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Tiered Digital Twin-Assisted Cooperative
Multiple Targets Tracking

Longyu Zhou , Student Member, IEEE, Supeng Leng , Member, IEEE,
Qing Wang , Senior Member, IEEE, Yujun Ming, and Qiang Liu , Member, IEEE

Abstract— The development of the intelligent Internet of
Things has facilitated the adoption of high-efficiency Multi-
ple Targets Tracking (MTT) in many civil security applica-
tions. However, existing MTT technologies cannot offer full
capability in accurate and real-time MTT for civil security.
Many attractive applications in the next-generation wireless
network, like Unmanned Aerial Vehicle (UAV) swarm, are
envisioned to be exploited for enhanced MTT with the advan-
tage of flexibility. Nonetheless, highly dynamic moving targets
impose some new challenges. UAVs cannot always perform
expected cooperative tracking in conventional architectures as
well. To address these problems, we design a tiered Digital
Twin-assisted tracking framework in this paper, which leverages
multi-grained imitation for real-time and accurate MTT. We
imitate a coarse-grained MTT to ensure a high successful
tracking ratio. We then design a fine-grained imitation with a
reaction-diffusion mechanism to explore the feasible cooperators
based on trajectory prediction. Hardware-in-the-loop simulations
demonstrate that our tiered framework can reduce 66.7% of
the system latency overhead compared to the conventional
DDPG benchmark while improving the successful tracking ratio
by 30.6%.

Index Terms— Tiered imitation, digital twin, UAV swarm,
target tracking.

I. INTRODUCTION

WITH the rapid development of the intelligent Internet
of Things (IoT), Unmanned Aerial Vehicles (UAVs)

have gradually become one of the particular applications in
the next-generation wireless networks. The main driving forces
behind this are low manufacturing costs, versatility, and high
flexibility. The advantages of UAV lie in the possibility of
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addressing the increasing requirements of civil and commercial
applications such as disaster rescue, equipment inspection,
and precision agriculture [1], [2]. With the aid of Artificial
Intelligence (AI), UAV swarm-empowered Multiple Targets
Tracking (UAV-MTT) applications have elicited a growth in
cooperatively tracking diverse mobile targets in many com-
plicated scenarios, including space exploration and regional
security [3]. For instance, a UAV swarm can cooperate to
detect mobile targets to ensure the safety of security systems in
complex surveillance environments. The relevant information
is collected and transmitted to a remote center for target
detection and trajectory estimation. The estimation results can
guide UAVs to track those mobile targets.

However, a UAV-MTT system lacks tracking efficiency with
the terminal-cloud structure due to remote physical distance
between the end devices and the servers in the cloud [4]. In the
context of time-critical MTT, the terminal-cloud architecture
cannot meet the real-time tracking requirement. Furthermore,
the out-of-date tracking decisions might cause UAVs to asso-
ciate with improper targets, degrading the system’s efficiency.
It can lead to unpredictable physical collisions among UAVs
with overlapped tracking paths. On the other side, many
high-speed moving targets with time-varying trajectories can
easily elude UAV observations to cause a low successful
tracking ratio. Thus, it is essential to propose a real-time
cooperative UAV-MTT solution for harsh MTT environments.

The long transmission latency can be reduced using the
terminal-edge architecture [5]. Nevertheless, the latency of
tracking decisions on edge servers may be unacceptable due
to their limited computing capability. As one of the critical
enablers for 6G networks, AI technology can digest a large
amount of data [6]. AI-based schemes can assist UAVs in
learning and acquiring tracking experiences as a data training
tool for cooperative tracking. Unfortunately, policy-based or
value-based learning approaches for optimal tracking decisions
usually lead to a considerable system convergence latency
because of the frequent iterations [4]. It cannot effectively cope
with the previously mentioned challenge of high mobility.

As one of the emerging technologies, Digital Twin (DT)
can accurately estimate the MTT environments based on the
data interaction mapping a physical element to a virtual
entity. The virtual entity can be operated by digital twin
models based on the data from the physical environments.
It can implement high-efficiency target analysis and tracking
diagnosis. However, it is time-consuming to imitate the entire
MTT process with abundant targets sensed by the UAVs. The
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quantity of MTT imitation iterations is dramatically increased
with the number of targets. It may also result in resource mis-
allocation to imitate different speeds of the targets. It indicates
a need to develop a tiered DT-assisted tracking framework with
terminal-edge-cloud cooperation for the high-efficiency MTT
systems.

