

Delft University of Technology

Interactive Imitation Learning in State-Space

Jauhri, Snehal; Celemin, Carlos; Kober, Jens

Publication date
2020
Document Version
Final published version
Published in
Proceedings of Machine Learning Research

Citation (APA)
Jauhri, S., Celemin, C., & Kober, J. (2020). Interactive Imitation Learning in State-Space. Proceedings of
Machine Learning Research, 155, 682-692.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

Interactive Imitation Learning in State-Space

Snehal Jauhri Carlos Celemin Jens Kober
Department of Cognitive Robotics

Delft University of Technology, Netherlands
snehal.jauhri@gmail.com {c.e.celeminpaez, j.kober}@tudelft.nl

Abstract: Imitation Learning techniques enable programming the behavior of
agents through demonstrations rather than manual engineering. However, they
are limited by the quality of available demonstration data. Interactive Imitation
Learning techniques can improve the efficacy of learning since they involve teach-
ers providing feedback while the agent executes its task. In this work, we propose
a novel Interactive Learning technique that uses human feedback in state-space
to train and improve agent behavior (as opposed to alternative methods that use
feedback in action-space). Our method titled Teaching Imitative Policies in State-
space (TIPS) enables providing guidance to the agent in terms of ‘changing its
state’ which is often more intuitive for a human demonstrator. Through continuous
improvement via corrective feedback, agents trained by non-expert demonstrators
using TIPS outperformed the demonstrator and conventional Imitation Learning
agents.

Keywords: Imitation Learning, Interactive Imitation Learning, Learning from
Demonstration

1 Introduction

Imitation Learning (IL) is a machine learning technique in which an agent learns to perform a task
using example demonstrations [1]. This eliminates the need for humans to pre-program the required
behavior for a task, instead utilizing the more intuitive mechanism of demonstrating it [1]. Ad-
vancements in Imitation Learning techniques have led to successes in learning tasks such as robot
locomotion [2], helicopter flight [3] and learning to play games [4]. There have also been research
efforts to make training easier for demonstrators. This is done by allowing them to interact with the
agent by providing feedback as it performs the task, also known as Interactive IL [5, 6, 7].

One limitation of current IL and Interactive IL techniques is that they typically require demonstra-
tions or feedback in the action-space of the agent. Humans commonly learn behaviors by under-
standing the required state transitions of a task, not the precise actions to be taken [8]. Additionally,
providing demonstration or feedback in the action-space can be difficult for demonstrators. For in-
stance, teaching a robotic arm manipulation task with joint level actions (motor commands) requires
considerable demonstrator expertise. It would be easier to instead provide state-space information
such as the Cartesian position of the end effector or the object to be manipulated (e.g., moving to-
wards/away from the object). Considering cases where a tool is attached to the robot arm, feedback
could also be provided on how the tool interacts with the environment (e.g., tightening/loosening the
grasp of an object).

In this paper, a novel Interactive Learning method is proposed that utilizes feedback in state-space
to learn behaviors. The performance of the proposed method (TIPS) is evaluated for various control
tasks as part of the OpenAI Gym toolkit and for manipulation tasks using a KUKA LBR iiwa robot
arm. Although it requires an additional dynamics learning step, the method compares favorably to
other Imitation and Interactive Learning methods in non-expert demonstration scenarios.

2 Related Work

In recent literature, several Interactive Imitation Learning methods have been proposed that enable
demonstrators to guide agents by providing corrective action labels [9], corrective feedback [10, 7]

4th Conference on Robot Learning (CoRL 2020), Cambridge MA, USA.

or evaluative feedback [11, 12]. For non-expert demonstrators, providing corrective feedback in the
form of adjustments to the current states/actions being visited/executed by the agent is easier than
providing exact state/action labels [7]. Moreover, evaluative feedback methods require demonstra-
tors to score good and bad behaviors, which could be ambiguous when scoring multiple sub-optimal
agent behaviors.

