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SUMMARY

The aerospace industry annually provides transport for billions of passengers along tril-
lions of kilometers. The industry is continuously aiming to provide these services in a
more efficient and sustainable way. One possibility is to consider improving airside air-
port operations, both current types and those expected in the near future. Scheduling
airport operations requires taking into account flight planning, airport layout, routing
requirements and personnel planning. Current operational planning is characterised by
application of linear programming tools for strategic planning, and manual adjustment
for adaptive planning.

This dissertation aims to develop data-driven optimisation models, to increase the
efficiency and sustainability of various airside airport operations, and to apply these
models to airport case studies. The focus is first put on external electric taxiing, a new
taxiing technique using electric towing vehicles (ETVs) to tow aircraft from gates to run-
ways and vice versa. Many airports are considering to implement this technique, as it
offers a large improvement in reducing their greenhouse gas emissions, noise levels and
air pollution, which is an improvement for passengers, airport personnel, and local resi-
dents.

The first goal is to create a comprehensive overview of the operational aspects of ex-
ternal electric taxiing, by reviewing existing research work and industry sources. This
overview includes the expected specifications of ETVs and the future procedures for
electric taxiing movement. Electric taxiing introduces a new airside operation to the
airport: ETV-to-aircraft scheduling. Studies on this new operation, as well as on ve-
hicle routing, vehicle fleet sizing and battery charging optimisation models, which are
needed for electric taxiing, are reviewed. The overview also includes the remaining re-
search challenges to achieve large-scale ETV implementation in the next few decades.

The second goal is to develop an optimisation model to perform ETV-to-aircraft schedul-
ing that takes into account realistic airport circumstances. A more efficient ETV-to-
aircraft schedule, which allows more aircraft to be towed by an ETV fleet, will reduce
airport emissions more. Some studies have already proposed ETV-to-aircraft schedul-
ing models. However, they do not include all elements needed to make the model re-
alistic and comprehensive, such as routing with conflict and collision avoidance, ETV
charging and discharging, and airport surface movement specifications. Two more el-
ements are added to this list in this work: airport electricity capacity and achieving a
time-efficient model. Two models are developed for full-day ETV-to-aircraft scheduling,
a Mixed-Integer Linear Programming (MILP) model and an Adaptive Large Neighbour-
hood Search (ALNS) model. Both models limit ETV charging to the electricity capacity of
the airport. The ALNS model is able to create near-optimal full-day schedules for large
fleet sizes within a few hours, for a large airport case study. The ALNS model is tested
with various daily electricity capacity profiles, which shows the necessity of night charg-
ing and the effects of increasing amounts of charging during the day.

xi



xii SUMMARY

The third goal is to develop an optimisation approach to retain efficiency for electric
taxiing in a real-time situation. The models developed for the second goal are applica-
ble for strategic scheduling. During operation, disruptions to the strategic schedule will
occur, and adaptive scheduling is required to continue operation. In this dissertation
both a strategic and disrupted scheduling model are developed. The disrupted model
reassigns delayed aircraft to ETV, aiming to minimize the changes to the original sched-
ule. The model is used to create an adaptive schedule in a large airport case study using
historical flight data. At the start of every half hour period, the disruptions due to flight
delays of the next period are incorporated in a new schedule. The results show the ef-
ficacy of the disrupted model in minimizing schedule changes, which does not come at
the expense of emission savings.

In addition to electric taxiing, this dissertation focuses on improving the efficiency
and robustness of airside operations by predicting airport disruptions, to avoid addi-
tional use of resources and to provide a better service. Where the previous part consists
of using models to react to flight delays, operations can also be improved by predicting
them in advance. In existing works, delays are predicted by classification or as point
prediction. In this dissertation, probabilistic prediction is applied to flight delay, using
two machine learning algorithms: Mixture Density Networks and Random Forests Re-
gression. In addition, metrics suited to probabilistic prediction are developed and used
to evaluate the algorithm performance. In a small airport case study, the algorithms are
shown to be able to predict delays within a Continuous Ranked Probability Score (CRPS)
of eleven minutes.

The probabilistic prediction algorithms generate estimated delay distributions, which
include extended uncertainty information. To illustrate the utility of the predictions for
airport operations, they are applied in a probabilistic model aimed to increase the ro-
bustness of the flight-to-gate assignment problem. The proposed model is shown to
reduce the number of gate-conflicted aircraft by up to 74% when compared to a deter-
ministic flight-to-gate assignment model. The robustness of the assignment can be con-
trolled with a model parameter.

Another method for predicting flight delays is binary classification, which is popu-
lar in literature. However, when posed as a binary problem, flight delay and also flight
cancellation prediction suffer from a large data imbalance. This causes a distorted view
when using metrics such as accuracy. This dissertation develops a systematic approach
to binary prediction with imbalanced data, by considering a range of sampling ratios and
various sampling techniques. Two machine learning algorithms are applied to a small
airport historical flight dataset. The results underline the need to investigate the influ-
ence of varying data imbalance ratios on the performance of classification algorithms in
various metrics.

Throughout this dissertation, the focus has been on improving the sustainability and
efficiency of airport operations through data-driven approaches. These approaches in-
clude MILP models, heuristics and machine learning models. The developed models
provide support for airport planners to improve current and future scheduling tasks.
However, it remains future work to apply similar techniques to other airside operations
and to further improve the realism and real-time usability of the current models. In ad-
dition, airports’ spatial planners, air traffic controllers and ETV developers will play a
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critical role in the further development and implementation of electric taxiing. Overall,
this dissertation forms a starting point for airport planners aiming to use data-driven
methods to improve the sustainability and efficiency of airports, to ensure more durable
and reliable air transportation services.





SAMENVATTING

De luchtvaartindustrie verzorgt jaarlijks het vervoer van miljarden passagiers over af-
standen van biljoenen kilometers. De industrie heeft zich ten doel gesteld om deze dien-
sten op een efficiëntere en meer duurzame manier te leveren. Een van de mogelijkheden
daartoe is het verbeteren van zowel bestaande als toekomstige luchthavenoperaties. Om
deze te roosteren moet er rekening gehouden worden met de vluchtplanning, de ruim-
telijke indeling van de luchthaven, eisen voor de routes en de personeelsplanning. De
huidige operationele planning wordt gekenmerkt door het gebruik van lineaire program-
meringstools voor de strategische planning, en van handmatige aanpassingen voor de
adaptieve planning.

Dit proefschrift is gericht op het ontwikkelen van datagedreven optimalisatiemodel-
len, om de efficiëntie en duurzaamheid van verschillende luchthavenoperaties te verho-
gen, en om deze modellen toe te passen op casestudies van luchthavens. De focus wordt
eerst gelegd op extern elektrisch taxiën, een nieuwe taxitechniek die gebruikt maakt van
elektrische sleepvoertuigen (ETVs) om vliegtuigen van gates naar landingsbanen en an-
dersom te slepen. Veel luchthavens overwegen deze techniek te implementeren, omdat
het een grote bijdrage kan leveren aan de vermindering van de uitstoot van broeikasgas-
sen, de geluidsoverlast en de luchtvervuiling, wat een verbetering is voor de passagiers,
het luchthavenpersoneel, en de omwonenden.

Het eerste doel is om een uitgebreid overzicht van de operationale aspecten van ex-
tern elektrisch taxiën te maken, met behulp van wetenschappelijke publicaties en bron-
nen uit de industrie. Dit overzicht omvat de verwachte specificaties van ETVs en de toe-
komstige procedures voor de elektrische taxibewegingen. Voor de uitvoering van elek-
trisch taxiën is een ETV-naar-vliegtuig-roostering nodig. Publicaties worden bestudeerd
aangaande deze nieuwe operatie, alsook aangaande voertuigroutering, de grootte van
voertuigvloten, en optimalisatiemodellen voor het opladen van accu’s, benodigd voor
elektrisch taxiën. Het overzicht bevat ook de onderzoeksuitdagingen die opgelost dienen
te worden om op grote schaal ETV-implementatie te bereiken in de komende decennia.

Het tweede doel is om een optimalisatiemodel te ontwikkelen dat een ETV-naar-
vliegtuig-roostering kan maken en realistische luchthavenomstandigheden in acht neemt.
Een efficiëntere ETV-naar-vliegtuig-roostering, waarin meer vliegtuigen gesleept kun-
nen worden door een ETV-vloot, zal de luchthavenemissies meer verminderen. In en-
kele onderzoeken zijn al modellen voor ETV-naar-vliegtuig-roostering voorgesteld. Deze
bevatten echter niet alle elementen die nodig zijn om het model realistisch en volle-
dig te maken, zoals routering met conflict- en botsing-vermijding, het opladen en ont-
laden van ETVs, en de specificaties van het verkeer op de luchthaven. In dit proef-
schrift worden hier twee elementen aan toegevoegd: de elektriciteitscapaciteit van de
luchthaven, en het ontwikkelen van een tijdsefficiënt model. Er worden twee model-
len voorgesteld om ETV-naar-vliegtuig-roostering voor een volledige dag te maken: een
Mixed-Integer Linear Programming (MILP) model en een Adaptive Large Neighbour-

xv



xvi SAMENVATTING

hood Search (ALNS) model. Beide modellen limiteren het opladen van ETVs tot de elek-
triciteitscapaciteit van de luchthaven. Het ALNS model is in staat om een bijna-optimale
roostering voor elektrisch taxiën op een grote luchthaven te maken voor een volledige
dag, binnen enkele uren. Het ALNS model is getest met verscheidene dagprofielen van
electriciteitscapaciteit. De resultaten tonen de noodzaak van opladen gedurende de
nacht aan, en illustreren de effecten van een toenemende mate van opladen gedurende
de dag.

Het derde doel is om een optimalisatiemodel te ontwikkelen waarmee de efficiëntie
van elektrisch taxiën wordt behouden tijdens de uitvoering van het rooster. De modellen
die voor het tweede doel werden ontwikkeld zijn toepasbaar voor strategisch roosteren.
Tijdens de uitvoering van het rooster kunnen verstoringen optreden, waardoor adaptief
roosteren nodig is om met de uitvoering door te gaan. In dit proefschrift worden zo-
wel een strategisch als verstoord roosteringsmodel ontwikkeld. In het verstoorde model
worden vertraagde vliegtuigen waar nodig opnieuw aan een ETV toegewezen, en daarbij
worden de veranderingen aan het originele rooster geminimaliseerd. Het model wordt
gebruikt om een adaptatief rooster te maken voor een casestudie van een grote luchtha-
ven met historische vluchtdata. Aan het begin van elke periode van een half uur worden
de verstoringen door vluchtvertragingen van het komende halfuur verwerkt in een nieuw
rooster. De resultaten laten de doeltreffendheid van het verstoorde model zien, waarin
roosterveranderingen worden geminimaliseerd, zonder dat dit ten koste gaat van het
verminderen van emissies.

Naast elektrisch taxiën focust dit proefschrift op het verbeteren van de efficiëntie en
robuustheid van luchthavenoperaties, door het voorspellen van vluchtvertragingen, om
het gebruik van extra middelen te voorkomen, en om betere service te leveren. In het
vorige onderdeel werden modellen gebruikt om te reageren op vluchtvertragingen, maar
operaties kunnen ook worden verbeterd door de vertragingen van tevoren te voorspel-
len. In de literatuur worden vertragingen veelal voorspeld door classificatie of als een
puntvoorspelling. In dit proefschrift worden probabilistische voorspellingen toegepast
op vluchtvertragingen, door het gebruik van twee machine learning algoritmen: Mixture
Density Networks en Random Forests Regression. Daarnaast worden metrieken ontwik-
keld die geschikt zijn voor probabilistische voorspellingen, en deze worden gebruikt om
de prestaties van de algoritmes te evalueren. Door middel van een casestudie van een
kleine luchthaven wordt aangetoond dat de algoritmes in staat zijn om vluchtvertragin-
gen te voorspellen binnen een Continuous Ranked Probability Score (CRPS) van elf mi-
nuten.

De probabilistische voorspellingsalgoritmen genereren geschatte kansverdelingen
van vertraging, waarbinnen uitgebreidere onzekerheidsinformatie omvat is dan bij slechts
een voorspelde waarde. Om het nut van de voorspellingen voor luchtvaartoperaties aan
te tonen, worden deze toegepast in een probabilistisch model, waarmee de robuustheid
van het vlucht-naar-gate-toewijzingsprobleem kan worden verhoogd. Er wordt aange-
toond dat het voorgestelde model het aantal vliegtuigen met een gate-conflict met 74%
kan verminderen, vergeleken met een deterministisch vlucht-naar-gate-toewijzingsmodel.
De robuustheid van de toewijzing kan worden geregeld met een modelparameter.

Een andere methode voor het voorspellen van vluchtvertragingen is door middel van
binaire classificatie, een populaire methode in de literatuur. Echter, het binair voorspel-
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len van vluchtvertragingen of vluchtannuleringen lijdt onder de grote onbalans in data.
Dit veroorzaakt een verstoord beeld bij het gebruik van metrieken zoals nauwkeurigheid.
In dit proefschrift wordt een systematische aanpak ontwikkeld voor binaire voorspellin-
gen met data-onbalans, door het beschouwen van een reeks aan bemonsteringsverhou-
dingen, en verscheidene bemonsteringstechnieken. Twee machine learning algoritmes
worden toegepast op een historische vluchtdataset van een kleine luchthaven. De re-
sultaten onderstrepen de noodzaak om de invloed te onderzoeken van het variëren van
de verhoudingen van de data-categorieën op de prestaties van classificatie-algoritmes,
uitgedrukt in verschillende metrieken.

De focus van de onderzoeken beschreven in dit proefschrift is het verbeteren van
de duurzaamheid en efficiëntie van luchthavenoperaties, door datagedreven benade-
ringen. Deze benaderingen omvatten MILP modellen, heuristieken en machine learning
modellen. De ontwikkelde modellen bieden ondersteuning aan luchthavenplanners om
de huidige en toekomstige roosteringstaken te verbeteren. Toekomstig onderzoek kan
zich richten op het toepassen van vergelijkbare technieken op andere operaties aan de
luchtzijde, en het verder verbeteren van het realisme en de operationele bruikbaarheid
van de huidige modellen. Daarnaast zullen de omgevingsplanners van luchthavens, de
luchtverkeersleiding en de ETV-ontwikkelaars een kritieke rol spelen in de verdere ont-
wikkeling en implementatie van elektrisch taxiën. Over het geheel genomen vormt dit
proefschrift een beginpunt voor luchthavenplanners die door middel van datagedre-
ven methodes de duurzaamheid en efficiëntie van luchthavens wensen te verbeteren,
en daarmee een meer toekomstbestendige en betrouwbare luchtvaart mogelijk kunnen
maken.





1
INTRODUCTION

1.1. RESEARCH BACKGROUND
During the last 120 years, the development of aviation has opened up enormous possi-
bilities for fast transportation worldwide. In 2019, airlines transported 4.6 billion pas-
sengers along 8.7 trillion kilometers worldwide [73, 74]. To sustain this, the aviation sec-
tor requires a lot of resources; commercial airlines required 360 billion liters of jet fuel
in 2019 [74], and a large airport such as Amsterdam Airport Schiphol requires 200 mil-
lion kWh of electricity yearly [13]. This causes air travel to have a large CO2 footprint.
Therefore, organizations within the aviation sector aim to reduce their CO2-emissions:
the European Union by 90% in 2050 and the United States by 100% in 2050. In addition
to increasing sustainability, the aviation sector is also seeking to make their operations
as efficient and robust as possible, and to minimize the material and energy resources
used. In short, the aim for airports is to improve efficiency and sustainability of airport
operations.

Airport operations refer to logistic operations necessary to facilitate the aircraft through-
put. Aircraft need to move from runways to gates and the other way around, but also to
and from parking stands, de-icing platforms and other service locations. Typically, ma-
terial, locations or personnel are assigned to an aircraft or another vehicle. Examples
are flight-to-gate and flight-to-runway assignments and the assignment of refuelling or
catering vehicles to a gate or aircraft.

Many types of airside operations have been standard practices for decades, but new
developments can bring new operation types. A particular example is external electric
taxiing: rather than taxiing using the jet engines, electric towing vehicles (ETVs) tow air-
craft along the taxiways, as shown in Figure 1.1. Electric taxiing is expected to greatly
reduce greenhouse gas emissions and noise, and improve air quality at the airport sur-
face [70, 16, 65]. Implementing electric taxiing is therefore of interest to airports, since
it greatly increases airport sustainability. This implementation introduces new schedul-
ing problems, such as personnel-to-ETV assignment, ETV-to-aircraft assignment, and
recharge scheduling [16]. The efficiency of airport operations expected to become main-

1



1

2 1. INTRODUCTION

Figure 1.1: External electric towing vehicle towing an aircraft at Amsterdam Airport Schiphol [144].

stream in the future should be studied now, so that this foresight can be used in their
implementation into the airport infrastructure, and to maximize emission savings.

Airport operational planning is often complicated by requirements that are specific
to aviation. Larger airports aim to maximize the runway usage, leading to a fast-paced
succession of aircraft to and from runways. This airport surface traffic needs to be routed
along a limited amount of (often one-way) taxiways, which sometimes cross each other
or cross runways. The amount of available ground support equipment (GSE) and the ser-
vice and recharging/refuelling stations associated with them also form a limiting factor.
The high runway usage implies that disruptions such as flight delays, personnel shortage
or material breakdown can have a large impact on airport operations.

Strategic planning of airport operations is often done using linear programming (LP)
techniques, and does not always take into account the abovementioned complicating re-
quirements. During operation, when schedules are disrupted, they are typically adapted
without using a model aiming for efficiency or robustness. In recent years, more re-
search has been published where the efficiency or robustness of a scheduling problem
is improved by a data-driven approach [171, 184, 136]. Such an approach can also be
applied to airport scheduling problems, using flight schedule data or weather data.

1.2. RESEARCH GAPS
From the research background outlined above, several research gaps are identified.

Understanding the process of electric taxiing and identifying operational challenges
External electric taxiing has emerged as a new type of airside airport operation. Many
airports have expressed interest in implementing it as one of their taxiing methods, be-
cause of the expected benefits for airport sustainability and noise and pollution reduc-
tion. Previous research has established the technical feasibility of the technique [39, 70,
102], and preliminary work has been performed in investigating the operational aspects
[61, 16, 182, 33]. However, a comprehensive overview of these aspects is lacking.

First, such an overview should include the best way to shape the process of an opera-
tional tow with ETVs, and a list of the requirements posed by the technique to the airport
infrastructure and ETV design. Many studies omit one or more elements of the towing
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process in their scheduling or routing approaches. Since only one external electric taxi-
ing system is operational, reliable ETV specifications are minimally available, leading to
variations in the ETV specifications considered in literature.

Second, all operational challenges expected to appear with electric taxiing imple-
mentation, should be identified. Specifically, routing and scheduling problems, charg-
ing planning and charging capacity pose challenges to implementation. In addition, the
approaches tried in literature to address these challenges or comparable ones in other
fields should be considered.

This research gap is addressed in Chapter 2.

Developing models to improve electric taxiing sustainability, efficiency and robust-
ness In order to reduce the airport emissions of greenhouse gases, but also the use of
resources such as fuel and manpower, the aerospace industry continuously strives to
improve efficiency and sustainability of airport operations. The efficiency and sustain-
ability of electric taxiing operations are largely determined by the used ETV-to-aircraft
schedule.

Although there has been a lot of research in scheduling problems in other fields [21,
58, 67, 189, 141], few methods for creating an ETV-to-aircraft schedule have yet been
developed, due to the novelty of the technique. These works often lack one or more
elements that are needed to make the model realistic and comprehensive: an electric
taxiing scheduling model should take into account airport infrastructure, vehicle proper-
ties, a mix between certified and non-certified aicraft, and realistic charging constraints.
Models should be useful for airport planners, and thus have limited runtime, despite
scheduling problems being NP-hard. Models should be generally usable and extendable
to other airports, ETV fleet mixes and ETV specifications.

The electricity demand generated by a fleet of ETVs is expected to be very large [155,
52, 112]. Charging a fleet capable of towing all aircraft at an airport requires the same
power as provided on average by 1-2 wind turbines [28]. This implies that the electricity
capacity of an airport should be taken into account when implementing electric taxi-
ing. Variations in electricity capacity during a day are expected to influence the optimal
towing and charging schedules, depending on airport and ETV properties.

The robustness of electric taxiing operations is the extent to which a towing schedule
can be kept when faced with disruptions. In addition to scheduling in advance, it is valu-
able to have an extension to the scheduling model for application in real time operations,
where changes to the schedule due to disruptions such as flight delays and cancellations
can be minimized.

This research gap is addressed in Chapters 3 and 4.

Predicting and managing disruptions & applying disruption prediction to operational
planning There are many types of disruptions that can influence a carefully optimised
airport operational schedule. Flight delays and cancellations are the most obvious dis-
ruption types and are most thoroughly studied [161]. Predicting delays and cancella-
tions, even with limited accuracy, can not only bring the financial benefits of increased
on-time performance, but also improve the usability and robustness of operational sched-
ules, which in turn reduces the necessary resources for operations.
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Many authors have aimed to predict delays and cancellations based on historical
flight data, and in recent years an increasing amount has made use of various types of
machine learning approaches [32, 90, 164, 106, 31, 178, 154, 95]. However, all works
predicting delays make use of point or class predictions. An alternative is to create prob-
abilistic predictions [22, 57], which come with more extensive information on the uncer-
tainty of the predictions. Such information provides additional insight to airport plan-
ners when adapting assignments.

An example of an operation type that could benefit from probabilistic predictions is
the flight-to-gate assignment. When an aircraft making use of a gate is delayed, a conflict
may occur with another aircraft scheduled to use the same gate. Delay predictions can
help alleviate such conflicts, as shown in literature [171]. However, no studies have yet
applied probabilistic predictions to minimize such conflicts.

The earlier mentioned classification approaches to flight delay prediction can be ef-
fective for airport planners to separate flights in general classes, e.g. "on-time", "small
delay", "large delay" and "cancelled". However, a classification approach suffers from
the fact that delay and cancellation datasets are heavily imbalanced, which distorts per-
formance measures. This issue is not addressed in the current literature. A general ap-
proach for handling imbalanced classification data is needed, so that it can be applied
to flight delay prediction. Such an approach should be based on the expected effects of
using various sampling techniques and performance metrics.

This research gap is addressed in Chapters 5 and 6.

1.3. RESEARCH OBJECTIVES
Considering the research gaps defined above, the main goal and research objectives of
this dissertation can be identified.

The main goal of this dissertation is to develop data-driven optimisation models to
increase the efficiency and sustainability of various airside airport operations.

The objectives of this dissertation are:

Objective 1
Identify the current research status on efficient large-scale application of electric taxiing
at airports.

Objective 2
Develop an optimisation model to perform ETV-to-aircraft scheduling that takes into ac-
count realistic airport circumstances.

Objective 3
Develop an optimisation approach to retain efficiency for electric taxiing when con-
fronted with delays.

Objective 4
Improve the robustness of airside operations by predicting flight delays and cancella-
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tions.

Objective 4 is divided into three subobjectives:

Objective 4.1
Perform probabilistic prediction of flight delays using a data-driven approach.

Objective 4.2
Establish a general approach to flight delay and cancellation classification with imbal-
anced data.

Objective 4.3
Apply the predictions to improve the robustness of flight-to-gate assignments.

1.4. RESEARCH METHODOLOGY
This section describes the methodology used to achieve the research objectives. Fig-
ure 1.2 shows how the objectives are addressed throughout the dissertation.

Chapters 2-4 address research Objective 1 - 3. First, an extensive literature search
is performed on electric taxiing (Objective 1). The electric taxi systems currently un-
der development are identified, and the differences and (dis)advantages of each system
mentioned in literature are outlined. Then, the focus is put on external electric taxiing.
The full electric towing process, as envisioned at future airports, is outlined, based on the
specifications of ETVs and airports provided in existing studies and sources from indus-
try. The operational challenges that lie ahead on the road to successful electric towing
implementation are identified, and possible solutions are discussed. These challenges
are categorised as routing, scheduling and charging challenges.

Second, a linear programming approach for full-day fleet scheduling of electric taxi-
ing is developed (Objective 2). The approach includes constraints to model limited avail-
ability of electricity at airports. The linear programming approach is too complex to gen-
erate full-day towing schedules. Therefore, an Adaptive Large Neighbourhood Search
approach is developed. Both approaches include an energy usage and charging model,
conflict and collision avoidance, and realistic model parameters. Both approaches are
applied to a large airport case study, by modelling the airport infrastructure, and making
use of large datasets of historical flight schedules. The approaches are used to optimize
charging and towing schedules given varying electricity availability and vehicle proper-
ties.

Last, the linear programming model for fleet scheduling, created for Objective 2, is
extended to create a model that is used for fleet reassignment for electric taxiing oper-
ations (Objective 3). The model contains additional constraints to minimize changes
to an existing fleet assignment, when creating an updated assignment due to observed
flight delays. Several metrics are introduced to quantify change minimization. The
model is applied to an airport case study, and uses flight schedules as input.

Chapters 5 and 6 address research Objective 4. First, data-driven algorithms are de-
veloped to perform flight delay prediction (Objective 4.1). Two large datasets are se-
lected: one with flight schedule data and one with weather data. From these sets, fea-
tures are selected or created that are expected to have prediction power for delay. Then,
two probabilistic prediction algorithms, Mixture Density Networks and Random For-
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est Regression, are introduced, and performance metrics that can quantify probabilistic
predictions are selected or defined.

Second, the probabilistic predictions obtained for Objective 4.1 are applied to im-
prove the robustness of flight-to-gate assignments (Objective 4.3). A deterministic model,
as typically applied in literature, is first defined. After this, the model is extended to con-
sider aircraft gate presence as probabilistic, rather than deterministic. This probabilistic
aircraft presence is shown to be obtainable from the probabilistic delay predictions. The
robustness of the probabilistic gate assignment model is quantified by the number of
flight-to-gate conflicts, and can be controlled through an overlap probability.

Last, a systematic approach is developed to predict flight delays and cancellations
using binary classification (Objective 4.2). The predictions are made with machine learn-
ing techniques, which suffer from the data imbalance typical for events such as delays
and cancellations. The developed approach considers finding the most suitable perfor-
mance metric and sampling methodology, given a prediction problem. The approach is
demonstrated by applying it in combination with several machine learning classification
methods and various metrics, on historical data for a large airport.

1.5. DISSERTATION OVERVIEW
This dissertation is divided in seven chapters. Figure 1.2 provides an overview. Chap-
ters 2-4 concern developing optimisation models to improve sustainability, efficiency
and robustness of electric taxiing operations. In Chapter 2 the background, processes
and operational management aspects of electric taxiing are investigated, and research
challenges are identified. Chapters 3 and 4 aim to explore some of these challenges.
In Chapter 3 models are developed to perform ETV-to-aircraft assignment, taking into
account limited electricity capacity at airports. In Chapter 4 the assignment model is
extended to include disruption management. Chapters 5 and 6 revolve around predict-
ing such disruptions, to increase robustness and efficiency in operational assignments:
in Chapter 5 machine learning techniques are applied to probabilistically predict flight
delay given historical flight data. In Chapter 6 a systematic approach is developed to
predict flight delays and cancellations given highly imbalanced datasets. In Chapter 7
conclusions are drawn based on an overview of the results of all chapters, and recom-
mendations for future research are provided.



1.5. DISSERTATION OVERVIEW

1

7

Figure 1.2: Overview of chapters and objectives in this dissertation.





2
AN INVESTIGATION OF

OPERATIONAL MANAGEMENT

SOLUTIONS AND CHALLENGES FOR

SCHEDULING ELECTRIC TOWING

OF AIRCRAFT

This chapter reviews existing work on operational aspects of electric towing of aircraft,
and discusses management solutions. First, the varying electric taxi systems currently un-
der development, and their implementation progress at airports, are discussed. The cur-
rent specifications of Electric Taxiing Vehicles (ETVs) and the procedures needed to per-
form electric taxiing movements are outlined. The management needs for implementing
ETVs at an airport are discussed, by reviewing existing mathematical models for ETV fleet
management: dedicated vehicle routing models, ETV to flight assignment models, fleet
sizing models and battery charging optimisation models. Last, the remaining research
challenges are identified. This chapter summarizes the main research directions needed
to support large-scale ETV implementation in the next few decades.

This chapter is based on the following research article:
Zoutendijk, M., Mitici, M., & Hoekstra, J. M. (2023). "An investigation of operational management solu-
tions and challenges for electric taxiing of aircraft." in Research in Transportation Business & Management,
49, 101019 [192].
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Figure 2.1: Research output containing the phrase "electric taxiing" (blue and orange, left columns) and the
phrase "airport surface movement" (green and red, right columns), as indexed by Scopus [152] (accessed 11-
03-2022).

2.1. INTRODUCTION
In 2017, the CO2-emissions of the aviation sector accounted for 3.8% of world emissions.
By 2050, the European Green Deal aims to reduce aviation emissions by 90%, compared
to 1990 [47]. In 2021 the United States set the goal of achieving net-zero greenhouse gas
emissions from the aviation sector by 2050 [49]. To achieve these goals, a large amount of
research has focused on electric flying or flying using sustainable fuels such as hydrogen.
However, 7% of total flight fuel use, 43% of HC emissions, 41% of CO emissions, and 12%
of NOx emissions are attributed to aircraft taxiing at airports, rather than the flight phase,
according to Turgut, Usanmaz, and Rosen [167]. Electric aircraft taxiing is expected to
significantly reduce these emissions. In fact, the research output dedicated to electric
aircraft taxiing has increased steadily in recent years, see Figure 2.1.

The current standard is to taxi with one or both of the aircraft’s jet engines at roughly
7% power [17, 70]. However, this is a very fuel-inefficient way of taxiing [103]. Elec-
tric taxiing systems (ETS) are therefore a promising solution. When using an ETS, the
jet engines of the aircraft are not powering the taxiing movement, thus reducing fuel
consumption and emissions. ETSs are classified into two types: on-board systems and
external systems. On-board systems are integrated into the aircraft and provide electric
power to the nose or main landing gear when taxiing. An external system consists of a
fleet of electric taxiing vehicles (ETVs) that tow the aircraft along taxiways.

One external ETS, the TaxiBot [157], has been certified for use with a significant num-
ber of aircraft types and is operating at a number of airports, while on-board solutions
and other green airport solutions are still in the development phase. Lukic et al. [103]
wrote a detailed technical review on the varying ETSs, and Hospodka [70] wrote a de-
tailed cost-benefit analysis for the introduction of external ETSs from the aircraft per-
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spective. However, to our knowledge no review on the operational management aspects
of ETSs has been written. Although there has been research into some of these aspects
separately, there is little understanding of the overall challenges to the effective imple-
mentation of this emerging technology.

This chapter reviews the research on operational management problems of exter-
nal ETSs, and identifies the challenges that need to be addressed in the near future. To
this end, the methods, assumptions and results of varying approaches are discussed,
on three separate topics: the vehicle routing problem, the fleet scheduling assignment
problem, and the charging aspect of electric taxiing. These topics comprise the main op-
erational management challenges that airports face when implementing external elec-
tric taxiing. The main contribution of this work is that it aims to provide a clear view
on the achievements and challenges within these topics. Together with the reviews from
other viewpoints, it forms a general overview on this many faceted subject, that can aid
the industry and academia in moving towards more effective and speedy implementa-
tion of ETSs. This is crucial for timely accomplishment of the goals that have been set
for the reduction in aviation emissions.

In addition, this chapter discusses the differences between varying ETSs and their
current implementation progress, and provides a detailed description of the taxiing pro-
cess with an external ETS. For this, the specifications of ETVs and the requirements for
operation are identified.

The initial selection of research contributions to consider in this work has been done
by querying search engines such as Google Scholar and Scopus using the terms ’elec-
tric taxiing’ and ’airport surface movement’. Afterwards, references from these works,
as well as papers that cited these works, were added to the collection. These contribu-
tions were used as basis to write Section 2.2, which introduces and compares promising
ETS concepts, and Section 2.3, which outlines the procedures associated with maintain-
ing and operating a fleet of towing vehicles for electric taxiing. Then, the contributions
that specifically concern the operational management aspects of external electric taxi-
ing were selected for further review. These contributions all pertain to one or more of
three areas: vehicle routing, fleet assignment and charging infrastructure. Section 2.4
reviews these works from the perspective of these three areas and identifies operational
management problems that remain to be solved. Finally, Section 2.5 summarizes the
findings and the recommendations for future research.

2.2. ELECTRIC TAXI SYSTEMS CURRENTLY UNDER DEVELOPMENT
In this section we illustrate the various electric taxiing concepts that are currently un-
der development in the industry, as well as their advantages and disadvantages. This
information serves as the basis needed to review the operational management aspects
of electric taxiing in later sections. For an extensive review of the technical aspects of
various electric taxiing systems, please refer to Lukic et al. [103].

2.2.1. ON-BOARD ETS
We will discuss three of the most promising on-board electric taxi solutions:
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a) Main Landing Gear systems
A main landing gear system consists of electric motors placed in the main landing

gear (MLG) of an aircraft. The installation of such a system would increase the aircraft
weight by roughly 400 kg [103]. Advantages of an on-board system placed in the MLG are
that a large torque can be attained, and that the turning radius of the aircraft becomes
smaller than during regular operation [131, 55, 132, 86, 72]. Furthermore, the traction on
the airport surface is expected to be sufficient, since the MLG carries 90% of the aircraft
weight [103]. A disadvantage is that implementing a motor within the MLG is very chal-
lenging since the presence of the brakes both limits space within the MLG and provides
an unwanted heat source [102].

Safran and Honeywell were developing an MLG system, but they stopped develop-
ing the project in 2016. This system was able to provide a power of 120 kW and during
demonstrations in 2013 an A320 aircraft equipped with the system was able to attain a
taxiing speed of 37 km/h [102].

b) Nose Landing Gear systems
A nose landing gear system consists of two electric motors placed on the rim of the nose
landing gear (NLG) of an aircraft. These motors increase the aircraft weight by about
140 kg [103]. An advantage of such a system is that it allows for easy manoevrability and
therefore a simplified and faster turnaround and pushback process [71, 102]. A disad-
vantage is that the system is powered by the APU, which has limited power. This has the
following drawbacks: a) the system might not be able to provide enough traction under
adverse operating conditions, b) the maximum taxiing speed that can be obtained with
this ETS is 17 km/h, and c) it is unlikely that the system can be applied to wide-body
aircraft in the future, according to Lukic et al. [103].

An NLG system is currently being developed by WheelTug. This system has been in
the process of certification by the FAA and EASA for several years. Production and oper-
ation are expected to start soon and the WheelTug company has received orders from at
least 20 airlines, but as of 2022, the system is still in the testing phase [102].

c) Hydrogen powered systems
In a collaboration with Lufthansa Technik, the German Aerospace Centre (DLR) is devel-
oping an on-board solution in the NLG consisting of a permanent magnet synchronous
motor which is to be powered by on-board hydrogen fuel cells [140]. This ETS has been
shown to be able to perform electric taxiing with narrow-body aircraft at a top speed of
25 km/h [102] and is reported to reduce the aircraft emissions by up to 27% [131]. Disad-
vantages are that the needed magnets are relatively expensive and that the ETS produces
a power of only 50 kW, which makes it yet unsuitable for actually towing aircraft [132].
Furthermore, it is still challenging to store hydrogen on board an aircraft, due to the high
energy content and flammability [163]. Last, hydrogen is currently still difficult and ex-
pensive to synthesize [173].

Several studies have analyzed the economical and environmental impact of on-board
systems, e.g. [70, 102, 39] and [118]. Hospodka [70] calculate fuel and CO2 emissions sav-
ings when using a 300 kg on-board ETS on an A320 aircraft: taxiing electrically reduces
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Figure 2.2: TaxiBot in operation at Frankfurt Airport [157].

the needed amount of taxiing fuel by 80%. After subtracting the increased fuel need due
to the added weight of the ETS, this figure is reduced to 75%, which corresponds to 0.65
tons of CO2per flight. Dzikus et al. [39] find that 99% of flights in the US airspace would
save fuel when equipped with a 200 kg on-board ETS, on average 3% of total fuel. Nicolas
[118] shows that fuel reduction depends on the combination of flight time and total taxi
time: e.g. in their model, an A320 equipped with an on-board ETS with 14 min total taxi
time will not experience fuel savings for flight lengths over 2400 km.

2.2.2. EXTERNAL ETS
An external electric taxiing solution consists of a fleet of electric towing vehicles that can
connect to the NLG of an aircraft and perform pushback and taxiing movements. Cur-
rently, there is a similar system that has completed the development stage and is opera-
tional at airports: the TaxiBot, developed by Israel Aerospace Industries (IAI) [79]. These
vehicles are currently powered by diesel engines, which are to be replaced by electrically
powered versions within several years. A TaxiBot can produce a power of 500 kW and
achieve a taxiing speed of 43 km/h for narrow-body aircraft [103]. Currently, only the
narrow-body towing truck, with 8 wheels and a cost of 1.5 million USD, is operational.
Soon, the wide-body vehicle, with 12 wheels and a cost of 3 million USD, is expected
to become operational [7]. An example of a narrow-body towing vehicle in operation is
given in Figure 2.2. The NLG of the aircraft is clamped onto the ETV while towing.

Several studies regarding external ETSs have discussed the expected effects of ETSs
on the operational costs, fuel use and emissions [36, 39, 170, 63, 88, 129, 103], noise re-
duction [65] and operational safety [20]. These works typically investigate the feasibility
of an external ETS at an airport, and are often based on average taxiing times and dis-
tances. Most do not take into account the variable demand or the precise routing and
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scheduling involved at the operational stage. Khammash, Mantecchini, and Reis [88]
show that the introduction of 4 ETVs at Lisbon Airport (LPPT) can reduce CO2-emissions
by more than 18% and lead to cost savings for both the airport and airlines. Similar re-
sults are obtained by Postorino, Mantecchini, and Gualandi [129] for Bologna Airport
(LIPE). When comparing diesel-powered dispatch towing to regular taxiing, Deonandan
and Balakrishnan [36] find that taxiing fuel use can be reduced by 75% and that taxiing
emissions can be reduced by for instance 70% for CO2. Dzikus et al. [39] expand on this
by specifically considering the economic viability of towing short-haul flights. Vaishnav
[170] and Guo, Zhang, and Wang [63] consider more cost factors such as the operation
and maintenance costs for towing vehicles, compare electric taxing to other solutions
such as single engine taxiing, and consider many different airports. In general, studies
find that implementing external electric taxiing a) will lead to significant fuel savings in
all cases, increasing with increasing taxiing distance, and b) can lead to an increase in
taxiing times, especially when airports are congested.