In this paper, we design a tiered DT-assisted tracking
framework through the cooperation of the terminals, edge,
and cloud. It can also operate smoothly without the cloud.
The framework enables to perform a high-efficiency MTT with
joint coarse- and fine-grained imitations. The coarse-grained
imitation provides suitable associations among UAVs and
targets for accurate MTT. Moreover, group leaders are dynam-
ically selected to perform fine-grained imitation for real-time
MTT. The main contributions are summarized below.
• We propose a tiered DT-assisted tracking framework to

perform accurate and real-time MTT. Unlike traditional
terminal-edge-cloud architectures with centralized man-
agement, the tiered DT framework is the first exploration
of the multi-grained cooperative MTT system. Explicitly,
the cloud server with a coarse-grained DT imitation can
dynamically assign target observation and tracking mis-
sions to different UAV groups during the tracking process.
Moreover, these group leaders provide a real-time track-
ing performance based on a fine-grained DT imitation.
In addition, our framework can still smoothly operate the
MTT system in a distributed cooperative manner when
the cloud server is unavailable.

• To conduct an effective coarse-grained imitation,
we design a flexible inter-group cooperative MTT system
that can work well either with or without the support of a
cloud server. In the case of an available cloud server, the
server adaptively divides the UAV swarm into multiple
groups and make optimal tracking associations among tar-
gets and groups for accurate MTT. When the cloud server
is absent, the UAV swarm can autonomously imple-
ment the coarse-grained imitation and dynamically form
a suitable number of groups to associate time-varying
targets based on their attributes. Moreover, in both cases,
UAV groups can wait to cooperatively track high-mobility
targets by elastically adjusting observation ranges. The
inter-group cooperative tracking can significantly improve
the successful tracking ratio.

• To track mobile targets in real-time, the fine-grained
DT-based imitation operated by group leaders provides a
lightweight imitation service according to the target infor-
mation. Specifically, group leaders can guide proper UAV
members to track low-speed moving targets cooperatively.
It can eliminate significant communication overheads by
controlling the number of involved neighbors. In addition,
group leaders can imitate UAVs to implement directional
information diffusion according to target attributes so that
remote cooperators can be invited to track high-speed
moving targets based on trajectory prediction sequen-
tially. The flexible fine-grained imitation with intra-group
cooperation can reduce tracking latency and enhance the
successful tracking ratio.

The rest is organized as follows. The background and
related work are given in Section II. Section III gives the

system model. The objectives are in Section IV. The tracking
algorithm is presented in Section V. Section VI provides the
evaluation results. Finally, Section VII concludes this paper.

II. BACKGROUND AND RELATED WORK

A. Background
We first present some background information about

UAV-MTT and DT.
1) UAV-MTT: In a UAV-MTT system, multiple UAVs take

off for security inspection. UAVs can flexibly fly over a
detection area to sense suspicious targets [7]. Fig. 1 shows the
flow diagram of a typical UAV-MTT system. Explicitly, UAVs
can fly to patrol based on given instructions (UAV inspection).
The onboard sensors sense multiple moving targets (target
sensing). The cloud server processes the sensed information
(information collection). The trajectories are predicted when
target behaviors are suspicious (trajectory prediction). The
cloud server distributes tracking decisions (tracking schedul-
ing). The advantage of the UAV-MTT system is that a single
UAV can sense multiple targets simultaneously with flexible
mobility. Meantime, the natural superiority leads to the disad-
vantage of physical collisions during the tracking process.

2) Digital Twin: A typical digital twin architecture involves
three main components [8]: physical entity, virtual entity, and
connected interface. The physical entity can acquire environ-
mental information, MTT information, and historical tracking
experience. The data are fed into the virtual entity based on the
connected interface to imitate the real MTT scenario. It can
assist the MTT system in avoiding potential incorrect tracking
decisions.

B. Related Work
In recent years, many works have focused on UAV

swarm-enabled MTT with particular merits such as flexibility
and miniaturization. Based on the steps shown in Fig. 1,
we present and summarize the state-of-the-art studies in this
subsection.

1) UAV Inspection and Target Sensing: UAVs are acquired
to cover and sense the maximal detection area with dynamic
flight paths for accurate sensing. The authors in [9] constructed
a multi-UAV path planning model to implement the target
sense. The results demonstrate that the algorithm improved the
search efficiency. To remove the restriction of offline area cov-
erage, the authors in [10] used an information theory method
to ensure global sensing with desired headings. These studies
are effective with the assumption of collision avoidance.

2) Data Collection and Trajectory Prediction: To collect
large volumes of target information, the authors in [11]
proposed a novel framework that enables UAVs to acquire
sensory data. The NP-hard problem can be solved using a
heuristic algorithm. With the approximate information, the
authors in [12] studied UAV swarm-based antenna arrays using
beam-forming technology to exploit the position errors on
the Angle-of-Arrival (AoA) estimation. The authors in [13]
proposed a rendezvous algorithm which was an opportunistic
yet disciplined data delivery scheme. It can improve trajec-
tory prediction accuracy while the latency overhead may be
unacceptable.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 02,2024 at 11:54:29 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: TIERED DIGITAL TWIN-ASSISTED COOPERATIVE MTT 3751

Fig. 1. General procedure of an Unmanned Aerial Vehicle-based Multiple
Targets Tracking (UAV-MTT) system.