Among corrective feedback learning techniques, a typical approach is to utilize corrections in the
action-space [7, 13] or to use predefined advice-operators [5, 10] to guide agents. However, provid-
ing feedback in the action-space is often not intuitive for demonstrators (e.g., action-space as joint
torques or angles of a robotic arm). Further, defining advice-operators requires significant prior
knowledge about the environment as well as the task to be performed, thus limiting the generaliz-
ability of such methods. This work proposes an alternative approach of using corrective feedback in
state-space to advise agents.

There has been recent interest in Imitation Learning methods that learn using state/observation infor-
mation only. This problem is termed as Imitation from Observation (IfO) and enables learning from
state trajectories of humans performing the task. To compute the requisite actions, many IfO meth-
ods propose using a learnt Inverse Dynamics Model (IDM) [14, 15] which maps state transitions to
the actions that produce those state transitions. However, teaching agents using human interaction
in an IfO setting has not been studied.

In our approach, we combine the concept of state transition to action mapping by learning inverse
dynamics with an Interactive Learning framework. The demonstrator provides state-space corrective
feedback to guide the agent’s behavior towards desired states. Meanwhile, an inverse dynamics
scheme is used to ensure the availability of the requisite actions to learn the policy.

3 Teaching Imitative Policies in State-space (TIPS)

The principle of TIPS is to allow the agent to execute its policy while a human demonstrator observes
and suggests modifications to the state visited by the agent at any given time. This feedback is
advised and used to update the agent’s policy online, i.e., during the execution itself.

3.1 Corrective Feedback

Human feedback (ht, at time step t) is in the form of binary signals implying an increase/decrease in
the value of a state (i.e., ht ∈ {−1, 0,+1}, where zero implies no feedback). Each dimension of the
state has a corresponding feedback signal. The assumption is that non-expert human demonstrators,
who may not be able to provide accurate correction values could still provide binary signals which
show the trend of state modification. To convert these signals to a modification value, an error
constant hyper-parameter e is chosen for each state dimension. Thus, the human desired state (sdest+1)
is computed as:

sdest+1 = st + ht · e. (1)

The feedback (ht), error constant e, and the desired modification can be both in the full state or par-
tial state. Thus, the demonstrator is allowed to only suggest modifications in the partial state dimen-
sions that are well understood or easy to observe for the demonstrator. Moreover, even though the
change in state computed using binary feedback may be larger/smaller than what the demonstrator is
suggesting, previous methods [7, 13] have shown that it is sufficient to capture the trend of modifi-
cation. If a sequence of feedback provided in a state is in the same direction (increase/decrease), the
demonstrator is suggesting a large magnitude change. Conversely, if the feedback alternates between
increase/decrease, a smaller change around a set-point is suggested [7]. To obtain this effect when
updating the policy, information from past feedback is also used via a replay memory mechanism as
in [13, 16].

3.2 Mapping state transitions to actions

To realize the transition from the current state to the desired state, i.e., st → sdest+1, an appropriate
action (adest) needs to be computed. For this, some methods have proposed using or learning an
Inverse Dynamics Model (IDM) [14, 15]. In this work we assume that an IDM is not already
available, which can be the case in environments with dynamics that are unknown or difficult to

2

Environment Human

Agent

Execute	action
� = �(�)

Action
�

Feedback
ℎ

State
�

Observed	state
�

����

ℎ = 0

= � + ℎ. ��
���

Compute	desired	state
�

Update	policyExecute	action
� = �

���

Compute	action								�
���

(Indirect	Inverse	Dynamics)

Figure 1: High-level representation of the learning framework of TIPS

model. Moreover, IDMs are ill-suited in our case for two main reasons. Firstly, the feedback
provided by the demonstrator can be in the partial state-dimension, leading to ambiguity regarding
the desired state transition in the remaining dimensions. Secondly, the desired state transition (st →
sdest+1) may be infeasible. There may not exist an action that leads to the human suggested state
transition in a single time step.

We propose to instead use an indirect inverse dynamics method to compute requisite actions. Possi-
ble actions are sampled (a ∈ A) and a learnt Forward Dynamics Model (FDM) (f) is used to predict
the next states (ŝt+1 = f(st, a)) for these actions. The action that results in a subsequent state that
is closest to the desired state is chosen. The desired and predicted states can be in the full or partial
state dimensions. Mathematically, we can write the action computation as:

adest = arg min
a

∥∥f(st, a)− sdest+1

∥∥ , (2)

where a ∈ A with Na uniform samples.

