm, 5mm, 7.5mm, 10mmg: a) Move end-effec-
tor by (x,y) relative to grasp-centre. b) Perform 10 grasps. 4) Test
rotation sensitivity: For θx , θy ∈ f0°, 15°, 30°, 45°g: a) Rotate end-
effector by (θx , θy relative to grasp-centre, and align end-effector
with object. b) Perform 10 grasps.

Where each grasp consists of moving the gripper from its
pre-grasp pose to its grasp point, applying a vacuum, moving
50mm vertically whilst holding vacuum, releasing vacuum and
returning to the starting position and orientation.

7.1. Grasp Modes and Strength

The grasping behaviour of elected grippers are shown in
Figure 4a

From the results three distinct methods of grasping were iden-
tified, pinch, envelop, and wrap. The majority of grippers applied
a pinch-grasp, where two points pushed against the gripping
objects with a large normal force (#1, #4, #5, #8, #12, #14, #17).
Others formed an enveloping grasp, where the contact points
wrapped around the object, increases the contacting surface

Figure 4. Experimental grasp test results a) grasping sequence of representative set of grippers, showing cycle of: initial position, pregrasp, grasping, and
release. Spherical object shown has radius 18.5mm, b1) Grasp strength of 20 grippers on sphere at best position, indicating highest average grasp
strength across 10 grasps. b2) Grasp strength of 20 grippers on sphere at initial position, showing response of freshly printed grippers and when retested
after 250 grasp cycles. c) Comparison of estimated retention force to measured results, where estimated force is the linear fit of simulated SE and
displacement to the measured results. d) Heatmaps of grasping retention force of 20 grippers tested on sphere, cube, and coin object across 41 poses.
e) Geometric view of design #5 and #14 heatmaps, highlighting sensitivity to pose and positioning uncertainty. #14 is relatively sensitive to pose, whilst
#5 is not.
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(#3, #10, #18). Finally a few grippers used a thin member to wrap
around the bottom surface of the object and lift directly (e.g., #2,
#9, #13, #19). In comparison, both reference grippers used a
pinch grasp.

Of the optimized designs, the largest grasp force (the highest
average force across 10 samples at any pose) on the spherical
object was an envelop grasp (#10) which pulled 3.38N, followed
by a pinch grasp (#17) at 2.45N (Figure 4b1). Whilst there was
significant variability between designs, pinch grasps performed
best on average. Most grippers achieved maximum grasp
strength when centred and grasping vertically, however gripper
#10 was more than twice as effective when offset by 10mm in the
x direction (towards rear of experimental table) as without offset
(1.26N vs. 3.38N). Using the large offset, the gripper better con-
formed to the object as the front arms aligned with the spheres
mid-plane. Gripper #19 was able to use its webbing to passively
grasp objects with some success even after failure.

A comparison between the simulated and measured results is
given in Figure 4c. The grasping force is estimated by linearly
fitting the simulated SE and displacement to the measured force
at its neutral (zero offset) position. In a perfect fit, the points would
sit along a 45 degree line passing through the origin. Because of
1) the unmodelled contact interactions. 2) material degradation,
and 3) other unomodelled nonentities, the estimate captures only
19.2% of the variation in the experimental data. Nevertheless, the
fitted curve gives an initial estimate of retention force, which can
be used to screen designs for experimental validation.

7.2. Durability

The centred grasp strength is presented in Figure 4b2, showing
both the initial strength, and the strength when retested after 250
grasp cycles. Many designs failed within the first 250 grasps, and
hence recorded no force when retested (#2, #3, #8, #9, #10, #13,
#19). Designs with thin members or large deformations were
most prone to failure through linkage fracture or membrane
tears, respectively. For example, the membrane in #19 ruptured
during the first test cycle.

The stresses caused during grasping and viscoelasticity of the
agilus material resulted in a significant performance deteriora-
tion. This occurred not just in optimized designs, but also in
the S850 printed replica. The P850 undergoes relatively little
strain during grasping and hence does not exhibit the same per-
formance deterioration.

7.3. Robustness and Generality

The complete set of grasp results are presented in Figure 4d.
Showing the 41 sets of grasps for each gripper across the 3
objects. All grippers were tested top-to-bottom, then left-to-right
in the order shown by the heatmaps. Grippers that failed were
not tested on subsequent objects, hence there are more columns
in the sphere grasp than the cube or coin.