3) Tracking Scheduling: To improve the tracking perfor-
mance, the authors in [14] proposed a fuzzy logic and
flocking control approach to provide sensor nodes trajec-
tory formation for target tracking. Considering the tracking
in an underwater scenario, the authors in [15] proposed a
novel cooperative tracking scheme to track underwater moving
targets autonomously. However, the researches mainly focus
on the target features while ignoring the cooperation among
UAVs.

The UAV-MTT above works mainly focus on effective
tracking under the assumption of flexible cooperation capabil-
ity among UAVs. Nonetheless, many UAVs may associate the
same target with significantly low tracking performance in the
practical MTT scenario. The ineffective UAV allocation makes
the low response latency challenging for tracking many targets
in complicated environments. A tiered cooperative tracking
pattern may be feasible to ensure a high successful tracking
ratio in real-time tracking.

III. SYSTEM MODEL

This section presents the proposed tiered DT-assisted frame-
work for cooperative tracking.

We take a security and protection application as a typical
instance, as illustrated in Fig. 2 with K mobile targets such as
unlicensed drones. To avoid the risk, a cloud server in a data
center guides M UAVs to monitor and track the K mobile tar-
gets. The set of UAV swarm is defined asM = {1, 2, · · · ,M}
and the mobile targets are denoted as K = {1, 2, · · · ,K}.
With the advantage of a macro-view of the cloud, we exploit
the cloud to perform a coarse-grained imitation that can
decompose the UAV swarm into multiple groups to associate
dynamic targets. It can also dynamically allocate UAVs to
associate mobile targets in real-time cooperatively. To ensure
an accurate MTT, each UAV group conducted by an elected
leader can implement a fine-grained imitation based on the
velocities and postures of the targets. On the other hand, when
the cloud is unreachable, the UAV swarm can implement the
coarse-grained imitation using our proposed distributed swarm
decomposition algorithm. The main notations are listed in
Table I.

In the tiered framework, the coarse-grained imitation is
implemented with information of the group leaders and data
of the sensed targets. Fine-grained imitation is enabled with
the target information from onboard sensors. We describe
our framework in three parts: 1) Information collection and
transmission. 2) Data processing and trajectory prediction.
3) Tracking imitation.

A. Information Collection and Transmission
To ensure real-time information collection, we provide a

cooperative data collection and exchange method inspired

TABLE I
LIST OF USED MAIN NOTATIONS IN THIS WORK

by [16]. It can allow UAVs to utilize their sensing resources
for acquiring heterogeneous target information, including the
number of targets, their postures, sizes, and velocities for
smooth MTT implementation. The method also integrates
computing and communication resources of UAVs to improve
communication quality based on power control and channel
gains. Besides, UAVs can use the method to select feasible
neighbors for large-sized information exchanges among UAVs.
On the other hand, neighboring UAVs can send lightweight
feedback data after the information-exchanging operation,
which can use to estimate and optimize the information
exchange performance. We denote the successful sensing
probability Pi,k of UAV i sensing target k with q: sensors [17]:

Pi,k(di,k|q) = 1− (1− e−bdi,k)q ≥ Pmin, (1)

where b is used to estimate the sensing quality that is usually
set as 1.1; di,k is the physical distance between UAV i and
target k; Pmin is the minimal acceptable successful sensing
probability. It can collect complete data with effective sensing
performance for an accurate tracking imitation. The longest
physical sensing distance di,k,max is derived as

di,k,max =
− ln (1− q

√
1− Pmin)

b
. (2)

UAVs can adjust their geographic positions to maintain
physical distances less than the di,k,max with targets for
effective data collection. UWB and ultrasonic sensors collect
information on the environment and targets. We know that
different types of sensors have different information collection
rates. The sensing latency is represented as tsi,k = maxw

qw
i,k

λw
,

where λw is the sensing rate of sensor w; qw
i,k is the acquired

data (bytes) from sensor w for target k. The DT model
can conduct UAVs to transmit sensed information based on
WiFi-6 protocol with up-to-date beamforming technology. The
transmission latency is formulated as tci =

∑W
w=1 qw

i,k

ri
. The

transmission rate ri,j is given by [18]

ri,j = B(A) log2

(
1 +

afi

i PtotalGma(ci)êd−α
i,j

T̂ + T̄ + afi

i σ
2

)
, (3)

where A is the number of antennas; B(A) is the channel
bandwidth; Ptotal is the total transmission power of antennas;
T̂ =