3.3 Training Mechanism

We represent the policy π(s) using a feed-forward artificial neural network and use a training mech-
anism inspired by D-COACH [13]. This involves an immediate training step using the current
state-action sample as well as a training step using a batch sampled from a demonstration replay
memory. Lastly, to ensure sufficient learning iterations to train the neural network, a batch replay
training step is also carried out periodically every Tupdate time-steps.

Crucially, the computed action adest is also executed immediately by the agent. This helps speed up
the learning process since further feedback can be received in the demonstrator requested state to
learn the next action to be taken. The overall learning framework of TIPS can be seen in Figure 1.

The overall TIPS method consists of two phases:

• In an initial model-learning phase, samples are generated by executing an exploration pol-
icy πe (random policy implementation) and used to learn an initial FDM fθ. The samples
are added to an experience buffer E that is used later when updating the model.

• In the teaching phase, the policy πφ is trained using an immediate update step every time
feedback is advised as well as a periodic update step using past feedback from a demon-
stration buffer D. Moreover, to improve the FDM, it is trained after every episode using
the consolidated new and previous experience gathered in E.

The pseudo-code of TIPS can be seen in Algorithm 1. In our implementation of TIPS
(github.com/sjauhri/Interactive-Learning-in-State-space), the FDM and policy are represented us-
ing neural networks and the Adam variant of stochastic gradient descent [17] is used for training.

3

https://github.com/sjauhri/Interactive-Learning-in-State-space

Algorithm 1: Teaching Imitative Policies in State-space (TIPS)

Initial Model-Learning Phase:

Generate Ne experience samples {si, ai}Ne
1 by executing a random/exploration policy πe

Append samples to experience buffer E
Learn forward dynamics model fθ using inputs {si, ai}Ne

1 and targets {si+1}Ne
1

Teaching Phase:

for episodes do
for t = 0, 1, 2, . . . , T do

Visit state st
Get human corrective feedback ht
if ht is not 0 then

Compute desired state sdest+1 = st+ ht · e
Compute action adest = arg min

a

∥∥fθ(st, a)− sdest+1

∥∥, using Na sampled actions

Append (st, a
des
t) to demonstration buffer D

Update policy πφ using pair (st, adest) and using batch sampled from D
Execute action at = adest , reach state st+1

else
No feedback
Execute action at = πφ(st), reach state st+1

end
Append (st, at, st+1) to experience buffer E
if mod(t, Tupdate) then

Update policy πφ using batch sampled from demonstration buffer D
end

end
Update learnt FDM fθ using samples from experience buffer E

end

4 Experimental Setting

Experiments are set up to evaluate TIPS and compare it to other methods when teaching simu-
lated tasks with non-expert human participants as demonstrators (Section 4.1). We also validate the
method on a real robot by designing two manipulation tasks with a robotic arm (Section 4.2).

4.1 Evaluation

For the evaluation of TIPS, we use three simulated tasks from the OpenAI gym toolkit [18], namely:
CartPole, Reacher and LunarLanderContinuous. A simplified version of the Reacher task with a
fixed target position is used. The cumulative reward obtained by the agent during execution is used
as a performance metric. The parameter settings for each of the domains/tasks in the experiments
can be seen in Table 1. Notably, given the small dimensionality of the action spaces in our settings,
the evaluation of action samples (Na) is computationally inexpensive and almost instantaneous.

The performance of a TIPS agent is compared against the demonstrator’s own performance when
executing the task via tele-operation, and against other agents trained via IL techniques using the
tele-operation data. It is also of interest to highlight the differences between demonstration in state-
space versus action-space. For this, both tele-operation and corrective feedback learning techniques
in state and action spaces are compared. The comparison is with IL methods and not IfO methods
(such as [15]) since IfO methods assume no knowledge of actions during tele-operation. This is not
true in our interactive learning setting where actions are known but only the interface can differ.

The following techniques are used for comparison.

• Tele-operation in Action-space: Demonstrator executes task using action commands.