2.2.3. DIFFERENCES BETWEEN THE ETSS
Table 2.1 outlines the main differences between on-board and external ETSs. From a
management perspective the most important difference between the on-board and ex-
ternal ETS is that both the need for investment and the responsibility lie with the airline
or the airport, respectively. From the airport perspective, a large advantage of on-board
systems is that no investment is required on their part. In order to adopt the external sys-
tem, the airport needs to change the airside infrastructure, add charging infrastructure
and manage the towing vehicle fleet. External ETSs require only a short pilot training for
the airline and no changes to the aircraft. This is because the NLG is situated on a rotat-
able turret on the back of the ETV (see Figure 2.2), so that the latter can be controlled by
the pilot as they would control the NLG during regular taxiing or pushback, as shown by
Schiphol [144].

On-board taxiing systems are not yet operational. In contrast, the narrow-body ex-
ternal electric taxiing system has been certified for multiple aircraft types (comprising
70+% of worldwide commercial airline flights [157, 102]). The first demonstration took
place in 2013 at Frankfurt Airport [5], and the first airport to use the ETS for operational
towing was New Delhi Airport in 2019 [6]. The ETS is currently in use for testing and non-
operational towing at Frankfurt, New Delhi, Amsterdam and Bangalore airports [102, 78,
6]. Several airports are planning to move to operational towing in the near future: Banga-
lore Airport was planning this for 2023 and Schiphol Airport for 2024. New Delhi Airport
is planning to expand their ETV fleet to 15 vehicles by 2025 [76, 117].

Table 2.1 also summarizes the operational differences between the on-board and
external electric taxiing systems. During regular taxiing the aircraft taxiing speed is 56
km/h [146]. Roling, Sillekens, and Curran [134] show that the minimum taxiing speed
needed to prevent airport surface congestion at Amsterdam Airport Schiphol is 32 km/h.
Therefore, the use of the on-board system is expected to increase the taxi time sub-
stantially. Nevertheless, the average pushback time is expected to be reduced, since no
pushback vehicle needs to be connected to and disconnected from the aicraft [4, 122].
When operating the external system, a connecting and disconnecting procedure is still
required, but now to the ETV, rather than the pushback vehicle. This procedure requires



2.2. ELECTRIC TAXI SYSTEMS CURRENTLY UNDER DEVELOPMENT

2

15

Table 2.1: Comparison between on-board and external ETSs.

Investment On-board ETS External ETS

Acquisition costs per system Undisclosed USD 1.5M (NB), 3.0M (WB)

Adjustment aircraft
Install system at
NLG or MLG

N/A

Adjustment airport Not required
Management fleet of ETVs and
charging and routing infrastructure

Suitable aircraft types NB All

Implementation progress
First demonstration (manufac-
turer, aircraft, airport)

2005 (WheelTug,
B767, KMZJ)

2013 (IAI, B737, EDDF)

First operational ETS (manufac-
turer, aircraft, airport)

N/A 2019 (IAI, A320, VIDP)

Certified aircraft type (year) Ongoing B737 (2014), A318-21 (2017)

Airports (nr ETVs in use, year) N/A
EDDF (1, 2014), VIDP (2, 2019),
EHAM (2, 2020), VOBL (1, 2021)

Operational aspects
Taxiing speed 17 km/h 42 km/h

Additional operations N/A
Connecting/Disconnecting ETV
to/from aircraft

Engine warm-up
During taxiing/
near runway

During taxiing/
near runway

Engine cool-down At gate At gate
Electricity source APU ETV battery
Charging APU generator Charging stations
Added aircraft weight 140 kg N/A

Environmental effects
Fuel saving (B737) 85% 50-85%

three minutes, according to Schiphol [144].
Last, both ETSs are expected to greatly reduce the needed taxiing fuel, and conse-

quently, the taxiing emissions. Tests with the external ETS at Amsterdam Airport Schiphol
with a Boeing 737 resulted in taxiing fuel savings of 90%, which reduces to 50-85% when
taking into account (dis)connecting and engine warm-up. Schiphol [145] shows that
taxiing with an on-board ETS saves 85% of the fuel. The APU powering an on-board ETS
is charged during flight. On the other hand, external ETSs charge on the ground and thus
require charging infrastructure at the airport. Since the aircraft is not modified when us-
ing an external ETS, any fuel savings also directly contribute to weight reduction of the
aircraft, and therefore to further fuel and emission savings during the flight.
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2.3. ETV FLEET MANAGEMENT PROCEDURES
In the previous section we have observed that the external ETS is the system that is at
the most advanced implementation stage. In this and following sections we focus on
external ETSs.

Implementing an external ETS implies integrating a fleet of electric taxiing vehicles
into the regular airport surface traffic. This poses several management challenges. This
section outlines the management procedures for electric towing operations, and the
roles played by the ETVs, the airport, the aircraft, and Air Traffic Control (ATC).

Figure 2.3 shows the regular aircraft taxiing procedure and the procedure for towing
aircraft using ETVs. When considering regular taxiing (Figure 2.3a), the aircraft lands on
the runway, and starts taxiing. The jet engines cool down during taxiing. After arriving at
the apron, the aircraft parks at a gate, or a pushback vehicle is connected to the aircraft,
and pushes it into a parking position. For taxi-out, the procedure is reversed, and the jet
engines warm up while taxiing.

When considering electric taxiing (Figure 2.3b), the aircraft connects to an ETV di-
rectly after landing. The ETV tows the aircraft to a parking position at the apron. For
an aircraft departure, an ETV tows the aircraft from the parking position to the runway.
Here, the ETV is disconnected and the aircrafts jet engines are warmed up for take-off.
Below a detailed description of electric taxiing with an ETV is given.

Non-towing ETV: Before an arriving aircraft lands, an ETV is on its way towards the
runway. It can come from a previous task at a gate or a runway, an ETV depot, or an
ETV charging station. For most airports it is expected that ETVs will use service roads for
non-towing movements, to avoid a large increase of traffic on the taxiways that needs
to be regulated [146, 180]. A typical maximum speed on these service roads is 30 km/h
[143, 116].

Landing and connecting: After an arriving aircraft lands on a runway, it needs to con-
nect to the ETV. The connection process takes roughly three minutes [144], but some
runways receive arriving aircraft at a rate faster than one per three minutes. Therefore, it
is expected that airports should designate a separate space near the runway exit for the
connection and engine cool-down processes to take place, without interfering with the
runway traffic [122, 103, 142]. In Figure 2.3b this space is indicated as a runway stand.
Ideally the runway stand would consist of a paved area separate from the taxiway, large
enough for maneuvering. In that case, self-taxiing aircraft would be able to pass by con-
necting aircraft, avoiding blockage of the taxiway near the runway exit [142].

Towing: After connecting, the ETV tows the aircraft along the taxiways. During regular
taxiing, trailing aircraft need to keep a safe separation distance from a leading aircraft
to avoid its jet blast. This distance directly influences the throughput of aircraft on the
ground. A typical value for a safe separation distance is 200m [133, 84, 158]. During
electric taxiing, there is no jet blast. However, the reaction time of the pilot and the
braking distance of the aircraft still need to be accounted for: the separation distance is
expected to remain necessary, but smaller. Last, ATC retains its task of conflict avoidance
on the taxiways, but now with changed taxiing speeds and separation distance.
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(a) Regular taxiing

(b) Electric taxiing

Figure 2.3: The taxiing process for a turnaround (arrival and departure) for regular taxiing and electric taxiing
with an ETV.
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Table 2.2: Operational specifications for electric taxiing.

Speed on taxiways 42 km/h
Speed on service roads 30 km/h

Connecting & disconnecting time 3 min
Engine warm-up and cool-down time 3-5 min

Minimum separation distance 200 m or less

Parking: Upon arriving at the apron, the ETV tows the aircraft into parking position,
without the need for a pushback truck. When the aircraft is in position at the gate, the
ETV disconnects from the aircraft in 3 minutes [144].

Engine warm-up: When the aircraft is ready to depart, an ETV connects to it at the
gate, and tows it to a runway stand. The main difference with the arrival procedure is
that the jet engines of a departing flight need to warm up before take-off. During normal
operation the engines are warmed up during the regular taxiing procedure, while during
electric taxiing, the jet engines are not used [157].

There are several possibilities for the location of the engine warm-up:
i) Engine warm-up at the runway stand. This minimizes the amount of time the en-

gines are running before take-off, and therefore minimizes the engine emissions.
ii) Engine warm up during towing. This could raise safety concerns: if there are prob-

lems with the engine during towing, then the taxiway traffic will be disrupted.
iii) Engine warm-up at the apron, as is the case for regular taxiing. A disadvantage is

that the engines produce emissions during the entire towing process.
The engine warm-up time, sometimes referred to as ESUT (Engine Start-Up Time), is

typically estimated between 3 min [144, 137] and 5 min [102, 39].
Table 2.2 summarizes the relevant operational specifications of the ETV, the aircraft,

and the airport.

2.4. MANAGEMENT CHALLENGES FOR ELECTRIC TOWING VE-
HICLES

The economic, environmental, and technical aspects of implementing external electric
taxiing solutions have been reviewed by Hospodka [70] and Lukic et al. [103]. Comple-
mentary to these studies, this section reviews existing work on the operational man-
agement of external ETSs, using three main challenges as starting points for identifying
challenges: the routing of ETVs, ETV fleet assignment and electric infrastructure.

2.4.1. ETV VEHICLE ROUTING PROBLEM
Given the daily flight schedule, airport planners assign a route along the taxiways for
each departing/arriving aircraft. Departing aircraft taxi from gate to runway, and arriving
aircraft from runway to gate. The routes need to planned in such a way that conflicts are
avoided and taxi time is minimized.
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Table 2.3: Assumptions and approaches to VRPs and FSAs used in literature on electric taxiing.

Study Objectives
Problem
formulation

Conflict
avoidance

Sirigu et al. [156] shortest path simulation no
Baaren and Roling [16] minimize taxiing fuel MILP no
Zaninotto et al. [182] minimize taxi time, conflicts simulation penalties
Soltani et al. [160] minimize taxiing fuel & delays MILP yes
Salihu et al. [137] minimize taxiing costs simulation yes
Oosterom et al. [124] minimize number of ETVs MILP+Greedy MILP

Study Airport
Number of
movements

Fleet size
range

Sirigu et al. [156] LIMF N/A N/A
Baaren and Roling [16] EHRD&EHAM 39&1430 0 to 42
Zaninotto et al. [182] LMML 36 Unconstrained
Soltani et al. [160] CYUL 205 0 to 20
Salihu et al. [137] CYUL 644 10 to 30
Oosterom et al. [124] EHAM 913-1258 38 to 50

The vehicle routing problem (VRP) aims to answer the question: "Which is the opti-
mal route to take for a certain vehicle to reach an ordered list of destinations?" for every
vehicle in a fleet. This problem appears in many types of delivery or collection problems,
such as for postal companies or robot planning in warehouses [107]. Often, additional
constraints are involved, such as time windows, loading and unloading or vehicle capac-
ity.

The problem of obtaining optimal taxiing routes for taxiing aircraft from gates to run-
ways or vice versa is also usually posed as a VRP. When considering electric taxiing, such
a VRP can be extended with charging constraints for the ETVs.

Table 2.3 provides an overview of methodologies and assumptions used in literature
for electric taxiing. In this section we compare these approaches.

GRAPH REPRESENTATION OF AIRPORT LAYOUT

All studies considered in Table 2.3 use a graph representation of the airport surface. The
edges represent the taxiways and service roads, and the nodes represent intersections,
gates or gate groups, runway entrances and exits, runway stands and ETV depots. For
example, Soltani et al. [160] use multiple runway entrance and exit nodes, and Zaninotto
et al. [182] use runway stands and ETV depots.

Figure 2.4 shows a schematic representation of an airport with six gates and two run-
ways. In this example, towing vehicles and other ground support equipment are not
allowed to drive on the taxiways. Therefore it should be possible to travel between any
combination of runway and gate via both taxiways and service roads. Furthermore, mul-
tiple runway entrance and exit points are reachable.

The layout of the airport and the possible runway configurations influence the per-
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Figure 2.4: Schematic representation of a sample airport. Wide dark gray lines represent the runways R1 (09)
and R2 (36). Light gray lines represent the taxiways, where aircraft may taxi, and orange lines represent service
roads, where ETVs may drive. Gates G1-6 are indicated. The separation distance dsep between two aircraft has
to be respected.

formance of an ETV fleet. Zaninotto et al. [182] consider one of the runways of LMML,
but in later work also apply their algorithm to LFBO, LLBG and KDFW [180]. Soltani et
al. [160] and Salihu et al. [137] use three runways with 20 entrance/exit nodes of CYUL.
Baaren and Roling [16] consider EHRD, which has 1 runway with a 2km taxiing route,
and EHAM, which uses 2 or 3 runways with a regularly changing configuration, and a
longest taxiing route of 11 km.

MODELLING APPROACH

Given these inputs, routing can be performed on the airport surface. Sirigu et al. [156]
consider the algorithms (Modified) Hopfield Neural Networks, Dijkstra and A* to find the
shortest taxiing routes. Soltani et al. [160], Baaren and Roling [16] and Oosterom et al.
[124] formulate the routing and scheduling problem as an MILP. All possible routes be-
tween gates and runways are calculated in advance, and the usage of a route is included
in a decision variable.

On the other hand, Zaninotto et al. [182] and Salihu et al. [137] develop a simulation,
in which each movement is scheduled sequentially, and routing is performed using Dijk-
stra’s algorithm. Except for Zaninotto et al. [182], who divide the optimization time into
20-second time windows, all approaches in Table 2.3 use continuous time values.

ROUTING CONDITIONS

Conflict avoidance for surface movement: Including conflict avoidance in taxi route
planning makes it more realistic, and can help identify problems such as traffic jams at
taxiway intersections. Zaninotto et al. [182] include conflict avoidance by introducing
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penalties for using already occupied edges for a new route, and found a trade-off be-
tween minimizing the number of conflicts and increasing the taxi time. Soltani et al.
[160] include eight constraint sets in their MILP formulation to ensure conflict avoid-
ance on all edges and nodes in the routing solution. Oosterom et al. [124] create and
solve a separate MILP formulation for routing vehicles, which enforces conflict avoid-
ance through constraints, before solving the MILP formulation for scheduling. The per-
formance of the latter is compared to that of a greedy algorithm. Salihu et al. [137] en-
force conflict avoidance in their simulation by respecting the separation distance and
following a first-in-first-out procedure at intersections. Regarding the movement of un-
loaded ETVs, Soltani et al. [160] and Salihu et al. [137] assume they travel on the taxiways,
but clear the way for aircraft. Baaren and Roling [16], Oosterom et al. [124] and Zaninotto
et al. [182] assume these ETVs will use the service roads, except when no other route is
available. In short, in the reviewed literature, conflict avoidance for unloaded ETVs is
assumed to not be required.

ETV movement between tasks: An ETV that is not towing or charging is waiting for its
next towing task. The behavior of the ETV during this time constitutes a management
choice:

i) In case all routes for an ETV have been determined in an optimization model, one
can choose to let the vehicle proceed to the starting point of its next task, as in Baaren
and Roling [16].

ii) The ETVs remain idle at the location where they performed their task, as in Salihu
et al. [137].

iii) In case there are multiple ETV depots: one can choose to have ETVs return to one
of the depots, as in Zaninotto et al. [182]. This can be used as a technique to pursue a
good spread of ETVs on the airport surface. One can for example select the closest depot,
or the depot with the least amount of other idle ETVs.

Start and end time of the taxiing procedure: In order to keep to the schedule, it is
important to minimize deviation from the scheduled taxiing start and end time. Soltani
et al. [160] create an upper and lower bound for the start and end time of all taxiing
movements in their MILP model. Baaren and Roling [16] assume no en-route delays
occur and set the start and end of taxiing to a fixed moment in time. Oosterom et al.
[124] calculate these times to ensure conflict avoidance. On the other hand, Zaninotto
et al. [182] investigate to what extent deliberately delaying the start of taxiing by a fixed
amount can help decrease the number of routing conflicts.

ASSUMPTIONS ABOUT MODEL PARAMETERS

The specifications of aircraft and ETVs have a large influence on routing. An example
is the assumed connecting and disconnecting time of ETVs. Zaninotto et al. [182] and
Salihu et al. [137] assume one minute for these operations, while for example the TaxiBot
requires three minutes [157].

Another routing parameter is the minimum separation distance between taxiing air-
craft. Zaninotto et al. [182] use a minimum separation distance of 300 meters, based on
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minimum clearance, pilot reaction time and braking distance. In contrast, Salihu et al.
[137] use a distance of only 15 meters, based on Australian Civil Aviation regulations.

A third parameter is the taxiing speed. Sirigu et al. [156] assume a constant taxiing
speed of 10 m/s. Baaren and Roling [16] and Oosterom et al. [124] use the specifications
of the TaxiBot, i.e. 11.8 m/s. Salihu et al. [137] assume a regular aircraft taxiing speed
of 7 m/s, and speeds of 4 m/s and 7 m/s for a towing and non-towing ETV, respectively.
Zaninotto et al. [182], Oosterom et al. [124] and Baaren and Roling [16] include the ac-
celeration and deceleration of ETVs in their simulation. The others keep to a constant
velocity.

The value for separation distance and taxiing speed directly influence the taxiway
capacity: they can make the difference between a model showing that electric taxiing
leads to small increases in taxi time, such as for Baaren and Roling [16] or that it leads
to large [137] or even unacceptable taxiing delays. Therefore, it is important to obtain
realistic estimations for these parameters.

Last, the engine warm-up needs to be incorporated in the planning of a departing
aircraft. Salihu et al. [137] and Baaren and Roling [16] incorporate this into their model
but do not specify the exact time taken. Salihu et al. [137] assume warm-up occurs dur-
ing taxiing and Baaren and Roling [16] and Oosterom et al. [124] assume warm-up occurs
after taxiing.

CHALLENGES

ETV manager to assist Air Traffic Control: Managing a fleet of ETVs increases the work
load and responsibilities of Air Traffic Controllers: the Ground Controller, who manages
the traffic on the taxiways [158], now also needs to route all ETVs and make sure con-
flicts are avoided. ATC will need to be aware which aircraft are taxiing by themselves
and which are towed by a vehicle. A possible solution is to add a separate role, that of
ETV manager, to the airport. The ETV manager can be involved both in the routing and
scheduling of the ETV fleet, as well as monitoring of the actual movement and dealing
with disruptions in the schedule. They should be in close contact with ATC to ensure
smooth operation at the airport. Workload is also increased at the airport surface; each
of the ETVs will need a driver. Airport planners will have to take into account the working
times and breaks of the drivers when creating the towing schedule with its driving and
charging periods.

Autonomous airport surface movement: Another solution to mitigate the increased
ATC workload is to aim for autonomous routing and scheduling of all airport surface
movement (ASM) [160]. For example, EUROCONTROL is working towards an Advanced
Surface Movement Guidance and Control System (A-SMGCS), which is an automatic sys-
tem that supports ATC in monitoring ASM operations by e.g. creating routes, monitoring
possible conflicts, and operating stop bars and lights automatically [41]. An autonomous
system can increase the safety, predictability and reliability of operations, by avoiding
ground incidents, miscommunications and other human errors, and decrease delay and
costs due to smart planning [103, 150, 149].

Several authors have been working towards autonomous ASM: an example is Zaninotto,
Gauci, and Zammit [180], who simulate ASM by connecting various programmed mod-
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ules, such as a Vehicle Simulator, Path Planning with Dynamic Obstacles and Tow Trucks
Optimisation System. Such a simulation can form the underlying model for an autonomous
system for ASM. Going even further, Morris et al. [113] apply self-driving vehicle tech-
nology to the problem of towing aircraft. In their model, towing vehicles drive by them-
selves, but are supervised by ATC in a Human-Machine Interface. Although the routing
and scheduling is performed by an algorithm, resolving separation constraint violations
remains the task of the controller. Okuniek and Beckmann [122] note that the success-
ful implementation of A-SMGCS depends on the ability of aircraft to follow the required
surface movement plan: an autonomous system of intercommunicating ETVs can con-
tribute to this goal. For example, one could program the ETVs in such a way that they
communicate with each other to avoid conflicts and enforce separation distances, but
also to avoid unnecessary braking and speed changes. This is expected to help the ETVs
to follow the most fuel-efficient driving strategy.

Airport routing guidelines and taxi times: The additional operations associated with
electric taxiing, combined with the reduced maximum taxiing speed (discussed in Sec-
tion 2.2 and 2.3) can lead to increased taxi times and congestion of airport surface move-
ment. There are several management measures that airports can consider when aiming
to increase the efficiency of ETV routing. As discussed earlier, airports that are expected
to experience taxiway congestions due to unloaded ETV movements on their taxiways,
might seek to construct wider or more service roads. The implementation of runway
stands for arriving aircraft that are connecting to an ETV could alleviate congestion near
arrival runways. An airport that aims to implement external towing but needs to limit
total taxiing time might consider allowing ETVs to travel faster on the service roads. An-
other option is to investigate whether the taxiing separation distance can be reduced,
since there is no jet blast from an aircraft when it is being towed. The challenge of in-
creased taxi times and congestion is expected to be particularly important for airports to
address, since they will aim to implement electric taxiing without having to reduce the
throughput of aircraft.

2.4.2. ETV FLEET SCHEDULING ASSIGNMENT PROBLEM
The fleet scheduling assignment problem (FSA) is the problem of assigning vehicles to
tasks in a travelling schedule. This problem appears for example in taxi fleet scheduling,
and the assignment of aircraft to flight numbers. When considering electric taxiing, all
towing tasks need to be assigned to a specific ETV. This can be formulated as an FSA,
which can be optimized for varying objectives.

Figure 2.5 shows an example of fleet assignment on an airport, with three aircraft in
three different situations.

MODELLING APPROACH

The models used in literature minimize the taxiing time [182], the taxiing fuel [16, 160],
combine this into a taxiing cost [137], or minimize the number of used ETVs [124]. The
linear programming models aim to find the best routes and assignments for all aircraft
movements at once, while the simulation approaches move through the flight schedule
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Figure 2.5: Schematic representation of fleet assignment on an airport. The red aircraft is waiting at a gate for
ETV 1 to arrive, so that it can be towed towards a runway. The green aircraft is being towed by ETV 2. Other
ETVs are waiting to be deployed at a depot. The blue aircraft is taxiing by itself. Taxiway directions are indicated
by arrows.

and perform route planning and vehicle assignment for each aircraft sequentially. The
constraints used are typically grouped as:

i) Assignment constraints, for example: an aircraft should have only one vehicle as-
signed to it (see Baaren and Roling [16] eq. 3);

ii) Route flow and route timing constraints, for example: the arrival time at a node is
calculated with the edge speed and the departure time of the previous node (see Soltani
et al. [160] eq. 6, 7);

iii) Collision avoidance constraints, for example: two aircraft that reach the same
node from different edges must be separated by a separation time or distance (see Soltani
et al. [160] eq. 13, 14);

iv) Energy or fuel constraints, for example: the energy required for an upcoming task
should be smaller than the current state of charge of the ETV (see Baaren and Roling [16]
eq. 10).

RESULTS

The existing studies performing fleet scheduling all have their own optimization objec-
tives and corresponding results. Baaren and Roling [16] show that electric taxiing uses
less fuel than regular taxiing in all cases. While towing all aircraft with ETVs provides the
largest fuel and emissions savings, Salihu et al. [137] calculate that at CYUL, the most
economical solution in their combined cost model is to only use electric taxiing for de-
parting aircraft. Using their simulation model that balances taxi delay and routing con-
flicts, Zaninotto et al. [182] show that slowing aircraft to halve the number of aircraft
conflicts in a schedule leads to an increase of 13% in taxi time at Malta International Air-
port (LMML), compared to a situation with unresolved conflicts. Furthermore, allowing
aircraft up to four minutes waiting time before starting the towing procedure can also
reduce the number of conflicts.
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Fleet sizing: An important parameter which is often the subject of optimization or sen-
sitivity analyses is the size of the ETV fleet. Zaninotto et al. [182] assume an infinite num-
ber of tow trucks, while Soltani et al. [160] find that the economic optimum for the fleet
size at CYUL is 12 vehicles, when taking into account ETV operating costs, fuel and de-
lay costs. Salihu et al. [137] arrive at an optimum of 16 vehicles for electric towing of
departing aircraft, when taking into account the annual total taxi time and annual op-
erating costs. When considering electric towing of all aircraft, they find an optimum of
26 vehicles. Baaren and Roling [16] show that introducing 5 towing vehicles at EHRD
decreases the fuel use by 65% and introducing 24 towing vehicles at EHAM decreases
the fuel use by 75%. Furthermore, they show that increasing the fleet size further is less
cost effective due to decreasing marginal fuel savings. Oosterom et al. [124] use the fleet
size as the objective of the MILP formulation, and find that it has a roughly linear rela-
tion to the number of flights. In general, these studies showcase the trade-off between
additional sustainability benefits and increased operating costs that appears in the fleet
sizing problem.

SCHEDULING MANAGEMENT DECISIONS

An important scheduling decision is which aircraft are to be towed and which aircraft
will taxi by themselves. Baaren and Roling [16] choose regular taxiing if it is more fuel-
efficient than electric taxiing, but find for both airports that this occurs in none of the
cases. Furthermore, they have aircraft taxi regularly when their taxi time is smaller than
the engine warm-up time. Unlike e.g. for delivery problems, not towing an aircraft still
results in the aircraft participating in the airport surface movement. This means both the
towed and self-taxiing aircraft are factors to consider in scheduling management deci-
sions. Soltani et al. [160] select the self-taxiing option when the cost of the delay incurred
by waiting for an ETV is larger than the fuel saving benefit. In Salihu et al. [137], all air-
craft are towed, and it is shown that this leads to enormous costs and delays if the ETV
fleet is not large enough.

Second, the wide-body aircraft have to be towed by the wide-body ETV and the narrow-
body aircraft preferably by the narrow-body ETV. Baaren and Roling [16] incorporate
these two types of ETVs in their optimization. Oosterom et al. [124] allow a heavy-wide
body vehicle in addition.

Last, one needs to decide whether an ETV should be present at the aircraft at the
scheduled taxiing starting time [16, 182, 160], or whether the ETV starts to move towards
the aircraft at this time [137].

CHALLENGES

Based on the literature with regard to ETV fleet scheduling, the following challenges for
future research are identified:

Robust scheduling and disruption management: When creating a schedule it is of-
ten assumed that all operations take place as planned. However, at execution disrup-
tions can take place, such as flight delay, mechanical failures of an aircraft or ETV, or
unavailability of a road, gate or runway. Airside disruptions present a relevant challenge
specifically for this type of ground operations, since effective operation requires the ve-
hicles to be present at the correct gate or runway at the correct (disrupted) time, while
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the fleet is likely spread around the airport during operation. This is in contrast to other
ground vehicles, which operate mainly in the gate areas. This means it might be more
difficult to find an ETV that is near enough to perform a task it was not originally as-
signed to. Zaninotto, Gauci, and Zammit [180] introduce a probabilistic version of their
vehicle movement simulation by varying the vehicle speed. When comparing this to the
algorithm defined in their previous work, Zaninotto et al. [182], they obtain double the
amount of vehicle conflicts (violations of separation distance) for LFBO, for arrival rates
larger than 30 aircraft per hour. This illustrates that such disruptions can cause negative
effects on the carefully optimized schedule objective. Soltani et al. [160] recommend
to consider stochastic events such as weather conditions, de-icing operations and the
reliability of ETVs.

Steps can be taken to reduce these effects both before operation (robust schedul-
ing) and during the operation (disruption management). Robust scheduling can be per-
formed by considering the effects of possible disruptions on a given schedule. For exam-
ple, one can run a simulation of a given schedule, where disruptions occur with a given
probability. These probabilities can be estimated or predicted based on earlier occur-
rences and other factors. Based on such a simulation, changes can be made to an FSA
to make it more robust. Another option is to create a robust schedule from scratch, by
incorporating constraints that guarantee the robustness into the scheduling problem.
An example of robust scheduling in literature is Jamili [81], who creates an MILP and
a Simulated Annealing heuristic for robust aircraft routing and scheduling using traffic
on origin-destination pairs as input. Cadarso and Celis [24] consider stochastic demand
figures and uncertain operating conditions in a robust planning model for flight timeta-
bles and fleet assignments, and show that the number of misconnected passengers can
be reduced.

Disruption management is a continuous process: as soon as planners are aware of a
disruption, they will need to make changes to the schedule. Towing routes might have
to be deconflicted, and gate, runway or ETV assignments might have to change. A typ-
ical objective in disruption management is to minimize the number of changes needed
to reach a feasible or locally optimal schedule again. More changes means an increased
workload for personnel and increased uncertainty for passengers, and often leads to in-
creased costs. Oosterom et al. [124] perform disruption management by testing their
MILP and greedy algorithms in a 30-minute rolling horizon approach, and investigating
which fraction of the amount of originally towed aircraft can still be towed. Using this
approach, they find fractions of 94% (greedy) and 98% (MILP) for the busiest test day.
Another example of disruption management in aerospace is Lee et al. [96], who develop
an optimization model of disruption recovery for a network of airports, and integrate a
stochastic queuing model of congestion therein. This approach reduces expected dis-
ruption recovery costs by 1 to 4%. Tang, Lin, and He [162] develop a dynamic model to
simultaneously optimize vehicle schedules and electric fleet sizes of electric buses. The
model incorporates road-traffic stochasticity to mitigate the breakdown of a vehicle.

Note that robust scheduling and disruption management have only limited capabil-
ity to mitigate disruptive effects, due to the stochastic nature of disruptions. This means
that it is likely that there will be departing or arriving aircraft that need an ETV at a time
when their scheduled ETV is unavailable. One solution would be for the aircraft to per-
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form self-taxiing. Another would be to maintain a group of separate ETVs that are not
assigned to any aircraft, but tow aircraft for which no other ETV is available. On a large
airport with many gates and runways entrances/exits that take long to drive to, such a
spare ETV may take a long time to arrive at the aircraft. A trade-off is expected between
the costs of extra delay for the aircraft and the costs of maintaining a larger group of ETVs
for this purpose.

Technological developments: As the development of operationally deployable exter-
nal ETSs progresses, more becomes clear about the technological specifications of the
towing vehicles. Such specifications can be used in research to make models for schedul-
ing and routing ETVs more realistic. For example, the list of aircraft types that have been
certified for using the external ETS (as shown in Table 2.1) can be used to create a routing
and scheduling model that represents an intermediate implementation situation where
only a part of the aircraft fleet may be towed. Similarly, including both the narrow-body
and wide-body ETVs and their specifications in a model introduces several unaddressed
scheduling considerations: the fleet sizing problem with two types of vehicles, the uti-
lization of either type, but also the influence of differing charging rates and electricity
usage of the two types on the routing and scheduling.

2.4.3. CHARGING FOR ELECTRIC VEHICLES
Currently, the towing vehicles operating at the airports shown in Table 2.1 are diesel-
powered. Eventually, all towing vehicles are expected to become actual ETVs, which reg-
ularly need to recharge their batteries. This can take considerably longer than refueling
for vehicles operating on fossil fuels, so that the recharging time becomes an important
part of the vehicle planning. Note that another possibility is to create a battery swap-
ping system. Given a taxiing schedule for an airport, one can aim to find an optimal
charging strategy, depending on e.g. the size and type of batteries in the ETV. The loca-
tions of charging stations influence both the routing and the charging schedule, and it is
therefore vital to optimize their placement on the airport surface.

Most of the electric taxiing literature investigating VRPs and FSAs does not take into
account charging for their routes and schedules. In this subsection, we review literature
that considers the charging aspect of managing a fleet of electric vehicles (EVs), from
both airport surface movement and other fields. Table 2.4 provides an overview of this
literature.

OPTIMAL CHARGING STRATEGY

Since charging an EV can be a time-consuming process, it is important to find the best
time for charging and the best charging method, while taking into account the require-
ments and specifications involved.

Charging period: When an EV is being charged, it can be charged to its capacity (full
recharge), or for a fixed amount of time or time steps (fixed charging time). A third op-
tion is to charge until it is needed for operation (partial recharge). In Baaren and Roling
[16], every vehicle is charged for a fixed time in between any two jobs, and it is assumed
that the vehicle is fully charged after this. Similarly, Hiermann et al. [67] assume that a
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Table 2.4: Literature on the management of charging a fleet of electric vehicles. GSE indicates Ground Support
Equipment and MILP indicates Mixed Integer Linear Programming.

Study Electric application Model formulation

Hiermann et al. [67] General MILP
Schiffer and Walther [141] General MILP
Baaren and Roling [16] Aircraft taxiing MILP
Lin et al. [99] Buses MILP
Gulan et al. [62] GSE Monte Carlo simulation
Xiang et al. [175] GSE Sequencing algorithm
Oosterom et al. [124] Aircraft taxiing MILP

Study Charging strategy Charging station placing method

Hiermann et al. [67] Full recharge Bidirectional labelling
Schiffer and Walther [141] Full & partial recharge Included in MILP
Baaren and Roling [16] Full recharge Given
Lin et al. [99] Full recharge Locations selected in MILP
Gulan et al. [62] Partial recharge Given
Xiang et al. [175] Partial recharge Given
Oosterom et al. [124] Partial recharge Given

vehicle is recharged till full, when it arrives at a charging station, and Lin et al. [99] fully
recharge electric buses overnight. On the other hand, Gulan et al. [62] and Xiang et al.
[175] allow partial recharging. In these studies, every vehicle is given attributes such as
the charging level, vehicle activity, vehicle type and availability for tasks. Based on these
attributes and the tasks that need to be performed, a selection is made which vehicle will
be charged during this time step and which will be sent to perform a task. Schiffer and
Walther [141] allow both full and partial recharging, as do Oosterom et al. [124] who de-
fine the amount of charge through keeping track of the state of charge of a vehicle after
towing an aircraft.

In addition to the actual charging period, a vehicle needs to travel to and from a
charging station. Baaren and Roling [16], Oosterom et al. [124] and Hiermann et al. [67]
include the routing of EVs to and from tasks and charging stations in their schedules.
However, Gulan et al. [62] and Xiang et al. [175] do not take into account travelling be-
tween tasks and charging stations. Instead, a large time step of 15 minutes is taken in
which vehicles are either charging or performing their duties.

Problem formulation and model inputs: Gulan et al. [62] perform a Monte Carlo sim-
ulation and Pareto front analysis to test combinations of input parameter values on their
joint objective: minimizing the needed amount of electric vehicles and minimizing the
amount of gas used by gas vehicles (the alternative to the EVs). These input parame-
ters include the number of charging stations, the number of each type of vehicle and the
maximum electrical load of the terminal. The GSE tasks are derived from synthetic flight
schedules, and the simulation runs for three schedule days. Xiang et al. [175] create a



2.4. MANAGEMENT CHALLENGES FOR ELECTRIC TOWING VEHICLES

2

29

sequencing algorithm to perform a similar simulation with the goal of maximizing the
usage of electric vehicles. The charging algorithm is an input to a larger model that in-
vestigates the costs of an airport energy microgrid including hydrogen, solar and battery
energy sources. The authors used a year of historical flight data from Chengdu Airport
(ZUUU) to find the GSE tasks that need to be performed and the electrical load needed
at the airport.

In their MILP approach to the ETV routing and scheduling problem at EHAM and
EHRD, Baaren and Roling [16] include constraints enforcing vehicles to charge in be-
tween tasks. Oosterom et al. [124] control the charging process by enforcing constraints
regarding the state of charge of vehicles after towing an aircraft. Hiermann et al. [67] cre-
ate an extensive model for vehicle routing with time windows, charging station place-
ment and fleet sizing at the same time. Their goal is to cover a set of customers on
the routes, while minimizing the number of needed EVs and their total travelled dis-
tance. They compare two different solution approaches: an MILP formulation, and a
combination of Adaptive Large Neighbourhood Search and local search algorithms. A
bidirectional labelling algorithm is used to determine the optimal placement of charg-
ing stations. These approaches are able to solve instances with 15 customers and 2 to 8
charging stations within a gap of 1% compared to best known results. Similarly, Schiffer
and Walther [141] consider a model incorporating charging station placement, capacity
constraints, time windows and recharging. Several objectives were considered in this
model, such as minimizing travel distance, the number of needed vehicles and charg-
ing stations, and the total costs. The authors show that reducing the solution space to
strengthen the model formulation ensures that more benchmark instances of 5, 10 or 15
customers can be solved to optimality, in a shorter computation time.

Battery specifications: Important specifications with regard to charging are the bat-
tery capacity, and the charging and depletion rate of the battery. Most studies shown in
Table 2.4 do not specify battery capacity, recharging time or energy consumption rate.
The medium towing vehicle introduced by Baaren and Roling [16] has a battery capac-
ity of 840 kWh and a maximum power of 1400 kW. They find that an average tow of a
medium aircraft would require 33 kWh at EHAM. The vehicles used by Oosterom et al.
[124] have capacities ranging from 400 to 3200 kWh, and charging power ranging from
100 to 500 kW. Adegbohun et al. [1] note that fully charging the battery of a 50-100 kWh
EV requires two to three hours, or 0.5 to one hour for fast charging. Modern electric push-
back trucks, capable of towing fully loaded aircraft for short distances, have a battery ca-
pacity of up to 165 kW, and can be fully charged in under an hour assuming fast charging
with a linear charging profile [115, 59]. Soares and Wang [159] envisions a 500kW fast-
charging system for an airport, capable of recharging a 300 kW pushback truck battery
pack in 40 minutes. As shown in Table 2.5, the varying charging rates found through-
out literature have a large impact on the scheduling of an ETV fleet, and can determine
whether ETVs can operate for a full day and charge overnight, or if they will need to be
partially charged during the day.
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Table 2.5: Battery specifications and their influence on ETV performance based on various studies. Values
in the columns ’full charging time’ and ’charging time for one tow’ are calculated using the parameters from
Baaren and Roling [16] and assuming a linear charging profile.