∑
lj∈Ω̂j

Gma(cj)L(lj)ej is the interference received from
UAV i with beams pointing towards the UAV j; L(lj) is
captured channel gain function with the spatial distribution
density lj of UAV j; T̄ =

∑
cj∈Ω̄j

Gsj
(cj)L(lj)gj is the
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Fig. 2. Illustration of the proposed tiered DT-assisted tracking framework.

interference with beams pointing away from the UAV j; Gma
denotes the gains of the main lobe, and Gsj (cj) denotes the
side lobe with the spatial distribution density cj of UAV j,
respectively. Gma is assumed to be non-decreasing while Gsj

are non-increasing [19]; Ω̂j and Ω̄j are sets of interfering UAV
j in the sight of the main lobe and side lobe, respectively.
ê, ej , and gj are random variables capturing the small-scale
fading of the link afi

i , interfering links with beams pointing
towards the UAV j, and away from the UAV j, respectively;
di,j =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2 is the physical

distance between the two UAVs; afi

i ∈ {0, 1} is the assigned
channel index with spectrum fi; σ ∼ N(0, δ) is the zero mean
Gaussian random variables with a standard deviation of δ.
In this case, UAVs can adjust beams of A antennas using the
WiFi-6 protocol to improve the transmission rate for informa-
tion exchange in the complicated tracking environment. The
high-efficiency transmission ensures a real-time imitation.

The cloud or UAV group leaders can process the hetero-
geneous data to decompose the UAV swarm into multiple
groups for optimal associations among UAVs and targets based
on the target information. Furthermore, group leaders can
transmit self-position information in real-time to the cloud for
coarse-grained tracking imitation in a centralized cooperation
mode. Inversely, group leaders can exchange self-position
information in a distributed cooperation mode.

B. Data Processing and Trajectory Prediction

The heterogeneous data is processed and integrated as
attribute information of UAVs for the decomposition operation.
At each time slot t, UAV topology is abstracted to a graph
G(V,E), where V is the set of UAVs; E is the set of edges
connecting two UAVs; Ei,j = 0 if the physical distance
of UAV i and j is longer than the practical communica-
tion range; Ei,j = 1, otherwise. The target information
is embedded into V based on graph learning theory. The
feature hi of UAV i with target information is represented
as hi = {ai,t, vi,t, pi,t, di,k, ak,t, ak,t+1, vk,t, pk,t}, where ai,t,
vi,t and pi,t are the spatial position, moving velocity and
posture of UAV i, respectively; di,k is the physical distance
between UAV i and target k; ak,t, vk,t, and pk,t are the

spatial position, moving velocity and posture of the target
k, respectively; ak,t+1 denotes the position of the target k
at time slot t + 1. The feature of corresponding edge hi,j

is represented as hi,j = {di,j , Ii,j}, where Ii,j is an indicator
that Ii,j = 1 when target k are simultaneously sensed by UAV
i and j, Ii,j = 0, otherwise.

Based on the acquired information, we propose a graph
learning-based swarm decomposition algorithm to associate
diverse targets in Section V. However, it cannot effectively
predict the trajectories of the targets. We invoke the Unscented
Filter algorithm to estimate targets’ movements. Instead of
frequent information collection, the prediction mechanism can
significantly ensure real-time imitation in the MTT system
(will be detailed in Section IV). However, the UAV topology
is dynamic so that UAVs associate with a different number of
neighbors, which does not meet the translation invariance [20].
We leverage the graph learning algorithm to implement the
coarse-grained tracking imitation.

C. Tracking Imitation

The group leaders can imitate to implement sequential
tracking for high-mobility targets. When the targets escape
from the current area, the coarse-grained DT can select fea-
sible UAVs to implement re-decomposition for the sequential
target tracking (details are in Section V-A). UAVs collect the
sensing data frequently using sensors for fine-grained imitation
which causes high communication overhead. We design a
reaction-diffusion method in the fine-grained imitation only
with target information. UAVs can independently imitate to
explore the optimal tracking associations based on information
exchange with one-hop neighbors. The imitation time is also
reduced to output the MTT results in real time (details are in
Section V-B).