4

Table 1: Parameter settings in the implementation of TIPS for different tasks

CartPole Reacher LunarLander Robot-Fishing Robot-Laser
Drawing

Number of exploration samples (Ne) 500 10000 20000 4000 4000
States for feedback Pole tip x-y position Vertical, angular x-z position x-y position

position of end effector position of end effector of laser point
Action-space dimensions 2 (Discrete) 2 (Continuous) 2 (Continuous) 2 (Continuous) 2 (Continuous)
Error constant (e) 0.1 0.008 0.15 0.05 0.02
Number of action samples (Na) 10 500 500 1000 1000
Periodic policy update interval (Tupdate) 10 10 10 10 10
FDM Network (fθ) layer sizes 16, 16 64, 64 64, 64 32, 32 32, 32
Policy Network (πφ) layer sizes 16, 16 32, 32 32, 32 32, 32 32, 32
Learning rate 0.005 0.005 0.005 0.005 0.005
Batch size 16 32 32 32 32

• Tele-operation in State-space: Demonstrator executes task by providing state-space in-
formation (as per Table 1) with actions computed using inverse dynamics in a similar way
as TIPS.

• Behavioral Cloning (BC): Supervised learning to imitate the demonstrator using state-
action demonstration data recorded during tele-operation. (Only successful demonstrations
are used, i.e., those with a return of at least 40% in the min-max range).

• Generative Adversarial Imitation Learning (GAIL) [19]: Method that uses adversarial
learning to learn a reward function and policy. Similar to BC, the successful state-action
demonstration data is used for imitation. GAIL implementation by Hill et al. [20] is used.

• D-COACH [13]: Interactive IL method that uses binary corrective feedback in the action
space. The demonstrator suggests modifications to the current actions being executed to
train the agent as it executes the task.

Experiments were run with non-expert human participants (age group 25-30 years) who have no
prior knowledge of the tasks. A total of 22 sets of trials are performed (8, 8 and 6 participants for the
CartPole, Reacher, and LunarLander tasks respectively). Participants performed four experiments:
Tele-operation in action-space and state-space, training an agent using D-COACH and training an
agent using TIPS. To compensate for learning effect, the order of the experiments was changed for
every participant. Participants used a keyboard input interface to provide demonstration/feedback to
the agent. When performing tele-operation, the demonstrated actions and the corresponding states
were recorded. Tele-operation was deemed to be complete once no new demonstrative information
could be provided (an average of 20 episodes for CartPole and Reacher, and 25 episodes for Lu-
narLander). When training interactively using D-COACH and TIPS, the demonstrators provided
feedback until no more agent performance improvement was observed.

To compare the demonstrator’s task load, participants were also asked to fill out the NASA Task
Load Index Questionnaire [21] after each experiment.

4.2 Validation tasks on robot

For the validation of TIPS on a real robot, two manipulation tasks were designed: ‘Fishing’ and
‘Laser Drawing’. The tasks were performed with a velocity controlled KUKA LBR iiwa 7 robot.

In the Fishing task (Figure 3a), a ball is attached to the end-effector of the robot by a thread, and the
objective is to move a swinging ball into a nearby cup (similar to placing a bait attached to a fishing
rod). To reduce the complexity of the task, the movement of the robot end-effector (and ball) is
restricted to a 2-D x-z Cartesian plane. To teach the task using TIPS, a keyboard interface is used to
provide feedback in the x-z Cartesian robot end-effector position. A learnt forward dynamics model
is used to predict the position of the end-effector based on the joint commands (actions) requested to
the robot. To measure task performance, a reward function is defined which penalizes large actions
as well as the distance (dist) between the ball and the center of the cup (rt = −‖at‖ − ‖ distt ‖).
In the Laser Drawing task (Figure 3b), a laser pointer attached to the robot’s end-effector is used to
‘draw’ characters on a whiteboard (i.e. move the camera-tracked laser point in a desired trajectory)
by moving two of the robot’s joints (3rd and 5th). To teach the task, feedback is provided in the