Study Charging method
Charging
rate

Full
charging
time

Charging time
for one tow

Adegbohun et al. [1] Regular charging 30 kW 28 h 66 min
Adegbohun et al. [1] Fast charging 100 kW 8.4 h 20 min
Goldhofer [59] Fast charging 165 kW 5.1 h 12 min
Soares and Wang [159] Fast charging 500 kW 1.7 h 4 min

Electrical load on the network: Charging many powerful ETVs at the same time, for
example with overnight charging, can be a burden on the electricity grid of an airport,
especially if faster charging techniques are used. Adegbohun et al. [1] notice that fast DC
charging of EVs at 50 kW and up can lead to unsustainable load spikes on the distribution
grid, and could critically affect its reliability and stability. Silvester et al. [155] find that
charging a thousand electric cars at EHAM would be equivalent to the total electricity
peak load at the airport (2.5 MW). As can be deducted from Table 2.5, a relatively small
fleet of ETVs can already be very demanding for the electricity network, depending on
the charging rate. Baaren and Roling [16] calculate that electric towing for all aircraft
will cost 90.4 MWh of energy at EHAM and 1.1 MWh at EHRD, without losses due to
charging. For EHAM, this is equivalent to 36 hours of the 2013 peak load every day. Xiang
et al. [175] take into account the available grid power and its costs in their optimization
model for charging GSE at an airport, where it is used as an alternative for hydrogen fuel
cell generation and battery storage systems. Lin et al. [99] include a decision variable
in their MILP model to decide which charging station is connected to which power grid
node, and include the maximum power such nodes can provide as a constraint.

Battery swapping: For some vehicles, such as electric cars [177, 1], electric aircraft
[111, 138], and electric container transporters [149], battery swapping is being investi-
gated as an alternative charging strategy, sometimes in combination with regular charg-
ing. Battery swapping allows one battery to be charged without being in the vehicle,
while another is being used by the vehicle. The main benefit of battery swapping is that
the refuelling time is comparable to that of fossil fuels, as opposed to battery charging,
which can take multiple hours, depending on the used charging technology. Battery
swapping can thus avoid long downtime due to charging. Another advantage of battery
swapping is that peak loads on the power grid can be reduced because battery charging
can be spread out during the day or night.

Yang and Sun [177] use heuristics to solve an MILP formulation for a location routing
problem for battery swapping stations, for general EVs. Adegbohun et al. [1] describe
the design and working of battery swapping stations for electric cars. Such facilities are
already operational, for example in China for NIO cars [119].

Mitici et al. [111] investigate battery swapping for electric aircraft during turnaround,
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by solving an MILP formulation to decide which batteries will be swapped, and conse-
quently, at which charging station they will be charged. Other outputs are the fleet size,
the aircraft to flight schedule, the number and location of charging stations, and the
number of batteries needed. Using the combination of battery swapping and charging,
three times more missions can be performed with electric aircraft than the fleet size.
Salucci et al. [138] also identify the number of spare batteries needed as one of the key
points for achieving smooth operations, and use simulation modelling to perform in-
frastructure planning for electric aircraft at airports.

Schmidt et al. [149] investigate charging strategies for charging automated guided ve-
hicles in container terminals, and find that the best balance between high productivity,
low costs and low waiting time is to use 1.6 batteries per vehicle in the charging system.

PLACEMENT OF CHARGING STATIONS

In the case that there are not enough charging stations at an airport, or they are not
placed strategically, there will be vehicles that cannot perform their duties and are lining
up at the charging stations. On the other hand, it is expensive to keep many charging
stations operational if not all of them are used enough. This trade-off is a consideration
when implementing a fleet of ETVs at an airport.

Establishing the number of charging stations: Gulan et al. [62] perform their analy-
sis for a range of 27 to 80 electric ground support vehicles, combined with a range of 25
to 45 charging stations, for one airport terminal. Schiffer and Walther [141] show how
to obtain a lower bound on the number of needed charging stations and EVs, to reduce
the needed computational time for solving their MILP formulation. Hiermann et al. [67]
find that in benchmark instances where normally a set of 21 charging stations was re-
quired to serve all EVs, optimizing the fleet mix leads to a situation where less then half
of these stations are needed. Doctor et al. [37] makes use of discrete event simulation to
determine the best number of charging stations at London Heathrow (EGLL) for electric
aircraft. They consider fixed charging times of various lengths and illustrate the influ-
ence of an electric fleet on the airport throughput and turnaround times.

Deciding the location of charging stations: In the studies in Table 2.4 that consider
electric taxiing or ground support equipment, the locations of charging stations are con-
sidered fixed. In other applications of EVs, the so-called location routing problem (LRP)
has been investigated: Hiermann et al. [67] model both the choice of locations and the
choice of the number of charging stations for EVs by inserting stations on given routes
where needed, using a bi-directional labeling algorithm. Lin et al. [99] formulate an
MILP model to select charging station locations for electric buses, from a list of can-
didate locations. The aim is total cost minimization, where factors such as facilities,
transportation and grid power loss are considered. The authors use the model to select
12 charging stations from 30 candidate locations in Shenzhen, China, which hosts more
than 16000 electric buses.

CHALLENGES

Charging stations on the airport surface: Table 2.4 shows that optimization regarding
the charging stations has not been performed in the context of airport surface move-
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ment. There the locations and amount of charging stations have been assumed given.
However, the number of charging stations for ETVs can depend on many variables, such
as the airport layout, runway usage, the fleet size, the vehicle electricity usage and the
electric power available. A suitable location should be quickly reachable from the ser-
vice road network, have sufficient space for multiple charging points, and it should be
possible to connect the location to the airport electricity network with high-voltage ca-
bles [138, 37].

Multi-stage approach: As shown in Section 2.4.2, it is important to consider the de-
velopment of ETV usage in the future. As more aircraft types become certified to be
towed by ETVs, it is expected that airports will slowly increase the size of their ETV fleet,
and consequently their need for the associated charging infrastructure. For example,
Schiphol currently has a fleet of only three ETVs, but by 2030 it is envisioned that all air-
craft can be towed by ETVs [144]. It is possible that a charging station location that is
suitable for the ETV fleet in 2025 does not fit in the optimal charging station configura-
tion for the ETV fleet in 2030. In order to make sure that charging stations do not need to
be relocated, one can develop a multi-stage approach to the charging station placement
problem for electric taxiing. Such an approach has been developed by Lin et al. [99] for
electric buses, where the first stage was defined as the coming ten years, and the sec-
ond stage as the twenty years thereafter. The authors obtained expected values for the
number of buses and charging stations, the energy demand, and the station construc-
tion costs, for the two stages. The charging station placement problem was then solved
for both stages simultaneously, prohibiting station relocation. The authors show that
multi-stage optimization reduces the total cost by 17% when compared to single-stage
optimization. When considering the charging station configuration for ETV, develop-
ing a multi-stage approach would require knowledge of the expected ETV fleet size and
amount of charging stations during the coming years, but also other factors that might
influence the charging network. For example, the introduction of the wide-body version
of the ETV, which will likely have a different battery capacity and depletion rate, can be
included in one of the stages.

Battery specifications: To construct a realistic charging model for ETVs, there are sev-
eral factors that should be considered. In literature, the charging and depletion rate of
EV batteries are most often assumed to be constant. In contrast, Goeke and Schneider
[58] incorporate speed, gradient and load distribution in their model of EV energy con-
sumption, and Mitici et al. [111] assume a bilinear charging profile for electric aircraft.
When considering ETVs the batteries may also exhibit nonlinear charging behavior. The
depletion rate will be influenced by vehicle speed and acceleration, but also by factors
such as the outside circumstances, the weights of the aircraft that are being pulled, and
the acceleration profile.

Energy demand: Silvester et al. [155] assert that achieving sufficient electrical distribu-
tion capacity is the largest bottleneck for successful operation of a fleet of EVs. Charging
a fleet of ETVs at an airport is expected to require a large amount of energy. An approach
to the demand for electricity for an ETV fleet should consider:
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i) The power supply available at the airport during the entire day of operations. For
example, Gulan et al. [62] propose a model describing a trade-off between available
power supply and energy demand. Specifically, a trade-off between using gas-powered
GSE and electric GSE is obtained.

ii) The charging protocol, e.g. overnight or daytime charging [99], full or partial
charging [62], and fast or regular charging.

iii) The price of energy at different moments during the day/year, as well as the ex-
pected price of electricity and batteries.

When all of these aspects are integrated in a model, its results can be used to make
management decisions with regard to investments in electrical infrastructure at an air-
port.

Alternative charging strategies: As outlined above, battery swapping technology can
help avoiding ETV downtime, increasing the usability, and reducing peak loads on the
power grid. Improved usability can in turn lead to a smaller fleet size, saving operating
costs. On the other hand, depending on the amount of spare batteries used, it may lead
to an increased peak energy load on the airport.

Another alternative charging strategy is to charge EVs using wireless power transfer
technology (WPT). Rather than charging EVs at a set of charging stations, it is possible
to use dynamic wireless charging (DWC) to charge EVs while driving along roads. The
first commercial EV using DWC was deployed in 2009 [110], and since then a signifi-
cant amount of research has been conducted towards implementing DWC for varying
EVs. Many authors view DWC technology as a promising solution for future EVs [82]. Al-
wesabi et al. [10] develop an MILP model to determine the needed amount of electrical
buses and needed wireless cable length to facilitate a given bus schedule. By placing the
cables strategically along the bus routes, the electric buses can suffice with a battery of
18 kWh. Oliveira et al. [123] aggregate human factor data to determine the best location
for DWC cables that serve electric taxis. Their solution involves placing cables under
taxi ranks. DWC techniques could be of interest to airports as well, especially those that
aim for electrification of all ground support equipment [62, 175]. Since ETVs and other
GSE regularly drive along the same roads, strategically placing DWC cables under these
roads can provide these vehicles with power for a significant part of their driving time.
Therefore, implementing DWC technology for ETVs is expected to reduce or remove the
need for charging stations at the airport, and possibly the needed battery size. This in
turn may reduce the vehicle’s weight, which is expected to lead to further improvement
in energy use [159].

2.5. DISCUSSION AND CONCLUSION
Electric taxiing is expected to significantly contribute to the reduction of air traffic emis-
sions, and has attracted increasing research attention. Although scientific reviews have
been written from a technical and economic perspective, the existing literature has not
been reviewed from an operational perspective. This study has reviewed the operational
aspects of managing a fleet of electric taxiing vehicles (ETVs) at an airport and has iden-
tified challenges for future research.
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In the past 10 to 15 years, multiple electric taxiing systems (ETSs) have been pro-
posed to reduce airport emissions due to taxiing. The systems are commonly classified
into on-board and external systems. On-board systems become part of an aircraft and
do not require a fleet of vehicles to be routed on the airport surface. External systems re-
quire no changes to aircraft, can attain a large taxiing speed, are technically less difficult
to implement, and are currently operational at airports on a small scale.

The electric taxiing procedure for an aircraft that makes a turnaround has been com-
pared to regular operation in detail. In addition to the required changes in the procedure,
time and space will have to be reserved for the connecting and disconnecting of vehicle
and aircraft, for the engine-warm up of the aircraft, and for charging the vehicles. The
ETV replaces the pushback truck, but will add to the traffic on the taxiways or service
roads.

The challenges associated with the operational management of ETVs have been treated
from the perspective of three main topics. The first topic is the routing of vehicles and
aircraft. The vehicle routing problem for electric taxiing is different from regular VRPs,
because of the separation requirements, the many one-way taxiways, the use of two
types of roads for ETVs (taxiways and service roads) and the specific delay character-
istics of air traffic. Some authors represent this problem with a simulation, allowing for
sequential routing of aircraft. Others set up a Mixed Integer Linear Programming Model
(MILP), which is then solved for a full day. The simulation approach allows for a more
straightforward conflict avoidance, while the MILP approach requires many additional
constraints. The assumed values of several key parameters differ across the literature:
taxiing separation distance, speed, and engine warm-up time and place. Routing chal-
lenges identified are as follows: first, there are possibilities for airports to adjust the cur-
rent rules and procedures on the airport surface to better facilitate swift electric taxiing.
Second, the increased workload posed by the necessary management of the ETV fleet
on Air Traffic Control must be addressed, for example with a dedicated ETV manager, or
in the long term by implementing Advanced Surface Movement Guidance and Control
Systems (A-SMGCS).

The second topic is the assignment of vehicles to aircraft. Typical objectives from
literature are to minimize taxiing time or used fuel. Factors that have a large influence on
these objectives are the size of the ETV fleet, the manner of conflict avoidance, and the
instances where the aircraft taxi in the regular way. An important scheduling challenge
is dealing with airside disruptions, such as flight delays, which can cause disruptions of
the ETV schedule and increased workload of personnel, since the ETVs need travel time
to arrive on time at gates and runways around the airport. The development of robust
scheduling algorithms and disruption management procedures for the airport surface
movement can reduce the effects of these airside disruptions. Another challenge is to
solve the scheduling problem with realistic technological specifications of external ETSs,
so that the expected performance can be modelled accurately, and possible bottlenecks
can be identified. Airside disruptions present a relevant challenge for this type of ground
operations, since effective operation requires the vehicles to be present at the correct
gate or runway at the correct (disrupted) time, while the fleet is likely spread around
the airport during operation. This is in contrast to other ground vehicles, which operate
mainly in the gate areas.
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The last topic is comprised by the complications due to the electrical aspect of ETVs.
There have been but a few operational management approaches to ETVs that include
this aspect. Some subjects that are interesting for ETVs have been treated for other
types of electric vehicles: Typical objectives are to minimize the number of vehicles or
charging stations, or the taxiing distance. Several characteristics of the problem such as
the charging period, the influence on the electrical network and possibilities for battery
swapping are topics of interest in current research. The main challenge is to apply the
optimization problems with their characteristics as reviewed here to the problem with
ETVs. Specifically, the location routing problem for charging stations has not been at-
tempted for ETV fleets to the knowledge of the authors. Possible additions to these opti-
mization problems are to devise a multi-stage approach for the electric infrastructure, to
make sure the demand for electrical power can be met by the airport, and to use realistic
battery specifications. Last, alternative charging techniques such as dynamic wireless
charging can be of interest for the ETV charging problem.

Overall, we have seen that important research steps have been taken in the imple-
mention of external electric taxi systems, but numerous research directions and chal-
lenges remain. Addressing these challenges will help the industry move to large-scale
ETV implementation in the next decades and thereby hopefully significantly reduce air-
port ground emissions.
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One of the operational challenges regarding electric taxiing implementation identified in
Chapter 2, is the fact that making the transition to electric taxiing operations is expected to
significantly increase the electricity demand at airports. In this chapter, a mixed-integer
linear programming (MILP) model to schedule electric vehicles for aircraft towing and
battery charging is developed. This model considers limits for the supply of energy at an
airport. In addition to the MILP model, an Adaptive Large Neighbourhood Search model
is developed, to identify time-efficient scheduling solutions. The models are applied to a
large airport case study, and conclusions are drawn regarding the optimal charging strat-
egy given airport electricity capacity and electric vehicle properties. The models provide
support for infrastructure planning of airports during the transition to aircraft electric
taxiing.

This chapter is based on the following research article:
Zoutendijk, M. & Mitici, M., "Fleet Scheduling for Electric Towing of Aircraft under Limited Airport Energy
Capacity", in Energy, Special Issue "The Role of Smart Technologies in Energy Engineering", 294, p.130924 [190].
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3.1. INTRODUCTION
The aerospace industry has committed to reducing net greenhouse gas emissions to zero
in the USA and to 10% of 1990 emissions in the EU by 2050 [49, 47]. In addition to
emissions produced while flying, the aerospace industry also produces ground-based
emissions. Electric taxiing is a promising technique for reducing these emissions. In
this work, the focus is on external electric taxi systems, where an electric towing vehicle
(ETV) tows aircraft from gates to runways and vice versa. Electric towing vehicles are
currently operational at several airports, and are under further development [157]. Their
implementation is expected to reduce taxiing fuel use by up to 80% and thus reduce the
airport emissions of greenhouse gases [36, 63, 170, 103, 145]. This is not only benefi-
cial for the aerospace emission goals, but also improves air quality and reduces noise
pollution for airport personnel, passengers and residents of airport surroundings [65].

The technical feasibility of the external Electric Taxiing System (ETS) has been inves-
tigated in literature, and demonstrated during early implementation. The next step is to
move towards large scale implementation, and to find out how many towing vehicles are
needed for seamless surface movement. This requires airport infrastructural planning
and a strategy for operational management of large fleets. Vehicle operation needs to
be scheduled, taking into account airport routing, flight schedules and electricity use. A
model is needed that creates a daily towing schedule for ETVs to aircraft. Such a model
can be used by airport operators to manage current or future ETV fleets at airports, and
also by airport planners to consider the infrastructural requirements needed. Below we
review existing studies addressing comparable problems in other domains.

SCHEDULING A FLEET OF ELECTRIC VEHICLES

Several studies have developed models to schedule generic electric vehicles (EVs) for
operations and charging. Hiermann et al. [67] consider a routing problem with a mixed
fleet of EVs, where vehicles are assigned to customers with time windows. They optimize
for the best fleet composition, choices of recharging moments and locations. Routing
is done using labeling algorithms, and scheduling using branch-and-price, but also a
heuristic based on Adaptive Large Neighbourhood Search (ALNS). Schiffer and Walther
[141] solve a Mixed Integer Linear Programming (MILP) location routing problem to find
charging station locations, while optimizing for traveling distance, fleet size and number
of stations. Keskin and Çatay [87] apply ALNS to schedule EV tasks with time windows,
and allow partial recharging. In addition to customer removal and insertion algorithms,
the authors also introduce removal and insertion algorithms for visits to charging sta-
tions. Emde, Abedinnia, and Glock [40] develop heuristics to schedule a fleet of EVs per-
forming round trips including recharging breaks. They aim to minimize the fleet size and
maximize fairness in workload for EV operators. Their neighbourhood search heuristic
based on operations ’push’ and ’swap’ performs best and can solve problem instances
in a few minutes. Frey et al. [54] solve a vehicle routing and scheduling problem with
customer time windows. In addition to a branch-price-and-cut algorithm introduced in
earlier work, they introduce an ALNS approach. Their approach allows moving to infea-
sible solutions, and penalizes such solutions in the objective function. Several special
removal operators based on the spatial arrangement of customer locations are intro-
duced. Last, Foda et al. [51] develop a generic optimisation model for electric bus fleets,
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with a very broad approach, taking into account a mixture of multiple objectives. Since
the authors infer that all system parameters should be included in their model as sys-
tem parameters, it outputs include charging schedules, but also battery properties and
optimal charging infrastructure parameters.

ETV FLEET SCHEDULING APPROACHES

In recent years, several authors have started to research the routing and scheduling chal-
lenges connected to ETV implementation. An important difference between EV and ETV
scheduling is the split between driving and towing: the speed, road usage, conflict avoid-
ance and time constraints are different when driving an ETV compared to towing an air-
craft. These aspects introduce additional constraints and complications that need to be
taken into account when creating a realistic representation of airport surface movement
with electric taxiing.

One of the first works concerning ETV scheduling is Baaren and Roling [16], who cre-
ate an MILP model minimizing fuel consumption. The model generates trips that can
be performed on one battery charge. The model is applied to two airports. The fuel
savings and electricity costs are calculated, and the minimum fleet size is ascertained.
Soltani et al. [160] develop an MILP model to assign diesel-powered towing vehicles to
205 aircraft, and introduce extra variables and constraints to ensure conflict and colli-
sion avoidance, while minimizing the sum of taxiing delay costs, maintenance costs and
labor costs. It is found that the optimal number of vehicles for Montreal-Trudeau In-
ternational Airport (CYUL) is twelve, reducing taxiing fuel consumption by 95%. Salihu,
Lloyd, and Akgunduz [137] develop a discrete event simulation for scheduling a year of
ETV operation, with the goal of modelling the taxiway congestion that can be expected
from using electric taxiing. The taxi routes are calculated in advance. It is assumed that
all charging can be done during the night. It is found that electric taxiing leads to a longer
taxiing time, as the ETVs taxi slower than the aircraft, and the aircraft have to wait after
requesting an ETV. Building on earlier work, Zaninotto, Gauci, and Zammit [181] create
a real-time simulation to schedule ETVs to aircraft. Conflict avoidance is performed by
slightly delaying aircraft (less than 3 min) where necessary, before selecting the ETV. The
model minimizes taxiing delays and route lengths. The ETV state of charge and recharg-
ing are considered throughout the simulation. More than 80% of flights were assigned
to an ETV, with a fleet size of 25% of the airfield hourly traffic. The tow truck utilisation
time was 30%. Also building on their earlier work, Oosterom, Mitici, and Hoekstra [125]
develop an MILP and a greedy model to dispatch multiple types of ETVs to aircraft. De-
ciding which ETVs charge when is based on the residual state-of-charge of the ETVs. The
objective of the models is to minimize the fleet size required to tow all flights in the daily
flight schedule. A 5% optimality gap is obtained by the greedy model compared to the
MILP approach. Applying both models in a rolling horizon approach and using a flight
schedule including historical flight delays, the authors show that 95% of flights can still
be towed by ETVs. Last, Ahmadi and Akgunduz [3] develop a one hour rolling horizon
MILP model with the goal of showing the best fleet size to be purchased by airports. The
model minimizes taxiing delay, total taxiing time and fuel consumption. Aircraft can
either be towed or taxi in the regular way. The rolling horizon approach allows for solv-
ing realistic size problems in foreseeable time, and accommodating for flight disruption
during the day. Charging stations and charging times are not considered in the model.
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TRANSPORT ELECTRIFICATION AT AIRPORTS

The transport industry has far-reaching ambitions for electrification, e.g. the EU will
only allow zero-emission vehicles from 2035 onwards [48]. There has been research in-
terest into the electrical infrastructure requirements to meet such ambitions.

Some authors investigate the option of supplying the electrical grid with energy from
idle EVs, i.e. electric vehicle-to-grid delivery (V2G), such as Mahmud, Hossain, and Rav-
ishankar [104] and Li et al. [98]. In a review paper, Uddin et al. [168] identify this as one
of the three major strategies considered in literature for peak load shaving, along with
demand side management, and making use of energy storage systems (ESS). However,
rather than using EV charge to mitigate demand peaks, such peaks can also occur when
charging these EVs. Solutions suggested in literature include ESSs, battery swapping [1]
and time-based electricity pricing [174]. Generally, it is expected that the electricity de-
mand will remain a bottleneck for certain electrification developments. For example,
Forrest et al. [52], a large scale study of energy infrastructure requirements for EVs in
California, find that smart charging technology such as V2G and smart energy storage
facilities can help provide in energy demands at off-peak hours. However, they stress
that such techniques would still require a large excess of renewable energy generation in
the first place. Moon et al. [112] estimate future electricity demand due to EVs in South
Korea and determine where and at which time demand peaks will appear. They predict
that current power grid infrastructure in parts of the country may not be able to cover
the predicted demand.

The electricity demand at airports without considering transport electrification stems
mainly from HVAC systems and lighting, report Ortega Alba and Manana [127], who
describe the main airport energy sources and consumers, and suggest ways to reduce
electricity consumption at airports. Uysal and Sogut [169] apply a holistic architecture-
based approach to airport energy demand and report large potential savings for light
and thermal management in terminal buildings. In Ortega Alba and Manana [126] en-
ergy demand patterns at Santander Airport (LEXJ) are characterized and analyzed on a
daily and yearly basis, by studying their electrical load profiles. Current peak electricity
demand for this medium-sized airport does not exceed 600 kW.

However, when accounting for transport electrification, more and more systems start
to make their appeal on the airport electricity capacity. Electric vehicles charging at air-
port parking spaces, electrified ground support equipment [62], and electric aircraft [37]
are all expected to contribute to the future electricity demand, while capacity may not
increase as quickly as necessary. Capacity bottlenecks could appear due to the electricity
infrastructure at the airport, but also due to the local power grid. It suggests that it is wise
to take into account the possibility of operating an airport that might reserve only lim-
ited electricity capacity for electric towing, while it is transitioning to sustainable airport
surface movement.

In order to gain insight into the possibilities of electric taxiing under such circum-
stances, it is necessary to create a scheduling and charging model that can adhere to
electricity capacity constraints. The model should closely monitor state-of-charge of
ETVs and decide when and where they are charged. The schedule created by this model
should cover a full day of operation, to find the best schedule given specific daily electric-
ity capacity profiles for ETV charging. In addition, to emulate realistic airport scenarios,
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the model should incorporate practical considerations such as a realistic airside airport
representation, ETV connecting/disconnecting times and conflict avoidance.

To the best of our knowledge, there is no previous work addressing the issue of the
effect of limited electricity capacity at airports on the expected emission benefits of electric
towing. In this chapter we propose two models to assign ETVs to aircraft that take limited
electricity capacity at airports into account. The main contributions of this chapter are:

• We propose an MILP formulation for the ETV-to-aircraft assignment problem, that
takes into account a limited electricity capacity at an airport. The model also tracks
the state of charge and electricity demand of every ETV throughout the day, which
is omitted in the majority of previous works.

• We propose an ALNS method including tailored removal/insertion heuristics to
obtain time-efficient solutions of the full-day ETV-to-aircraft assignment problem.

• We apply our models for a large airport, and for various ETV electricity capacity
profiles. We investigate the effects of having a limited electricity capacity on the
ETV operations for these profiles.

The remainder of this chapter is divided as follows: Section 3.2 introduces the ETV
scheduling problem and the input data and parameters required. In Section 3.3 a method
to calculate the emissions savings from the electric towing distance is described. Sec-
tion 3.4 states the linear programming formulation describing the scheduling problem
and Section 3.5 describes how this problem is solved using ALNS. Local search heuristics
and notation for the ALNS algorithm are defined, as well as the local search framework.
In Section 3.6 both models are applied to various instances of the ETV scheduling prob-
lem, to determine their efficacy, as well as the influence of ETV electricity capacity pro-
files and ETV battery properties on the results. Section 3.7 provides concluding remarks
and future research directions.

3.2. PROBLEM DESCRIPTION AND FORMULATION
In this section the problem of scheduling ETVs to tow aircraft is defined, and the model
developed to create the schedule is presented. The schedule consists of a towing sched-
ule and a charging schedule. The former defines for each vehicle when it tows which
aircraft, and the latter defines for each vehicle when and where it will be charged. An
arriving or departing aircraft either performs regular taxiing (using the jet engines) or
electric taxiing (being towed by an ETV). The ETVs tow aircraft, and charge at charging
stations to replenish their battery. A limited amount of electricity capacity is assumed
available at the airport for the charging of ETVs. The scheduling problem is therefore ex-
tended with constraints that track the electricity demand and capacity at discrete time
steps. The problem is formulated as a Mixed Integer Linear Programming (MILP) model.

AIRPORT LAYOUT

We assume a taxiing system consisting of service roads (used only by ETVs at speed vS )
and taxiways (used by aircraft or ETV + aircraft combinations at speed v X ). The taxiing
system is represented by a graph G , which is the union of a taxiway graph G X = (N X ,E X )
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Figure 3.1: Schematic overview of an example airport. Two runways are shown in black. Gray lines indicate
taxiways (E X ) and thin red lines indicate service roads (ES ). Runway entry/exit points R1-R4 are indicated with
green circles. Gate group nodes G1-2 are indicated with blue squares. Charging stations C1-2 are indicated with
red rectangles.

and a service road graph GS = (N S ,E S ). The edges correspond to the service roads and
taxiways, and the nodes correspond to junctions, gate groups or runway entrance/exit
points. The airport is assumed to have Ncs charging stations for the ETVs, one of which
also has the function of ETV depot ndp. Figure 3.1 shows an example airport with the
road types indicated, as well as nodes for gates, runways and charging stations.

AIRCRAFT AND ETV ROUTING

The routes taken by the aircraft and vehicles are calculated in advance. Distances from
any node m to n are calculated using Dijkstra’s shortest path algorithm, and are indi-
cated on G X with d X (m,n), and on GS with d S (m,n). The schedule is created for a time
period P , which spans the interval [t s , t e ]. The set of N F,S aircraft arriving or departing
at the airport within this period form the set AS . From the flight schedule, the sched-
uled landing time (SLDT) of arriving flights and the scheduled off-block time (SOBT) of
departing flights are collected. They correspond to the pick-up time t p

a of aircraft a, the
moment an ETV starts towing the aircraft. The moment an ETV stops towing the aircraft
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is referred to as the drop-off time t d
a , and is calculated as:

t d
a = t p

a +d X (np
a ,nd

a )/v X = t p
a + t X (np

a ,nd
a ), ∀a ∈ AS , (3.1)

with t X (np
a ,nd

a ) the towing time for aircraft a, and np
a and nd

a its pick-up and drop-off
nodes, respectively. They correspond to the gate or runway where the pick-up or drop-
off takes place, which are taken from the flight schedule. The towing distance for any
aircraft a ∈ AS is denoted with the shorthand d X

a = d X (np
a ,nd

a ).
All ETVs start and end the period P at the depot ndp. For every towing task, an ETV

v assigned to aircraft a travels to the pick-up node np
a , and arrives at t p

a − t c . There the
ETV connects to the aircraft, which takes a time of t c . Between t p

a and t d
a the ETV tows

aircraft a, and upon arrival the ETV disconnects from the aircraft until t d
a + t c . Then

the ETV travels towards its next towing task or a charging station. The travel time for a
non-towing ETV from node m to n is given as:

t S (m,n) = d S (m,n)/vS , ∀m,n ∈ N S (3.2)

The fleet of ETVs is denoted as V and has size NV . A more detailed description of the
electric towing procedure can be found in Chapter 2 of this dissertation.

Aircraft route conflicts need to be avoided. We say an aircraft has a route conflict
when a) an aircraft is using the same node or edge as an another aircraft at the same time,
or b) an aircraft is violating the minimum separation time tsep : the taxiing time between
it and an aircraft taxiing in front of it. All routes of aircraft in AS are deconflicted before
making the ETV-to-aircraft schedule, as follows:

The routes for all aircraft in AS are calculated. Then, we iterate through the time pe-
riod P in time steps of size tsep . At any time step, for every aircraft a ∈ AS , we check
whether another aircraft is planned to a) occupy the same node as aircraft a or b) ap-
proach aircraft a on a one-directional edge in the set of taxiway edges E X . In that case
aircraft a is held at its previous node until it can proceed without a conflict with any
other aircraft and the separation time is respected.

It is assumed that there is no taxiing delay for the aircraft, except due to deconflicting
routes. For the ETVs it is assumed that deconflicting is not required, since the service
roads are assumed to provide enough opportunities for passing other vehicles, and no
separation time is required. For the same reasons, other vehicles using the service roads
are assumed not to influence the ETV operations.

CHARGING AND CONSUMPTION MODULE FOR ELECTRIC TOWING VEHICLES (ETVS)
The state of charge (SOC) of each ETV v is tracked during the time period P . This re-
quires a battery capacity Q, determined by the specifications of the ETV, a charging rate
P c , determined by the specifications of the ETV and the charging station used, and a dis-
charging rate. The discharging rate can be obtained by considering the power needed to
drive an ETV, and to tow an aircraft. This power can be found using the mass, velocity
and rolling resistance of the vehicle and aircraft. The power consumed by an ETV during
towing at speed v X is denoted as P X , and the power consumed during driving at speed
vS is denoted as P S . In this work the ETVs are assumed to travel at constant speed, with-
out accounting for acceleration and deceleration. The energy consumption of the ETV
for any (part of a) route is found using the power and the time taken to traverse the route.
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In addition to the characteristics of the ETV, we define the electricity capacity of the
airport charging network. The electricity that is available at the airport for various elec-
trical processes throughout the day is referred to as the electricity capacity profile. The
processes unrelated to ETV charging require a part of the electricity capacity. Subtracting
this demand from the electricity capacity profile yields the electricity capacity profile for
ETVs. This is the airport electricity capacity that is specifically available to charge ETVs.
In order to keep track of the electricity demand at different times of day we divide the
time period P in N T = 144 time steps t of length ∆= 10 min. The start of each time step
is the time associated with the time step, e.g. T0 = t s and TN T −1 = t e −∆. The electricity
capacity for ETVs at time step t is then denoted as Ct .

3.3. EMISSIONS SAVED BY ELECTRIC TAXIING
Several studies determine the amount of fuel or emissions spent using aircraft taxiing
and other airport surface movement, e.g. [36, 39, 16]. In this section, we derive the
amount of emissions saved per kilometer of self-taxiing that is replaced by electric tow-
ing. We consider the following assumptions:

• When calculating the emissions avoided by using electric towing, we consider only
the emissions avoided by consuming less jet fuel. In this work we focus on CO2

emissions.

• We consider towing vehicles that are electric battery-powered.

• The amount of emissions per km taxiing varies with the size of the aircraft. In
this section, we calculate a value based on narrow-body aircraft, which is a lower
bound for the actual value considering the mix of aircraft at the airport.

• When calculating the energy spent by ETVs, we consider only the energy spent
while towing aircraft, since towing aircraft takes many times more energy than
driving. This can be seen by comparing towing and driving power in Section 3.6.

GROSS TAXI EMISSIONS SAVED

We are interested to find an estimation for the emissions saved by towing an aircraft for
1 km instead of it self-taxiing that distance. We start with finding the fuel spent while
self-taxiing an aircraft.

From the work of Zhang et al. [187] we obtain that an A320 aircraft spends 88.0 kg of
jet fuel when taxiing a 2.5 km route at Shanghai Pudong Airport (ZSPD). In this calcula-
tion, acceleration, deceleration and idling have been included. Using these values leads
to a value of 35.2 kg of jet fuel per km of taxiing for a narrow-body aircraft.

It is known that using jet fuel in an aircraft engine leads to 3.16 kg CO2 per kg of jet
fuel, see e.g. Nojoumi, Dincer, and Naterer [120]. This leads to an emission saving of 111
kg CO2 per km of taxiing.

CG
km =CkgCO2 Ftow/d = 111 kg CO2, (3.3)

where CG
km is the gross amount of emissions saved per km taxiing, CkgCO2 the amount

of emissions per kg jet fuel, Ftow the average amount of jet fuel used during one towing
event, and d the taxied distance.
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NET TAXI EMISSIONS SAVED

From the flight schedule for 27-12-2021 at Schiphol [147] we obtain an average taxiing
distance of 3.79 km. From the energy consumption described in Sec 3.2, we find that the
energy needed for an average tow of a narrow-body aircraft is 19.9 kWh. From Scarlat,
Prussi, and Padella [139] we obtain that the carbon intensity of electricity generation in
Europe was 0.334 kgCO2/kWh in 2019. This means that during the generation of the
electricity needed to tow an aircraft for 1 km, 1.75 kg CO2 is emitted. In summary, under
the assumptions described above, we obtain that for each km of electric towing, 109
kg CO2 is saved when comparing the process of electric taxiing to self-taxiing. In this
chapter, we will use this value to calculate emission savings obtained from distances
travelled using electric towing.

C N
km =CG

km −C E
km =CG

km − EtowEel

dav
= 111−1.75 = 109 kg CO2, (3.4)

where C N
km is the net amount of emissions saved per km taxiing, C E

km the amount of emis-
sions spent generating electricity per km taxiing, Etow the energy needed for an average
narrow-body aircraft tow, dav the average towing distance per aircraft movement, and
Eel the carbon intensity of electricity generation.

TOTAL FLIGHT EMISSIONS

In addition to estimations of the absolute amount of emissions saved using this technol-
ogy, it is insightful to obtain an estimate for the effect of optimizing the emission savings
of electric towing on the total flight emissions. An example of total fuel consumption of
a narrow-body, medium-haul flight is given in Kollmuss [93]: an A320 aircraft on a flight
between Los Angeles and New York uses 11.6 tons of jet fuel. If we assume two taxiing
events similar to the one at Shanghai Airport, and note again that CO2 emissions are
directly proportional to fuel consumption through the factor 3.16, we obtain that using
electric taxiing saves 1.5% of the total flight emissions for this flight example:

Csaved

Ctotal
= 2Ftow

Ftotal
= 2 ·88.0

11.6 ·103 = 1.5%, (3.5)

with Csaved
Ctotal

the fraction of saved total flight emissions, and Ftotal the total fuel consump-
tion spent on the indicated flight.

3.4. MATHEMATICAL FORMULATION FOR VEHICLE-TO-AIRCRAFT

SCHEDULING
In this section we formulate the mixed-integer linear program (MILP) for ETV-to-aircraft
assignment, adapted from Oosterom and Mitici [124]. Note that a glossary with terms
and notation used in this and other chapters can be found at the end of the dissertation.

For completeness, the assumptions applicable for the scheduling models in this chap-
ter are summarized below:

• Aircraft deconfliction is performed in advance of scheduling.

• Taxiing and towing happens on taxiways and ETV driving happens on service roads.
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• There is one ETV type for all aircraft.

• Any aircraft can perform electric taxiing or regular taxiing.

• The ETVs have a linear charging profile.

• All ETVs are recharged to capacity before the end of the time period P .

• The electricity capacity for ETVs is limited to Ct .