IV. PROBLEM FORMULATION

Based on the proposed framework, this section formulates
an MTT optimization model. The model targets optimizing the
low-latency and accurate MTT under the constraints of power,
energy consumption, and sensing performance.
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A. Analysis of Latency and Trajectory Prediction

Based on (3), we formulate the latency constraint of target
sensing and information exchange:

K∑
k=1

tsi,k + tci ≤ ti,max, (4)

where ti,max is the maximal acceptable sensing and commu-
nication latency. The constraint guarantees UAVs to perform
real-time target sensing and low-latency information exchange
for accurate MTT imitation in the virtual world and cooper-
ative tracking in the physical world. The motion of target k
is defined as xk(t + 1) = fk(t, xk(t), v(t)) with a motion
estimation model zk(t) = hk(t, x(t), w(t)), where xk(t) is
the position coordinate of the target k; v(t) and w(t) are zero
mean noises that obey the Gaussian distribution, respectively;
fk(t, xk(t), v(t)) is a state transform vector. The state estima-
tion vector and covariance matrix are denoted as x̂k(t)|xk(t)

and Pk(t). The sampling is given by

x
(i+n)
k (t)|xk(t) = x̂k(t)|xk(t) −

√
(n+ κ)Pk(t)iω

(i+n), (5)

where κ is the scaling factor; ω(i+n) is the weight of the
(i+n)th sampling point; Pk, a symmetric matrix, is a covari-
ance matrix that denotes the posterior estimation of the state
vector [21].

√
(n+ κ)Pk(t)

i
is either the ith column or the

ith row of (n + κ)Pk(t): it is the ith row of (n + κ)Pk(t)
if
√

(n+ κ)Pk(t)
i

= ATA; and it is the ith column of
(n+ κ)Pk(t) if

√
(n+ κ)Pk(t)

i
= AAT .

The prediction results are represented as x̂(t + 1|t) =∑2n
i=0 ω

(i)x̂(i)(t + 1|t). Then, the state prediction covariance
is updated as P (t + 1|t) =

∑2n
i=0 ω

(i)[x̂(t + 1|t) − x̂(i)(t +
1|t)][x̂(t+ 1|t)− x̂(i)(t+ 1|t)]T . The weighted average value
is inferred as ẑ(t + 1|t) =

∑2n
i=0 ω

(i)ẑ(i)(t + 1|t), where
ẑ(i)(t + 1|t) = h(t + 1, x̂(i)(t + 1|t)); h(·) is the nonlinear
observation vector. The measurement covariance is S(t+1) =∑2n

i=0 ω
(i)[ẑ(t+1|t)− ẑ(i)(t+1|t)][ẑ(t+1|t)− ẑ(i)(t+1|t)]T .

The system gain is deduced as W (t+ 1) = {
∑2n

i=0 ω
(i)[x̂(t+

1|t)− x̂(i)(t+1|t)][ẑ(t+1|t)− ẑ(i)(t+1|t)]}S(k+1)−1. The
trajectory prediction is then represented as xp

i = x̂(t+ 1|t) +
W (t+ 1)[z(t+ 1)− ẑ(t+ 1|t)]. The prediction constraint is

∥xp
i − xi∥ ≤ dp

max, (6)

where xi is the ground-truth position of UAV i; dp
max is a

threshold based on different speeds of targets. The threshold
can make UAVs select feasible sampling points in (5) for
accurate trajectory prediction. It can also reduce the sensing
frequency of targets for real-time tracking imitation.

B. Objective Formulation

The imitation and tracking processes bring additional
latency. We can optimize the imitation data size to alleviate
the former. The latter can be optimized by exploring suitable
tracking paths. The coarse-grained imitation can acquire a
DT model based on the positions, velocities, and postures of
UAVs and targets as well as physical environment informa-
tion. Fine-grained imitation can make UAVs exchange mobile
information (postures, velocities) of targets with neighbors
to perform cooperative trajectory prediction. Both models

are simultaneously optimized based on our proposed tiered
cooperative tracking algorithm detailed in Section V-B. The
flight latency is directly related to the flight energy consump-
tion [22]. The flight energy is Ef

i =
∫ t

t−1
P f

i (∥v(s)∥)ds,
where P f

i (∥v(s)∥) is the power with the velocity v(s), where
s ∈ [t, t+ 1].

Let bi denote the number of Central Processing Unit (CPU)
cycles acquired in unit time for imitation consumption. The
total number of CPU cycles is beIe. Based on dynamic voltage
and frequency scaling technology [23], group leader e can
adjust the CPU working frequency fe,u to control the energy
consumption, where fe,u ∈ (0, fe,max), and fe,max is the
maximal CPU frequency. From [24], we know that power
consumption is proportional to the cubic frequency:

E(Ie) =
beIe∑
u=1

κef
3
e,u, (7)

where κe is the effective capacitance coefficient that depends
on the clip characteristic. It is noted that imitation consumption
is neglected for the centralized mode with sufficient resources.
The system energy consumption is constrained based on the
maximal energy budget Emax:∑

e

(E(Ie) + Ef
e ) ≤ Emax. (8)

UAVs and edge servers can dynamically schedule their com-
puting resources to explore the optimal resource allocation
solution for tracking imitation and implementation with Emax.
In this case, the optimization model is formulated as

P1 :min

{
lim

T→∞

1
T

T∑
t=0

[ M∑
i=1

K∑
k=1

(tsi,k + tci + Ii)
]}

,

s.t.