5

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
0.00

0.25

0.50

0.75

1.00
Re

tu
rn

CartPole

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
0.00

0.25

0.50

0.75

1.00

Re
tu

rn

Reacher

Tele-Op (A) Tele-Op (S) BC* GAIL* TIPS
Method

0.00

0.25

0.50

0.75

1.00

Re
tu

rn

LunarLanderContinuous

(a)

50

100

150

200

Re
tu

rn

CartPole

Method
TIPS
D-COACH

100

75

50

25

0

Re
tu

rn

Reacher

Method
TIPS
D-COACH

0 10 20 30 40 50
Episodes

600

400

200

0

200

Re
tu

rn

LunarLanderContinuous

Method
TIPS
D-COACH

(b)

Figure 2: Evaluation results of TIPS. (a) Performance comparison of Tele-Operation (Action space), Tele-
Operation (State space), BC, GAIL and TIPS. The return is normalized over the maximum possible return
for each environment and averaged over multiple episodes and over all participants. BC* and GAIL* use
only successful tele-operation data (return of at least 40% in the normalized range). (b) Performance of TIPS
(state-space feedback) and D-COACH (action-space feedback) agents over training episodes.

x-y position of the laser point in the plane of the whiteboard. In this case, learning the dynam-
ics/kinematics of just the robot joints is insufficient. We thus learn a forward dynamics model that
predicts the position of the laser point on the whiteboard based on the joint commands (actions), but
with coordinates in the frame of the whiteboard image observed by the camera. The reward function
used to measure task performance is based on the Hausdorff distance [22] between the shape drawn
by the robot and a reference shape/trajectory.

Note that since these experiments are run only to validate the application of TIPS to a real system,
comparisons are not made with other learning methods.

5 Results

5.1 Evaluation

Performance: Figure 2a shows the performance obtained for the tasks (averaged over all partici-
pants) using tele-operation, agents trained via IL techniques and agents trained using TIPS. Tele-
operation is challenging for the demonstrator, especially for time-critical tasks such as CartPole and
LunarLander where the system is inherently unstable. Agents trained using IL techniques (BC and
GAIL) suffer from inconsistency as well as lack of generalization of the demonstrations. For the
CartPole task, this problem is not as significant given the small state-action space. Interactively
learning via TIPS enables continuous improvement over time and leads to the highest performance.

Figure 2b compares the performance of state-space (TIPS) and action-space (D-COACH) interac-
tive learning over training episodes. The advantage of state-space feedback is significant in terms
of learning efficiency for the CartPole and Reacher tasks and an increase in final performance is
observed for the Reacher task. For the LunarLander task, no performance improvement is seen,
although training with TIPS takes less time to achieve similar performance. While state-space feed-
back provides a stabilizing effect on the lander and leads to fewer crashes, participants struggle to
teach it to land and thus the agent ends up flying out of the frame.

6

Table 2: Average ratings provided by the participants in the NASA Task Load Index questionnaire [21].
Values are normalized, with smaller magnitude implying lower mental demand etc. (S) and (A) are used to

denote state-space and action-space techniques respectively.
Mental Physical Temporal 1-Performance Effort Frustration

Demand Demand Demand

CartPole

TIPS (S) 0.29 0.33 0.33 0.11 0.37 0.19
D-COACH (A) 0.49 0.37 0.43 0.14 0.44 0.3
Reacher

TIPS (S) 0.53 0.64 0.61 0.17 0.63 0.3
D-COACH (A) 0.63 0.66 0.57 0.2 0.61 0.41
LunarLanderContinuous

TIPS (S) 0.8 0.7 0.67 0.3 0.73 0.73
D-COACH (A) 0.8 0.77 0.67 0.27 0.73 0.6

Demonstrator Task Load: The NASA Task Load Index ratings are used to capture demonstrator
task load when teaching using state-space (TIPS) and action-space (D-COACH) feedback and the
results can be seen in Table 2 (Significant differences in rating are highlighted).

When teaching using TIPS, participants report lower ratings for the CartPole and Reacher tasks
with the mental demand rating reduced by about 40% and 16% and participant frustration reduced
by about 35% and 25% respectively. Thus, the merits of state-space interactive learning are clear.
However, these advantages are task specific. For the LunarLander task, demonstration in state and
action-spaces is equally challenging, backed up by little change in the ratings.