Now, we proceed to the MILP formulation. First, we introduce a set of artificial air-
craft Ae , with one aircraft for each vehicle. The aircraft a ∈ Ae have np

a = nd
a = ndp, d X

a = 0

and t d
a = t p

a = t e . Such artificial aircraft are necessary to enforce a state of charge value
for every vehicle v at the end time t e . All artificial aircraft will always be scheduled for
electric towing, at no cost. The set of all aircraft will be denoted as A = AS ∪ Ae with size
N F = N F,S + NV . Furthermore, we introduce notation describing various quantities of
energy, required in the MILP:

q X (a) = P X t X (np
a ,nd

a ) ∀a ∈ A, (3.6)

qS (n,m) = P S t X (n,m) ∀m,n ∈ N S , (3.7)

qS (a,b) = qS (nd
a ,np

b ) ∀a,b ∈ A, (3.8)

qS
f (a) = qS (ndp,np

a ) ∀a ∈ A, (3.9)

qC (a,b) = mini≤Ncs {qS (nd
a ,ncs,i )+qS (ncs,i ,np

b )} ∀a,b ∈ A, (3.10)

qC
1 (a) = mini≤Ncs {qS (ncs,i ,np

a )} ∀a ∈ A, (3.11)

qC
2 (a) = mini≤Ncs {qS (nd

a ,ncs,i )} ∀a ∈ A, (3.12)

tC (a,b) = max(t p
b − t d

a − t S (nd
a ,np

b )−2t c ,0) ∀a,b ∈ A, (3.13)

with q X (a) the energy needed to tow aircraft a on G X , qS (n,m) the energy needed by an
ETV to travel from node n to m on GS , qS (a,b) the energy needed by an ETV to travel
from the dropoff point of aircraft a to the pickup point of aircraft b on GS , qS

f (a) the

energy needed by an ETV to travel from the depot ndp to the pickup point of aircraft
a, qC (a,b) the minimal energy needed by an ETV to travel from the dropoff point of
aircraft a to the pickup point of aircraft b on GS , via a charging station ncs,i , qC

1 (a) the
energy needed by an ETV to travel from the closest charging station to the pickup point of
aircraft a, qC

2 (a) the energy needed by an ETV to travel from the dropoff point of aircraft a
to the closest charging station, and tC (a,b) the time between towing consecutive aircraft
a and b that is freely available to the ETV towing them.

Using tC (a,b) and the set of aircraft A, we define:

Aout
a = {b ∈ A : tC (a,b) > 0} ∀a ∈ A, (3.14)

Ain
a = {b ∈ A : tC (b, a) > 0} ∀a ∈ A, (3.15)

APC
a = {b ∈ Aout(a) : qC (a,b)−qS (a,b) < P c (tC (a,b)− tC

min)} ∀a ∈ A. (3.16)
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Here Aout
a is the set of aircraft that can be towed by an ETV after it tows aircraft a, Ain

a is
the set of aircraft that can be towed by an ETV before it tows aircraft a, and APC

a is the set
of aircraft that can be towed by an ETV after it tows aircraft a and for which there is at
least tC

min time in between for effective charging, which is charging that occurs after the
energy loss due to the rerouting to the charging station has been replenished. The time
tC

min is called the minimum charging time. Note that APC
a ⊆ Aout

a .
For brevity, define va as the vehicle v that tows aircraft a. Furthermore, we define

M ∈R as a large number. We consider the following decision variables:

xab =
{

1 if a,b ∈ A are towed consecutively

0 else
(3.17)

x f
a =

{
1 if a ∈ A is the first aircraft an ETV tows

0 else
(3.18)

x l
a =

{
1 if a ∈ A is the last aircraft an ETV tows

0 else
(3.19)

qa ∈ [q X (a),Q] ETV state of charge at the start of towing a ∈ A (3.20)

ca =
{

1 if after towing aircraft a, the ETV travels to a charging station and is charged

0 else

(3.21)

c t
a ∈ [0,Q/P c ] charging time of ETV va (3.22)

c s
a ∈ P start time of charging of ETV va (3.23)

αat =
{

1 if charging of ETV va starts earlier than timestep t

0 else
(3.24)

βat =
{

1 if charging of ETV va finishes later than timestep t

0 else
(3.25)

γat =
{

1 if ETV va is charged during timestep t

0 else
(3.26)

ya =
{

1 if a ∈ A is towed by an ETV

0 if a ∈ A is taxiing by itself
(3.27)
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The objective function and constraints are given by:

max
x,q,y,c

∑
a∈A

d X
a ya , (3.28)

s.t. x f
a + ∑

b∈Ain
a

xba = ya ∀a ∈ A, (3.29)

∑
b∉Ain

a

xba = 0 ∀a ∈ A, (3.30)

x l
a +

∑
b∈Aout

a

xab = ya ∀a ∈ A, (3.31)∑
b∉Aout

a

xab = 0 ∀a ∈ A, (3.32)

qa ≤ x f
a (Q −qS

f (a))+Q(1−x f
a ) ∀a ∈ A, (3.33)

qa ≥ x f
a (Q −qS

f (a))−Q(1−x f
a ) ∀a ∈ A, (3.34)

qb ≤ qa −xab(q X (a)+qS (a,b))+Q(1−xab) ∀a ∈ A,b ∈ Aout
a \ APC

a ,
(3.35)

qb ≥ qa −xab(q X (a)+qS (a,b))−Q(1−xab) ∀a ∈ A,b ∈ Aout
a \ APC

a ,
(3.36)

qb ≤ qa −xab(q X (a)+qC (a,b))+ (1− ca)(qC (a,b)−qS (a,b))

+P c c t
a +Q(1−xab)

∀a ∈ A,b ∈ APC
a ,

(3.37)

qb ≥ qa −xab(q X (a)+qC (a,b))+ (1− ca)(qC (a,b)−qS (a,b))

+P c c t
a −Q(1−xab)

∀a ∈ A,b ∈ APC
a ,

(3.38)

NV ≥ ∑
a∈A

x f
a , (3.39)

ya = 1 ∀a ∈ Ae , (3.40)

qa ≥ qe ∀a ∈ Ae , (3.41)

c s
a ≥ t d

a + t c +qC
2 (a)/P S −M(1− ca) ∀a ∈ A, (3.42)

c s
a + c t

a ≤ t p
b − t c −qC

1 (b)/P S +M(1−xab)+M(1− ca) ∀a ∈ A,b ∈ Aout
a ,

(3.43)

c t
a ≥ tC

minca ∀a ∈ A, (3.44)

c t
a ≤ ∑

b∈APC
a

xab tC (a,b) ∀a ∈ A,b ∈ APC
a ,

(3.45)

ca ≥ M−1c t
a ∀a ∈ A, (3.46)

(3.47)
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c s
a ≤ Pt +∆+M(1−αat ) ∀a ∈ A, t ∈ P, (3.48)

c s
a ≥ Pt +∆−Mαat ∀a ∈ A, t ∈ P, (3.49)

c s
a + c t

a +M(1−βat ) ≥ Pt ∀a ∈ A, t ∈ P, (3.50)

c s
a + c t

a −Mβat ≤ Pt ∀a ∈ A, t ∈ P, (3.51)

γat ≥αat +βat −1 ∀a ∈ A, t ∈ P, (3.52)

γat ≤αat ∀a ∈ A, t ∈ P, (3.53)

γat ≤βat ∀a ∈ A, t ∈ P, (3.54)

P c
∑

a∈A
γat ≤Ct ∀t ∈ P. (3.55)

The objective (3.28) is to maximize the total distance towed by the ETV fleet. Con-
straints (3.29) and (3.31) ensure that every aircraft a that is towed by an ETV, is either
the first (last) to be towed by an ETV, or has another aircraft b preceding (following) it.
Constraints (3.30) and (3.32) ensure that any aircraft b cannot precede (follow) aircraft
a, if b ∉ Ain

a (Aout
a ). Constraints (3.33) and (3.34) set the state of charge of all vehicles at

the start of their first towing task. Constraints (3.35)-(3.38) set the new state of charge
of a vehicle after towing aircraft a. Constraints (3.35)-(3.36) concern towing an aircraft
without charging afterwards and Constraints (3.37)-(3.38) concern towing and charging.
Constraint (3.39) enforces the fleet size of NV . Constraints (3.40)-(3.41) define the ar-
tificial flights in Ae . Constraints (3.42)-(3.43) set the earliest time for a charging period
to start and the latest time for it to end. Constraints (3.44)-(3.45) set the bounds for the
charging time, based on the minimum charging time tC

min and the maximum possible
charging time for the aircraft a and b. Constraint (3.46) sets the charging indicator ca to
1 if the charging time c t

a is strictly positive. Finally, Constraints (3.48)-(3.54) keep track
of the time steps during which an ETV is being charged, so that this can be limited to the
electricity capacity for ETVs at time step t with Constraint (3.55).

The MILP is solved using Gurobi. Recall that the goal is to create an ETV-to-aircraft
schedule for a full day. The number of constraints in the model is bounded by 9N F +
6N F 2 +2NV +7N F N T +N T . The MILP model is expected to have a large runtime. An
effective way to reduce the number of constraints is to adapt Equations (3.14)-(3.15) in
such a way that an aircraft b that is scheduled more than e.g. a few hours later than air-
craft a will not appear in Aout

a . Nevertheless, the number of constraints grows roughly
quadratically with the number of flights N F . Solving the MILP model is feasible for time
periods P of a few hours, but becomes intractable for periods longer than 8 hours. An-
other approach is necessary, and such an approach will be introduced in the following
section.

3.5. AN ALNS APPROACH TO ELECTRICITY CAPACITATED ETV
SCHEDULING

The MILP formulation introduced in Section 3.4 is not able to provide a solution for
problem instances of a full day. To find such solutions, we present here a heuristics-
based approach to the ETV-to-aircraft assignment problem. The approach is based on
the framework of Adaptive Large Neighborhood Search (ALNS), originally developed by
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Ropke and Pisinger [135].
ALNS algorithms work by removing a relatively large part of a given solution, and

then building a new solution with new values. Which part of the solution is removed or
inserted is governed by several removal and insertion heuristics, respectively. It is de-
sirable to explore new solutions without getting stuck in local minima. The local search
framework ensures that not all candidate solutions obtained are accepted.

3.5.1. ADAPTING ALNS FOR ETV TO AIRCRAFT SCHEDULING
The ALNS algorithm cannot be used directly for the ETV-to-aircraft scheduling problem.
Some alterations and definitions are necessary, and are discussed in this section.

First, we define a solution s, representing a towing schedule, as a vector of the deci-
sion values introduced in Sec (3.2). The objective value associated with s is denoted as
f (s), and calculated as in Equation (3.28). Algorithm (1) shows the procedure followed
in the ALNS algorithm, adapted from Ropke and Pisinger [135] and Pisinger and Ropke
[128]. In this section, the steps in the algorithm are clarified.

Algorithm 1 Adaptive Large Neighborhood Search for ETV-to-aircraft assignment

Require: si initial solution (Sec (3.5.1)), N−, N+ number of removal and insertion
heuristics, σ1,σ2,σ3 score values, N seg segment length.

1: sb = sl = si , sall = {sl }.
2: π̄− =π− = [1/N−, ...,1/N−], π̄+ =π+ = [1/N+, ...,1/N+].
3: for k = 1,2, ..., Nit do
4: Select removal and insertion heuristic h+

i and h−
j using π+ and π− (Sec (3.5.2)).

5: sc = h+
i (h−

j (sl ))

6: if f (sc ) > f (sb) then
7: sb = sl = sc . sall = sall ∪ sl .
8: π̄+

i +=σ1, π̄−
j +=σ1

9: else if sc not in sall and f (sc ) > f (sl ) then
10: sl = sc . sall = sall ∪ sl .
11: π̄+

i +=σ2, π̄−
j +=σ2

12: else if sc not in sall and sc is accepted (Sec (3.5.3)) then
13: sl = sc . sall = sall ∪ sl .
14: π̄+

i +=σ3, π̄−
j +=σ3

15: end if
16: if mod(k, N seg) = 0 then
17: Calculate π− and π+ (Sec 3.5.2)
18: end if
19: end for

FEASIBLE STEPS

The removal and insertion heuristics select certain aircraft from a given solution s to
remove or insert. The aircraft are then removed or inserted sequentially, if the result-
ing solution is feasible. Not all aircraft can be readily removed from the solution or
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added to it, without breaking some of the Constraints (3.29)-(3.55), most pertinently
Constraints (3.41), (3.44), and (3.55). This means that when applying a heuristic, it should
be known for every aircraft whether it may or may not be removed or inserted from the
current schedule. We view the situation after removing or inserting any single aircraft as
a new solution step. These steps are not stored during the ALNS algorithm. While apply-
ing the removal and insertion requests from the heuristic, the algorithm first calculates
whether it is allowed for an aircraft to be inserted or removed from the current solution
step, and if it is not, the aircraft is skipped. If it is allowed, the insertion or removal is
executed, and the relevant decision variables are changed. At any point during the algo-
rithm, the set of aircraft that are allowed to be removed is denoted as Arem, and the set of
aircraft that are allowed to be inserted into the schedule of vehicle v is denoted as Ains

v .
When an aircraft a is added to the towing schedule of an ETV, the total energy re-

quired by that ETV will increase. To make sure that Constraint (3.41) is respected, the
vehicle should recharge longer. An existing charging period is selected and lengthened
where allowed, with respect to Constraint (3.55). If there is no charging period that can
be lengthened, the addition of a is not allowed. Similarly, when removing an aircraft a, a
charging period should be shortened. In that case it is important that Constraint (3.44)
is still respected for each charging period.

MOVING CHARGING PERIODS

Note that the removal and insertion heuristics can only lengthen and shorten existing
charging periods. It is not possible to move a charge period within the time period, or
split or merge charging periods. For this reason, the model might not be able to reach
all feasible (and possibly better) solutions. To make this possible, the model includes a
procedure to change charging periods within schedules.

For every pair of aircraft that are towed consecutively, we name the period of time
in between the task gap. A task gap can contain a charging period. When (a part of) a
charging period is moved from one task gap to another, the former is named the donator
and the latter the receiver. For every existing charging period, we calculate the amount
of charge that may be moved to a different task gap. This amount is named the avail-
able charge. Here we take into account the minimum charging time tC

min of both the
receiver and donator task gaps, as well as the bounds for the state of charge qa of the
vehicle at its arrival at any of the aircraft it will tow. From all existing charging periods
with positive available charge, one is selected randomly. The available charge is moved
from the donator to the receiver by changing the associated decision variables. If none
of the charging periods have positive available charge, no changes are made. In every
ALNS iteration k, this procedure is performed ⌈0.2NV ⌉ times between using the removal
and insertion heuristic and then once more after using the insertion heuristic. It was
found that increasing the occurrence of the moving charge procedure did not improve
the ALNS solution finding process.

Another way of changing the charging periods would be to introduce charging sta-
tion removal and insertion heuristics, in addition to the current aircraft removal and
insertion heuristics. Such an approach was taken by Keskin and Çatay [87]. In this work,
the above method was selected, as it allows the moving of charging periods during the
removal and insertion of aircraft, where more options for charge movement are possible,
rather than only in between applying heuristics.
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INITIAL SOLUTION

Before the algorithm starts using the removal and insertion heuristics, it needs an initial
solution si . The initial solution should be a feasible solution to Problem (3.28)-(3.55),
and it should be possible to move to other solutions by adding and removing aircraft and
changing charging periods. Note that e.g. the solution with only the artificial aircraft (Ae )
and no charging is feasible, but other solutions are unreachable from this solution due
to Constraint (3.44).

Given the capacity profile for ETVs, period P and flight schedule, a valid initial solu-
tion can readily be constructed:

• For every vehicle, assign several aircraft that need to be towed near the start of the
time period P , and together need more than the minimum charging time tC

min to
be replenished.

• For every vehicle, calculate the needed charging time to replenish the battery. Set
this charging in such a place that Constraint (3.55) is respected: start by putting
charging periods for each vehicle near the end of the time period P , moving back-
wards in time when required by this constraint.

The initial solution thus constructed can serve as input for the removal and insertion
heuristics, which will be introduced next.

3.5.2. LOCAL SEARCH HEURISTICS
The choice of local search heuristics for removal and insertion is an essential part of
the ALNS algorithm. Selecting a diverse set of heuristics contributes to the ability of the
algorithm to explore the solution space and to escape local minima [128]. The heuris-
tics in the set are being used throughout the run of the algorithm, and are selected with
weighted random selection.

HEURISTIC WEIGHTS

The weight updates are performed as described by Pisinger and Ropke [128]. The total
number of ALNS iterations is divided into equally sized segments. Two sets of scores
exist: the segment score π̄−

i , j and the overall score π−
i , j for removal heuristic i and itera-

tion segment j . Similarly, we have scores π̄+
i , j and π+

i , j for the insertion heuristics. The

segment score has an initial value of 0 at the beginning of every segment. During the
segment, the segment score is increased with scores that depend on the quality of the
candidate solution sc :

• The candidate solution is a new best solution: increase segment score by σ1

• The candidate solution has a larger objective function than the latest solution sl :
increase segment score by σ2

• The candidate solution has a smaller objective function than the latest solution
but is accepted by the local search framework: increase segment score by σ3

• The candidate solution is not accepted by the local search framework: the segment
scores remain the same.
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Here σ1 ≥σ2 ≥σ3. At the end of segment j the overall scores are calculated with:

π−
i , j+1 = ρ

π̄−
i , j

a−
i , j

+ (1−ρ)π−
i , j , (3.56)

with ρ the reaction factor and a−
i , j the amount of times removal heuristic i has been

selected in segment j . The overall insertion scores are calculated analogously. Finally,
the overall scores π− and π+ are normalized, and the result forms the updated heuristic
weights.

REMOVAL HEURISTICS

In previous research regarding vehicle routing problems and scheduling problems, many
removal and insertion heuristics have been developed. Some heuristics used in this work
are taken or adapted from existing literature. In a typical application of ALNS for routing
and scheduling problems, tasks can be inserted at other times and in different orders
compared to previous solution. By contrast, in our application, the time of a towing
tasks always remains the same. In addition, removal and insertion is complicated by re-
strictions regarding the state of charge and allowed charging moments of vehicles. This
means that, in contrast to works such as Frey et al. [54], we opted to disallow moving
through infeasible regions of the solution space. Repairing an infeasible solution is ex-
pected to be difficult to automate and to be costly in computation time, given the many
constraints in this problem.

We use six removal heuristics:

1. Random removal (from Ropke and Pisinger [135]). Select N rem aircraft randomly
from the removable aircraft Arem and remove these from the schedule.

2. Vehicle removal. For every ETV, select one aircraft that is currently in its towing
schedule and in Arem, and remove that aircraft from the schedule.

3. Cluster removal (from Pisinger and Ropke [128]). Consider the ETV that tows the
fewest aircraft during the schedule from all ETV in the fleet. Remove as many air-
craft as possible from the schedule of that vehicle. This will leave a few aircraft and
one charging period with charging time near the minimum tC

min. The idea of this
heuristic is that if the schedule for an ETV is stuck in a suboptimal position, one
can take out everything for that ETV and start over.

4. Time-oriented removal (from Pisinger and Ropke [128]). Select randomly a time
period of one hour in P . Remove as many aircraft as possible for which the towing
period lies within this interval. This heuristic allows for a reorganization of the
schedule around a time period, which can help resolve possible charging capacity
conflicts in that period.

5. Worst removal (after Ropke and Pisinger [135]). For every aircraft in the schedule
and in Arem: calculate the amount of time in the task gap between the aircraft and
its successor, and between its predecessor and itself (where applicable). Note that
this is the time tC (a,b) defined in Equation(3.13). Then select the aircraft with the
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largest average task gap length for removal. Repeat until N rem aircraft have been
removed. This heuristic is based on the notion that aircraft with more task gap
length before and after their scheduled towing time can easier be assigned a more
efficient place in the schedule.

6. Time-based worst removal. For every aircraft in the schedule and in Arem, calcu-
late the travelling energy q travel saved by removing the aircraft from the schedule.
For example, when towing an aircraft b after towing aircraft a and before towing
aircraft c:

q travel
b = qS (a,b)+qS (b,c)−qS (a,c). (3.57)

Then select the aircraft with the largest saved travelling energy for removal. Repeat
until N rem aircraft have been removed. This heuristic aims to optimize the route
of an ETV and avoid large detours.

INSERTION HEURISTICS

We use four insertion heuristics. For all insertion heuristics, the procedure described
below is repeated until no more aircraft can be inserted. All selected insertion heuristics
are of the parallel category; they build on the routes of the entire problem at the same
time, not one ETV at once.

1. Random insertion (from Ropke and Pisinger [135]). Consider all aircraft and vehi-
cle combinations in the insertable aircraft for vehicle v (Ains

v ). Select one randomly
and insert the aircraft into the schedule of that vehicle.

2. Greedy towing distance insertion. Consider the vehicle vg that has the most total

task gap length in its schedule. Let Spair
v be the set of aircraft pairs towed consecu-

tively by vehicle v . Then vg is selected as in Eq (3.59).

Spair
v = {{a,b} ∈ [A× A] : a is towed by v ∧xab = 1} ∀v ∈V (3.58)

vg = max
v∈V

∑
{a,b}∈Spair

v

tC (a,b) (3.59)

Consider all aircraft in Ains
vg . Insert the aircraft with the largest towing distance.

3. Greedy tight insertion. Iterate through all vehicles in the fleet. Given vehicle v ,

consider all aircraft in Ains
v . Insert the aircraft for which the task gap length tC (a,b)

between its predecessor and itself or between itself and its successor is minimized.
The goal is to put aircraft as close together as possible in the towing schedule of an
ETV, so that more aircraft might be added to the schedule. This heuristic is the
opposite of removal heuristic 5.

4. Time-based best insertion. Iterate through all vehicles in the fleet. Given vehicle
v , consider all aircraft in Ains

v , and calculate the travelling energy needed to insert
the aircraft into the schedule, as for the time-based worst removal heuristic (nr. 6).
Then select the aircraft with the smallest needed travelling energy for insertion.
Like its counterpart in the removal heuristics, this heuristic aims to optimize the
route of an ETV by inserting aircraft that lead to the smallest detours.
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Note that for all removal and insertion heuristics, removing/inserting an aircraft will
only be performed if it does not result in an infeasible solution (see also Sec 3.5.1). Fur-
thermore, aircraft in Ae are never considered for removal/insertion, as they are always in
the schedule.

3.5.3. LOCAL SEARCH FRAMEWORK
The local search framework is the mechanism that decides whether a candidate solution
sc is accepted or rejected. After applying a removal and insertion heuristic the candidate
solution is checked using Simulated Annealing and Tabu Search.

Simulated Annealing [91] is a method that aims to guide the local search towards the
global optimum. At the start of the search, it allows for more exploration, while near the
end of the search, exploration is restricted, and improvement of the objective value is
increasingly required for a solution to be accepted.

During the search, Simulated Annealing makes use of the temperature parameter T .
At the beginning, the temperature has value T = T st. At every iteration of the ALNS algo-
rithm, the temperature is decreased as T := T c, with 0 < c < 1 the cooling rate. To set the
value of T st, the method uses the start temperature control parameter w . At the start of
the algorithm, a candidate solution sc may be w% worse than the latest solution sl to be
accepted with probability 0.5. As the algorithm progresses, the acceptance probability
for a given T and w decreases, following Equation (3.60):

paccept = e−( f (sl )− f (sc ))/ f (sl )/T (3.60)

Setting c and w correctly for a given problem instance requires trial and error. Model
parameters that have a large influence on the optimal values for c and w are the length
of the time period P , the fleet size NV and the number of flights N F .

In addition to the check performed by Simulated Annealing, we make sure that the
candidate solution sc has not been accepted before, i.e. we incorporate Tabu Search [56].

3.6. RESULTS
In this section results are presented that are obtained by applying the models intro-
duced in Sec 3.4 and 3.5 to historical flight schedules at Amsterdam Airport Schiphol.
The schedules are obtained from the Schiphol Flight API within the Schiphol Developer
Center [147]. For each flight, the schedules contain the gate number and scheduled and
actual arrival/departure times. The runway for each flight is found from runway use data
[101]. A general overview of parameters contained in the models is provided in Table 3.1.
The values indicated in the table are the standard values for our approach, and are used
unless otherwise indicated.
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Table 3.1: Parameters used in the ETV-to-aircraft scheduling models and their standard values.

Symbol Name Value Unit Source
ETV properties

P c Charging rate 100 kW [124]
P X Towing power 222 kW [193]
P S Driving power 20.5 kW [193]
Q Battery capacity 400 kWh [124]
v s Speed on service roads 30 km/h [143, 116]
v x Speed on taxiways 42 km/h [157]
t c Connecting/Disconnecting time 3.0 min [144]

Airport infrastructure
tsep Separation time 20 s [193]
tC

min Minimum charging time 30 min
∆ Time step 10 min

Ncs Number of charging stations 3 -
ALNS algorithm

N it Number of ALNS iterations 1000 -
N seg Nr of iterations in ALNS segment 10 -

N rem Nr of aircraft removed in heuristic NV -
Simulated Annealing

σ1 Global solution reward 2 -
σ2 Previous solution reward 0.6 -
σ3 Accepted solution reward 0.2 -
ρ Reaction factor 0.25 -

w Start temperature control parameter 1.05 -
c Cooling rate 0.997 -

3.6.1. MODEL COMPARISON WITH SMALL SCALE PROBLEM INSTANCES
In order to illustrate the performance of the MILP and ALNS models, several problem
instances have been defined, summarized in Table 3.2. All instances refer to the flight
schedule of 27-12-2021 at Amsterdam Airport Schiphol. The capacity profile for each in-
stance in Table 3.2 is given by: 100% capacity during 04:00-06:00 and 23:00-04:00, 200 kW
capacity elsewhere. Parameters not appearing in this table have the values as indicated
in Table 3.1. The values of N it, c and w have been manually tuned for each instance to
obtain the best performance.
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(a) An optimal schedule with 40 aircraft generated by the MILP model.
Total towing distance 200.2 km, CO2 emissions saved 21.9 ton, and total charging energy 1.16 MWh.

(b) A schedule with 45 aircraft generated using the ALNS algorithm for 4000 steps.
Total towing distance 191.2 km, CO2 emissions saved 20.9 ton, and total charging energy 1.07 MWh.

Figure 3.2: ETV-to-aircraft schedules generated using the MILP model and ALNS algorithm, for instance 2 in
Table 3.2. The ALNS algorithm attains a 4.5% gap compared to the MILP solution for this run.

Table 3.2: Parameter values for problem instances ran with the models: time period, fleet size, number of
aircraft, number of iterations, cooling rate, start temperature control parameter and minimum charging time.
Times indicated are on 27th (to 28th) of December 2021.

Instance P NV N F N it c w tC
min

1 08:00-14:00 4 49 2500 1.10 0.9993 20
2 18:00-04:00 4 57 4000 1.25 0.9985 30
3 04:00-04:00 2 80 4000 1.25 0.9980 30
4 04:00-04:00 4 138 4500 1.25 0.9985 30
5 04:00-04:00 6 193 3500 1.25 0.9985 30

Figure 3.2 shows a side-by-side comparison of example results for the ALNS and
MILP models, for a run of instance 2. These schedules show for each ETV when it is
towing an aircraft, travelling along service roads, connecting/disconnecting to/from an
aircraft, or charging at a charging station. For this instance, 40 (out of 57 possible) air-
craft are towed by 4 ETVs in the optimal solution. In the solution created by ALNS, more
aircraft are towed, but the total towing distance, and therefore the emission savings, are
lower. By optimizing for total towing distance, the models are incentivized to schedule
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towing tasks with longer towing distance, rather than as many short tasks as possible.
The ALNS solution shown is the best solution found after 4000 iterations. The selec-

tion probability at a certain iteration for each removal or insertion heuristic is a mea-
sure for its effectiveness in improving the solution during the previous iterations. Fig-
ure 3.3 shows the selection probabilities of all removal and insertion heuristics, listed in
Section 3.5.2, for twenty runs of problem instance 2. Observing the average selection
probabilities provides insight in the usefulness of each heuristic. For example, random
removal and insertion (nrs. 1) perform well, despite their simple nature. Greedy in-
sertion (nr. 2) also performs well, especially for schedules with larger fleet size. This
likely happens because it pushes to insert the tasks with the larger towing distance. On
the other hand, time-based removal (nr. 6) and time-based insertion (nr. 4) perform
worst. On many occasions, the selection probability of time-based removal converges
towards zero. The average towing distance of towing tasks added by time-based insertion
is the smallest of all insertion heuristics. Similarly, the average towing distance of towing
tasks removed by time-based removal is the largest of all removal heuristics. Rather than
achieving their goal of minimizing detours in the ETV route, the heuristics seem to avoid
longer towing tasks. This is because a longer towing task is more likely to constitute a
large detour for an ETV than a shorter towing task.

We now examine the performance of the MILP and ALNS models for all instances
introduced in Table 3.2. Note that the number of flights N F indicated in Table 3.2 is
not the total number of flights passing through the airport during the time period P .
The number of flights eligible for towing has been reduced to accommodate the MILP
model: with a smaller N F value, the solution time is greatly reduced, since fewer deci-
sion variables and constraints are generated (see Sec 3.4). In addition, if the amount of
scheduled aircraft in an optimal solution is close to the number of total available flights,
the scheduling problem becomes easier than with a larger total of available flights, due
to combinatorics. These problem instances allow us to compare both models equally.
Nevertheless, the MILP model does not find the optimal solution for instance 3-5. For
comparison with the ALNS model, the best incumbent solution and best bound are used.

Table 3.3 shows the objective values (total towing distance of the schedule) obtained
with the MILP and ALNS models. For the MILP model, the optimal solution, best in-
cumbent solution and best bound are indicated where applicable. The runtime for the
instances without an optimal solution indicates the time the optimization process was
continued for, not the time at which the best incumbent solution was found. For the
ALNS model, 20 runs were performed for each problem instance. The best solution, the
mean best solution (average of the best solutions of all runs) and the gap of the best
ALNS solution with respect to the MILP solution (optimal or best incumbent) are given.
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Figure 3.3: The evolution of selection probabilities for all heuristics, for 20 runs with 2500 steps of the schedul-
ing problem for 18:00-04:00 on 27-12-2021. The average is indicated by the blue line.
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Table 3.3: Total towed distance values and runtimes for solutions obtained by the MILP and ALNS models,
when applied to the problem instances introduced in Table 3.2.

MILP
Instance Opt. sol. Best sol. Best bound Runtime
Unit [km] [km] [km] [min]
1 141.3 - - 1.2
2 200.2 - - 0.1
3 - 265.0 275.2 190
4 - 508.2 527.0 188
5 - 712.7 719.1 241

ALNS
Instance Best sol. Mean best sol. Gap w.r.t MILP Runtime
Unit [km] [km] [%] [min]
1 129.8 123.0 8.1 1.5
2 198.8 188.3 0.7 2.6
3 247.8 243.7 6.5 7.5
4 496.8 479.2 2.2 17
5 688.0 674.8 3.5 25

In addition, Figure 3.4 shows graphs of convergence for the 20 runs with the ALNS
model for all five instances. The average and the best run are highlighted, as well as the
best result for every run. The convergence is illustrated as a gap value relative to the MILP
solution (either the optimal or best incumbent). For several of the instances in the figure
it seems using more iterations than shown would improve the solution further. However,
this is not the case, since in fact many rejected solutions are produced between and after
the shown accepted solutions, which are not included in the figure.

Table 3.3 and Figure 3.4 show that when the period of interest P and number of flights
N F are made small enough, the MILP model finds the optimal solution fast, and is supe-
rior to the ALNS model. However, when the period of interest P comprises a full day, and
the ETV fleet size NV starts to (slightly) increase, the MILP model is unable to find the
optimal solution within several hours. The best solution found through the ALNS model
is close to the best incumbent solution of the MILP model. These results show that for a
time frame of more than a few hours, the ALNS provides results of quality close to that
of the MILP model, in a much shorter time. Note that creating a schedule with the ALNS
model for any of the instances 1-5 with all aircraft that pass through the airport during
their respective time period P (rather than only the selection now used) will not increase
the runtime.

3.6.2. THE IMPACT OF THE ELECTRICITY CAPACITY AT THE AIRPORT ON THE

ETV TOWING SCHEDULES
The variation of electricity capacity throughout a day of operation directly influences
the ETVs’ ability to recharge. In a successful ETV schedule the ETVs charge in such a way
that they can perform towing tasks in as much of the time period P as possible, without
running out of charge during a time when little or no charging is allowed. In other words,
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(a) Convergence for 08:00-14:00 on 27-12-2021, for 4 ETVs (b) Convergence for 18:00-04:00 on 27-12-2021, for 4 ETVs.

(c) Convergence for 04:00-04:00 on 27-12-2021, for 2 ETVs.

(d) Convergence for 04:00-04:00 on 27-12-2021, for 4 ETVs. (e) Convergence for 04:00-04:00 on 27-12-2021, for 6 ETVs.

Figure 3.4: Convergence of ALNS algorithm applied to various problem instances. The run attaining the largest
objective value is indicated in blue, the average is indicated in red. The best result of every run is indicated by
a dot.
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the ETV utilization is high. We aim to investigate the influence of the electricity capacity
profile for ETVs on the schedules generated by the model.

The ETV capacity profiles are given by:
Capacity profile A: night capacity. 0% capacity during 04:00-23:00 and 100% capacity
during 23:00-04:00.
Capacity profile B: overall low capacity. 40% capacity during 04:00-04:00.
Capacity profile C: no capacity during rush hour. 0% capacity during 07:00-10:00 and
16:00-19:00, 40% capacity during 10:00-16:00 and 19:00-23:00 and 100% capacity during
04:00-07:00 and 23:00-04:00.
Capacity profile D: low capacity during day. 0% capacity during 06:00-23:00 and 100%
capacity during 04:00-06:00 and 23:00-04:00.
Capacity profile E: full capacity. 100% capacity during 04:00-04:00.

The profiles represent possible charging capacity situations at the airport. Note that
larger charging capacity for ETV charging implies smaller charging capacity for the other
processes at the airport. For example, in profile C, no capacity during rush hour implies
that all capacity has been taken by other processes.

Using the ALNS model, ETV schedules have been created for each of these capacity
profiles, and for several fleet sizes. In all cases, the time period P is given by a full day
(between 04:00 and 04:00), in which 955 aircraft movements are planned. Figure 3.5
provides a visualization of the five capacity profiles considered, for a fleet size of 10 ETVs.
In addition, the electricity demand from this fleet for a scheduling solution obtained with
ALNS is shown. Note that P c = 100 kW, so that every 100 kW on the y-axis translates to
one charging ETV at the time given on the x-axis.

In addition, Figure 3.6a shows an overview of objective values obtained when cre-
ating ETV schedules for fleet sizes that are representative of an airport aiming to fully
implement electric taxiing. For each combination of the capacity profiles A-E and fleet
size value in {5,10,20,30}, a boxplot is shown, which summarizes the objective values of
five runs. Average runtimes for 1000 iterations of the ALNS algorithm are given by 45.1,
64.3, 125 and 199 min for fleet sizes 5, 10, 20 and 30 ETVs, respectively.

By examining Figure 3.5 and Figure 3.6a, as well as the schedules generated by all
runs that have been summarised in Figure 3.6a, we draw conclusions regarding the ETV
electricity capacity profiles.

• We see that for every fleet size considered, only allowing night charging leads to an
average decrease in total towed distance of 46% compared to the best performing
profile, profile E. This shows that an ETV would need almost twice the current
battery capacity to keep towing aircraft for the full day.

• For the second charging profile, we see that the limited capacity of 40% is used to
the fullest from roughly 10:00 until the end at 04:00. For several ETVs the utilization
time is reduced, because the ETV runs out of charge and cannot charge earlier due
to the decreased capacity. The average decrease in objective value is 13%.

• The third charging profile simulates a situation where little or no electricity ca-
pacity can be reserved for charging ETVs during busy periods. The aircraft in the
schedule between 16:00-19:00 are atypical: for small fleet size (5 or 10), aircraft
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(a) Energy demand for capacity profile A: night capacity. (b) Energy demand for capacity profile B: overall low capacity.

(c) Energy demand for capacity profile C: no capacity during
rush hour.

(d) Energy demand for capacity profile D: low capacity
during day. (e) Energy demand for capacity profile E: full capacity.

Figure 3.5: The electrical power available during the day, for the five energy profiles considered. For every
profile, the energy demand per time step associated with an ETV schedule generated using the ALNS model is
plotted. The fleet size is ten ETVs, and the time period is 04:00-04:00 on 27-12-2021.
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with very short towing distance are scheduled during this time. For the larger fleet
sizes, the ETV utilization is low during this period, i.e. the schedule is more empty.
This is because there are not enough tasks with small towing distance for all ETVs.

• Charging profile D is similar to profile B. The main difference is that night charging
(23:00-04:00) allows the ETVs to fully recharge for the next day. In the schedule for
profile B most ETVs have one very long charging period during the day, rather than
at night. Comparing profiles B and D in Figure 3.6a confirms that allowing night
charging leads to a substantial difference in objective value (on average 10% of the
maximum objective value per fleet size).

• Last, charging profile E allows charging for every vehicle at any time. The energy
demand that appears under these circumstances is as in Figure 3.5e: demand from
06:00-23:00 is roughly triangular shaped, with a peak between 15:00-17:00. Upon
examination of the optimized schedules, we find two types of ETVs in the sched-
ule: one with a long charging period near 15:00-17:00, that needs no other charging
before the night. The other type is charged for 3 or 4 shorter periods, spread out
during the day. Together this forms a triangular shaped demand.

In addition, it is interesting to investigate the marginal capacity benefit: the benefit
for an airport of providing one more charging position (i.e. increase hourly capacity by
P c kW) for the total towing time in the optimized ETV schedule. This benefit can be
weighed against the costs of a new charging position.

Figure 3.6b shows the results of applying the ALNS model with various equidistant
values of electricity capacity. The electricity capacity is assumed to be constant over the
entire day. Every newly added charging position contributes less to the objective value
than the previous one. The figure suggests that after 12 charging positions (in this case
60% of the fleet size), the improvement stagnates. The limit for the ETV fleet with the
current characteristics is roughly 2500 towed km (273 ton CO2). The same analysis can
be performed for different capacity profiles and fleet sizes.

3.6.3. IMPACT OF FAST CHARGING AND BATTERY SIZE ON ETV FLEET UTI-
LIZATION

Throughout the previous sections, the charging rate P c and battery capacity Q have re-
mained constant. The values chosen are considered realistic for application at the time
of writing. However, given their large influence on the ETV schedules resulting from the
models, it is instructive to consider (combinations of) other values of these parameters.

Table 3.4 shows the total towed distance obtained when varying the charging rate
and battery capacity. The average and standard deviation of 5 runs are shown for every
combination. The fleet size is 20 and the electricity capacity is given by profile D. The
average runtime is 134 min. Note that we assume constant towing and driving power P X

and P S . In actuality, increasing the battery capacity will increase these values, due to the
ETV becoming heavier.
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(a) Total towing distance for aircraft in schedules generated using the ALNS algorithm, for varying fleet size and different ETV
charging capacity profiles. Multiple runs for the same combination are grouped in boxplots. Coloured dots indicate the

average result.