C1 : (1), (6), (8),∀e ∈ E
C2 : di,j ≥ dmin,∀i, j ∈M
C3 : ri,j ≥ rmin,∀i, j ∈M

(9)

where C1 denotes the constraints of the sensing capability and
system energy consumption; C2 is the minimal flight distance
among UAVs for collision avoidance; C3 is the constraint
of transmission rates. The objective is to achieve accurate
and real-time MTT by optimizing the performance of target
sensing, information exchange, and tracking cooperation.

Lemma 1: The P1 is an NP-Hard problem.
Proof: We assume the UAV swarm with M UAVs is

decomposed into E groups at time slot t. It is represented as
[χ1, χ2, · · · , χE ] and

∑E
i=1 χi = M . The resource allocation

for (8) can be written as [ψ1, ψ2, · · · , ψE ] and
∑E

i=1 ψi ≤
χmax, where ψi and χE are the available resources of group i
and group E, respectively; χmax is the maximal budget of
available energy. The resource allocation results are infinite
theoretically because ψi is a real number. The imitation time is
undetermined without prior experience. The optimal allocation
cannot be obtained in polynomial time.

For cooperative tracking, the association relationship is
quantified as a clique problem. We assume UAVs associate
all the targets in one group regarded as a graph. The graph
has multiple cliques, where each contains u cooperative UAVs
and v targets. For a graph with M +K vertices, we need to
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explore (M+K)!
(u+v)!(M+K−u−v)! subsets for a suitable clique, which

is identified as the classic NP-Hard problem [25]. □

V. TIERED COOPERATIVE TRACKING IN UAV SWARMS

In this section, we present the tiered DT-assisted tracking
algorithm to realize low-latency and accurate MTT based on
Lemma 1. We decompose the NP-Hard problem into two
sub-problems: coarse-grained MTT imitation and fine-grained
MTT imitation.

A. Coarse-Grained MTT Imitation

The proposed coarse-grained MTT imitation block diagram
is shown in Fig. 3. Based on the current positions of the UAVs
and the targets, our graph learning-based imitation algorithm
divides the UAVs into multiple groups to track the targets. The
imitation process mainly has five parts: UAV swarm formation,
graph operation, learning estimation, group leader selection,
and intra-group cooperative tracking.

1) UAV Swarm Formation: As mentioned in Section III, the
adjacency matrix A = G(V,E) representing the associations
of UAVs can reflect whether any two UAVs can communicate
with each other or not. The information of the targets is used to
construct the feature matrix X with hi,j . We divide the UAVs
into multiple groups for the real-time tracking assignments.

2) Graph Operation: A decomposition result Zout is for-
mulated by a mapping function F :

Zout = F (X,A), (10)

where the mapping function F can accurately output swarm
decomposition results based on position relations among UAVs
and targets using the message convolution operation [26]. The
UAVs’ and targets’ information is extracted and represented as
X , which is the input of the graph learning network. We use
ReLU and SoftMax activation functions to implement graph
convention operation for the optimal decomposition result. The
result is estimated based on a designed loss function Loss. Let
hl

i ∈ Rdiml be the hidden representation vector of UAV i with
various dimension diml. We select all the one-hop neighbors
of UAV i to involve the message-passing process as below:

hl+1
i = δa

W l
0h

l
i +

∑
j∈Ni

qi,jW
l
1

T
hl

j

 , (11)

where δa is ReLU function; W0 and W1 are weight matrices;
Ni is the set of neighbors of UAV i; qi,j = 1√

Di,iDj,j

is a

constant value for normalization, where Di,i and Dj,j are the
weights of neural layer i and j, respectively. In this case, UAVs
can select suitable neighbors to perform cooperative MTT
based on computing results from the δa. A two-layer graph
network is constructed with a singular value decomposition
method [27]. The (10) is rewritten as

Zout = SoftMax
(
ÂReLU(ÂXW0)W1

)
, (12)

where SoftMax(xi) = exi∑C
c=1 exc

where C is the number of

classes; Â = D̃
1
2 ÃD̃

1
2 , where D̃ is the matrix composed of

eigenvectors of Â; Ã = A+IN where IN is an identity matrix.

Fig. 3. Block diagram of the proposed coarse-grained MTT Imitation.

Algorithm 1 Coarse-Grained MTT Imitation

Input: Initial position xk
t , scaling factor κ, sampling

weights ω, adjacency matrix A, feature matrix
X , weighted matrix W , activation function δa.

Output: The optimal decomposition result.