Through these tests we investigate the ability of a high-
performing design to generalize across poses and object.
Ideally a design which grasps well from the vertical would also
grasp well at a 30 degree offset, for example. Its assumed that the
optimal grasp point is the neutral point, i.e., with the grippers

oriented vertically and grasping the centre of the object, and that
performance will degrade with an offset in translation or rota-
tion. However the sensitivity varies significantly between
designs. For example design #14 exhibits a high sensitivity to
pose uncertainty, it shows a gradient of grasp strength with
the strongest grasps in the top left corner and the weakest in
the bottom right. In contrast #5 is robust to uncertainty, with
little difference in performance between poses. This is illustrated
in Figure 4e, where the line of data from the heatmap is reshaped
as a grid to highlight the effect of pose offset. Although both grip-
per #5 and #14 use the same grasping mode (pinch), the higher
stiffness and larger contact surface of #5 produces a more robust
solution. Designs #1, #4, #12, and #17 (all pinch-grasps) are sim-
ilarly robust, whilst all others perform poorly. Enveloping and
Lifting grasps proved to be both sensitive to positioning, due
to their requirement to completely enclose the object, and prone
to failure because of their relatively thin members. The commer-
cial replicas, P850 and J850 are both highly robust and general-
izable. They display relatively little difference in grasp
performance between objects and poses. The designs are able
to achieve this through their large deformation and contact sur-
faces - both designs are significantly larger than optimised ones.

8. Discussion

In this work, the sensitivity of the gradient-based topology opti-
mization solver to initial conditions was exploited to generate
diverse designs, however many other features of the problem
were assumed to be fixed. Key features of the problem and result-
ing design are explicitly or implicitly captured by the design
domain, expanding the search space to incorporate features of
the design domain would allow entirely new classes of grippers
to emerge without designer input. Whilst the curse of dimension-
ality makes such a search intractable using current methods, an
efficient method for identifying a ’good’ design space or initial
condition would be a large step forward for the field.

Combining generative design with high fidelity simulation,
our diversity based topology optimization method is capable
of generating a large set of design features. However, because
of the complex interactions between actuator, material, geome-
try, and object, mapping these features onto the desired behav-
iours (grasp strength, robustness and generality, and gripper
durability) remains a challenging tasks; even state of the art sim-
ulators (FEM or otherwise) cannot reliably calculate retention
force in soft grippers. To address this challenge we present a
two step design process, in which a diverse set of designs is first
generated using generative topology optimisation, and then eval-
uated using an automated experimental platform. Thus filtering
the large number of generated designs into a small set of high-
quality ones. In this work the process is purely open-loop (i.e., the
designs are generated then evaluated), requiring each generated
design to be tested experimentally, however, closing the loop is of
major interest going forward. Using a simple, linear regression
(Figure 4c), we show that there is a positive correlation between
optimization variables and grasp performance. However, there is
also large degree of variability in the experimental results, which
arise from unmodelled physical phenomena. Improving the
quality of this fit, and hence improving optimization quality
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and reducing the simulation to reality gap, is of significant inter-
est going forward. This could be achieved by better understand-
ing the relationship between optimisation variables and grasp
quality, improving simulation fidelity, or directly learning accu-
rate surrogate models from data. Continuously learning from the
vast amounts of generated data could generate and reduce the
need for experiments over time, hence allowing a much larger
number of designs to be generated and evaluated. Further, evolv-
ing the CPPN in the closed loop, rather than randomizing it,
would enable a broader search of the design domain and gener-
ate greater diversity.

From the analysis of different designs in this work, it is clear
that a high-quality design must perform well across numerous
features. In practice, performing well on a single benchmark
is not sufficient for a usable design. However, the number of
relevant features is strongly coupled to the design’s use case, sev-
eral salient features may reduce to just a few in narrowly speci-
fied tasks, for example a bespoke gripper design for a single
object with a known and repeatable grasp pose. Given a broader
set of conditions, a unique solution cannot be found to the multi-
objective problem. Here, several possible candidates emerge
which are worthy of further development. Design #10 gave
the highest retention force on the sphere object but lacked dura-
bility, #17 gave a large retention and generalized well, whilst #5
gave a modest retention but was insensitive to pose errors.
Through an ongoing process of large-scale, closed-loop data col-
lection a multi-dimensional pareto front could be generated cap-
turing each salient feature. However, it is preferable to explicitly
optimize only one or two features explicitly and let the remaining
features emerge indirectly. With a sufficient pool of candidate,
low quality designs can be filtered out, leaving only the high per-
forming ones.