(b) Total towing distance for aircraft in schedules generated using the ALNS algorithm, for various constant ETV charging
capacities. The fleet size is 20 ETVs.

Figure 3.6: Total towing distance in km (Equation(3.28)) of schedules generated with the ALNS algorithm, for
various model settings, during 04:00-04:00 on 27-12-2021.
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Table 3.4: Impact of fast charging and ETV battery capacity; charging rate P c ∈ {50,100,150,200} kW and bat-
tery capacity Q ∈ {200,400,600} kWh. The total towing distance in km (Equation(3.28)) obtained in schedules
created with the ALNS algorithm.

P c

50 kW 100 kW 150 kW 200 kW
200 kWh 1846.8±12.5 2183.0±36.9 2283.6±39.1 2407.4±26.5

Q 400 kWh 1942.1±20.5 2508.6±18.8 2608.8±21.3 2713.3±8.7
600 kWh 1940.9±29.6 2634.7±30.8 2731.0±77.6 2797.8±16.6

From the table we deduce that if the charging rate is as small as 50 kW, increasing the
battery size from 200 kWh will provide little benefits. At this charging rate, the utilization
time of the ETVs is up to 25% smaller than for charging rates of 100 kW and over. There,
the increase of objective value with increasing battery size is also considerably larger.
The generated schedules show that for P c = 50 kW the ETVs spend up to half the day
charging, and the ETVs rarely use more than 300 kWh of their battery.

We observe that at any battery capacity, increasing the charging rate leads to signifi-
cant increases in objective value. This is mainly because the necessary charging periods
during daytime can become shorter, leaving more time to tow more aircraft. The time
taken up by charging during the day is roughly inversely proportional to P c . Therefore,
the increases in objective value become smaller with each increase of P c . Note that the
electricity capacity does not grow with the charging rate; if the capacity is 800 kW, then 8
ETVs can charge when P c = 100 kW, and 4 ETVs can charge when P c = 200 kW.

For values in the top right of Table 3.4, an ETV is recharged the fastest; as fast as 1 h.
This makes the window for allowed charging periods rather small, since there is also a
minimum charging time of 30 min. Given an intermediate solution, the ALNS algorithm
may not find a legal move for charging periods when adding or removing aircraft. This
results in solutions where many ETVs tow far fewer aircraft than optimal. For a min-
imum charging time tC

min of 30 min the results for Q = 200 kWh and P c = 200 kW are
1771.6±136.5 km. A solution is to allow a smaller minimum charging time for this com-
bination, which is fitting for a situation with fast charging. The results in Table 3.4 for
this combination are obtained using tC

min = 20 min.
From the optimized schedules summarized in the table, and the observations above,

we can deduct a relation between the objective value and P c and Q. We observe:

• In almost all cases, the time available for night charging (00:00-04:00) is fully used,
unless a full charge takes less than 4h. Between 04:00 and 06:00 there are very few
flights and no charging.

• Any charging during the rest of the day (06:00-00:00) prevents ETVs from towing
aircraft. The sum of the time spent charging during the day and the time spent
towing aircraft should equal 18 hours.

• It is assumed that at any point in time, the supply of aircraft that can be towed
outstrips the towing potential of the ETV fleet size.

An approximation for the total towed distance, in the case where day charging is neces-
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sary, is then derived as follows:

t d = t d
C + t d

X

= qkmd X
tot −qnight

P c + t ETV
km d X

tot,
(3.61)

so that

d X
tot =

qnight

P c + t d

t ETV
km + qkm

P c

. (3.62)

Here t d is the total daytime available to the fleet in hours, i.e. t d = 18NV , t d
C and t d

X
are the total daytime spent charging and towing, respectively, qkm is the average energy
needed per km towing, d X

tot is the total towed distance in the schedule, qnight is the total
energy that can be charged during the night and t ETV

km is the average time spent by an ETV
towing an aircraft for one km.

These expressions are found as:

qnight = NV P c min{
Q

P c ,4}, (3.63)

qkm =
∑

a∈A q X (a)∑
a∈A d X

a
(3.64)

Last, t ETV
km is found by considering the runs forming Table 3.4, dividing the total time not

used for charging by the total towed distance.
In case no day charging is necessary, the expression (3.62) reduces to:

d X
tot =

t d

t ETV
km

. (3.65)

By using these formulae all values obtained experimentally in Table 3.4 and the val-
ues for profile D in Figure 3.6a are approximated to within 6%. The approximation
slightly overestimates the objective values for smaller values of Q, and slightly under-
estimates them for larger values of Q. A possible explanation is that there is a benefit
that comes with a larger Q, that is not factored in with this approximation: an ETV with
larger battery capacity will less often reach a SOC of 0, which would leave a time gap
without towing until its next charging opportunity.

The approximation given in Equations (3.61)-(3.65) can be further extended to allow
for variation in ETV capacity profile and towing power P X . It can also be altered to ad-
here to a different charging strategy, for example, if one would relax the restriction of
ending the day with full battery capacity. The model can be used by airport planners to
gauge the emission reductions associated with acquiring an ETV fleet with any values
of Q, P c or NV . For example, one can weigh the added costs of using very fast charg-
ing technology against the expected environmental benefits. With the current settings,
a fast charging system that provides 500 kW per charging point can provide another 7%
increase in towed distance for Q = 200 kWh. For larger Q this advantage shrinks. For
Q = 750 kWh night charging suffices from P c = 150 kW onwards, and very fast charging
becomes unnecessary. Eq (3.65) suggests a maximum objective value of 2849 km towed
distance (311 ton CO2 saved) for a fleet size of NV = 20 with only night charging.
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3.7. CONCLUSION
In this chapter, two models are proposed to create schedules for electric towing and
charging of a fleet of Electric Taxiing Vehicles (ETVs) on an airport. Both models aim
to maximize the total towed distance, given a flight schedule, an airport layout, an ETV
fleet size, an ETV energy spending and charging module, and an airport electricity ca-
pacity profile for charging ETVs. The resulting schedules define which ETV is charging
where and for how long, and which ETV is towing an aircraft, or travelling to and from a
task.

The first model is a Mixed Integer Linear Programming (MILP) model. An optimal
solution or near best bound is found within several hours for instances with small fleet
size and a scheduling time period of under ten hours. The goal is to find solutions for a
24 h period and fleet sizes of up to 30 vehicles. Therefore, the second model uses Adap-
tive Local Neighbourhood Search (ALNS), combined with Simulated Annealing and Tabu
Search. We have seen that this model can find solutions with an optimality gap of a few
percent for the smaller instances, and can solve the large instances required. Therefore,
we conclude that it is possible to pursue optimization of ETV-to-aircraft assignment for
a large fleet within a few hours, making the problem tractable. The heuristics introduced
to move between different solutions vary in performance: the best heuristics are random
removal/insertion, vehicle removal, cluster removal, and greedy insertion.

In order to investigate the effects of limited electricity capacity at the airport, the
ALNS model was applied to a full day of operations at Amsterdam Airport Schiphol, with
five different ETV electricity capacity profiles. For the battery and ETV properties as-
sumed in this work, it was found that charging at night (when there are no aircraft to
tow) is necessary to fulfill the potential of the ETV fleet, but not sufficient to tow all air-
craft. Having capacity during the day is therefore crucial to improve ETV utilization time.
The results show that even with only small intermittent periods of no charging, the best
solution will contain time periods with fewer or shorter tasks than can potentially be
scheduled. Last, when charging is allowed for any ETV at any time of day, the ETV daily
electricity demand generally forms a triangle shape, placing the largest demand on the
electricity network at 15:00-17:00.

The effects of airport investments in ETV battery capacity and fast charging tech-
nology on the environmental benefits of the ETV fleet have been explored. A relation
between the total towed distance and these parameters was derived by observations of
the results from the introduced models. It was found that charging slower than 100 kW
will reduce the total towed distance to well below the potential of the ETV fleet. Faster
charging will improve the towed distance by freeing time during the day to tow more
aircraft, but with diminishing returns. For battery capacities higher than 750 kWh, all
necessary charging can be done at night, and very fast charging becomes unnecessary.

The models introduced in this chapter can be applied to other airports and flight
schedules, with their own potential ETV electricity capacity profiles. The results can be
used to decide whether to implement electric taxiing at the airport, and if so, with how
many charging points and ETVs. Or, when such a system is already in place, to consider
the costs and benefits of increasing the fleet size, charging capacity or amount of charg-
ing locations.

Future work includes optimizing real-time operations of an airport with a fleet of
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ETVs, including disruptions such as flight delays and cancellations and ETV unavailabil-
ity. Such a continuous solution process would aim to maximize emission reduction and
robustness. It would constitute the next step in integrating ETV fleet scheduling opti-
mization into actual airport operations. Another upcoming research area is the develop-
ment of autonomous airport surface movement, including for ETVs.





4
FLEET SCHEDULING FOR ELECTRIC

TOWING OF AIRCRAFT WITH

DISRUPTION MANAGEMENT

In Chapter 3 models were developed to create assignments of Electric Taxiing Vehicles
(ETVs) to aircraft in advance of operation. When disruptions such as flight delays occur
during operation, an adapted assignment is required for efficient ETV movement. In this
chapter, a strategic assignment model such as those in Chapter 3 is defined. Furthermore,
a disrupted assignment model is introduced, with which an adaptive vehicle-to-aircraft
assignment is created. The disrupted model maximizes the number of towed aircraft and
minimizes the schedule changes for vehicle operators. A case study shows the efficacy of
the disrupted model in minimizing schedule changes, which does not come at the expense
of emission savings.

This chapter is based on the following research article:
Zoutendijk, M., Van Oosterom, S. J. & Mitici, M. (2023). "Electric Taxiing with Disruption Management: As-
signment of Electric Towing Vehicles to Aircraft" in AIAA AVIATION Forum 2023 [193].
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4.1. INTRODUCTION
The aviation industry has the ambition of achieving net-zero greenhouse gas emissions
before 2050 [49, 75]. An important part of total emissions is the ground-based emissions,
created by activities on and around airports. Aircraft taxiing produces 54% of emissions
related to the landing/take-off cycle [25], and is therefore a large contributor to ground-
based emissions. A promising method to reduce taxiing emissions is to introduce a fleet
of electric towing vehicles (ETVs) to airports, which tow the aircraft from gate to runway
and vice versa. For example, research has shown that the use of ETVs will reduce the
taxiing fuel use by roughly 80% [36, 145].

Implementing a fleet of ETVs on an airport brings about various challenges. In pre-
vious work, researchers have investigated the cost-effectiveness of ETVs [70, 170], their
effect on on-time performance [134, 88], and they have modelled the expected decrease
in fuel use, emissions and noise [63, 88, 65, 103].

In addition, there are operational challenges, such as the assignment of vehicles to
aircraft, the charging infrastructure and planning, the shared usage of airport roads, and
the robustness of schedules under disruptions.

Vehicle-to-aircraft assignments Several models have been developed to generate vehicle-
to-aircraft assignments for ETVs. For example, Baaren and Roling [16] and Soltani et al.
[160] created a Linear Programming (LP) model to select aircraft to be towed so that fuel
reduction was maximized. The former performed a sensitivity analysis on ETV fleet size,
while the latter included collision avoidance in their model. Ahmadi [2] created a com-
plex LP model which minimized not only fuel reduction, but also ground delay costs
and operating costs. Oosterom and Mitici [124] created a Mixed Integer Linear Program-
ming (MILP) model minimizing the ETV fleet size. In a different approach, Zaninotto
et al. [182] and Salihu, Lloyd, and Akgunduz [137] performed the vehicle-to-aircraft as-
signment at the same time as the vehicle and aircraft routing, by simulating all ground
movement and assigning the ETVs to aircraft that can reach them the first.

Energy module In order to obtain a realistic overview of airport surface movement in
the situation of electric taxiing, it is essential to include the energy usage and vehicle
recharging in the model. There are few studies which include airport surface movement
planning, electric taxiing, and an energy module. One example is Baaren and Roling [16],
who prescribe that every ETV is recharged to full capacity upon returning to the depot.
Second, Oosterom and Mitici [124] include three different charging strategies: night-
charging, fixed-time charging and partial charging. They conclude that partial charging
allows for the smallest ETV fleet size.

Disruption management After obtaining a model that takes into account all inputs
and requirements and using it to generate a valid schedule, the schedule must be ex-
ecuted. During actual operations, disruptions to the schedule can occur that require
airport planners to alter the schedule. We refer to this as disruption management. Ques-
tions pertaining to disruption management are:
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• To what extent can the original schedule be used to obtain the disrupted schedule?
What kind of changes to the schedules can be deployed?

• What metric is observed when changing the original schedule? What is the relation
of this metric with the metrics observed when creating the original schedule?

An example of an application of disruption management in the aerospace domain
is Lee, Marla, and Jacquillat [96]. The authors formulate a Stochastic Mixed Integer Pro-
gram to obtain a disrupted flight planning schedule for staggered time periods. The tools
available to change the schedule include flying altitude and speed, and aircraft swaps
and cancellations. Both real-time revealed disruptions and probabilistic forecasts of fu-
ture disruptions are inputs to the model. The proposed model reduces the disruption
recovery costs by 1 to 4% compared to a baseline flight planning model. In later work,
the authors show that using probabilistic forecasts reduces expected recovery costs by 1
to 2% more than using only real-time disruptions [97].

To the best of our knowledge, there is no disruption management approach for as-
signment of electric towing vehicles to aircraft, or for general airport surface movement
planning. In this chapter we propose two MILP models specifically designed to facilitate
disruption management for ETV-to-aircraft assignment at an operational level. The first
is a strategic model, which is used to obtain an initial vehicle-to-aircraft assignment for
a four hour time window. The second is a disrupted model, which is used to obtain a dis-
rupted assignment, taking into account the effects of imminent flight delays, and mini-
mizing the schedule changes from the perspective of ETV operators. This model is run at
the start of staggered time periods. Airport layout information and flight schedules are
used to obtain the routes for the aircraft and vehicles, after which they are used to gener-
ate vehicle-to-aircraft assignments. Realistic parameters and conditions are taken into
account, such as the prevention of conflicts in routing. Furthermore, the energy usage
and vehicle charging are integrated in the model.

The main contributions of this chapter are:

1. We propose a strategic and a disrupted MILP model for vehicle-to-aircraft assign-
ment which facilitate disruption management throughout a day of operations.

2. We include an energy usage and charging module, conflict and collision avoid-
ance, and realistic parameters.

3. We apply our models to a case study at a large hub airport and investigate the effect
of varying model parameters and inputs.

The remainder of this chapter is organized as follows: in Section 4.2 the framework of
and inputs to the strategic model for vehicle-to-aircraft assignment are introduced, in-
cluding the aircraft and vehicle path planning and the ETV energy module. Then, the
MILP formulation is stated and explained. In Section 4.3 the disrupted MILP model
is formulated and its usage is illustrated. In Section 4.4 the models introduced in Sec-
tion 4.2 and 4.3 are applied to Amsterdam Airport Schiphol to obtain series of vehicle-
to-aircraft assignments. In Section 4.5 sensitivity analysis is performed on the models by
varying parameters and inputs. Finally, Section 4.6 summarizes the findings and recom-
mendations for future work.
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4.2. STRATEGIC MANAGEMENT OF ELECTRIC TAXIING VEHI-
CLES TOWING AIRCRAFT

In this section we propose a model that generates an assignment of departing and arriv-
ing aircraft to a fleet of ETVs. These ETVs electrically tow the aircraft assigned to them,
and are charged at charging stations when required. The model is an adaptation of the
MILP model introduced in Chapter 3. Note that a glossary with terms and notation used
in this and other chapters can be found at the end of the dissertation.

4.2.1. AIRPORT LAYOUT
An airport is represented by two graphs, with some shared nodes and edges: the taxiway
graph GX = (NX ,EX ) and the service road graph GS = (NS ,ES ). All edges in ES are two-
directional, and some edges in EX are one-directional.

In this chapter Amsterdam Airport Schiphol (EHAM) will be used as the reference
airport. Figure 4.1a shows a technical map of this airport, and Figure 4.1b shows the
graph representation used for the models presented in this chapter. It highlights the
taxiways and service roads used to reach the five considered runways. The many gates
of the airport are grouped into several gate nodes. The runways are assumed to use
only one exit/entry point, and at this point the runway node is located. Furthermore,
nodes n5,n108 and n110 are designated as charging stations. Formally, the set of charging
stations Scs = {ncs,i : i ∈ {1, ..., Ncs}} = {n5,n108,n110} and its total number is Ncs = 3. Last,
node n5 also functions as the ETV depot ndp.

Taxiing aircraft and ETVs towing aircraft are allowed to drive on the taxiways, where
a maximum speed of vx holds. ETVs that are not towing aircraft are allowed to drive on
the service roads, where a maximum speed of vs holds. Although not all airports have a
network of service roads available, it is assumed in this work that airports that implement
a fleet of ETVs will also implement a service road network. This is because it would be
very difficult to route both the aircraft and the travelling ETVs along the taxiways, while
retaining the same throughput of flights [146, 180].

We define the distance metrics dX (m,n) and dS (m,n) for GX and GS , respectively.
These distances are the shortest distances within the graphs, which are calculated using
Dijkstra’s algorithm.

4.2.2. AIRCRAFT PATH PLANNING
Before we perform vehicle-to-aircraft assignment, we create the routes the aircraft have
to traverse. The assignment is made for a certain time period P = [t s , t e ] on a certain day.
The aircraft a that arrive or depart at the reference airport within P form the set A. The
number of aircraft within A is denoted as N F .

Given the flight schedule for that day, we collect the scheduled times of arrival or
departure of all aircraft within P . More specifically, the scheduled landing time (SLDT)
of an arriving flight or the scheduled off-block time (SOBT) of a departing flight is used,
since that is the moment a towing vehicle can start to interact with the aircraft. We will
refer to this time as the pick-up time of aircraft a: t p

a . The time an ETV has finished
towing the aircraft is referred to as the drop-off time t d

a . Furthermore, the pick-up and
drop-off locations np

a and nd
a are obtained from the flight schedule and airport layout.
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(a) Technical map, displaying all roads, runways, gates
and buildings [11].

(b) Graph representation of the airport, GX ∪GS , including the runways, gates, taxiways, service roads and charging
stations.

Figure 4.1: Maps of Amsterdam Airport Schiphol.
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For a departing aircraft, the pick-up node is a gate node and the drop-off node is a run-
way node, and for an arriving aircraft, vice versa.

Using the distance metric dX defined in Section 4.2.1, we calculate the time needed
to traverse the distance between any pair of nodes on GX as:

tX (m,n) = dX (m,n)/vx ∀m,n ∈GX . (4.1)

This means that the drop-off time of aircraft a is calculated as:

t d
a = t p

a + tX (np
a ,nd

a ) ∀a ∈ A. (4.2)

It is assumed that no delay is incurred during taxiing due to reasons such as malfunc-
tioning vehicles or aircraft or weather events. However, it is possible that aircraft incur
delay because they have to make use of the same nodes or edges at the same time as an-
other aircraft. Furthermore, the minimum separation distance dsep between two aircraft
should be respected and is set at 200 m [182, 133]. Since the taxiway speed vx is roughly
10 m/s, the separation time tsep is set at 20 s.

It is necessary to select which aircraft has to wait at which moment in order to resolve
potential conflicts or separation violations. This we refer to as deconflicting routes. Using
the routes, including the time at which each node is reached, the pick-up and drop-off
nodes and times for each aircraft, the schedule is deconflicted before performing the
vehicle to flight assignment. The route for each aircraft is defined as a series of nodes
nroute = {na

p , ...,na
d } and the times the aircraft is to arrive at those nodes as a series of

times t route = {t a
p , ..., t a

d }.
Algorithm 2 summarizes the deconflicting procedure. The procedure runs through a

series of time steps, separated from the previous by time step ∆ = tsep, and through all
aircraft a ∈ A. If aircraft a will reach a node within this time step, the algorithm checks for
two situations. First, it checks whether another aircraft b ∈ A will reach the same node
within the same time step. If there is such an aircraft, the rest of the route of aircraft
a is postponed by one time step ∆. Second, when a is about to enter a two-directional
taxiway edge x ∈ EX , the algorithm looks for an aircraft b on the set of edges E bi

x that have
to be free from oncoming traffic before a can enter x. For example, let x = (n81,n86), see
Figure 4.1b. Then E bi

x = {(n86,n81), (n87,n86)}. If an aircraft b is on either of these edges
at the current time step, the rest of the route of aircraft a is postponed by the amount of
time needed for b to clear these edges.

Figure 4.2 shows the averaged and total minutes of delay incurred due to the decon-
flicting procedure, during any ten minute interval during two different periods P . Fig-
ure 4.2a shows that very few adjustments are necessary on the morning of March 27th
2022, which is a quiet day, save for the arrival peak from 09:30-10:00. Figure 4.2b shows
that on the morning of December 27th 2021, a busy day, many more adjustments are
necessary. However, in none of the intervals the average incurred delay exceeds one
minute. In addition, one could argue that for actual operation, these delays will be even
smaller. This is because part of the delays now attributed to deconflicting during the
taxiing period, will in fact be incurred during holding in the air (for arrivals) or waiting
at the gate (for departures). This is because the model uses the scheduled off-block and
landing times, rather than the actual times.
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Algorithm 2 Deconflict routes

Require: t route
a ,nroute

a ∀a ∈ A, E bi
x ∀edges x in the set of two-directional edges in EX

for i = 0,1,2, ... do
t ← t s + i∆
for a = 0,1,2, ..., N F do

if ∃ j : a reaches nroute
a, j within ∆ then

if ∃ aircraft b that reaches nroute
a, j within ∆ then

for k = j , ..., |nroute
a | do

t route
a,k = t route

a,k +∆
t d

a = t d
a +∆

end for
else if (nroute

a, j ,nroute
a, j+1) is a two-directional edge then

x ← (nroute
a, j ,nroute

a, j+1)

for ix ∈ E bi
x do

if ∃ aircraft b that will be on ix within ∆ then
for k = j , ..., |nroute

a | do
t route

a,k = t route
a,k +∆ tX (ix )

vx

t d
a = t d

a +∆ tX (ix )
vx

end for
end if

end for
else

Register that aircraft a reaches node nroute
a, j within ∆

end if
end if

end for
end for

(a) The delay incurred due to the deconflicting
procedure on March 27th 2022 from 08:00 to 12:00

(148 aircraft).

(b) The delay incurred due to the deconflicting
procedure on December 27th 2021 from 08:00 to 12:00

(286 aircraft).

Figure 4.2: The delay incurred to the deconflicting aircraft during a quiet period and during a busy period.
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4.2.3. VEHICLE PATH PLANNING
With the aircraft path planning defined, we now turn to ETV path planning. The ETV fleet
V with size NV is assumed to leave the depot ndp at the start of time period P . Each ETV
v travels to the pick-up point np

a of its assigned aircraft a via the service road network
GS . It arrives at the aircraft at time t p

a − t c , where it starts the connecting procedure,
which takes t c . At t p

a the ETV starts towing the aircraft via the taxiway network GX to its
destination, nd

a . After arriving there at time t d
a , the disconnecting procedure takes place,

lasting until t d
a + t c . The ETV will then either wait at its location for some time, start to

travel to another assigned aircraft, or start to travel to one of the charging stations ncs,i .
As in Section 4.2.2, we use the distance metric dS defined in Section 4.2.1 to calculate

the time needed to traverse the distance between any pair of nodes on GS as:

tS (m,n) = dS (m,n)/vs ∀m,n ∈GS . (4.3)

The ETVs travel on the service road network GS when they do not tow aircraft. The
service roads are assumed to provide enough opportunities to pass oncoming traffic.
Furthermore, no significant separation distance is required between the ETVs. For these
reasons, the vehicle path planning is limited to calculating the shortest paths and associ-
ated times between destinations of the ETVs, but no deconflicting procedure is required.

The needed jet engine warm-up procedure is assumed to take place during the tow-
ing, and the cool-down procedure takes place when the ETV is disconnected after taxi-in.
This means that both procedures have no influence on the ETV path planning.

4.2.4. ETV ENERGY CONSUMPTION AND CHARGING
In order to keep track of the state of charge (SOC) of the individual ETVs, it is necessary to
determine how fast the ETV batteries charge at a charging station, and discharge while
driving or towing an aircraft. For the latter, we are interested in calculating the power
P (v,ma) consumed by an ETV towing a mass ma at speed v . This can be approximated
by considering the rolling resistance and the thrust as the only forces acting on the ETV
or ETV + aircraft combination, disregarding e.g. drag or slope of the airport roads. The
power consumed is then equal to the rolling force times the velocity, where the rolling
force is equal to the rolling resistance coefficient times the normal force, i.e. gravity. Thus
we obtain:

P (v,m) =µg (v)g (mETV +ma)v, (4.4)

with
µg (v) =µ0(1+ v

v0 ) (4.5)

the rolling resistance coefficient at speed v , mETV the mass of the ETV, ma the mass of
aircraft a, g the gravitational acceleration, µ0 the rolling resistance base coefficient and
v0 the rolling resistance base velocity [34].

Using Equation 4.4 we calculate the power consumed by ETV during towing aircraft
a, P (vx ,ma), and during driving, P (vs ,0). We denote these as P X and P S , respectively.
The charging power, denoted as P c , is dependent on the capabilities of the ETV battery
and the charging infrastructure at the airport.
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In this work a constant speed is assumed to be attained by the ETV at all times, with-
out accounting for acceleration and deceleration. With this information and the expres-
sions for power defined above, we can introduce notation for the energy q required to
perform certain movements:

q X (a) = P (vx ,ma)tX (np
a ,nd

a ) ∀a ∈ A, (4.6)

qS (n,m) = P (vs ,0)tX (n,m) ∀m,n ∈ NS , (4.7)

qS (a,b) = qS (nd
a ,np

b ) ∀a,b ∈ A, (4.8)

qS
f (v, a) = qS (nold

v ,np
a ) ∀a ∈ A, v ∈V , (4.9)

qS
l (a) = qS (nd

a ,ndp) ∀a ∈ A, (4.10)

qC (a,b) = mini≤Ncs {qS (nd
a ,ncs,i )+qS (ncs,i ,np

b )} ∀a,b ∈ A, (4.11)

qC
1 (a) = mini≤Ncs {qS (ncs,i ,np

a )} ∀a ∈ A. (4.12)

Here q X (a) is the energy required by an ETV to tow aircraft a along the taxiways,
qS (n,m) is the energy required by an ETV to travel from node n to m along the service
roads, qS (a,b) is the energy required by an ETV to travel from the dropoff point of aircraft
a to the pickup point of aircraft b along the service roads, qS

f (v, a) is the energy required

by ETV v to travel from its latest location, nold
v , to the pickup point of aircraft a, qS

l (a) is
the energy required by an ETV to travel from the dropoff point of aircraft a to the depot,
qC (a,b) is the energy required by an ETV to travel from the dropoff point of aircraft a to
the pickup point of aircraft b along the service roads and via the closest charging station,
and qC

1 (a) is the energy required by an ETV to travel from the closest charging station to
the pickup point of aircraft a. Last, we denote the maximum energy capacity of an ETV
by Q.

4.2.5. MILP FORMULATION FOR VEHICLE-TO-AIRCRAFT ASSIGNMENT
After the deconflicting procedure, the updated values of the pickup and drop-off times
t p

a and t d
a are used to generate sets of aircraft used in creating the constraints of the MILP

model. Before introducing the MILP formulation, we define:

tC (a,b) = t p
b − t d

a − tS (nd
a ,np

b )−2t c ∀a,b ∈ A, (4.13)

which is the available time between towing aircraft a and b that can be used for idling or
travelling to charging stations and charging. Then:

Aout(a) = {b ∈ A : tC (a,b) > 0} ∀a ∈ A, (4.14)

Ain(a) = {b ∈ A : tC (b, a) > 0} ∀a ∈ A, (4.15)

APC(a) = {b ∈ Aout(a) : qC (a,b)−qS (a,b) < P c (tC (a,b)− tC
min)} ∀a ∈ A, (4.16)

where Aout(a) is the set of aircraft that can be towed by an ETV after it tows aircraft a,
Ain(a) is the set of aircraft that can be towed by an ETV before it tows aircraft a, and
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APC(a) is the set of aircraft that can be towed by an ETV after it tows aircraft a and for
which there is at least tC

min time in between for effective charging. Effective charging is
the charging that occurs after the energy loss due to the rerouting to the charging station
has been replenished. Note that APC(a) ⊆ Aout(a).

We consider the following decision variables:

xab =
{

1 if a,b ∈ A are towed consecutively

0 else
(4.17)

x f
av =

{
1 if a ∈ A is the first aircraft towed by ETV v ∈V

0 else
(4.18)

x l
a =

{
1 if a ∈ A is the last an ETV tows

0 else
(4.19)

qa ∈ [q X (a),Q] ETV state of charge at the start of towing a ∈ A (4.20)

ya =
{

1 if a ∈ A is towed by an ETV

0 if a ∈ A is taxiing by itself
(4.21)
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The objective function and constraints are given by:

max
x,q,y

(1−α)
∑

a∈A
ya , (4.22)

s.t.
∑

v∈V
x f

av +
∑

b∈Ain
a

xba = ya ∀a ∈ A, (4.23)

∑
b∉Ain

a

xba = 0 ∀a ∈ A, (4.24)

x l
a +

∑
b∈Aout

a

xab = ya ∀a ∈ A, (4.25)∑
b∉Aout

a

xab = 0 ∀a ∈ A, (4.26)

qa ≤Q(1−x f
av )+x f

av (qfirst
v −qS

f (v, a)) ∀a ∈ A, v ∈V , (4.27)

qa ≥−Q(1−x f
av )+x f

av (qfirst
v −qS

f (v, a)) ∀a ∈ A, v ∈V , (4.28)

0 ≤ qa −x l
a(q X (a)+qS

l (a)) ∀a ∈ A, (4.29)

qb ≤ qa −xab(q X (a)+qS (a,b))+Q(1−xab) ∀a ∈ A,b ∈ Aout
a \ APC

a ,
(4.30)

qb ≤Q −xab qC
1 (b) ∀a ∈ A,b ∈ APC

a ,
(4.31)

qb ≤ qa −xab(q X (a)+qC (a,b)−P c tC (a,b))+Q(1−xab) ∀a ∈ A,b ∈ APC
a ,

(4.32)

qb ≥ qa −xab(q X (a)+qS (a,b))−Q(1−xab) ∀a ∈ A,b ∈ Aout
a ,

(4.33)

NV ≥ ∑
a∈A

x l
a , (4.34)∑

a∈A
x f

av = 1, ∀v ∈V , (4.35)∑
v∈V

x f
av ≤ 1, ∀a ∈ A, (4.36)

The objective (4.22) is to maximize the number of aircraft towed by the fleet of ETVs.
The factor (1−α) preceding the expression is there to ensure consistency with the dis-
rupted model, which will be described in the next section. Constraints (4.23) and (4.25)
ensure that every aircraft a that is towed by an ETV, is either the first (last) to be towed by
an ETV, or has another aircraft b preceding (following) it. Constraints (4.24) and (4.26)
ensure that an aircraft b that is not in Ain

a (Aout
a ) cannot precede (follow) aircraft a. Con-

straints (4.27), (4.28) and (4.29) make sure that ETVs start with a full battery at their first
task, and have enough energy at the end of the period P to reach the depot. ETV v starts
with a state of charge of qfirst

v at t s . In the strategic model the ETVs are assumed to start
with a full battery (qfirst

v =Q). Later, in the disrupted model, the state of charge of ETV v
in any assignment will be taken from the previously generated assignment.

Constraint (4.30) subtracts the energy spent on towing aircraft a from the state of
charge of aircraft b, if no charging has taken place in between. Constraint (4.31) limits
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the state of charge to Q after a period of charging. Constraint (4.32) adds the energy
gained from charging to the SOC of an ETV. Constraint (4.33) limits the reduction in SOC
to only what was spent on towing aircraft a. Constraint (4.34) limits the number of used
ETVs to the maximum of NV . Constraint (4.35) ensures that for every ETV v , only one
aircraft is the first to be towed by that ETV. Constraint (4.36) ensures that for every aircraft
a, no more than one ETV is assigned to be the first to tow it.

The advantage of MILP formulation (4.22)-(4.36) is that it is possible to determine
all times and durations of all activities of the ETVs and aircraft from the given decision
variables, without having to introduce a variable xabv . This would create N F · N F · NV

variables, whereas now the number of variables remains of the order N F ·N F . Recall that
N F is the number of flights, and NV the number of ETVs. The usage of x f

av rather than x f
a

(parallel to x l
a) ensures that the model assigns a task list of aircraft to a specific vehicle,

rather than obtaining NV task lists that are not tied to any specific vehicle. This will be
essential in the disrupted model, which is introduced in the next section.

4.3. DISRUPTION MANAGEMENT OF ELECTRIC TAXIING VEHI-
CLES TOWING AIRCRAFT

The disrupted model is used to obtain a vehicle-to-aircraft assignment based on a flight
schedule that partly consists of actual departure and arrival times, rather than sched-
uled times. When creating an assignment for a given day of operations, both models are
used. Figure 4.3 shows in what order they are used. An initial assignment of the first four
hours of operation is made in advance of the start time t s , using the strategic model.
After this, the disrupted model is run every half hour for the four hours of operation di-
rectly after that moment, so that time t s occurs right after creating the assignment. It is
assumed that the flight delays of aircraft departing and arriving in the coming half hour
are known at the moment of creating the assignment. That means that for this period,
the actual times of arrival and departure are used to compute the assignment, rather
than the scheduled times. At the first instance of running the disrupted model, the pre-
viously obtained assignment is the result of the strategic model. At the second and later
instances, the previous assignment has come from the disrupted model.

The goal of the disrupted model is to obtain an assignment that is close to the pre-
viously obtained assignment, i.e. we would like to minimize the number of changes to
the towing assignment for ETV operators. In order to quantify this, we introduce an ad-
ditional decision variable for the disrupted model:

sv =

1
if for vehicle v ∈V the list of aircraft to tow has remained the

same as in the previous assignment

0 else.

(4.37)

When creating an assignment for the next time period P , the aircraft that are towed
by vehicle v in the first half hour of the previous time period will have disappeared from
the schedule. Likewise, new aircraft will be added to the schedule for the last half hour
of this new period. The "list of aircraft to tow" in Equation 4.37 refers to all but these
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Figure 4.3: Usage of the strategic and disrupted model when creating vehicle-to-aircraft assignments during a
day of operations, with an indication of when scheduled or actual arrival and departure times are considered.

Figure 4.4: Flowchart for the usage of the disrupted model, containing inputs, outputs and processes. Every 30
minutes, a towing assignment is created.
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aircraft. The variable has the value 1 if the aircraft are still to be towed by vehicle v in the
new assignment, and in the same order as before.

The objective function (4.22) of the strategic model is replaced by Equation (4.38):

max
x,q,y,s

(1−α)
∑

a∈A
ya +α

∑
v∈V

sv . (4.38)

The objective function (4.38) now contains two terms; the number of aircraft towed,
and the number of vehicles with an unchanged schedule. By varying the weight fac-
torα, the trade-off between these terms can be controlled. Since both terms will be used
many times throughout this chapter, we introduce shorthand notation, reducing objec-
tive function (4.38) to:

max
x,q,y,s

(1−α)Y +αS. (4.39)

Constraints (4.23)-(4.36) are the same as in the strategic model. Some additional
constraints are added:

M(1− sv ) ≥ N F
v +1−

N F
v∑

i=1
x fvi tvi −x f

fv0v ∀v ∈V , (4.40)

1− sv ≤ N F
v +1−

N F
v∑

i=1
x fvi tvi −x f

fv0v ∀v ∈V , (4.41)

x f
av = 1, ∀a ∈ A, v ∈V : x f ,old

av = 1 (4.42)

where N F
v + 1 is the number of aircraft that are towed sequentially in the previous

solution for ETV v ∈ V and also appear in the current period P , fvi is the i -th aircraft
from which ETV v departed in the previous solution, tvi is the i -th aircraft at which ETV

v arrived in the previous solution, M is a large value, and x f ,old
av is the value of x f

av from
the previous assignment.

Constraints (4.40) and (4.41) define sv . Constraint (4.42) guarantees continuity be-
tween the current and previous assignment, by assigning the aircraft that were being
towed when the new assignment was made to the correct ETVs. The path planning, de-
conflicting procedure and energy module remain the same as for the strategic model.

Figure 4.4 shows a flowchart for the usage of the disrupted model introduced in this
section. It shows where the inputs are used, e.g. the flight delays are first applied to the
aircraft routes, before the routes are deconflicted. After obtaining the solution, it is used
in the next time period to obtain the new aircraft routes.

For completeness, the assumptions applicable for the scheduling models in this chap-
ter are summarized below. For both models:

• The ETV fleet consists of ETVs for narrow-body aircraft.

• Any aircraft can perform electric taxiing or regular taxiing.

• The ETVs have a linear charging profile.

• Routes for aircraft are deconflicted in advance of scheduling.
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• ETVs drive on service roads, ETVs tow aircraft on taxiways, and aircraft taxi on
taxiways.

In addition, for the disrupted model:

• The flight delays of aircraft departing and arriving in the coming half hour are
known at the moment of creating the assignment.

4.4. RESULTS
In this section the strategic and disrupted model are applied to create vehicle-to-aircraft
assignments for aircraft arriving and departing at the reference airport Amsterdam Air-
port Schiphol. Flight schedules are taken from historical data, provided by the Schiphol
Developer Center [147]. From these flight schedules the gate numbers and the sched-
uled and actual off-block time or landing time are obtained. The runway configuration
of any day in the past is available from Dutch Air Traffic Control [101, 38].

The choices of parameter values are summarized in Table 4.1.

Table 4.1: Parameter values for the assignment models.