1 Set κ = 0.1
2 while K ̸= ∅ do
3 Predict trajectory of target k based on (6)

4 while t < T do
5 while M ̸= ∅ do
6 Initialize feature h0

i while each hidden layer
l ∈ L do

7 hl
N(i) ←− ReLU(hl−1

j ) Compute hl
i using

(11)

8 hl
i ←−

hl
i

∥hl
i∥2

9 Obtain Zout using (12)
10 Compute training loss using (13)

11 if target k flies out of the current area and the
cloud server is reachable then

12 Select UAVs closest to target k for
re-decomposition

13 else
14 if Remote cooperation is required then
15 The cloud server adjusts group sensing area

16 if the cloud server is unavailable then
17 UAVs closing to target k perform

distributed re-decomposition

3) Learning Estimation: It is challenging to acquire a
perfect training dataset in deep learning applications. There-
fore, we propose a semi-supervised method to ensure
high-efficiency training and learning with the integration of
supervised loss function L1 and unsupervised loss function
L2. The L1 is represented as L1 = −

∑L
l=1

∑C
c=1 γl,cZ

l,c
out,

where γl,c = {0, 1} is an indicator variable. The L2 =∑
i,j Ai,j∥f(xi) − f(xj)∥ = f(X)TL∆f(X), where f(x)

is a classifier function. The semi-supervised training loss is
represented as

Loss = L1 + λL2, (13)

where λ is a hyper-parameter. We can adjust hyper-parameters
toward the direction of the minimal loss value. It means we
can acquire a satisfied swarm decomposition result.

4) Group Leader Selection: For each UAV group, the cloud
will select the group leader flying at the physical center
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position of the group in a centralized cooperation mode. If no
UAVs are in the center position, the UAV closest to the
center position is elected to be the group leader to implement
the fine-grained MTT imitation. When the cloud server is
unavailable in extreme weather conditions, the UAV swarm
can implement a distributed swarm decomposition algorithm
based on the above-described graph operation and learning
estimation. The group leaders are elected through information
exchange among UAVs. The UAV closest to the center position
autonomously announces itself as the leader of other UAVs in
the group.

5) Intra-Group Cooperative Tracking: High-speed moving
targets can quickly fly out of the current tracking group. It is
feasible to re-assign UAVs for tracking the dynamic targets
accurately. However, frequent reassignments of the UAVs
are time-consuming. To provide an effective reassignment
and tracking imitation, we propose a cooperative imitation
method with enhanced sensing performance [28] for low-
latency tracking. Explicitly, our algorithm enables the cloud
server to explore UAVs – close to high-speed moving targets
– to implement re-decomposition. The cloud can schedule
available computing resources of the UAVs to enable MTT
imitation. The imitation result can provide feasible UAV
allocation decisions for sequential tracking. Our method can
also make these UAVs autonomously perform the distributed
re-decomposition for real-time tracking response [29] when
the cloud is unreachable. Therefore, our method can effectively
schedule the computing resources of UAVs to ensure real-time
tracking. The details are represented in Algorithm 1.

B. Fine-Grained MTT Imitation

The group leaders cannot always update UAV information
in real time due to undetermined latency on sensing and trans-
mission between the physical and virtual worlds. We deploy
the same number of UAVs as in the physical world to explore
accurate imitation in the virtual world. In the centralized mode,
the group leaders distribute the imitation results to UAVs.
While in the distributed mode, UAVs can independently train
DT models to acquire the MTT results. We design a univer-
sal algorithm architecture as shown in Fig. 4, where UAVs
can train and estimate the target information based on the
Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
architecture. It includes a critic module and an actor module.
Each module supports a policy network and an estimation
network. UAVs can learn tracking actions based on the local
information Si. All the actions A = {A1, · · · , AM} of UAVs
are estimated centrally. The policy network trains the data
based on constructed state space Si. The tracking action
from action space Ai is obtained with the aid of actions
of other UAVs. Meanwhile, the estimation network evaluates
the tracking performance with an estimation function. The
imitation process is quantified as a Stochastic Game (SG)
problem with a tuple {Si, Ai, T , Ri}, where T is a transfer
function and Ri is a reward function to estimate the action.

The UAV tracking paths are included in the reward to ensure
low-latency tracking. To ensure cooperative MTT, we propose
a reaction-diffusion scheme in the fine-grained MTT imitation.
The diffusion concentration positively relates to the targets’

Fig. 4. Block diagram of the fine-grained MTT Imitation.

speeds estimated by historical tracking experiences and tra-
jectory prediction results. The scheme is enabled with the
MADDPG architecture for accurate tracking. The diffusion
can guide the suitable UAVs to perform sequential MTT in
each group. The state space Si is divided into four parts:

1) States of UAV i: si = {ai, vi, pi, ϱi, {di,k}}, where ai,
vi, and pi are found from hi; ϱi is the height of UAV
i; {di,k} is the set of physical distances between UAV
i and target k.