It is noted that actions computed based on feedback using TIPS can be irregular due to inaccuracies
in model learning. This was observed for the Reacher and LunarLander tasks where model learning
is relatively more complex as compared to CartPole. Since handling such irregular action scenarios
requires demonstrator effort, this can diminish the advantage provided by state-space feedback.

5.2 Validation Tasks

The agent performance and demonstrator feedback rate over learning episodes can be seen in Fig-
ure 4.

In our experiments for the Fishing task, the demonstrator’s strategy is to move the end effector
towards a position above the cup and choose the appropriate moment to bring the end effector down
such that the swinging ball falls into the cup. The agent successfully learns to reliably place the
ball in the cup after 60 episodes of training (each episode is 30 seconds long). After about 90
episodes, the agent performance is further improved in terms of speed at which the task is completed
(improvement in return from -15 to -10). The feedback rate reduces over time as the agent performs
better and only some fine-tuning of the behavior is needed after 60 episodes (Figure 4).

For the Laser Drawing task, the demonstrator teaches each character separately and uses a reference
drawn on the whiteboard as the ground truth. The agent successfully learns to draw characters that
closely resemble the reference (Figure 3c) after 80 episodes of training (each episode is 5 seconds
long). The feedback rate reduces over time as the basic character shape is learnt and the behavior is
fine-tuned to closely match the reference character.

A video of the training and learnt behavior for both tasks is available at: youtu.be/mKgrBgat1PM.

6 Conclusion

In experiments with non-expert human demonstrators, our proposed method TIPS outperforms
IL techniques such as BC and GAIL [19] as well as Interactive Learning in action-space (D-
COACH [13]). The state-space feedback mechanism also leads to a significant reduction in demon-
strator task load. We have thus illustrated the viability of TIPS to non-expert demonstration sce-
narios and have also highlighted the merits of state-space Interactive Learning. Our method also

7

https://youtu.be/mKgrBgat1PM

(a)

(b) (c)

Figure 3: Validation experiments with the KUKA robot. (a) Left to right, the Fishing task performed by the
robot after being taught by the demonstrator for 20 minutes. (b) Representation of the Laser Drawing task. The
robot is taught to move the laser point (magnified in image) to draw the characters. (c) The characters drawn
by the robot (laser point trajectory tracked by the camera) after about 7 minutes of training per character.

30

25

20

15

10

Re
tu

rn

Fishing task

0 20 40 60 80
Episodes

0.0

0.1

0.2

0.3

0.4

0.5

Fe
ed

ba
ck

 R
at

e
(/s

ec
)

60

50

40

30

20

10

Re
tu

rn

Laser Drawing task

0 20 40 60 80
Episodes

0.5

1.0

1.5

2.0

2.5

Fe
ed

ba
ck

 R
at

e
(/s

ec
)

Figure 4: Learning curves and demonstrator feedback rates for the validation experiments. Values are averaged
over a rolling window of size 10. Each episode is of length 30 seconds for the Fishing task and 5 seconds for
the Laser Drawing task. For the Laser Drawing task, values are averaged over learning different characters.

has the benefit of being applicable to both continuous and discrete action problems, unlike feedback
methods such as COACH [7] (continuous actions only).

To compute actions, we learn an FDM and assume no prior knowledge of dynamics. While this is
advantageous in environments with dynamics that are unknown or difficult to model, learning the
FDM from experience can be challenging. A lot of training data (i.e., environment interactions) may
be required, else a poor model would lead to inaccurate actions being computed. A solution to this
could be to use smarter exploration strategies when acquiring experience samples.

Another drawback of TIPS is that the action selection mechanism requires the evaluation of samples
from the entire action-space. In the relatively small dimensional spaces in our experiments, this
computation was inexpensive, quick and felt instantaneous to the demonstrator. However, this does
not hold for higher dimensional spaces where a lot of computational power would be required. Thus,
further improvements are required to select actions in an efficient way.

8

Acknowledgments

This research has been funded partially by the ERC Stg TERI, project reference #804907. We would
like to thank Rodrigo Pérez-Dattari for his comments and suggestions. We would also like to thank
the CoRL reviewing committee for their insights which helped improve the final content of the
paper.