Symbol Name Value Unit Source
dsep Separation distance 200 m [182]

vs Speed on service roads 30 km/h [143, 116]
vx Speed on taxiways 42 km/h [157]
t c Connecting/Disconnecting time 3.0 min [144]

tC
min Minimum charging time 30 min
µ0 Rolling resistance base coefficient 0.010 - [34]
v0 Rolling resistance base velocity 41.2 km/h [34]

ma Aircraft mass 8.0 ·104 kg
mETV ETV mass 1.45 ·104 kg [16]

P c Charging power 100 kW [124]
Q Battery capacity 400 kWh [124]

The model assumes one weight class of aircraft, with a mass of 8.0 ·104 kg (the max-
imum take-off weight of a Boeing 737-800), and one type of ETV. The model can be ex-
tended to include several weight classes in both the aircraft and the ETVs, see for exam-
ple Oosterom and Mitici [124]. The mass of the ETV is calculated as

mETV = m0 +mqQ, (4.43)

where m0 is the base mass and mq is the battery energy density. Given a base mass of
1.2 ·104 kg [16] and an energy density of 6.25 kg/kWh [124], we arrive at the value given
in Table 4.1.

The minimum charging time is chosen such that ETVs are not allowed to travel to
charging stations to only charge for a few minutes. An ETV will charge either for at least
tC

min or until the state of charge reaches Q.
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Table 4.2: Objective values for vehicle-to-aircraft assignments of December 27th 2021 with fleet size NV = 40.
Shown are the model type, start time t s , end time t e , objective value Equation 4.39, the total number of towed
aircraft Y , the number of flight movements N F , the total number of unchanged schedules S and the solution
time.

Model t s t e Objective Y N F S
Solution
time [s]

Strategic 08:00 12:00 00.286 286 286 N/A 39.5
Disrupted 08:00 12:00 21.259 280 280 21 18.6
Disrupted 08:30 12:30 29.266 295 297 29 15.5
Disrupted 09:00 13:00 26.261 287 289 26 13.6
Disrupted 09:30 13:30 15.269 294 284 15 21.3
Disrupted 10:00 14:00 09.266 275 275 09 14.6
Disrupted 10:30 14:30 22.253 275 275 22 16.1
Disrupted 11:00 15:00 24.231 255 258 24 11.7
Disrupted 11:30 15:30 18.234 252 255 18 12.7
Disrupted 12:00 16:00 22.229 251 251 22 10.8
Disrupted 12:30 16:30 18.225 243 244 18 11.8
Disrupted 13:00 17:00 21.225 246 246 21 12.5
Disrupted 13:30 17:30 22.212 234 236 22 09.8
Disrupted 14:00 18:00 21.205 226 226 21 13.5
Disrupted 14:30 18:30 30.181 211 211 30 06.9
Disrupted 15:00 19:00 32.175 207 207 32 06.6

4.4.1. EXAMPLE DAY OF OPERATIONS
Figures 4.5 and 4.6 show the vehicle-to-aircraft assignments obtained using the strategic
and disrupted models for December 27th 2021. First, in Figure 4.5a, the strategic model
is run to obtain an initial assignment for the period 08:00-12:00, based on the scheduled
off-block and landing times. Then, in Figure 4.5b the disrupted model is run for the
same period, but now using the actual times for the first half hour. In Figure 4.6a and
Figure 4.6b the period is shifted by half an hour and the disrupted model is applied again.
The calculations were performed using Gurobi 9.5 on a Dell Latitude 7490 laptop with an
Intel i7-8650U CPU of 1.90 GHz.

In this example, weight factor α is set to 0.999, i.e. the second term of objective func-
tion (4.38) from the disrupted model is made the most important; S is prioritized over Y .
Furthermore, NV is set to 40, which is enough to tow all aircraft that arrive and depart
during the time period P .

Using black and blue colouring, Figures 4.5 and 4.6 show for individual aircraft whether
they are still following the same aircraft as in the previous assignment, i.e. if for aircraft
b the value of xab = 1 in the previous assignment, then this is still the case in the current
assignment. When a towing assignment has changed for an ETV, we can see that this is
due to delays of the aircraft in this schedule. Take for example ETV 24 in Figure 4.5b:
aircraft 1666 follows aircraft 1368. However, in Figure 4.6a we see that this cannot be
maintained: aircraft 1666, which had a scheduled landing time of 08:45, arrives 11 min-
utes early. ETV 24 would not have enough time to travel between these tasks, i.e. from
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(a) The vehicle-to-aircraft assignment obtained using the strategic model for 08:00-12:00.

(b) The vehicle-to-aircraft assignment obtained using the disrupted model for 08:00-12:00.

Figure 4.5: Vehicle-to-aircraft assignments for December 27th 2021. A red dashed line indicates the time until
which the disruptions are considered known.
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(a) The vehicle-to-aircraft assignment obtained using the disrupted model for 08:30-12:30.

(b) The vehicle-to-aircraft assignment obtained using the disrupted model for 09:00-13:00.

Figure 4.6: Continuation of Figure 4.5.
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1666. In the new schedule aircraft 1666 is towed by ETV 7.
From these figures we can deduct that the disrupted model is able to keep the list of

aircraft to tow the same for a significant amount of the ETVs. Table 4.2 shows the results
of applying the disrupted model throughout the day. The number of unchanged sched-
ules, i.e. S = ∑

v∈V sv , displayed in the penultimate column, appears to be roughly in-
versely correlated with the total number of aircraft in the time period. This corresponds
with intuition: if the number of aircraft is smaller, but the number of ETVs remains the
same, every ETV has fewer aircraft to tow, and its schedule is less prone to the disruptions
of flight delay. Second, by averaging the values for S we obtain that on December 27th
2021, roughly 22 out of 40 vehicles, i.e. 55%, receive an unchanged schedule in every
time period.

Figure 4.7 shows the state of charge of every ETV during two of the periods appearing
in Table 4.2. In Figure 4.7a we see that all ETVs start with a state of charge near the
maximum, Q, and are sometimes recharged to full capacity within the time period P . In
Figure 4.7b we see that some ETVs are being recharged by a considerable amount, but
many of them have run out of charge.

4.4.2. TRADE OFF BETWEEN OBJECTIVE TERMS
The objective function (4.38) consists of two terms. It maximizes both the number of
aircraft towed, Y , and the number of ETVs for which the assignment is unchanged, S. In
this section we investigate the effect of prioritizing one term over the other.

We consider a situation where not all aircraft can be towed by the fleet of ETV: let
NV = 25. Then we run the disrupted model, while varying α. The results are shown in
Table 4.3, where values for both terms of the objective function (4.38) are displayed for
several values of α. We see that when decreasing α, the number of unchanged sched-
ules S decreases, and the number of towed aircraft Y increases slightly. When α = 0.3,
an extra aircraft towed contributes the same to the objective as two more ETVs with un-
changed schedules. When α = 0.999, the unchanged schedules contribute a thousand
times more to the objective than the towed aircraft. When α = 0.001 we obtain the op-
posite. From Table 4.3 it can be concluded that for December 27th 2021 and with the
current model parameters, the results do not vary greatly with varying α values. In order
to obtain the maximum number of unchanged schedules S, a maximum of five aircraft
(2%) will have to taxi by themselves. This means that it is possible to pursue practicality
for ETV operators (number of unchanged schedules), while retaining the minimization
of environmental impact (number of towed aircraft).

4.5. SENSITIVITY ANALYSIS
In this section, we analyze the performance of the MILP models introduced in Sections 4.2
and 4.3 when changing certain model parameters or inputs.

4.5.1. THE IMPACT OF FLEET SIZE ON VEHICLE-TO-AIRCRAFT ASSIGNMENTS

An important parameter to investigate is the fleet size NV . If NV is large enough, all
aircraft can be towed by the fleet, i.e. Y = N F . For lower values of NV , the model has to
make a selection from all a ∈ A. In subsequent time periods, the selection of flights will
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(a) State of charge graphs during 08:00-12:00, obtained with the disrupted model.

(b) State of charge graphs during 16:30-20:30, obtained with the disrupted model.

Figure 4.7: State of charge of all ETVs during two different time periods on December 27th 2021 at Schiphol
Airport.
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Table 4.3: Objective values for vehicle-to-aircraft assignments with varying α of December 27th 2021 with
NV = 25.

α= 0.001 α= 0.3 α= 0.7 α= 0.999
Model t s t e Y S Y S Y S Y S
Strategic 08:00 12:00 266 N/A 266 N/A 266 N/A 266 N/A
Disrupted 08:00 12:00 263 6 263 3 262 8 260 8
Disrupted 08:30 12:30 280 6 280 4 276 10 275 9
Disrupted 09:00 13:00 272 7 271 7 269 8 271 8
Disrupted 09:30 13:30 272 3 272 2 271 1 271 4
Disrupted 10:00 14:00 269 0 269 0 268 1 268 1

Table 4.4: Number of unchanged schedules, S, for vehicle-to-aircraft assignments obtained with the disrupted
model, when varying the fleet size NV , on December 27th 2021 with weight factor α= 0.999.

t s t e NV = 5 NV = 10 NV = 20 NV = 30 NV = 40 NV = 50
08:00 12:00 1 4 4 11 21 33
08:30 12:30 0 1 3 13 29 37
09:00 13:00 0 1 5 16 26 41
09:30 13:30 0 1 3 5 15 29
10:00 14:00 0 0 0 1 9 23

be largely the same, since the goal of the disrupted model is to minimize the number of
unchanged schedules. Table 4.4 and Figure 4.8 show the obtained objective values when
varying the fleet size. First consider small NV : observe that for any α < 1 the number
of towed aircraft is still being maximized. This means any ETV will be assigned many
aircraft to tow, with little idle time in between. Therefore, the impact of flight delays on
individual towing asignments is large, and Y is small. Now consider NV large enough so
that Y ≈ N F . Figure 4.8b shows that this is the case for NV ≥ 30. Here S/NV exceeds 0.3,
while it does not for smaller NV . In such an assignment more time is available between
towing tasks, leading to a smaller impact of flight delays, and therefore a larger number
of towed aircraft. Figure 4.8a shows that this not only holds in absolute numbers of S,
but also relative to the maxima, i.e. S/NV .

4.5.2. APPLYING THE MODEL TO VARIOUS DAYS OF OPERATION
Figure 4.9 shows the average delay for Schiphol Airport during October 2021 to January
2022. The average of all departure delay averages is 15 minutes, and the average of arrival
delay averages is -5 minutes. In addition, the standard deviation is very large. Notable
outliers include October 21st 2021 and January 31st 2022, when traffic was disrupted
due to weather circumstances [12]. An example of a period with extended large delays
is May and June 2022, when Schiphol experienced staff capacity problems. During these
months the average departure delay was 31 minutes, and the average arrival delay was 9
minutes.

In order to investigate how the results are affected if the model is faced with more and
greater delays, we compare the results of applying the disrupted model with 20 ETVs for
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(a) Relative number of unchanged schedules
for varying start time t s and fleet size NV .

(b) Relative number of aircraft towed
for varying start time t s and fleet size NV .

Figure 4.8: Relative value of unchanged schedules, S/NV , and aircraft towed, Y /N F , in the assignments cre-
ated with the disrupted model (α= 0.999), for varying starting times t s , on December 27th 2021.

December 27th 2021 (departure delay 15 minutes, arrival delay 2 minutes), to Novem-
ber 30th 2021 (departure delay 27 minutes, arrival delay 9 minutes), and October 21st
2021 (departure delay 47 minutes, arrival delay 45 minutes). In Figure 4.10a the met-
rics for these days are visualized. The figure includes the values obtained for S and Y ,
as well as those for N F , i.e. the maximum value for Y . From Figure 4.10a we note that
on November 30th, there were significantly fewer aircraft to tow than on the other days,
which means that 20 vehicles is almost enough to tow all aircraft in this case. However,
this does not lead to an improved performance in the value of S. Another observation
is that a sharp decrease in Y , such as at t s =14:00 on December 27th, allows for a larger
value of S in subsequent time periods. This corresponds to intuition: when the towing
assignment becomes relatively empty, there is more space to accommodate flight delays.

Last, an important observation to take from Figure 4.10a is that there is no clear de-
crease in performance regarding S when the average flight delays of a day is larger. On
October 21st there are roughly as many aircraft to tow as on December 27th, but the
average delay is much larger. Still, the number of unchanged schedules obtained with
the disrupted model is similar throughout the morning and afternoon. Figures 4.10b to
4.11b provide a more detailed illustration of the delays on the tested days. It is clear that
especially on October 21st, there are many more large delays than on December 27th.

A possible explanation for this difference in delays, but similarity in the value of S, is
the following: delays are assumed to become available to the model when the scheduled
flight time is less than half an hour away. This holds for large and small delays. This
means that both large and small delays impact the vehicle-to-aircraft assignment in a
similar way. Only for very small delays the aircraft will not have to be moved out of its
current place in the assignment. For this reason, the model performs similar regardless
of the severity of the delays.

4.6. CONCLUSION
This chapter proposes an approach to disruption management for the assignment of
electric taxiing vehicles (ETVs) to aircraft. First, a strategic Mixed Integer Linear Pro-
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(a) Average daily delay for dates in October and November 2021.

(b) Average daily delay for dates in December 2021 and January 2022.

Figure 4.9: Average daily departure and arrival delay including standard deviation for Amsterdam Airport
Schiphol during October 2021 to January 2022.
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(a) Results of applying the disrupted model to three days. The red solid lines represent the values for S, the blue solid lines the
values for Y , and the blue dashed lines the values for the total number of flight movements N F .

(b) Scatter plot of departure and arrival delays on
December 27th 2021.

Figure 4.10: Outcomes of applying the disrupted model for three days with varying degrees of on-time perfor-
mance using a fleet size of NV = 20 at Amsterdam Airport Schiphol, including scatter plots of delays.
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(a) Scatter plot of departure and arrival delays on
November 30th 2021.

(b) Scatter plot of departure and arrival delays on
October 21st 2021.

Figure 4.11: Continuation of Figure 4.10.
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gramming (MILP) model was formulated, which outputs the vehicle-to-aircraft assign-
ment including the state of charge of each vehicle. Second, a disrupted MILP model
was introduced, which takes into account the flight delays of the coming half hour when
generating its disrupted assignment. By running the disrupted model in staggered time
periods, one creates an adaptive vehicle-to-aircraft assignment throughout the day. Both
models take the flight schedule and airport layout as inputs, which are used to calculated
the vehicle and aircraft routes, for which conflict avoidance is ensured. Both models
keep track of the energy spent and gained by the ETVs, and select the times the vehicles
are to be charged.

The models are illustrated using a case study of Amsterdam Airport Schiphol. The
models are shown to be able to generate vehicle-to-aircraft assignments that correspond
to the flight schedules of this hub airport, which include departing and arriving flights
that are towed from the gate area to one of the five runways and vice versa. The results
show that it is possible to minimize the number of changed schedules, without having to
reduce the number of aircraft from the flight schedule that are towed by an ETV, which
is beneficial for ETV operators. Furthermore, sensitivity analysis has revealed that the
severity of the delays does not impact the model performance, and that if enough ETVs
are available to tow all aircraft in the schedule, the number of unchanged schedules in-
creases above 30% of the fleet size.

Future work can include implementing a more detailed routing and energy model
within the introduced models by including for example acceleration of aircraft and vehi-
cles, rather than constant velocities. Furthermore, the approach presented in this chap-
ter can be tested in combination with varying charging strategies, for example: a strategy
where night charging is not preferred, and the ETVs should sustain their state of charge
throughout the day.
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In Chapter 4 a model was developed to adapt Electric Taxiing Vehicles to aircraft assign-
ments, when faced with flight delays. A step beyond reacting to disruptions is to predict
disruptions. In this chapter, two probabilistic forecasting algorithms, Mixture Density
Networks and Random Forest regression, are applied to predict flight delays. The resulting
probabilistic predictions are expected to provide more extensive information to airport
planners than point predictions. They are evaluated with tailored metrics. To illustrate
the utility of the estimated delay distributions, they are integrated into a case study of a
probabilistic flight-to-gate assignment problem, which aims to increase the robustness of
flight-to-gate assignments. It is shown that our proposed flight-to-gate assignment model
reduces the number of gate-conflicted aircraft when compared to a deterministic flight-to-
gate assignment model. In general, the results illustrate the utility of considering proba-
bilistic forecasting for robust airport operation optimization.

This chapter is based on the following research article:
Zoutendijk, M. & Mitici, M., & Hoekstra, J. M. (2021). "Probabilistic flight delay predictions using machine
learning and applications to the flight-to-gate assignment problem." in Aerospace, 8.6, 152 [191].

This paper has been awarded Honourable Mention in the Anna Valicek Competition of the Airline Group
of the International Federation of Operational Research Societies, in 2022.
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5.1. INTRODUCTION
On-time flight performance is an important measure of the service quality of airports
and airlines. During the period 2013–2019, while the number of flights in Europe in-
creased by 16% [44], the average departure delay of European flights increased by 41%
[42]. Such an increase has a negative impact on the airports’ and airlines’ quality of ser-
vice. As Eurocontrol forecasts the number of flights to be restored to 2019 levels by 2024
[43], large increases in delay can be expected again in the future. Accurate flight delay
predictions will therefore remain central to support airports and airlines in offering a
high-quality service.

In the past years, several machine learning algorithms have been proposed to predict
flight delays. Most studies predict flight delays using (i) binary classifiers (delayed/not
delayed flight), (ii) multi-class classifiers (multiple delay classes), or (iii) estimating the
delay value.

Binary classifiers are proposed in Kim et al. [90] where recurrent neural networks
are used to predict flight delays at airports in the US. The prediction horizon is several
hours before the operation. Using this approach, delays are predicted with an accuracy
of 0.87. In Lambelho et al. [95], binary classification of flight delays and cancellations
is performed for Heathrow airport using three different classification algorithms: Light-
GBM, Multilayer Perceptron, and Random Forests. The authors predict flight delays and
cancellations with an average F1-score of 0.56 using the LightGBM classifier. In Choi
et al. [32], the authors propose binary classifiers for flight delays, and applies these with
two prediction horizons, one of five days and one of one day. The obtained flight delay
predictions have an accuracy of 0.80 using the Random Forest classifier.

Multi-class departure delay predictions are obtained in Alonso and Loureiro [9] for
Porto airport for a prediction horizon of several hours before the operation. In Chen and
Li [31], flight delay is predicted using multi-label Random Forests classification. Flight
delay values from routes flown by an aircraft earlier in a day are used to predict flight
delay for the routes flown later in a day.

In Kalliguddi and Leboulluec [85], flight delays are estimated hours ahead of the op-
eration using machine learning algorithms that perform regression. The authors con-
sider delay states of the aviation network as features, in addition to flight schedule-
related features. The results obtained using Random Forests have a root mean square
error (RMSE) of 12.5 min. It is also shown that the delay states have the largest effect on
on-time performance. In Manna et al. [106], the obtained flight delay predictions have
an RMSE of 8.2 min and 10.7 min when considering departure delays and arrival delays,
respectively. In Yu et al. [178], a deep-belief network is used to predict flight delays sev-
eral hours before the operation. A reduction of 21% in the RMSE is obtained compared to
the best benchmark algorithm, the k-Nearest Neighbours. Thiagarajan et al. [164] pro-
pose both classification and regression algorithms to predict flight delay. Here, the re-
gression approach using Random Forests produced an RMSE of 8.7 min. Ayhan, Costas,
and Samet [15] and Shao et al. [154] introduce features based on flight trajectory data.
Ayhan, Costas, and Samet [15] predict flight delays for domestic flights in Spain within
an RMSE of 4 min. A range of prediction algorithms is employed, of which AdaBoost
performs best. Shao et al. [154] find that the features based on trajectory data contribute
the greatest to the predictive accuracy, and the best result is found using LightGBM.
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The classification and regression results obtained in these studies generate an esti-
mate for individual flight delay in the form of a class or a point estimate, respectively. The
estimates are often evaluated using metrics based on the confusion matrix and metrics
such as RMSE/MAE (Mean Absolute Error), respectively. In order to plan flight oper-
ations such as gate allocation or runway allocation in a robust manner, however, it is
necessary to also consider the uncertainty of the predicted delays of individual flights.
Such measures are not included when obtaining delay classes or point estimates, nor
can they be derived directly from the commonly used evaluation metrics. Therefore, in
this chapter, we propose to estimate the probability distribution of flight delays on an in-
dividual flight basis, using machine learning algorithms. Such probability distributions
can support planners to robustly plan flight operations.

Very few studies estimate the probability distribution of flight delays. The common
approach is to fit historical delays to one probability distribution which is assumed to
be representative for all considered flights [114, 121, 80, 92, 166]. In Mueller and Chat-
terji [114] and Novianingsih and Hadianti [121], airport and airline delay distributions
are obtained by fitting historical delays to classes of probability distributions. Tu, Ball,
and Jank [166] introduce a more complex model, where the national airspace delay dis-
tribution is assumed to be the sum of seasonal trends, a daily propagation pattern and
random residuals. To the best of our knowledge, however, no studies have been per-
formed that estimate a probability distribution for flight delays on an individual flight
basis, i.e., probabilistic flight delay prediction.

To illustrate how probabilistic flight delay prediction on an individual basis can be
useful for operation optimisation, we integrate these predictions into a probabilistic
flight-to-gate assignment problem (FGAP). Şeker and Noyan [194] were among the first
ones to incorporate probabilistic effects in their solution method for the FGAP. The au-
thors evaluate the robustness of FGA’s by modelling the departure and arrival flight de-
lays as random variables. A set of scenarios is created, each with random disruptions to
flight arrival and departure times. The number of gate conflicts is then minimized for
each scenario. The random disruptions utilized in this study model flight delay; how-
ever, they are not based on delay predictions. The results of this study provide a general
overview of the robustness of the used optimization methods, but it is not possible to
directly evaluate the robustness using the actual delay experienced at the airport. Van
Schaijk and Visser [171] and L’Ortye, Mitici, and Visser [100] determine the probabil-
ity that a given arriving/departing aircraft is present at a gate, for a range of time val-
ues. This is called the aircraft presence probability, and it is obtained using a regression
model based on historic data of aircraft gate presence, using the features ’airline identity’
and ’origin/destination region of flight.’ The aircraft presence probability of an arriving
aircraft is in fact the cumulative distribution function (cdf) of the aircraft’s delay. The
presence probability of a departing aircraft is the inverted cdf of the aircraft’s delay. Us-
ing these presence probabilities, robust flight-to-gate assignments are developed. The
approach taken by Van Schaijk and Visser [171] makes use of only two features, leading
to a limited variation in the constructed presence probabilities. It is possible to use many
more features of the flights that need to be assigned to gates, leading to a more accurate
prediction of their gate presence.

In this chapter, we obtain probabilistic delay predictions for flights arriving and de-
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parting at a regional reference airport. To the best of our knowledge, this is the first time
probabilistic predictions for flight delays on an individual flight basis are obtained. We
employ two machine learning algorithms: Mixture Density Networks and Random For-
est regression. We consider features based on flight schedules available at the reference
airport, as well as the weather conditions recorded at the origin/destination airport of
the flights. Suitable metrics are proposed to evaluate the performance of the considered
machine learning algorithms, which estimate delay probability density functions (pdf).
Furthermore, the impact of the choice of hyperparameters for these algorithms is ana-
lyzed.

The use of the obtained probabilistic predictions is demonstrated in the context of
a robust flight-to-gate assignment problem. First, probabilistic predictions for arrival
flight delays and departure flight delays are obtained using machine learning algorithms.
These predictions are then used to estimate the probability of an aircraft being present
at the reference airport. Lastly, these presence probabilities are integrated into a proba-
bilistic FGAP model that aims to robustly assign arriving/departing aircraft to the gates
of the reference airport. Here, robustness refers to the assignment model’s ability to ac-
count for potential flight delays. The results show that, by considering flight delay pre-
dictions, flights are allocated to gates more robustly relative to the case when no infor-
mation about flight delays is considered.

The remainder of this chapter is structured as follows: in Section 5.2, the datasets,
machine learning algorithms for probabilistic flight delay predictions, and several per-
formance metrics for these algorithms are introduced. The prediction results are then
presented and discussed. In Section 5.3, the obtained probabilistic flight delay predic-
tions are integrated into a flight-to-gate assignment model. Both a deterministic and a
probabilistic model for the optimization of the FGAP are formulated. The models are
both applied on a short and long term, and the results regarding the robustness of the
obtained solutions are presented and discussed. In Section 5.4, conclusions and recom-
mendations for future work are provided.

5.2. DATA-DRIVEN PROBABILISTIC FLIGHT DELAY PREDICTIONS
In this section, we obtain probabilistic flight delay predictions using two machine learn-
ing algorithms, Mixture Density Networks and Random Forests Regression.

5.2.1. DATA DESCRIPTION

FLIGHT SCHEDULE DATASET

For this analysis, flight schedules available at Rotterdam The Hague Airport (RTM) be-
tween 1 January 2017 and 29 February 2020 are considered. In total, 17,365 departing
and 17,336 arriving flights are considered. These flights arrive from and depart to 42
airports across Europe and North Africa. The shortest route included is to London City
Airport (LCY), and the longest to Tenerife South Airport (TFS), with an average of 1300
km. Figure 5.1 shows a map indicating all airports to or from which flights depart or ar-
rive. The delay distribution of these flights is shown in Figure 5.2. The departing flights
have an average absolute delay of 17.8 min with a standard deviation of 25.1 min, and
the arriving flights have an average absolute delay of 15.4 min with a standard deviation
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of 26.4 min. Here, the delay is considered to be the positive or negative time difference
from the scheduled time of arrival/departure.

Figure 5.1: Map of origin/destination airports for Rotterdam Airport during the period January 2017–February
2020.

Figure 5.2: Histogram of the flight departure and arrival delays in the period January 2017–February 2020 at
Rotterdam Airport.
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WEATHER DATASET

We also consider the weather conditions, such as the temperature, pressure, and wind
speed, measured at the origin/destination airport of all flights arriving/departing at RTM
in the period 2017–2020. Measurements are available every 30 minutes [77].

5.2.2. FEATURE SELECTION
In this section, features are extracted and selected from the datasets described in Sec-
tion 5.2.1. Feature selection is performed using the Pearson Correlation Coefficient. The
correlation between any two features and the correlation between the features and the
target (the flight delay) are calculated for a given training set. The features are selected
as follows: for any two features that are correlated by more than the threshold value of
0.7, the feature that has the smallest correlation with the target variable is removed. Ta-
ble 5.1 shows the features that have been selected for flight delay prediction. In Table 5.2,
a description is provided for each of the selected features.

The features Airport, Airline, Season, Time of day, Day of week, Day of month, Day
of year, Airport latitude and longitude, Distance, Month, Year and Scheduled flights 2h
and Scheduled flights day are obtained or calculated from the flight schedule dataset.
The feature Seats is derived from the aircraft type assigned to perform a flight. The fea-
tures Temperature, Dewpoint, Visibility, Pressure, and Wind speed are obtained from the
weather dataset.

Table 5.1: Feature encoding and selection for flight delay prediction.

Prediction Features

Departure delay Airport a, Airline a, Season a, Time of day b, Day of week b,
Day of month b, Day of year b, Airport latitude c, Airport lon-
gitude c, Day of month c, Seats c, Year c, Scheduled flights
2 h c, Scheduled flights day c, Dewpoint c, Visibility c, Pres-
sure c, Wind speed c

Arrival delay Airport a, Airline a, Aircraft type a, Season a, Time of day b,
Day of week b, Day of month b, Month b, Airport longitude c,
Day of month c, Distance c, Seats c, Year c, Scheduled flights
2h c, Scheduled flights day c, Temperature c, Visibility c, Pres-
sure c, Wind speed c

a This feature is target encoded; b This feature is trigonometrically encoded; c This feature is numerically
encoded.
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Table 5.2: Description of features selected for flight delay prediction.

Feature Description

Airport the airport of destination (departures) or origin (arrivals)
Airline the airline operating the flight
Aircraft type the aircraft type used for the flight
Season the flight season (summer or winter schedule)
Time of day scheduled time of day of the flight
Day of week scheduled day of the week of the flight
Day of month scheduled day of the month of the flight
Day of year scheduled day of the year of the flight
Month scheduled month number of the flight
Airport latitude the latitude of the destination/origin airport
Airport longitude the longitude of the destination/origin airport
Distance the distance between the origin and destination
Seats the seat capacity of the used aircraft
Year the year in which the flight was operated
Temperature the air temperature at the destination/origin airport
Dewpoint the dewpoint temperature at the destination/origin airport
Visibility the prevailing visibility at the destination/origin airport
Pressure pressure altimeter at the destination/origin airport
Wind speed wind speed at the destination/origin airport
Scheduled flights day the number of flights scheduled to depart/arrive during the day of the

flight
Scheduled flights 2h the number of flights scheduled to depart/arrive during the period

between one hour before and one hour after the scheduled time of
the flight

The features are either categorical, time-related, or numerical. The categorical fea-
tures are target encoded based on a binary delay threshold of 15 min. The encoded value
of the sample feature is the delay rate of the category to which the sample belongs. For
example: if 8 out of 20 samples flying on Tuesdays are more than 15 min delayed, all
Tuesday flights are encoded with value 0.4 for the feature Day of the week. The time
features are encoded using trigonometric functions to preserve the periodicity. Two fea-
tures (sine and cosine) are extracted from every time feature. For example, the features
Month sine and cosine are calculated using sin( 2πχ

12 ) and cos( 2πχ
12 ) for a given month χ.

The remaining features are numerically encoded, i.e., the encoded value is the same
as the original feature value. Note that the time features are both trigonometrically and
numerically encoded. For example, the data field Day of the week yields the features Day
of the week sine, Day of the week cosine, and Day of the week. The encoding method
of every selected feature is denoted in Table 5.1. After encoding, all feature values are
scaled to the interval [0,1] to eliminate undesired feature domination in neural network
models.

Table 5.1 shows that most features are selected for at least one of the departure/arrival
pair, and that the trigonometrically encoded time features are selected more often than
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the non-encoded time features.

5.2.3. MACHINE-LEARNING ALGORITHMS TO ESTIMATE THE PROBABILITY

DISTRIBUTION OF FLIGHT DELAYS
Following feature selection, two algorithms are proposed to estimate the distribution of
flight delays: Mixture Density Networks (MDN) and Random Forests regression (RFR).
These algorithms belong to different classes of machine learning algorithms, neural net-
works, and decision trees, respectively.

MIXTURE DENSITY NETWORKS (MDNS)
A Mixture Density Network [22] is a combination of a neural network and a Gaussian
mixture model. Given feature values xi of flight i , an MDN outputs the parameters for
each Gaussian in the mixture: the weight α, the mean µ, and the standard deviation σ.
With these parameters, the probability density function p(yi |xi ) of the target variable yi ,
the flight delay, is determined. In general, the MDN is particularly suitable to estimate
multimodal probability distributions [151, 183, 176, 27, 172, 50, 185]. It is therefore able
to predict a distribution with peaks at, for example, two separate likely delay values.

The flight delay probability distribution is constructed as the weighted sum of Gaus-
sian distributions as follows:

p(yi |xi ) =
m∑

j=1
α j (xi )φ j (yi |xi ), (5.1)

φ j (yi |xi ) = 1√
2πσ j (xi )2

exp

(
− (yi −µ j (xi ))2

2σ j (xi )2

)
(5.2)

where p(yi |xi ) is the probability distribution of delay value yi given feature values xi

from flight sample i , while α j (xi ), µ j (xi ) and σ j (xi ) are the weight, mean, and standard
deviation of the j th Gaussian component, 1 ≤ j ≤ m with m the total number of Gaussian
components considered for the mixture.

For any given flight, the features obtained in Section 5.2.2 are the input to the MDN,
while the parameters α j , µ j , and σ j are the output of the MDN. Thus, there are 3m
outputs of the MDN. The weights use a softmax activation function, and the standard
deviations use an exponential activation function, while the means are unrestricted.

The neural network is trained using backpropagation, i.e, the network parameters,
the weights and biases of each node are updated using an error function E , which is
the negative logarithm of the likelihood that the model derived from the output of the
current network gives rise to the training data [22]. This likelihood is the product of the
likelihood of every data point, given the current network parameters. Formally [22],

E =
N f∑
i=1

(
− ln

m∑
j=1

α j (xi )φ j (yi |xi )

)
=

N f∑
i=1

− ln p(yi |xi ), (5.3)

where N f is the total number of samples in the training set, and we have used Equa-
tion (5.2).
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For every data point fed to the neural network, the derivatives of the error with re-
spect to all network parameters are used to update the weights and biases of the net-
work. Following training, the MDN is applied to a test set and multimodal probability
distributions for the delay of each flight in the test set are estimated. The MDN method
is illustrated schematically in Figure 5.3.

RANDOM FORESTS REGRESSION AND KERNEL DENSITY ESTIMATION

Random Forests regression (RFR) is a class of decision tree-based machine learning algo-
rithms [23]. The regular RFR algorithm is an ensemble method that combines the results
of a number of decision trees. When building each tree, a random subset of the feature
values of each training data point is used to make branches. The algorithm outputs a
point estimate for the target variable (flight delay) of every test sample by averaging the
output values of all considered decision trees. However, for our analysis, we are inter-
ested in estimating the probability distribution for the delay of the given flight, rather
than a point estimate.

Figure 5.3: Schematic representation of a Mixture Density Network: parameters for a multimodal Gaussian
distribution are obtained using a Neural Network.

In order to obtain the flight delay distribution of a flight in the test phase, the output
values of the decision trees are not averaged, but collected, and a kernel density estima-
tion (KDE) is performed [186]. A KDE results in a normalized probability density func-
tion. Two settings of the KDE are the kernel type and the bandwidth. In our analysis, a
bandwidth of 1.5 is used to render the estimated distribution smooth. Gaussian kernels
have been selected for their generality.

Random Forests regression is a well-established technique that has been applied in
many research areas. However, there are very few examples of studies utilizing the algo-
rithm to obtain probability distributions. Förster, Schultz, and Fricke [53] use quantile
values, obtained from Quantile Random Forests, to construct a right-continuous cumu-
lative distribution function of aircraft’s time-to-fly from the turn onto the final approach
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course to the runway threshold. Schlosser et al. [148] and Rahman et al. [130] use Ran-
dom Forests algorithms to obtain probability distributions for precipitation forecasts
and drug sensitivity, respectively. Both studies make use of feature probability distribu-
tions estimated via maximum likelihood to make splitting decisions when constructing
the decision trees. Stochastic variables are introduced during or before the growing of
the decision trees. In contrast, in this study, the feature values and splitting decisions are
kept deterministic throughout the Random Forests algorithm. In this way, the probabil-
ity density function is estimated from deterministic feature values without the need for
stochastic variables. Furthermore, the working of the original Random Forests regres-
sion algorithm need not be changed.

In Figure 5.4, an example of obtained probability distributions is shown for both
methods. For both distributions, the actual delay value of the flight example is indicated.

5.2.4. HYPERPARAMETER TUNING
The hyperparameters of the MDN and the RFR prediction algorithms have been opti-
mized using a grid search. The hyperparameters leading to the lowest mean CRPS scores
(see Section ) have been selected. Table 5.3 shows the selected hyperparameters and
their search range. For MDN, a network with three hidden layers of 50 nodes is selected.
The output layer of the network consists of 24 nodes, with which an 8-modal Gaussian
distribution function is constructed. For RFR, 200 decision trees with a maximum depth
of 10 layers are constructed. For every branch split, three out of four features are consid-
ered of at least seven training samples.

Table 5.3: Hyperparameters for MDN and RFR.

Mixture Density Network

Hyperparameter Value Range

Number of modes m 8 [3, 5, 8, 10, 15]
Number of hidden layers 3 [1, 2, 3]

Number of nodes per hidden layer 50 [25, 50, 75, 100]
Number of epochs 1000 [500, 750, 1000, 1250, 1500]

Random Forest Regression

Hyperparameter Value Range

Number of estimators 200 [100, 150, 200, 300]
Split criterion Mean-squared error [MSE, MAE]

Maximum tree depth 20 [4, 6, 8, 10, 12, 15, 20, 30]
Minimum samples per leaf node 7 [0, 3, 5, 7, 9]

Fraction of features considered for split 0.75 [0.25, 0.50, 0.75, 1.00]
KDE Bandwidth h 1.5 [0.5, 1, 1.5, 2]
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(a) Probabilistic prediction on an example flight
using MDN.

(b) Probabilistic prediction on an example flight
using RFR.

Figure 5.4: An example of probabilistic prediction curves obtained from MDN and RFR for departure flight
samples. Blue vertical lines indicate actual sample delay, orange curves depict the probability distribution

obtained using MDN, green bars the histogram of RFR estimators, and green curves the probability
distribution obtained from this histogram by KDE.

5.2.5. PERFORMANCE METRICS FOR PROBABILISTIC FORECASTING
As discussed before, many studies perform point estimate prediction on flight delays,
such as [85, 106, 178, 164]. The most pervasive metrics for point estimate prediction are
the root mean square error (RMSE) and mean absolute error (MAE), measured between
the actual point and the predicted point. In this study, probabilistic forecasting is per-
formed. Thus, metrics such as the RMSE and MAE cannot be applied, since they cannot
be used to compare an entire delay distribution with a point value for actual delay. In
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this chapter, the following six metrics are proposed to evaluate the performance of the
MDN and RFR algorithms.

CONTINUOUS RANKED PROBABILITY SCORE

Since our aim is to estimate probability distributions for flight delays, a metric is needed
that evaluates these distributions. The algorithms aim to obtain a distribution centered
on the actual flight delay value, with a small standard deviation. To measure the extent
to which the probabilistic prediction algorithms are able to achieve this, the Continuous
Ranked Probability Score (CRPS) [108] is proposed. For an estimated flight delay proba-
bility distribution p(yi ) and actual delay value ȳi , we define:

C RPS(F (yi ), ȳi ) =
∫ ∞

−∞
(
F (z)−1z≥ȳi

)2 d z, (5.4)

where F (yi ) is the cumulative distribution function of p(yi ) and 1 is the Heaviside step
function.