9. Conclusion

Soft grippers are uniquely suited to grasping complex and flexi-
ble objects. Leveragingmulti-material 3D printing and expressive
design algorithms, bespoke soft gripping designs can be pro-
duced which are tailored to the needs of specific applications
and environments. In this work we present a topology optimisa-
tion method which uses a multi-physics optimisation and CPPN
seeding to generate diverse soft gripper designs. An automated
experimentation platform was used to collect a vast dataset
(15 170 grasps) and evaluate generated designs. Segmenting
the design task into design generation and evaluation stage trans-
forms a fuzzy, ill-posed problem with numerous goals into a trac-
table one with a quantifiable cost. Using the method, we
generated 71 designs, spanning a pareto front of 2 major design
goals (minimizing strain energy and maximising displacement).
Three unique grasping modes and numerous design morphol-
ogies emerged from the 71 designs without explicit prompting,
highlighting the method’s ability to explore the complex space
and find multiple high-performing solution. The optimized
designs’ simulated performance was mapped to actual task per-
formance across several key factors using multimaterial polyjet
3D printing and an automated experimental facility, enabling the
identification grippers which outperform commercial bench-
marks in grasping strength. The method presents a new

paradigm for bespoke soft gripper design which generalizes
across tasks and environments simply by adjusting the FEM
and experiments.

10. Experimental Section

Material Characterisation: The 3D printed material blends are character-
ised through a set of ASTM D412 standard tensile tests on an Instron
34SC-5 universal testing machine. We evaluated 7 preset ’digital material’
blends, with Shore-A values of 30, 40, 50, 60, 70, 85, and 95. The elastic
modulus was then identified by fitting a curve to the experimental stress-
strain curve of each material. See[61] for a complete test procedure and
results. Although the materials display a slight hyperelasticity, we approxi-
mate their behaviour as linear elastic for simulation efficiency. The fitted
moduli, tensile strength and maximum elongation are presented in
Table 2. To maximise the range of stiffness, 3 materials were chosen
for the optimizations: A-30, A-85, and A-95. Their stress–strain curves
are shown in Figure 5.

Experimental Facility: The grasping abilities of each gripper were evalu-
ated using a robotic grasp-testing facility (Figure 2f. It consists of a 7 DOF
Haddington HDI Robotic Arm, Load cell, and Pneumatic infrastructure
(compressor, vacuum generator, and solenoid valves). A vacuum is
generated using a Venturi generator which converts positive pressure into
vacuum. The Festo generator is capable of producing �93 kPa vacuum
pressure, however because of frictional losses in the lines and fittings,
the pressure at the gripper was measured to be �74 kPa. The two refer-
ence designs using positive pressure are inflated to 50 kPa

Manufacturing Process: The optimised designs are 3D printed using a
3D printing on J850 using printed seals a Stratasys J850 multimaterial poly-
jet printer. It allows continuous blending of multiple base resins to gener-
ate custom material properties and distribute them to individual voxels.

To allow easy removal of support materials, each gripper is printed in
two parts: 1) The main gripper, comprising gripping fingers, membrane,
and housing. 2) A lid with printed gasket seal.

A central hole in the lid is tapped to screw in an air fitting with. The
gripper is assembled by pressing the two parts together, screwing in
the air fitting and attaching the pneumtic tube.

A set of printed grippers and lids immediately after printing is shown in
Figure 6. They are printed vertically to enable easy cleaning of the (clear)
support material.

Table 2. Results (mean and standard deviation) for Elastic’s modulus,
tensile strength, and elongation at break for all digital material blends.

Material Elastic
modulus [MPa]

Tensile
strength [MPa]

Elongation
at break [%]

Shore A-30 Mean 0.46 1.42 304

(Agilus30) S.D. 0.05 0.06 18.8

Shore A-40 Mean 0.50 1.30 253

S.D. 0.03 0.11 6.5

Shore A-50 Mean 0.60 1.44 230

S.D. 0.05 0.11 3.6

Shore A-60 Mean 0.90 2.37 247

S.D. 0.05 0.05 10.4

Shore A-70 Mean 1.39 2.88 200

S.D. 0.08 0.13 12.7

Shore A-85 Mean 11.51 4.78 104

S.D. 1.75 0.29 9.4

Shore A-95 Mean 39.98 9.76 86

S.D. 2.70 0.59 5.3
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Three test objects are also printed, a 18.5mm radius sphere, a cube
with 18.5mm sides, and a coin with radius 28.65mm (equal to an
Australian 20 cent coin).
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