References
[1] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters. An algorithmic

perspective on imitation learning. Foundations and Trends R© in Robotics, 7(1-2):1–179, 2018.
ISSN 1935-8253. doi:10.1561/2300000053.

[2] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, and J. Kuffner.
Optimization and learning for rough terrain legged locomotion. The International Journal of
Robotics Research, 30(2):175–191, 2011. doi:10.1177/0278364910392608.

[3] P. Abbeel, A. Coates, and A. Y. Ng. Autonomous helicopter aerobatics through apprenticeship
learning. The International Journal of Robotics Research, 29(13):1608–1639, 2010. doi:
10.1177/0278364910371999.

[4] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of Go with deep neural networks and tree search. Nature, 529:484–489,
01 2016. doi:10.1038/nature16961.

[5] B. D. Argall, B. Browning, and M. Veloso. Learning robot motion control with demonstration
and advice-operators. In 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pages 399–404. IEEE, 2008. doi:10.1109/IROS.2008.4651020.

[6] S. Chernova and M. Veloso. Interactive policy learning through confidence-based autonomy.
Journal of Artificial Intelligence Research, 34:1–25, 2009. doi:10.1613/jair.2584.

[7] C. Celemin and J. Ruiz-del Solar. An interactive framework for learning continuous actions
policies based on corrective feedback. Journal of Intelligent & Robotic Systems, 95(1):77–97,
2019. doi:10.1007/s10846-018-0839-z.

[8] Y. Liu, A. Gupta, P. Abbeel, and S. Levine. Imitation from observation: Learning to imitate
behaviors from raw video via context translation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 1118–1125. IEEE, 2018. doi:10.1109/ICRA.2018.
8462901.

[9] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pages 627–635, 2011. URL http://proceedings.
mlr.press/v15/ross11a.html.

[10] B. D. Argall, B. Browning, and M. M. Veloso. Teacher feedback to scaffold and refine demon-
strated motion primitives on a mobile robot. Robotics and Autonomous Systems, 59(3-4):
243–255, 2011. doi:10.1016/j.robot.2010.11.004.

[11] W. B. Knox and P. Stone. Interactively shaping agents via human reinforcement: The TAMER
framework. In Proceedings of the Fifth International Conference on Knowledge Capture, K-
CAP ’09, page 9–16, New York, NY, USA, 2009. Association for Computing Machinery. ISBN
9781605586588. doi:10.1145/1597735.1597738.

[12] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei. Deep reinforcement
learning from human preferences. In Advances in Neural Information Processing Systems,
pages 4299–4307, 2017. URL https://arxiv.org/abs/1706.03741v3.

9

http://dx.doi.org/10.1561/2300000053
http://dx.doi.org/10.1177/0278364910392608
http://dx.doi.org/10.1177/0278364910371999
http://dx.doi.org/10.1177/0278364910371999
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/IROS.2008.4651020
http://dx.doi.org/10.1613/jair.2584
http://dx.doi.org/10.1007/s10846-018-0839-z
http://dx.doi.org/10.1109/ICRA.2018.8462901
http://dx.doi.org/10.1109/ICRA.2018.8462901
http://proceedings.mlr.press/v15/ross11a.html
http://proceedings.mlr.press/v15/ross11a.html
http://dx.doi.org/10.1016/j.robot.2010.11.004
http://dx.doi.org/10.1145/1597735.1597738
https://arxiv.org/abs/1706.03741v3

[13] R. Pérez-Dattari, C. Celemin, J. Ruiz-del Solar, and J. Kober. Continuous control for
high-dimensional state spaces: An interactive learning approach. In 2019 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 7611–7617. IEEE, 2019. doi:
10.1109/ICRA.2019.8793675.

[14] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and S. Levine. Combining self-
supervised learning and imitation for vision-based rope manipulation. In 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2146–2153. IEEE, 2017. doi:
10.1109/ICRA.2017.7989247.

[15] F. Torabi, G. Warnell, and P. Stone. Behavioral cloning from observation. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pages
4950–4957, 7 2018. doi:10.24963/ijcai.2018/687.