The CRPS is a generalization of the MAE for probabilistic predictions. It measures
the deviation of the estimated delay cumulative distribution function from a step func-
tion at the actual delay value. This means that the CRPS attains the value 0 in the limit
of a correct point prediction with absolute certainty. Since the CRPS is minimized if the
model outputs the ideal distribution, the CRPS is a proper scoring rule. Therefore, it
is an indication of both the sharpness and the calibration of the probabilistic forecast
[57]. Figure 5.5 shows a case where the actual delay is 10 min, and includes examples of
cumulative distributions with varying sharpness and calibration. Both a reduced sharp-
ness and a reduced calibration in the distribution will increase the CRPS value. Since the
CRPS is calculated for every flight in the test set, we introduce the metrics ‘CRPS mean’
and ‘CRPS std’, the mean and standard deviation of all CRPS values, respectively.
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Figure 5.5: Illustration of the relation between the shape of the delay cumulative distribution function and
the Continuous Ranked Probability Score (CRPS). The step function at the actual delay value (green dotted)
corresponds with a CRPS value of 0. An example of a cdf with nonzero CRPS is plotted in blue. The black
dash-dotted and yellow dashed lines show the same cdf with reduced sharpness and calibration, respectively.

RMSEM AND MAEM

Since the RMSE and MAE are not suitable to assess an estimated flight delay distribu-
tion, we propose the variants RMSEM and MAEM , which are calculated by comparing
the mean value of the estimated distribution against the actual delay value. Before in-
troducing the formal notation of these metrics, it is necessary to define the mean value
of the estimated distribution. For MDN, the mean is defined as the weighted average
of the component means, i.e., µMDN(xi ) = ∑m

j=1α j (xi )µ j (xi ) is the distribution mean of
flight sample i , withα j (xi ) andµ j (xi ) the weight and mean of component j . When using
RFR, the meanµRFR(xi ) is defined as the mean of the point estimates obtained from each
decision tree. The distribution means are referred to as µM(xi ) with M ∈ {MDN, RFR}.

The RMSEM and MAEM are then defined as:

RMSEM =

√√√√ 1

N f

N f∑
i=1

(ȳi −µM(xi ))2, (5.5)

MAEM = 1

N f

N f∑
i=1

|ȳi −µM(xi )| (5.6)

The RMSEM and MAEM are used to characterize the average deviation of the mean of
the estimated distribution from the actual delay ȳi and thus measure only the calibration
of the distribution and not the sharpness.
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METRICS BASED ON THE STANDARD DEVIATION

For MDN, the standard deviation of a multimodal probability density function for a flight
sample xi is calculated as follows [22]:

σMDN(xi ) =
√√√√ m∑

j=1
α j (xi )

(
σ j (xi )2 + (

µ j (xi )−µMDN(xi )
)2

)
, (5.7)

withα j (xi ) the weight,µ j (xi ) the mean andσ j (xi ) the standard deviation of component j .
For the RFR algorithm, the standard deviation of the delay distribution is calculated

in a similar fashion: a Kernel Density Estimation can be considered a multimodal Gaus-
sian as well. This Gaussian has equal weights 1

N f
, the RF regression point estimates

as means and
p

h as the standard deviation. This leads to the following expression for
σRFR(xi ):

σRFR(xi ) =
√√√√ 1

ne

ne∑
j=1

(
h + (

ŷi , j −µRFR(xi )
)2

)
, (5.8)

with ne the number of estimators used in the algorithm, and ŷi , j the j th point estimate
for the delay of flight sample i . The distribution standard deviations are referred to as
σM(xi ) with M ∈ {MDN,RFR}. Having obtained the distribution standard deviations in
Equations (5.7) and (5.8), we can introduce the two metrics based on these. The first
metric is the sample average of the standard deviation:

σ̄= 1

N f

N f∑
i=1

σM(xi ), (5.9)

where N f is the number of flights in the test set. In order to define the second metric,
we first introduce f1σ(xi ), which indicates whether the actual delay ȳi of a sample i lies
within one standard deviation σM from the distributional mean µM. The second metric
f̄1σ is then defined as the average of this quantity over all N f samples. It measures the
ability of the probabilistic algorithm to predict a narrow delay distribution on or near
the correct delay value. Together with the σM(xi ), it characterizes the spread of the esti-
mated distribution and thus measures only the sharpness of the distribution and not the
calibration. Formally,

f̄1σ = 1

N f

N f∑
i=1

f1σ(xi ) (5.10)

with

f1σ(xi ) =
{

1 if |µM(xi )− ȳi | <σM(xi )

0 if |µM(xi )− ȳi | ≥σM(xi )
. (5.11)

The six metrics defined in Equations (5.4)–(5.11) are used to assess the estimated
flight delay distributions obtained using MDN and RFR. The metrics CRPS mean, CRPS
std, RMSEM , MAEM and σ̄have the same unit as the target variable, i.e., minutes of delay,
whereas f̄1σ is expressed as a percentage.
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5.2.6. RESULTS—PROBABILISTIC FLIGHT DELAY PREDICTIONS
We analyze both departing and arriving flights. For both, train and test sets are con-
structed using a 5-fold Cross Validation. The MDN and RFR algorithms have been used
to estimate the distribution of the arrival and departure flight delays. The use of weather
measurements implies a prediction horizon associated with these flight delay predic-
tions of several days long. Table 5.4 shows the performance obtained using these algo-
rithms.

Table 5.4: Performance metrics for probabilistic flight delay prediction.

Flights Algorithm CRPS Mean CRPS Std MAEM RMSEM σ̄ f̄1σ
[min] [min] [min] [min] [min] [%]

Departures
MDN 9.12 19.15 13.23 24.23 23.85 0.92
RFR 8.86 18.15 12.51 23.32 12.08 0.69

Arrivals
MDN 10.95 17.59 15.62 24.98 24.60 0.87
RFR 10.85 17.49 14.99 24.39 14.02 0.61

Table 5.4 shows that both MDN and RFR are able to predict departure and arrival de-
lays within an average CRPS of 11 min. The RFR algorithm results in a smaller prediction
error than the MDN algorithm. In addition, the delays of the arriving flights are pre-
dicted with larger error than those of the departing flights. This is explained by the fact
that the bulk of the arriving flights has a considerably smaller delay than the bulk of the
departing flights, as seen in Figure 5.2. Because the algorithms are trained mostly using
arrival samples having a small delay, they have a decreased prediction performance for
test samples with large delays. This decreased performance contributes greatly to the
larger CRPS values.

Furthermore, Table 5.4 shows that the MDN algorithm predicts flight delays with
a larger standard deviation than the RFR algorithm, and in turn the actual delay falls
within this standard deviation more often. This is explained by the fact that the RFR al-
gorithm produces a more narrow prediction curve than the MDN algorithm, on average.

5.2.7. IMPACT OF THE CHOICE OF THE HYPERPARAMETERS
In this section, the influence of the values of important hyperparameters on the proba-
bilistic flight delay prediction performance is assessed. The focus lies on the ability of the
algorithms to construct a representative delay distribution; therefore, the mean CRPS is
used to quantify the performance.

An important hyperparameter of the MDN algorithm is the number of modes. A dis-
tribution with more modes allows for more complex shapes, while a distribution with
only one mode corresponds to a regular Gaussian distribution. In Figure 5.6a, the per-
formance of the MDN algorithm for a varying number of modes is shown. Using multi-
ple modes leads to a better performance than using a regular Gaussian function. When
adding more than three modes, this improvement stagnates.

An important hyperparameter of the RFR algorithm is the maximum tree depth. A
greater tree depth leads to a better distinction between different flights in the train-
ing set, but a tree depth that is too large can lead to overfitting. In that case, the er-
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ror on the test set is not further reduced, while the computational time still increases.
In Figure 5.6b, the performance of the RFR algorithm for varying values of the tree depth
is shown. By analyzing a range of values between 10 and 30, it is found that a consistent
performance is obtained from a max depth value of roughly 20.

(a) CRPS values for delay prediction using varying number of modes for MDN.

(b) CRPS values for delay prediction using varying values of the tree depth for RFR.

Figure 5.6: CRPS values obtained when varying hyperparameters in the MDN and RFR algorithms.
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5.3. INTEGRATING PROBABILISTIC DELAY PREDICTIONS INTO

THE FLIGHT-TO-GATE ASSIGNMENT PROBLEM
At an airport, a daily recurring operation is to assign arriving/departing flights to a gate.
This is known as the flight-to-gate assignment problem (FGAP). The FGAP has been ad-
dressed extensively in literature [35]. An important quality of a given flight-to-gate as-
signment is its robustness. A greater robustness implies that, when faced with a distur-
bance (for example a flight is delayed), the model is able to handle this situation without
introducing more disturbances. The aim of this section is to use the flight delay predic-
tions obtained in Section 5.2 to obtain a robust flight-to-gate assignment. First, the FGAP
is introduced, after which the flight delay predictions are integrated in this problem.

5.3.1. MATHEMATICAL FORMULATION OF THE DETERMINISTIC FGAP MODEL
In the past few decades, the FGAP has been modelled as a linear programming problem,
having objectives such as the minimization of the number of towing procedures [14],
the minimization of passenger walking distance [105], or obtaining robust flight-to-gate
assignments by minimizing the number of gate conflicts [171, 179, 100, 194, 89].

These optimization models use a set of scheduled flights with deterministic flight
arrival and departure times as input. Let us first introduce the following deterministic
FGAP model [171].

Let N denote the set of n scheduled aircraft at the airport during a planning horizon,
let G denote the set of g gates available at the airport, and let K denote the set of k time
slots in the planning horizon. Let ci j denote the cost of assigning aircraft i ∈ N to gate
j ∈G . Let si t denote the following binary presence indicator:

si t =
{

1, if aircraft i is scheduled to be at the airport at time slot t ∈ K

0, otherwise

The decision variables in this model are denoted as:

xi j t =
{

1, if aircraft i is assigned to gate j at time slot t

0, otherwise

Then, the deterministic FGAP model is:

min
n∑

i=1

g∑
j=1

k∑
t=1

ci j xi j t (5.12)

s.t.
g∑

j=1
si t xi j t = si t ∀i ∈ N and ∀t ∈ K . (5.13)

n∑
i=1

si t xi j t ≤ 1 ∀ j ∈G and ∀t ∈ K . (5.14)

si t xi j t+1 − si t+1 · xi j t = 0

∀i ∈ N and ∀ j ∈G and ∀t ∈ K \ {k}
(5.15)
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In this problem, the assignment costs over the total assignment are minimized (see
Equation (5.12)) under the following conditions: Constraint 5.13 enforces that any air-
craft i scheduled to be at the airport at time slot t , is assigned to exactly one gate j .
Constraint 5.14 ensures that at most one aircraft i is assigned to a gate j at any time
slot t . Lastly, Constraint 5.15 makes sure that an aircraft i cannot switch gates during its
presence at the airport.

In this chapter, we consider a planning horizon of 24 h, separated in time slots. Every
time slot consists of 5 min, therefore k = 288. The cost ci j is assumed to be equal to 1 for
any combination of gate and aircraft.

5.3.2. MATHEMATICAL FORMULATION OF THE PROBABILISTIC FGAP
In Section 5.3.1, the deterministic FGAP model was introduced. In this model, the air-
craft presence is modelled by the binary, deterministic variable si t . In this section, we
introduce a probabilistic FGAP model, where the variable si t is replaced by a presence
probability function pi t of an aircraft, i.e., pi t is the probability that aircraft i is present
at the airport at time slot t . In Van Schaijk and Visser [171], this aircraft presence proba-
bility is estimated based on a statistical analysis of a set of historical flights. In contrast,
in this study, the presence probability is obtained using the machine learning predic-
tion algorithms in Section 5.2, which provide an estimate of the delay for each individual
flight.

Constraint (5.14), which refers to a deterministic aircraft presence in the determinis-
tic FGAP model, is replaced by [171]:

n∑
i=1

f (pi t ,r )pi t xi j t ≤ 1 ∀ j ∈G and ∀t ∈ K , (5.16)

where
f (pi t ,r ) = pi t

r +p2
i t

, (5.17)

with r a maximum overlap probability threshold between any two aircraft assigned to
the same gate j at any time slot t . In other words, instead of Constraint 5.14, which
ensures in the deterministic FGAP model that at most one aircraft is assigned to a gate in
a time slot, Constraint 5.16 in the probabilistic FGAP model ensures that the probability
that two aircraft are assigned to the same gate does not exceed a maximum threshold r
at any time slot. Constraint 5.16 considers the overlap probability between two aircraft.
In the case that the probability that three or more aircraft that are assigned to the same
gate at the same time slot exceeds r , the probabilistic FGAP model is solved iteratively:
for any instance where the value of r is exceeded, the number of aircraft assigned to the
respective gate and time slot is iteratively decremented [100].

5.3.3. AIRCRAFT PRESENCE PROBABILITY FUNCTION
The aircraft presence probability function pi t is an input to the probabilistic FGAP model
given in Equations (5.12), (5.13), (5.15) and (5.16).

Let yarr
i and ydep

i denote the arrival delay and departure delay of aircraft i . We de-

termine the probability distributions of yarr
i and ydep

i using the machine learning al-
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gorithms introduced in Section 5.2. These distributions are further used to obtain the
aircraft presence probability pi t as follows.

Let ST Ai and ST Di be the scheduled times of arrival and departure of aircraft i .

Then, the predicted arrival and departure times are X arr
i = ST Ai +yarr

i and X dep
i = ST Di +

ydep
i , respectively. Let fX arr

i
(t ) and f

X dep
i

(t ) denote the pdf of X arr
i and X dep

i , respectively.

Let FX arr
i

(t ) and F
X dep

i
(t ) denote the cdf of X arr

i and X dep
i , respectively. Figure 5.7 shows

the pdf of the arrival and departure times of an aircraft with STA = 12:20 and STD = 13:10.
The cdf of these arrival and departure times is given in Figure 5.8.

Figure 5.7: Pdf of the arrival and departure time of an aircraft with ST A =12:20 and ST D =13:10.

Using the cdf of X arr
i and X dep

i , we determine pi t as follows:

pi t = FX arr
i

(t ) · (1−F
X dep

i
(t )), (5.18)

i.e., the aircraft presence probability pi t is calculated as the product of the probability
that the aircraft has arrived and the probability that the aircraft has not yet departed, at
time t . Figure 5.9 shows the aircraft presence probability pi t of an aircraft having STA =
12:20 and STD = 13:10, calculated using Equation (5.18).
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Figure 5.8: Cdf of the arrival and departure time of an aircraft with with ST A =12:20 and ST D =13:10

Figure 5.9: Aircraft presence probability (pi t ) of an aircraft with ST A =12:20 and ST D =13:10.

If the aircraft has an overnight stay, i.e., does not arrive at and depart from the refer-
ence airport on the same day, then the aircraft presence probability pi t is calculated as
follows:

Case 1: The aircraft has stayed at the airport during the night before the day of inter-
est, and departs at the beginning of the day. The aircraft presence probability is formed
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using only the cdf of departure time:

pi t = 1−F
X dep

i
(t ), (5.19)

Case 2: The aircraft arrives at the airport in the evening and stays during the night
after the day of interest. The aircraft presence probability is formed using only the cdf of
arrival time:

pi t = FX arr
i

(t ), (5.20)

Having obtained the aircraft presence probability pi t for an aircraft i and p j t for an
aircraft j , we determine the overlap probability between aircraft i and j at timestep t as
pi t ·p j t . Figure 5.10 shows an example of an overlap probability for aircraft 1 and 2.

Figure 5.10: Two aircraft presence probability functions with ST A1 = 11:20, ST D1 = 12:00, ST A2 = 12:20,
ST D2 = 13:10, and their overlap probability.

5.3.4. RESULTS—FLIGHT-TO-GATE-ASSIGNMENT INTEGRATING PROBABILIS-
TIC FLIGHT DELAY PREDICTIONS

In this section, the results obtained from the deterministic and probabilistic FGAP mod-
els introduced in Sections 5.3.1 and 5.3.2 are outlined. The flight-to-gate assignment is
generated at RTM airport for one day of operations: 14 July 2019. On this day, a total of
25 departures and 24 arrivals were scheduled. This day is referred to as the date of in-
terest. The collection of all flights scheduled on the date of interest forms the test set for
the delay predictions obtained using the machine learning algorithms in Section 5.2. All
flights scheduled in the period from 1 January 2017–13 July 2019 form the training set of
the machine learning algorithms. For our FGAP model, we assume eight gates, to which
aircraft can be assigned.
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Figure 5.11 shows the assignment of aircraft to gates for the date of interest obtained
using the deterministic and probabilistic FGAP models. For the assignment obtained
with the deterministic model, the presence as indicated by a solid line shows the period
of time an aircraft occupies a gate, based on its scheduled arrival and departure time, i.e.,
based on the aircraft presence si t . For the assignment obtained with the probabilistic
FGAP model, the presence indicated by a solid line shows the period of time for which
the aircraft presence probability pi t is larger than 0.1.

(a) FGA obtained with the deterministic model.

(b) FGA obtained with the probabilistic model using r = 0.15.

Figure 5.11: Flight-to-gate assignments for 14 July 2019 obtained using the deterministic and probabilistic
models.

Figure 5.11a shows that, in the flight-to-gate assignment obtained using the deter-
ministic FGAP model, aircraft 1 and 5 are assigned to the same gate (6). However, Fig-
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ure 5.11b shows that, in the assignment obtained using the probabilistic FGAP model,
aircraft 1 and 5 are assigned to different gates (4 and 7). This is because the overlap prob-
ability between aircraft 1 and 5 exceeds the maximum overlap probability threshold r .
The same situation occurs for aircraft 10 and 13.

The deterministic and probabilistic flight-to-gate assignments obtained are evalu-
ated using the actual aircraft presence of the aircraft that flew on the date of interest.
The actual aircraft presence is the time between the actual arrival and AT Ai and actual
departure time and AT Di .

Figure 5.12 shows the aircraft presence probability pi t for all the aircraft assigned
to gates 7 and 8 in the solution obtained using the probabilistic FGAP model, as shown
in Figure 5.11b, versus the actual times the aircraft were present at gates 7 and 8. The
overlap probability between any two aircraft is plotted in red. We consider a maximum
permissible overlap probability r = 0.15.

Figure 5.12: Flight-to-gate assignment for gates 7 and 8 on 14 July 2019 obtained using the probabilistic model
with maximum overlap probability r = 0.15 combined with actual aircraft presence.

Following Constraint 5.16 in the probabilistic FGAP model, Figure 5.12 shows that the
overlap probability of any two aircraft assigned to either gate 7 or 8 does not exceed the
threshold r . The overlap probabilities between aircraft 19 and 2 (at gate 8) and aircraft
7 and 6 (at gate 7) are near the maximum overlap probability threshold r . The actual
presence periods of these pairs of aircraft do not overlap, showing that a threshold of
r = 0.15 was sufficient to prevent aircraft conflicts for these aircraft pairs. The actual
presence periods of aircraft 3 and 7 (at gate 7) do overlap, leading to an aircraft conflict.
In this case, the conflict is caused by the fact that the predicted presence of aircraft 7 is
later than the actual presence.

5.3.5. RESULTS—LONG RUN PERFORMANCE
In order to evaluate the long run performance of the deterministic and probabilistic
FGAP model, they are applied to test data comprising a period of 30 days: from 14 July
2019 up to and including 12 August 2019. Two metrics are used for evaluation:

• An aircraft is defined as a conflicted aircraft if there is at least one time slot at which
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this aircraft and any other aircraft are both present at the same gate.

• For the probabilistic FGAP model, a gate time slot is defined as a used gate time slot
if there is an aircraft present at the gate at this time with a probability of more than
0.5—for the deterministic FGAP model, if there is an aircraft present at the gate at
this time. Note that the maximum amount of used gate time slots is equal to g ·k.

The number of conflicted aircraft (CA) is a metric that measures the robustness of
the FGA against delay when in operation. The number of used gate time slots (UGT) is
a metric that measures to which extent an increase in robustness induces the need for a
larger utilization of the available gate capacity.

To evaluate the flight-to-gate assignments, the means and standard deviations of
these metrics over all testing days are used. The probabilistic FGAP model has been
run with a range of possible conflict probabilities r , namely r ∈ [0.05, 0.10, 0.15]. Since
the RFR algorithm has proven to yield the most accurate results in Section 5.2, RFR is
used to obtain the presence probabilities. Table 5.5 summarizes the metric values ob-
tained when evaluating the flight-to-gate assignments obtained from the deterministic
and probabilistic FGAP model.

Table 5.5: Results for the FGA’s at RTM airport, averaged over the days from 14 July until 12 August 2019 (30
days). The mean and standard deviation of the number of conflicted aircraft (CA) and the number of Used
Gate Time slots (UGT) are shown for all methods. For reference, the total number of aircraft per day and the
total number of available gate time slots are added. The presence probabilities were constructed using RFR.

CA Mean CA σ UGT Mean UGT σ

Total 31.6 6.7 2304 N/A

Deterministic FGAP 5.03 2.87 254 57.9
Probabilistic FGAP, r = 0.15 2.57 2.30 319 76.7
Probabilistic FGAP, r = 0.10 1.73 1.84 319 76.5
Probabilistic FGAP, r = 0.05 1.33 1.49 319 76.6

When considering the probabilistic FGAP model, Table 5.5 shows that the average
number of conflicted aircraft is smaller for all values of the maximum overlap probability
threshold r , when compared to the deterministic FGAP model. The probabilistic FGAP
model results in a more robust assignment than the deterministic FGAP model. The
gate usage increases by 25%, while the number of conflicted aircraft is reduced by up
to 74%. The number of conflicted aircraft does not decrease further when decreasing
r further than 0.05. The maximum overlap probability threshold can thus be used by
airport operators to adjust the robustness of the flight-to-gate assignment to the desired
level.

5.4. CONCLUSION
In Section 5.2, two probabilistic forecasting algorithms, Mixture Density Networks and
Random Forest regression, have been applied to the problem of flight delay prediction.
The algorithms were trained using features extracted from a flight schedule dataset and
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a weather dataset, which contained data from Rotterdam The Hague Airport. Six perfor-
mance metrics were defined to evaluate the probabilistic predictions, and the influence
of the hyperparameters on the probabilistic prediction performance was investigated.

The results show that it is possible to estimate probability distributions for future
flight delays within a Continuous Ranked Probability Score of 11 min, several days in
advance. The probabilistic flight delay predictions can provide airport coordinators not
only with an estimate for the flight delays of all incoming flights, but also with a mea-
sure of the certainty of these estimates. In this way, better informed decisions regarding
strategic flight schedules can be made, and on-time performance prediction can be im-
proved.

Subsequently, in Section 5.3, the probabilistic predictions were used as input to a
probabilistic linear programming model optimizing the flight-to-gate assignment prob-
lem, with the goal of increasing the robustness of this assignment. The results for the
flight-to-gate assignment problem show a reduction of up to 74% in the average number
of conflicted aircraft per day by incorporating the probabilistic flight delay predictions.
The robustness can be adjusted by varying the maximum permissible overlap proba-
bility threshold in the probabilistic optimization model. The application of flight delay
predictions to the flight-to-gate assignment problem provides a framework for increas-
ing robustness for flight-to-gate operations at airports.

Future work includes the application of the introduced approach to increasing the
robustness of flight-to-gate assignments to a larger airport, taking into account e.g., vary-
ing assignment costs, airline gate usage and the nearness of changed gates to the original
gate, and, second, the integration of probabilistic flight delay predictions into models for
other airport operations. Examples are arrival/departure sequencing and scheduling,
and electric taxiing operational planning.
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In Chapter 5 probabilistic algorithms were used to predict flight delays. In existing lit-
erature, a popular approach is to use binary classification for flight delays, flight can-
cellations and other classification problems. However, such problems often suffer from
a large data imbalance, which can reduce the performance of classification algorithms.
In this chapter a range of imbalance ratios, classification algorithms and sampling tech-
niques are considered to achieve the best performance for classification problems with im-
balanced data. A delay and cancellation case study show the specifications required to
achieve the best performance in the desired metric. In general, the results underline the
need to investigate the influence of varying data imbalance ratios on the performance of
classification algorithms.

This chapter is based on the following research article:
Hendrickx, R., Zoutendijk, M., Mitici, M. & Schaefer, J. (2021). "Considering Airport Planners’ Preferences and
Imbalanced Datasets when Predicting Flight Delays and Cancellations." in IEEE/AIAA 40th Digital Avionics
Systems Conference (DASC) [66].
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6.1. INTRODUCTION
Flight on-time performance is an important measure for airport and airline service qual-
ity. Before the COVID-19 crisis, the continuous growth of air traffic led to challenging
scheduling situations and an increase in flight delays and cancellations: In 2018, more
than 11 million flights were operated in Europe, with an average delay of 14.7 minutes,
an increase of 3.8% and 17% from 2017, respectively [45, 46]. After the crisis, the air traf-
fic volume is expected to restore to its pre-crisis level within 5 years [43]. An increase
in the number of flight delays and cancellations has detrimental effects on an airline’s
and airport’s quality of service and revenue [8]. As such, having the ability to anticipate
which flights may be cancelled or delayed is of great value for airports and airlines, as it
allows for pro-active decision making to mitigate the effects of cancellations/delays. In
order to anticipate flight delays and cancellations it is necessary to predict these events
ahead of time, preferably with a high certainty, in order to allow efficient managing of
the airports resources.

One class of techniques that can be used to predict flight delays and cancellations
is that of machine learning classification techniques. In the past years, several studies
have developed machine learning algorithms to predict flight delays and cancellations
[161], emphasizing the importance of flight on-time performance. One of the challenges
of classification problems is the fact that the used datasets can have an imbalanced class
distribution, i.e., the amount of samples in the class of interest is only a fraction of the
amount of samples in the majority class. This imbalance leads to a low performance of
the classification algorithms [188], which usually work best when having a balanced class
distribution. Binary flight cancellation and delay prediction is one example of a classifi-
cation problem where the issue of imbalanced class distribution needs to be addressed.
When considering regular operations, a large majority of the flights are not delayed or
cancelled, causing the problem to be imbalanced.

In order to address the limitations caused by data imbalance, many studies use over-
sampling and under-sampling techniques such as Synthetic Minority Oversampling Tech-
nique (SMOTE) [30], and Random Undersampling (RUS) [94]. However, when using
these techniques, a 50%−50% sampling ratio is most often used, which is not necessar-
ily the ratio that leads to the best performance of the prediction algorithms with respect
to the performance metrics considered. Moreover, the performance metric of choice is
usually accuracy, while this may not be the most relevant performance metric for the
problem considered.

In this chapter a systematic approach is proposed to analyse and deal with the effects
of highly imbalanced datasets when predicting flight delays and cancellations. First, the
most relevant performance metric for the prediction problem is selected. Then an adap-
tive sampling methodology is used to determine which sampling technique and which
imbalance ratio yield the best classification performance with regard to this metric. This
approach is demonstrated using several sampling techniques and classification algo-
rithms, which are applied to data on flights arriving/departing to and from a large, Eu-
ropean hub-airport, in the period 2015 - 2019. In addition to flight operational data,
weather data from METAR weather reports [77] are considered. To the best of our knowl-
edge, this paper is the first to propose a systematic approach to deal with the inherent
imbalance of the prediction of flight on-time performance, when formulated as a binary
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classification problem.
This chapter contributes to the current body of knowledge concerning highly imbal-

anced datasets and flight on-time performance as follows. From a practical point of view,
this proposed approach provides support for air transport stakeholders such as airport
coordinators who can use the predictions and the proposed approach to assess flight
schedules in advance of the flight execution and take action in order to mitigate the ef-
fects of flight delays and cancellations. Second, both flight delays and cancellations are
addressed, while existing studies mainly focus on flight delay predictions and not flight
cancellations. Predictions for flight cancellations in particular make use of highly im-
balanced datasets, which are the focus of this chapter. Third, the approach presented in
this chapter can be used to deal with imbalanced data in other fields of research, when
considering binary classification problems.

The remainder of this chapter is structured as follows. Section 6.2 presents the sys-
tematic approach to deal with the inherent data imbalance, including the binary classi-
fication algorithms, feature selection and relevant performance metrics, and addresses
the classification results. Section 6.3 concludes the research by discussing the approach,
summarizing the most important observations and providing suggestions for future re-
search directions.

RELATED WORK
In recent years, many studies have addressed the flight delay prediction problem using
machine learning techniques. Usually, the authors express the problem as a classifica-
tion task: in Choi et al. [32], the authors predict airline delay on prediction horizons of 5
days, 1 day and 0 days, using Decision Trees, Random Forests, AdaBoost and k-Nearest-
Neighbors classifiers. The data is sampled using a combination of SMOTE [30] and RUS
[94]. In general, the Random Forest classifier is found to have the best performance, with
an accuracy of 0.80. In Horiguchi et al. [69] flight delays are predicted on prediction hori-
zons of 5 months, 1 week and 1 day using Random Forests, XGBoost and Deep Neural
Networks. These algorithms make use of airline data, originating from a low cost carrier.
The classifiers attain an average Average Under Curve (AUC) score of 0.65 for a horizon
of 1 day, with a maximum of 0.75 for certain airports. In Lambelho et al. [95] flight delay
and cancellations predictions are used to rank IATA strategic flight schedules at London
Heathrow Airport. The predictions are made using three different classification algo-
rithms, of which LightGBM performs best, attaining a maximum F1-score of 0.60 for the
cancellation prediction problem. In Kim et al. [90] deep learning algorithms are used to
predict flight delays for airports in the US, several hours before the operation. Weather
data is also considered in this study. It is found that the Recurrent Neural Networks archi-
tecture results in the most reliable delay prediction: an accuracy of 0.87 is obtained. In
Chen and Li [31] an air traffic delay prediction model is proposed that combines multi-
class Random Forests and an approximated delay propagation model, which results in
an accuracy of 0.87. Additionally, it is found that departure delay and late arriving air-
craft delay are the most important features for the prediction. The authors use SMOTE
to resample the dataset. Finally, Alonso and Loureiro [9] perform multi-class predictions
for departing flight delay at Porto Airport, several hours before the flight.

Other studies express the flight delay prediction problem as a regression task. The
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authors of Manna et al. [106] investigate the prediction of flight delays several months
before the operation for US airports. Using Gradient Boosted Decision Trees, the authors
find that the model predicts flight delay patterns with a root mean square error (RMSE)
of 8.2 and 10.7 minutes for departure and arrival delay, respectively. Next, Kalliguddi and
Leboulluec [85] estimate flight delay several hours ahead of operation using several algo-
rithms, of which Random Forests performs best, with an RMSE of 12.5 minutes. It is con-
cluded that late aircraft delay, carrier delay, weather delay and national airspace delay
have the largest effect on on-time performance. Lastly, Thiagarajan et al. [164] perform
both classification and regression on the flight delay prediction problem. Classification
using the Gradient Boosting Classifier with a combination of SMOTE and Tomek Links
[165] yields an accuracy of 0.94 and a recall of 0.91. Regression with Random Forests
produced an RMSE of 8.7 minutes.

The topic of flight cancellation has been approached in varying ways in the liter-
ature: both Cao and Kanafani [26] and Jarrah et al. [83] are studies utilising on-time
performance data to propose an accurate decision-support tool, integrating flight de-
lays and cancellations. They apply network models with minimum cost and maximum
profit objectives, respectively. The tool returns an optimal set of flights to either delay
or cancel. Furthermore, Seelhorst and Hansen [153] investigate flight cancellation be-
haviour by using an econometric discrete choice model. The purpose of the research is
to identify factors that influence flight cancellations and to predict cancellation prob-
abilities. The results are incorporated in a queuing model, which visualises the effects
flight cancellations have on flight delays. Lastly, Alderighi and Gaggero [8] analyze the
effect of an airline being part of a global alliance on cancellations. It is concluded that
airlines belonging to an alliance are likely to have more flight cancellations compared to
non-alliance airlines. Complementary to these studies, in this chapter the cancellation
problem is posed as a binary classification problem.

On-time performance datasets are generally imbalanced, and so are flight delays and
cancellation datasets. Regarding imbalance, multiple studies have been carried out on
different topics. First, Zhao, Wong, and Tsui [188] establish an approach to handle im-
balanced healthcare data by incorporating multiple different rebalancing techniques.
The proposed framework successfully improves the detection of rare healthcare events
due to look-alike sound-alike mix-ups. A 45% increase in recall is observed when com-
bining a logistic regression algorithm with SMOTE. Another study on the effects of data
imbalance is Hassanzadeh et al. [64]. Four different rebalancing strategies are presented,
combined with a binary classification framework for scientific artifacts in the evidence-
based medicine domain. An increase of up to a factor of three in the F1-score of the
minority class was found for some of the strategies. Within the field of aircraft on-time
performance the most popular approach is to reduce imbalance by sampling with over-
or undersampling techniques, such as random oversampling [29], random undersam-
pling [32, 19, 164], SMOTE [18, 32, 60, 164, 31] and Tomek Links [164]. Most studies
choose to resample (i.e. bring to an equal amount of samples) the delayed and unde-
layed classes, without using a systematic approach to choose the sampling ratio.

This chapter aims to elaborate on previous work regarding handling of imbalanced
datasets and the prediction of flight delay and cancellation using machine learning, by
developing a general approach to handle imbalance in on-time performance datasets.
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6.2. DEALING WITH IMBALANCE: A SYSTEMATIC APPROACH
In this section, a systematic approach is presented to select an optimal imbalance ratio
for an imbalanced dataset in the context of binary classification for flight cancellation
and delay. The approach is demonstrated by predicting cancellation and delays with two
different classification algorithms and two different sampling techniques, on a one-day
prediction horizon.

6.2.1. DATA DESCRIPTION AND DEFINITIONS
In this study, Amsterdam Airport Schiphol (AAS) is considered as the reference airport
where flights are scheduled to depart from/arrive at. Two datasets are considered for the
proposed prediction algorithms: i) cancelled arrival/departure flights and, ii) delayed
arrival/departure flights.

i) Cancelled flights - Highly imbalanced dataset
A total of 1,956,418 arriving and departing flights to and from AAS in the period 2015-

2018 are considered. The dataset is based on the strategic flight schedules available in
2015-2018 and contains information such as scheduled date and time of the flight ar-
rival/departure, origin/destination airport of the scheduled flight and the airline that
operates the flight. These flights are operated by 256 airlines that fly to/from 649 air-
ports. Furthermore, 54% of the flights have both the destination and origin airport in the
Schengen area. Out of all considered flights 1.6% (30,695) are cancelled. Therefore this
dataset is considered to be highly imbalanced.

An arriving/departing flight is considered to be cancelled if this flight is scheduled to
arrive/depart at the reference airport, but it is not operated on the day of the scheduled
arrival/departure.

ii) Delayed flights - Moderately imbalanced dataset
The flight delay dataset contains a total of 479,400 arriving and departing flights

to and from AAS during 2019. Similar to the cancelled flights dataset, this dataset is
based on the strategic flight schedules available in 2019 and contains information such
as date and time of arriving/departing flights, origin/destination airport and the airlines
that operate the flights. Specifically, the flights are operated by 99 different airlines, fly-
ing from 336 unique origin airports and to 323 unique destination airports. This delay
dataset is considered to be moderately imbalanced with 34% (82,350) of all departing
flights being delayed, and 24% (57,253) of all arriving flights being delayed.

An arriving/departing flight is considered to be delayed if during operation, this flight
arrives/departs 16 min or more after the scheduled time of arrival/departure.

With regard to imbalance in datasets, the following definitions are introduced. The
imbalance ratio of a dataset of flights is defined as the ratio of delayed (cancelled) flights
to non-delayed (non-cancelled) flights. The base imbalance ratio of a flight dataset is
defined as the imbalance ratio the considered dataset initially has. Lastly, the sampling
ratio applied to a flight dataset is defined as the ratio between the amount of delayed
(cancelled) flight samples after sampling and the amount of delayed (cancelled) flight
samples before sampling.

As an example, a dataset of 100 flights, of which 20 are delayed, has an imbalance
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ratio of 20/80, i.e. 0.25. If the minority class is oversampled to a size of 40, the imbalance
ratio increases to 40/100, i.e. 0.40. An imbalance ratio of 100% corresponds with perfect
resampling, where the number of delayed (cancelled) and non-delayed (non-cancelled)
flights are equal.

Figure 6.1 shows the delay distribution of the arriving/departing flights in 2019 at
and from AAS. These histograms show that both the distributions of the arrival and de-
parture flight delays are unimodal with positive skew, i.e., the flights are more likely to ar-
rive/depart later than scheduled compared to earlier than scheduled. Also, as expected,
the histograms show that the arriving flights generally experience less delay than the de-
parting flights.

Figure 6.1: Departure and arrival delay distribution of flights arriving and departing at/from AAS in 2019. The
vertical red line shows the delay threshold of 16 min.

Apart from the flight schedule specific datasets, the weather conditions at the ori-
gin/destination airports such as the air temperature, wind speed, visibility and pressure
at sea level are considered. These data are obtained from METAR [77].

6.2.2. A SYSTEMATIC APPROACH TO DEAL WITH IMBALANCED DATA FOR FLIGHT

DELAY AND CANCELLATION PREDICTIONS
Given the fact that the flight cancellation and delay datasets are highly and moderately
imbalanced, respectively, a systematic approach is proposed to deal with these imbal-
ances when predicting flight delays and cancellations. Figure 6.2 shows a schematic
overview of the proposed approach. First, the relevant performance metrics for flight
delay and cancellation prediction algorithms are identified. Next, an adaptive sam-
pling procedure is iteratively applied to the flight delay and cancellation prediction algo-
rithms. Finally, an optimal imbalance ratio is determined. The available data is sampled
such that this imbalance ratio is attained and several binary classification algorithms are
run to predict whether flights are delayed or cancelled.
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Figure 6.2: A flow diagram of the systematic approach to deal with imbalanced data.

STEP 1: IDENTIFYING RELEVANT PERFORMANCE METRICS
First, performance metrics relevant for the prediction problem are identified. Common
metrics for binary classification algorithms are accuracy, precision, recall and F1-score.
However, given that the datasets are highly and moderately imbalanced, accuracy is not
considered as a relevant performance metric.

Given the specific problem of flight delay/cancellation prediction, in practice it is
preferred by airport planners to be able to predict whether flights are delayed/cancelled
with a high certainty, even at the cost of mis-classifying many delayed/cancelled flights
as not delayed/not cancelled. Otherwise, a low certainty in the flight delay/cancellation
prediction may lead to less-informed decisions from an airport planner, which may neg-
atively affect stakeholders such as airlines, passengers, etc. As such, in this study, pre-
cision is considered to be the main performance metric (high certainty of predictions),
and F1-score as the second most important metric (overall performance of the predic-
tion algorithm).

STEP 2: PREDICTION ALGORITHMS AND ADAPTIVE SAMPLING
In this step, several binary classification algorithms are employed to predict flight delays
and cancellations. Below the feature selection and an adaptive sampling approach for
these classification algorithms are discussed.

FEATURE ENCODING AND SELECTION

Table 6.1 indicates whether each feature is categorical, numerical or time-related. The
categorical features are target-encoded. Here, the target-encoded value of a categorical



6

130
6. CONSIDERING IMBALANCED DATASETS AND AIRPORT PLANNERS’ PREFERENCES WHEN

PREDICTING FLIGHT DELAYS AND CANCELLATIONS

feature is the probability of the flight being delayed/cancelled, based on all samples that
fall into the same category [109]. For example, if 20 out of all 50 flights from an airline
X are delayed, then airline X is encoded with value 0.4. The time features such as hour,
day of week and month are encoded using trigonometric functions that preserve peri-
odicity [69]. Lastly, all feature values are scaled to the interval [0,1] to eliminate feature
domination or ranking [69, 32].

Table 6.1 also shows which features have been selected for predicting the departure
delay, arrival delay and cancellations using binary classification algorithms. The selec-
tion is performed based on Pearson’s correlation coefficients. These features are the
flight number, the airline operating the flight, the apron handler assigned to a flight at
the airport, the aircraft type used for the flight, the aircraft registration number, the air-
port and country of origin/destination, the number of times an origin-destination air-
port route is operated per day by all aircraft arriving/departing at/from AAS, the service
type of the flight (passenger or freight), the month of the year, the time of day, and, for
both the destination and origin airport: the wind speed, gust speed, air temperature, air
pressure, visibility and snow presence. Table 6.1 shows that the delay classifiers make
more use of time features, since busy periods in the flight schedules are causes for flight
delay. The cancellation classifiers, however, make more use of weather features such as
visibility and snow presence, as they often cause flight cancellations.

Table 6.1: Selected features for the delay and cancellation prediction problems.

Classifier Features
Departure delay Flight numberc, Airlinec, Handlerc, Aircraft typec, Aircraft registrationc, Desti-

nation airportc, Route frequencyn, Montht, Timet, Gust speed (origin)n, Tem-
perature (origin)n, Temperature (destination)n

Arrival delay Flight numberc, Handlerc, Aircraft typec, Aircraft registrationc, Origin airportc,
Montht, Timet, Gust speed (destination)n

Cancellations Flight numberc, Airlinec, Handlerc, Aircraft registrationc, Origin/destination
airportc, Origin/destination countryc, Service typec, Wind speedn, Pressuren,
Visibilityn, Snown

c Categorical feature, target encoding
n Numerical feature
t Time feature, trigonometric encoding

BINARY CLASSIFICATION ALGORITHMS

The flights are classified as delayed or cancelled using two binary classification algo-
rithms: Random Forests (RF) and Multilayer Perceptron (MLP). Random Forests [23] is a
collection of many classification trees which are each constructed using a different sub-
set of the training set, and using a different selection of features. Each tree carries out a
class vote, after which the RF classifies using the majority vote. This approach reduces
overfitting and sensitivity to outliers, and enhances the predictive accuracy. The Multi-
layer Perceptron [68] is a feed-forward neural network with backpropagation, non-linear
activation functions and hidden layers. The MLP has the advantage that it can learn non-
linear relations. Both the MLP and RF algorithms are well-established and often used in
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the field of machine learning classification and are therefore fitting to be used in the
demonstration of our adaptive sampling approach.

For both algorithms the datasets are split into train and test data, with an 80%-20%
ratio. Thus, a 5-fold Cross Validation is used for these classifiers.

ADAPTIVE SAMPLING

In this part of the procedure, adaptive sampling is used to investigate the relation be-
tween the imbalance ratio of the dataset used for the prediction problem at hand (flight
cancellation or delay prediction), and the performance metrics considered relevant for
the problem (see Step 1). Adaptive sampling is performed as follows: starting at the
base imbalance ratio, the imbalance ratio is iteratively increased by 5%, until it reaches
100%. For each such imbalance ratio, the classification is performed using the two clas-
sification algorithms introduced previously and the sampling is performed using two
sampling techniques. The resulting values of the performance metrics selected in Step
1, i.e., precision and F1-score, are thus obtained for each imbalance ratio. Lastly, for
every combination of algorithm and sampling technique, an optimal imbalance ratio is
selected such that precision and F1-score are highest.

The two sampling techniques, used to sample the considered dataset for every im-
balance ratio, remain to be introduced. The first is an oversampling technique and the
second is an undersampling technique: Synthetic Minority Oversampling Technique
(SMOTE) [30] over-samples the minority class, i.e. the cancelled/delayed flights, by cre-
ating synthetic samples between samples and their nearest neighbours. When using
SMOTE, the samples are not duplicated. Random Undersampling (RUS) [94] undersam-
ples the majority class by leaving out random samples from this class. Both techniques
are well-known in literature, and the approach presented in this chapter can be extended
to different sampling techniques. In summary, for every value of the imbalance ratio,
the classification is performed with four different settings: RF sampled with SMOTE, RF
sampled with RUS, MLP sampled with SMOTE and MLP sampled with RUS.

Figures 6.3 to 6.5 show the precision, recall and F1-score as functions of the imbal-
ance ratio for the cancellations, departure delays and arrival delays, respectively, ob-
tained using the RF and MLP algorithms and the features as described in Section 6.2.1.
The sampling techniques SMOTE and RUS are indicated by S and R, respectively. The
methods are run with the default hyper-parameter settings as hyper-parameter tuning
is performed at a later stage.

i) Cancellations
Figure 6.3 shows that the precision score is highest at the base imbalance ratio, 1.6%,

for all combinations of algorithms and sampling techniques. The precision rapidly de-
creases with increasing imbalance ratio, until it levels at 0.05. The opposite can be seen
for the recall, which starts at a minimum and increases with increasing imbalance ratio.
There is a clearly visible trade-off between recall and precision. Finally, the peak of the
F1-score is observed near a ratio of 10%. Since the F1-score constitutes the harmonic
mean between precision and recall, the peak is observed at an imbalance ratio where
neither of the precision and recall attain extreme values. The results also show that RF
with SMOTE is insensitive to the imbalance ratios for all metrics.

ii) Departure delays
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Figure 6.3: Precision (a), recall (b) and F1-score (c) as function of the imbalance ratio, for cancellation predic-
tion (RF = Random Forest, MLP = Multilayer Perceptron, R = RUS, S = SMOTE.)
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Figure 6.4: Precision (a), recall (b) and F1-score (c) as function of imbalance ratio, for departure delay predic-
tion (RF = Random Forest, MLP = Multilayer Perceptron, R = RUS, S = SMOTE).
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Figure 6.5: Precision (a), recall (b) and F1-score (c) as function of the imbalance ratio, for arrival delay predic-
tion (RF = Random Forest, MLP = Multilayer Perceptron, R = RUS, S = SMOTE).
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For the departure delays, the imbalance ratio ranges between 55%, the base imbal-
ance ratio, and 100%. The graphs for precision, recall and F1-score are shown in Fig-
ure 6.4. The general trends are the same as for the performance of the cancellation clas-
sifiers, but the performance differences are smaller. Precision decreases with increasing
imbalance ratio, while recall increases with increasing imbalance ratio, for both algo-
rithms and sampling techniques. The F1-score also gradually increases with the imbal-
ance ratio.

iii) Arrival delays
Finally, for the arrival delays, the precision, recall and F1-score graphs are shown in

Figure 6.5. The base imbalance ratio for arrival delay lies at 33%. Again, there is a clear
decreasing trend for precision and an increasing trend for recall, with the F1-score graph
corresponding to their harmonic mean.

STEP 3: SELECTING AN OPTIMAL IMBALANCE RATIO
In this step an optimal imbalance ratio is selected based on the performance achieved
in Step 2. As mentioned above, an optimal imbalance ratio is the ratio for which the
relevant performance metric value (see Step 1) is highest.

Figures 6.3a, 6.4a and 6.5a show that the highest precision is attained at the base im-
balance ratio, i.e. without using sampling, for both classification algorithms. This shows
that at the base imbalance ratio the algorithms only classify those samples as positive
that have high certainty of being positive. This leads to a small amount of false positives,
and consequently to a higher precision than for greater imbalance ratios. As expected,
the large amount of positive samples that cannot be classified as such with high certainty
by the algorithm lead to a large amount of false negatives, and consequently to a lower
recall.

For the F1-score, the highest performance is obtained as follows. For the cancellation
results, an optimal F1-score for MLP is obtained when using a 10% imbalance ratio sam-
pled with SMOTE (see Figure 6.3c). An optimal F1-score for RF is located at the 10% RUS
imbalance ratio. Considering departure delay results, the MLP achieves the best perfor-
mance at 100% SMOTE and the RF at 100% RUS, as shown in Figure 6.4c. Finally, for
the arrival delay results, the highest F1-score is obtained at an imbalance ratio of 100%
RUS for MLP and 90% RUS for RF (see Figure 6.5c). Due to the greater imbalance in the
cancellation dataset a larger range of imbalance ratios is considered for the cancellation
prediction during the adaptive sampling procedure. This leads to a larger range of preci-
sion and recall values for cancellations (Figures 6.3a and 6.3b), as opposed to the values
for flight delay (Figures 6.4a, 6.4b, 6.5a and 6.5b). This explains why a clear optimum
imbalance ratio appears for the cancellation F1-score near 10% (Figure 6.3c), while for
the delay F1-score the values are similar for all considered imbalance ratios, and the op-
timum is less pronounced compared to that of the cancellation prediction (Figures 6.4c
and 6.5c).

A summary of these optimal selected imbalance ratios for each classifier is shown in
Table 6.2.
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Table 6.2: Optimal imbalance ratios corresponding to the maxima in the performance metric plots, for all
classification problems and both the Multilayer Perceptron (MLP) and Random Forest (RF) classifiers.

Maximize Cancellations Departure Delay Arrival Delay

MLP
Precision no sampling no sampling no sampling
F1-score 10% SMOTE 100% SMOTE 100% RUS

RF
Precision no sampling no sampling no sampling
F1-score 10% RUS 100% RUS 90% RUS

Table 6.3: Final hyperparameters for Multilayer Perceptron (MLP).

Maximize Sampling Hidden layer
size

Batch
size

Acti-
vation

Solver Learning
rate

Cancel
-lations

Precision no sampling 100 (1 layer) 1000 ReLu sgd constant
F1-score 10% SMOTE 100 (1 layer) 1000 ReLu adam constant

Departure
Delay

Precision no sampling 100 (1 layer) auto ReLu adam constant
F1-score 100% SMOTE 100 (1 layer) auto ReLu adam constant

Arrival
Delay

Precision no sampling 100 (1 layer) 1000 logistic sgd adaptive
F1-score 100% RUS 100 (1 layer) auto ReLu adam constant

Table 6.4: Final hyperparameters for Random Forest (RF).

Maximize Sampling Number
of trees

Criterion Max
depth

Max
features

Cancellations
Precision no sampling 100 Entropy 10 0.2
F1-score 10% RUS 300 Entropy 6 1.0

Departure
Delay

Precision no sampling 500 Gini 8 0.1
F1-score 100% RUS 500 Entropy 6 1.0

Arrival
Delay

Precision no sampling 100 Gini 6 0.1
F1-score 90% RUS 300 Entropy 6 0.7
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STEP 4: PERFORMING HYPER-PARAMETER TUNING
Following the selection of an optimal imbalance ratio, hyperparameter tuning is per-
formed for the flight cancellation, departure flight delay and arrival flight delay classi-
fiers. For the RF classifier, the number of trees, selection criterion, maximum tree depth
and maximum features per tree are considered for tuning. For the MLP classifier, the
hidden layer size, the batch size, activation function, solver and the learning rate are
considered. In all cases, a random grid search is performed. Table 6.3 and Table 6.4 show
the best hyperparameters for the considered classifiers.

6.2.3. RESULTS - BINARY CLASSIFICATION FOR FLIGHT DELAYS AND CAN-
CELLATIONS WITH OPTIMAL IMBALANCE RATIOS AND HYPER-PARAMETER

TUNING

Table 6.5: Final performance metric results for cancellation, departure delay, and arrival delay prediction.

Cancellations Departure delays Arrival delays
Indicator MLP RF MLP RF MLP RF

Highest Accuracy 0.986 0.986 0.682 0.681 0.768 0.765
precision Precision 0.809 0.853 0.614 0.660 0.692 0.713

Recall 0.041 0.035 0.303 0.203 0.054 0.028
F1-score 0.079 0.068 0.406 0.311 0.101 0.054
AUC 0.772 0.850 0.691 0.691 0.680 0.693

Highest Accuracy 0.978 0.981 0.666 0.645 0.710 0.640
F1-score Precision 0.263 0.284 0.524 0.493 0.406 0.362

Recall 0.237 0.198 0.491 0.601 0.528 0.624
F1-score 0.249 0.233 0.507 0.542 0.459 0.458
AUC 0.854 0.839 0.679 0.685 0.712 0.700

Using the obtained optimal imbalance ratios and sampling techniques for each pre-
diction problem and selected metric of interest, the classification algorithms are applied
once more to perform the final flight delay and cancellation predictions. The results are
summarized in Table 6.5. All results are the mean of a 5-Fold Cross Validation. In this
table, "highest precision" and "highest F1-score" indicate that the imbalance ratios have
been used that produce optimal results for the respective metric (see Table 6.2). For ex-
ample, the highest F1-score of 0.507 for departure delays with MLP is obtained using
100% SMOTE.

Table 6.5 can be used to compare the performance of the two used classification al-
gorithms, RF and MLP. For the cancellation problem, the table shows that the precision
performance of RF is higher than that of MLP when optimizing for precision (no sam-
pling). The opposite is observed for the value of the F1-score when optimizing for F1-
score (10% sampling). For the departure delay problem RF outperforms MLP for both
metrics of interest. For the arrival delay problem the difference between the classifier
performances is smaller and in the case of F1-score the performance is similar, although
the MLP does attain a greater accuracy.

Table 6.5 shows that the general performance, as illustrated by the F1-score, is better
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when the base imbalance ratio is larger. When aiming for a high precision, the results
show that the departure delay results have the smallest difference between recall and
precision, followed by the arrival delay and cancellation results. The trade-off between
precision and recall is therefore stronger for smaller base imbalance ratios, as expected.

As shown in Step 3, sampling does not improve the precision in any of the cases.
However, for F1-score a clear improvement is observed when choosing an optimal im-
balance ratio. For example, when using the MLP classifier, the increase is 243% for can-
cellation predictions, 74% for the departure delays, and 354% for the arrival delays, com-
pared to the base imbalance ratio.

In general, the fact that large differences in the classification performance are ob-
served when comparing the precision, recall and F1-score between the different im-
balance ratios, confirms the need for a systematic approach to deal with imbalanced
datasets regarding the flight cancellation and delay classification problem.

6.3. CONCLUSION
In this chapter, a systematic approach to deal with highly imbalanced data for binary
classification problems is developed, in order to enhance the performance of machine
learning algorithms predicting flight delays and cancellations, while taking into account
the preferences of airport planners regarding this performance. The presented approach
emphasises the need to identify the performance metrics relevant for the considered
problem. In the case of predicting flight delays and cancellations, correct predictions
are valuable to airport coordinators. The predictions can be used to propose changes
to strategic flight schedules. However, the airlines, which are subject to these change
proposals, are expected to accept such change proposals only if the predictions have a
high certainty. Hence, in this chapter the performance metric considered to be most rel-
evant has been the precision, as a high precision implies a high certainty in predictions.
Additionally, the F1-score has been considered.

The algorithms Random Forests and Multilayer Perceptron are trained and tested
with flight operational data from a large European hub airport and weather data. The
imbalance of the data is mitigated by applying an adaptive sampling procedure to the
prediction problem using the sampling techniques Random Undersampling (RUS) and
Synthetic Minority Oversampling Technique (SMOTE), and investigating its effects on
the classifier performance.

The imbalance analysis and its results show that optimal performance with respect
to the metrics can be obtained by varying the data imbalance ratios. Optimal precision
is shown to be found at base imbalance ratio (data without sampling), for all algorithm
and sampling technique combinations. In order to find the optimal F1-score, sampling is
shown to be necessary. Increasing the imbalance ratio to the optimal amount improves
the F1-score by a significant factor for each prediction problem. In the case of cancella-
tion prediction, the optimal imbalance ratio greatly differs from the ratio corresponding
to the conventional resampling (100%).

The proposed approach provides support for major hub-airports to perform on-time
performance prediction. Furthermore, the approach can be applied within other re-
search areas when considering imbalanced classification problems. Moreover, the pre-
sented approach is not dependent on the type of machine learning algorithm, the fea-
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tures considered, nor on the type of data. Therefore, it is generic and can be applied to
any imbalanced binary classification problem.

Future work includes development of a systematic approach to deal with imbalanced
datasets on which multiclass classification or regression is performed, which use differ-
ent performance metrics than are used for binary classification. Lastly, our approach
can be applied to an on-time performance analysis of regional airports.





7
CONCLUSION

In this chapter, the conclusions from the research findings are gathered and the research
objectives are reviewed. The limitations of the works are outlined, and recommenda-
tions for future work are provided. Last, the scientific and societal contributions are
established.

7.1. REVIEWING RESEARCH OBJECTIVES
This section states how the research objectives defined in Section 1.3 are addressed in
the dissertation.

Objective 1
Identify the current research status on efficient large-scale application of electric taxiing
at airports.

Chapter 2 reviews current literature on electric taxi systems and their implementa-
tion at airports. Since reviews on technical feasibility and environmental benefits have
already been performed, the chapter focuses on reviewing operational management as-
pects of electric taxiing implementation at airports, and identifying challenges for future
research. One of the difficulties in anticipating the future electric taxiing infrastructure is
the current lack of consensus in literature on the values of several key operational man-
agement related parameters, such as taxiing speed, battery capacity, charging and dis-
charging rate of the Electric Towing Vehicles (ETVs). This was remedied by extracting in-
formation from similar research in other fields, as well as sources from industry. Working
to solving the challenges identified in this chapter will contribute to the task of reducing
airport ground emissions.

Objective 2
Develop an optimisation model to perform ETV-to-aircraft scheduling that takes into ac-
count realistic airport circumstances.

141
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In Chapter 3 two ETV-to-aircraft scheduling models were introduced, a Mixed Inte-
ger Linear Programming (MILP) model and an Adaptive Local Neighbourhood Search
(ALNS) model. Both models include realistic airport circumstances such as conflict and
collision avoidance, aircraft and ETV routing, a mix of certified and non-certified air-
craft, and ETV charging properties. Such model requirements and information were
gathered from literature and described in Chapter 2. Both models include constraints
to reflect the limit electricity capacity expected to be available at airport in the situa-
tion of widespread electric taxiing implementation. The models are useful for long-term
strategy considerations at airports: whether to implement electric taxiing at the airport,
and if so, with how many charging points and ETVs. Or, when such a system is already in
place, to consider the costs and benefits of increasing the fleet size, charging capacity or
amount of charging locations. For example, for the parameters and airport considered in
Chapter 3, it was found that night charging becomes obsolete for ETV battery capacities
over 750 kWh, and that increasing the ETV battery capacity has limited use if the ETV
charging rate is not increased accordingly.

Objective 3
Develop an optimisation approach to retain efficiency for electric taxiing when con-
fronted with delays.

Chapter 4 introduces two MILP models for ETV fleet scheduling. The first model
aims to generate fleet schedules on a strategic level, and the second model is used to
create schedules which take into account imminent flight delays. This model allows for
reassignment of the ETV fleet throughout a day of operation. The results show that min-
imizing the effects of disruptions on ETV fleet schedules does not prevent airport plan-
ners from maximizing the amount of saved emissions. Although the current approach
only considers flight delays, the approach can be extended to include other disruptions,
for example ETV unavailability.

Objective 4.1
Perform probabilistic prediction of flight delays using a data-driven approach.

Two probabilistic forecasting algorithms, Mixture Density Networks and Random
Forests Regression, have been introduced in Chapter 5. They were applied to proba-
bilistically predict flight delay based on flight schedule and weather data. Performance
metrics suitable for probabilistic prediction were developed and used to evaluate the
predictions. The results show that such probabilistic algorithms can predict flight delay
with accompanying uncertainty information several days in advance, within a Continu-
ous Ranked Probability Score value of 11 minutes.

Objective 4.2
Establish a general approach to flight delay and cancellation classification with imbal-
anced data.

Chapter 6 introduces a systematic approach to binary classification of flight delays.
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The approach consists of first identifying the best performance metrics for the consid-
ered prediction problem, and then considering various sampling techniques and rates.
In this way, the performance of solving any given imbalanced binary classification prob-
lems can be optimized. The approach was applied to predict flight delays given flight
schedule data from a large hub airport.

Objective 4.3
Apply the predictions to improve the robustness of flight-to-gate assignments.

In Chapter 5, a deterministic MILP model for creating flight-to-gate assignments was
extended to a stochastic MILP model. The probabilistic prediction algorithms defined
for Objective 4.1 were used to create the aircraft presence probabilities, an input to the
stochastic model. Application of the model to flight schedule data from a small airport
showed a potential reduction of up to 74% in the average number of conflicted aircraft
per day, which is a measure of the robustness of the assignment. The schedule robust-
ness can be controlled by varying a parameter within the stochastic model. Although the
current model only considers uniform gates, the model is extendable to airports with e.g.
airline-owned gates.

7.2. GENERAL CONCLUSIONS
In this section, general conclusions derived from the research described in Chapters 2-6
are outlined.

1. Resolving airport space constraints is essential to successful electric taxiing imple-
mentation and achieving sustainable airport surface movement.

In addition to the challenges identified regarding Air Traffic Control procedures, electric-
ity capacity and disruption management, the limited availability of space at the airport
forms a large challenge to electric taxiing implementation (Chapter 2). Based on avail-
able literature, service roads from gate areas to runways are considered a requirement
for effective electric taxiing. The service roads also need to be wide enough for two ETVs
to pass each other, or have enough passing locations. In addition, runway stands are
required for (de)coupling of ETV and aircraft. Such stands take a lot of space, and are
currently not present at most airports. Last, the infrastructure associated with providing
additional charging capacity, likely required by airports to charge a fleet of ETVs, can also
pose a challenge to the available space at airports.

2. The airport electricity capacity profile has a large influence on the efficient use of
a fleet of ETVs.

Currently, the ETVs in operations at airports are not electrical, but diesel-powered. Once
developed, the charging specifications of the actual ETV, in particular the battery capac-
ity and charging rate, will largely determine the performance of an ETV. However, given
these specifications, the electricity capacity profile and layout of the airport will deter-
mine the efficiency of the total ETV fleet. The case study of Amsterdam Airport Schiphol,
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in combination with the expected values of ETV specifications, shows that night charg-
ing is expected to be essential, and limited charging during the day is needed to achieve
an efficiency nearing to that associated with 24h unlimited charging availability (Chap-
ter 3).

3. Heuristic approaches must be considered for airside operational scheduling prob-
lems.

Airside operational scheduling problem often entail large vehicle fleets, many tasks or
locations to be assigned to, and a large time frame (Chapters 3 and 4). This causes
the problems to be computationally expensive. Some heuristic approaches can provide
solutions to scheduling problems with comparable quality to linear programming ap-
proaches, as seen in Chapter 3, and in literature regarding scheduling problems in other
fields of study. Such approaches could be helpful for both strategic and tactical/adaptive
scheduling.

4. A data-driven approach to operational scheduling will be most beneficial to air-
port planners.

Reassignment of airside operational schedules is generally performed by manually re-
arranging tasks. Manual reassignment may not always be the most efficient, and adds
to the workload of airport planners. Data-driven techniques can contribute to the de-
velopment of automated reassignment models. For example, the disrupted model de-
veloped in Chapter 4 is used to automate ETV-to-aircraft reassignment, while remaining
as sustainable as possible. The stochastic flight-to-gate assignment model developed
in Chapter 5 aims to reduce the changes needed during operation, by creating a more
robust strategic model in advance. In addition, data-driven delay and cancellation pre-
diction with extensive uncertainty information (Chapter 5) or optimized performance
for imbalanced data (Chapter 6) can help airport planners reduce the effects of disrup-
tions to schedules.

5. When developing approaches to solve prediction problems, one should not over-
look the importance of selecting suitable metrics.

Binary classification, multi-class classification, point prediction and probabilistic pre-
diction are examples of prediction problem categories. For each category, several types
of metrics are used in literature. It is necessary to consider what metric is suitable for
the goal of the prediction problem. The choice of metric can have a large influence on
the way the prediction method is optimized or tuned. For example, considering binary
classification, many studies only consider accuracy as a metric, which is unreliable for
imbalanced classification problems (Chapter 6). In addition, for the relatively new ap-
proach of probabilistic prediction, a limited amount of metrics are currently available.
In Chapter 5 several additional metrics are proposed. Possibilities for development of
other metrics remain, each of which might be better suited to another prediction goal.
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7.3. LIMITATIONS AND RECOMMENDATIONS
In this section, the limitations of the works in this dissertation are considered and rec-
ommendations for future work are outlined.

1. Increasing detail in current models of airside scheduling problems.

In this dissertation models have been introduced to represent the ETV-to-aircraft schedul-
ing problem and the flight-to-gate assignment problem. Future ETV-to-aircraft schedul-
ing models could benefit from more details with respect to routing and energy, by in-
cluding for example acceleration of aircraft and vehicles where applicable, nonlinear
charging profiles, personnel planning and multiple ETV types. Future Flight to Gate As-
signment models could benefit from considering varying costs in assignments between
aircraft, and considering differentiation in gate usage (e.g. by airlines, by destination or
by aircraft size).

2. Considering other airside operational scheduling problems.

In addition to the ETV-to-aircraft scheduling problem and the flight-to-gate assignment
problem, other airside operational scheduling problems exist that can benefit from a
data-driven optimisation approach. For example, the aircraft-to-runway assignment
and the assignment of electric Ground Support Equipment vehicles to charging loca-
tions.

3. Achieving realistic real-time optimization of ETV-to-aircraft schedules.

In Chapter 4 of this dissertation a disrupted model for ETV-to-aircraft assignment was
developed, which works with thirty minute time windows. The disruptions, in the form
of flight delays, are assumed to be known for the next half hour. In reality, disruptions can
occur at any moment. In addition, disruptions can also include e.g. flight cancellations
or ETV or personnel unavailability. Ideally, a scheduling model would be able to instantly
change the assignment to accommodate these disruptions, append new aircraft to the
schedule that are to be towed after the current timeframe, and remain a (near-)optimal
schedule with respect to saved emissions. Such a model would require a combination
of the optimisation approaches taken in Chapters 3 and 4 of this dissertation and the
simulation approaches to electric taxiing assignment as taken by e.g. Zaninotto, Gauci,
and Zammit [181]. This combined model would constitute the next step in integrating
ETV fleet scheduling optimization into actual airport operations. An additional consid-
eration for such a model could be to consider a buffer fleet of spare vehicles.

4. Applying probabilistic predictions to other airport operation optimisation models.

In this dissertation, probabilistic flight delay predictions were applied to improve the
robustness of flight-to-gate assignments. Such predictions can also improve the robust-
ness or efficiency of other operation optimisation models, such as arrival/departure se-
quencing and scheduling, and electric taxiing operational planning. Another possibility



7

146 7. CONCLUSION

would be to use probabilistic prediction algorithms to predict other circumstances at the
airport, e.g. gate occupation rate. It needs to be noted that the possibilities for predic-
tion rely on the availability and quality of data, and that the possibilities for improving
airport operations with predictions rely in turn on the quality of these predictions.

5. Considering heuristic algorithms to solve airport scheduling problems.

Airport scheduling problems often have high complexity, because of the many aircraft
in the considered schedule. The advantage of heuristic algorithms over linear program-
ming models is the limited computation time. This is not only advantageous for strategic
scheduling, but also for adaptive or real-time scheduling. For this reason, a heuristic ap-
proach could be beneficial for the combined model mentioned under item 3 above. Al-
though the computation time of heuristic approaches is often a fraction of that of linear
programming approaches, it can still be significant, as the model becomes more realistic
and more complex. The scheduling problems typical for airports can limit the applica-
tion of certain types of heuristic algorithms. For example, ETV-to-aircraft scheduling is
hard to combine with a genetic algorithm approach, since aircraft are scheduled at fixed
times, and cannot be reordered.

6. Furthering the other aspects of electric-taxiing implementation.

Last, we zoom out from the operational scheduling aspect of electric taxiing implemen-
tation. Before an optimized fleet of towing vehicles becomes practice, several obstacles
in the development of ETVs need to be cleared. First, the current diesel-powered tow-
ing vehicles need to make way for an actual electric towing vehicle, which is still in de-
velopment. Second, ATC-related organizations managing traffic on airports seeking to
implement electric taxiing will need to update airport surface movement and safety pro-
tocols to include ETV movement on service roads and taxiways. The workload for ATC
will increase as they will monitor the ETV fleet, while keeping in contact with ETV op-
erators and aircraft pilots. Last, the airport itself will need to resolve space constraints
mentioned in Section 7.2, and provide sufficient electricity capacity to maintain both an
ETV fleet and all other airport processes that require electricity.

7.4. SCIENTIFIC CONTRIBUTIONS
In this section, the specific scientific contributions of this dissertation to the literature
are identified.

1. This dissertation is the first study to provide a review on the operational man-
agement aspects of electric taxiing implementation. In addition, it identifies fu-
ture challenges faced by airports during this implementation, from the routing,
scheduling and charging aspects. The corresponding contribution led to the fol-
lowing journal publication:
M. Zoutendijk, M.A. Mitici and J.M. Hoekstra, Overview of Operational Manage-
ment Solutions and Challenges for Electric Taxiing of Aircraft, Research in Trans-
portation Business & Management, 49, 101019 (2023).

https://doi.org/10.1016/j.rtbm.2023.101019
https://doi.org/10.1016/j.rtbm.2023.101019


7.4. SCIENTIFIC CONTRIBUTIONS

7

147

2. This dissertation is the first study to consider limits for airport electricity capacity
in an ETV-to-aircraft scheduling model, bringing such scheduling models closer to
realistic operation. In addition, it is the first to develop a heuristic approach to ETV
fleet scheduling, based on Adaptive Large Neighbourhood Search. This approach
allows airport planners to create a 24-hour ETV fleet schedule in a few hours. The
corresponding contribution was submitted as the following publication under re-
view:
M. Zoutendijk and M.A. Mitici, Fleet Scheduling for Electric Towing of Aircraft un-
der Limited Energy Capacity, Energy, Special Issue "The Role of Smart Technologies
in Energy Engineering", 294, p.130924 (2024)

3. This dissertation is the first study to develop an MILP approach to incorporate
disruption management into an ETV-to-aircraft scheduling model. The resulting
model generates a series of updated assignments throughout the day, both min-
imizing the number of changes to the schedule, and maximizing the amount of
saved emissions. The corresponding contribution led to the following conference
proceeding:
M. Zoutendijk, S. van Oosterom and M.A. Mitici, Electric Taxiing with Disruption
Management: Assignment of Electric Towing Vehicles to Aircraft, AIAA AVIATION
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7.5. SOCIETAL CONTRIBUTIONS
Aviation is an effective mode of transport that provides many people with the opportu-
nity to travel fast and far. At the same time, the aviation sector creates a large portion
of the worldwide emissions in the transport sector. The studies included in this disser-
tation aim to help increase the sustainability of air transport, to reduce the impact on
the climate worldwide, and to help increase the efficiency of air transport, to reduce the
resources needed to keep providing service to passengers.

The first chapters focus on electric taxiing, which has been shown to greatly reduce
greenhouse gas emissions, noise and air pollution at the airport level. In Chapter 2, the
current implementation status of electric taxiing has been investigated, and challenges
to be overcome on the road to implementation have been identified. In Chapter 3, the
specific challenge of limited electricity capacity at airports has been addressed, showing
what charging a fleet of ETVs might look like in the near future, and what is necessary
to maximize the distance towed sustainably. Chapter 4 forms a step from theoretical
planning towards actual operation, with the inclusion of disruption management.

Chapters 5 and 6 aim to improve flight delay prediction, and show how to use pre-
dictions to improve airport operations, specifically the flight-to-gate assignment. Bet-
ter disruption predictions can be used to retain or approximate the efficiency of undis-
rupted operations, so that one can reduce the need for extra material resources, person-
nel costs, and additional emissions.

Overall, the studies included in this dissertation contribute to society by providing
airport operational and infrastructural planners with tools to improve the sustainability
and efficiency of airport operations, so that passengers and the general public can enjoy
more durable and reliable air transportation services.
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Notation used throughout the dissertation is gathered below for reference.

Symbol Explanation
Airport representation

GS = (N S ,E S ) Service road network
G X = (N X ,E X ) Taxiway network

ncs,i , Ncs Charging station i , number of charging stations
ndp ETV depot node

v s , v x Speed on service roads / taxiways
Aircraft routing

A = AS ∪ Ae Set of aircraft (nonartificial + artificial)
d X

a Towing distance for aircraft a
d X (m,n),d S (m,n) Distance over taxiway network / service road network

from m to n
ma Mass of an aircraft

N F,S , N F Number of flight movements during P without / with
artificial aircraft

np
a ,nd

a Pick-up and drop-off node of aircraft a
N T ,∆ Number of time steps, step size

P = [t s , t e ] Scheduling time period
t p

a , t d
a Pick-up and drop-off time of aircraft a

tsep,dsep Separation time, distance
v0 Rolling resistance base velocity
µ0 Rolling resistance base coefficient

Electric Towing Vehicles
mETV Mass of the ETV

NV ,V ETV fleet size, set of ETVs
P c ,P X ,P S Charging rate, towing power, driving power

Q Battery capacity
qC

1 (a), qC
2 (a) Energy needed to travel from the closest ncs,i to np

a /
from nd

a to the closest ncs,i

qS (a,b), qC (a,b) Energy needed to travel from nd
a to np

b / from nd
a to np

b
via a ncs,i

qS
f (a) Energy needed to travel from ndp to np

a

qS
f (v, a) Energy needed by ETV v to travel from its latest location

to the pickup point of aircraft a
qS

l (a) Energy needed to travel from nd
a to ndp

qS (n,m) Energy needed to travel from node n to m
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q X (a) Energy needed to tow aircraft a
tC

min Minimum charging time
t c Connecting/Disconnecting time

tC (a,b) Time available between towing consecutive aircraft a
and b
ETV Assignment Model

Aout
a , Ain

a Set of aircraft that can be towed by an ETV after/before
it tows aircraft a

APC
a Set of aircraft in Aout

a for which there is at least tC
min time

for effective charging
ca Indicates if ETV is charged after towing aircraft a

c t
a ,c s

a Indicates charging time / start time of charging of ETV
Ct Electricity capacity for ETVs at timestep t
fvi The i -th aircraft from which ETV v departed in the pre-

vious solution
M Large value
qa Indicates state of charge of ETV at the start of towing a

S Total number of vehicles with unchanged schedules
sv Indicates if the aircraft towing list has changed w.r.t. the

previous assignment for ETV v
tvi The i -th aircraft at which ETV v arrived in the previous

solution
va Vehicle that tows aircraft a

xab Variable indicating if a and b are towed consecutively

x f
a , x l

a Indicates if a is the first/last aircraft an ETV tows

x f
av Indicates if a is the first aircraft towed by ETV v
Y Total number of aircraft towed in an ETV-to-aircraft as-

signment
ya Indicates if a is towed by an ETV or taxies by itself
α Objective function weight factor

αat ,βat Indicates if charging of ETV va starts earlier/finishes
later than time step t

γat Indicates if ETV va is charged during time step t
Adaptive Large Neighbourhood Search

a−
i , j , a+

i , j Selection rate during segment j of removal/insertion
heuristic i

Arem, Ains
v Set of removable aircraft, set of aircraft insertable in the

schedule of ETV v
h+

i ,h−
j Insertion heuristic i and removal heuristic j

N it Number of ALNS iterations
N rem Number of aircraft removed in heuristic
N seg Number of iterations in ALNS segment

s, f (s), sall Solution, its objective value, set of all solutions
si , sc , sl , sb Initial, candidate, last and best solution
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π−
i , j ,π+

i , j Removal and insertion selection scores for heuristic i
and segment j

π̄−
i , j , π̄+

i , j Removal and insertion segment selection scores for
heuristic i and segment j
Simulated Annealing

c Cooling rate
w Start temperature control parameter
T Temperature
ρ Reaction factor

σ1,σ2,σ3 Global, previous and accepted solution reward
Probabilistic Forecasting

E Error function for MDN
f̄1σ Fraction of samples for which the delay lies within one

standard deviation from the distributional mean.
F (yi ) Cumulative distribution function of p(yi )

m Number of Gaussian components considered for MDN
ne Number of estimators used in RFR

N f Number of samples in the training set
p(yi |xi ) = p(yi ) Probability distribution of delay value yi given feature

values xi

xi Aircraft sample i
yi Random variable for flight delay of aircraft sample i
ȳi Actual flight delay for aircraft sample i

ŷi , j The j th point estimate for the delay of flight sample i
α j (xi ),µ j (xi )σ j (xi ) Weight, mean and standard deviation of the j th Gaus-

sian component
µM Distribution mean, µMDN(xi ) or µRFR(xi )
σ̄ Sample average of the standard deviation

σM Distribution standard deviation, σMDN(xi ) or σRFR(xi )
Gate Assignment Model

ci j Costs of assigning aircraft i to gate j

fX arr
i

(t ), f
X dep

i
(t ) Probability density function of X arr

i and X dep
i

FX arr
i

(t ),F
X dep

i
(t ) Cumulative density function of X arr

i and X dep
i

G , g Set of gates at an airport, number of gates
K ,k Set of time slots, number of time slots
N ,n Set of scheduled aircraft, number of aircraft

pi t Probability that aircraft i is at the airport at time slot t
r Maximum overlap probability threshold

si t Indicates if aircraft i is at the airport at time slot t
ST Ai ,ST Di Scheduled times of arrival and departure of aircraft i

X arr
i , X dep

i Random variable of arrival and departure times of air-
craft i

xi j t Indicates if aircraft i is assigned to gate j at time slot t
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yarr
i , ydep

i Arrival and departure delay of aircraft i
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