[16] R. Perez-Dattari, C. Celemin, G. Franzese, J. Ruiz-del Solar, and J. Kober. Interactive learning
of temporal features for control: Shaping policies and state representations from human feed-
back. IEEE Robotics & Automation Magazine, 27(2):46–54, 2020. doi:10.1109/MRA.2020.
2983649.

[17] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014. URL https://arxiv.org/abs/1412.6980.

[18] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI gym, 2016. URL https://arxiv.org/abs/1606.01540.

[19] J. Ho and S. Ermon. Generative adversarial imitation learning. In D. D. Lee, M. Sugiyama,
U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 4565–4573. Curran Associates, Inc., 2016. URL http://papers.nips.
cc/paper/6391-generative-adversarial-imitation-learning.pdf.

[20] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu. Stable
baselines. https://github.com/hill-a/stable-baselines, 2018.

[21] S. G. Hart and L. E. Staveland. Development of NASA-TLX (task load index): Results of
empirical and theoretical research. In Advances in Psychology, volume 52, pages 139–183.
Elsevier, 1988. doi:10.1016/S0166-4115(08)62386-9.

[22] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing images using the
Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(9):
850–863, 1993. doi:10.1109/34.232073.

[23] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-
houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu,
and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
URL https://www.tensorflow.org/. Software available from tensorflow.org.

[24] C. Hennersperger, B. Fuerst, S. Virga, O. Zettinig, B. Frisch, T. Neff, and N. Navab. Towards
mri-based autonomous robotic us acquisitions: a first feasibility study. IEEE transactions on
medical imaging, 36(2):538–548, 2017. doi:10.1109/TMI.2016.2620723.

10

http://dx.doi.org/10.1109/ICRA.2019.8793675
http://dx.doi.org/10.1109/ICRA.2019.8793675
http://dx.doi.org/10.1109/ICRA.2017.7989247
http://dx.doi.org/10.1109/ICRA.2017.7989247
http://dx.doi.org/10.24963/ijcai.2018/687
http://dx.doi.org/10.1109/MRA.2020.2983649
http://dx.doi.org/10.1109/MRA.2020.2983649
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1606.01540
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
http://papers.nips.cc/paper/6391-generative-adversarial-imitation-learning.pdf
https://github.com/hill-a/stable-baselines
http://dx.doi.org/10.1016/S0166-4115(08)62386-9
http://dx.doi.org/10.1109/34.232073
https://www.tensorflow.org/
http://dx.doi.org/10.1109/TMI.2016.2620723

Supplementary Information On Experiments

We implemented TIPS in Python and used the TensorFlow Python library [23] to train the neural
networks for the forward dynamics model and agent policy. Our implementation is available at
github.com/sjauhri/Interactive-Learning-in-State-Space.

We ran experiments to evaluate our method TIPS in simulated OpenAI Gym [18] environments and
to validate it on two manipulation tasks with a KUKA LBR iiwa robotic arm. In all the experiments,
the demonstrator’s input was taken via arrow keys on a keyboard. For the validation experiments
with the robotic arm, we used the iiwa stack [24] to interface with the robot using ROS commands.
Thus, actions in the policy were in the form of joint velocity commands sent to the robot. The
frequency of actions, i.e., the controller frequency was set to 10 Hz. The state-space for the tasks
included the robot joint positions, velocities along with the camera-tracked position and velocity of
the ball (in the Fishing task) or the position of the laser point (in the Laser Drawing task). The exper-
iments were first tested in simulations in Gazebo followed by execution using the real robot. A video
of the training and learnt behavior for both validation tasks is available at: youtu.be/mKgrBgat1PM.

11

https://github.com/sjauhri/Interactive-Learning-in-State-Space
https://youtu.be/mKgrBgat1PM

	Introduction
	Related Work
	Teaching Imitative Policies in State-space (TIPS)
	Corrective Feedback
	Mapping state transitions to actions
	Training Mechanism

	Experimental Setting
	Evaluation
	Validation tasks on robot

	Results
	Evaluation
	Validation Tasks

	Conclusion