2) States of one-hop neighbors: oi = {{di,j}, hj}, where
{di,j} is the set of physical distance between UAV i and
its one-hop neighboring UAVs; hj is feature information
of UAV j.

3) States of targets: hi,k, where hi,k is the feature infor-
mation of target k sensed by UAV i.

4) Environmental states: li = {Gt, Bt}, where Gt and Bt

are noise and terrain information.
The action space is Ai = {Xi, κi, {κi,j}, θi}, where Xi

is the flight status of UAV i including position and pitch
angle; κi ∈ [0, 1] is a parameter to adjust the diffusion
concentration value; {κi,j} is the set of UAVs receiving the
diffusion information of UAV i from j; θi is the updated
concentration. The initial concentration is θi = κiJ

d
k , where

Jd
k is the unit locomotion of target k. As shown in Fig. 5,

when UAV j receives the diffusion information of UAV i, the
target attribute is added to its state space. UAVs can update the
current actions to adjust their sensing directions when recruited
successfully. In this case, UAVs can promote sensing efficiency
to guarantee a high successful tracking ratio. The diffusion will
continue with updated concentration until recruiting suitable
numbers of cooperators:

θi =

 θi × αi, θi is selected,
θi + βi, θi < γmax,

0, otherwise,
(14)

where αi and βi belong to [0,1]; γmax is the maximal concen-
tration. The Ri is redefined as

Ri(Si, Ai)

= ri(Si, Ai) +
αi

Ee

∑
k ̸=Ee

max
(
rt
j(Sj , Aj)− rt

i(Si, Ai), 0
)

+
βi

Ee

∑
k ̸=Ee

max
(
rt
i(Si, Ai)− rt

j(Sj , Aj), 0
)
, (15)

where Ee is the number of targets in group e; ri(Si, Ai) =
1

Ee

∑Ee

k=1[∆Dj,k + ∆Di,k], and ∆[f ] = f(t − 1) − f(t);
αi and βi can be set as 5 and 0.05 [30], respectively. Based on
this, UAVs can learn a feasible action from the policy network.
The state and action are cached to the replay memory Ω. The
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Fig. 5. Flow chart of recruitment-based cooperative tracking.

actions are evaluated based on the Bellman equation:

L(θQ)=ES,A,R,S′

[
1
M

∑
i

(
Qµ(Si, (A1, · · · , AM ))− Z

)2
]
,

(16)

where S′ is the next state; Z = Ri + γQµ′(Si, Ai)|A′i=µ′i(Si)

where γ is the discount factor; θQ is a hyper-parameter of
estimation network. We can minimize the L(θQ) to make
UAVs perform satisfying tracking actions with the aid of
actions of other UAVs. We can explore the optimal loss value
based on the policy gradient J(θµ) which is given by

▽θµJ(θµ)

= ES,A∽Ω

[ 1
M∑

i

▽θµµ(Ai|Si)▽AiQ
µ(Si, (A1, · · · , AM ))|Ai=µ(Si)

]
.

(17)

Based on the chain rule [31], the parameters of neural
network are updated by

▽θCJ(θC) = ES,A∽Ω

[∑
i

wi(Ci)▽Ci
µ(Ai|Ci)▽Ci

µ(Ai|Ci)

▽AiQ
µ(Si, Ai)|Ai=µ(Si)

]
, (18)

where wi(·) denotes the cooperators of UAV i; θC is
a hyper-parameter of policy network. The parameters are
updated as θ′ = τθ + (1− τ)θ′. The action is optimized as

L(θa) = −∆Q̂i log
(
p(Ci|θa)

)
− (1− Q̂i) log

(
1− p(Ci|θa)

)
. (19)

UAVs can perform cooperative tracking by minimizing the
L(θa) value. The details are presented in Algorithm 2. The
tiered DT tracking is shown in Fig. 6 with the switch of
the coarse-grained and fine-grained imitations. For the coarse-
grained imitation, the reachable cloud can implement swarm
decomposition operation based on the position information
of UAVs and targets. When the cloud is unreachable, UAVs
can autonomously explore suitable cooperators for the decom-
position operation. The coarse-grained imitation results can
make the subgroups associate appropriate targets for accurate
tracking. It can also manage subgroups to perform coopera-
tive tracking through a low-latency re-decomposition manner
among partial subgroups instead of all of them. In each
subgroup, a group leader elected by members implements the
fine-grained imitation based on MADDPG architecture with

Fig. 6. Illustration of tiered DT-assisted tracking imitation.

Algorithm 2 Fine-Grained MTT Imitation
Input: Observation information S; MADDPG network

parameters θQ, θµ; updated weighted γ; Neural
network parameters θC and θa; replay memory
Ω; κi; the set of recruited UAVs U .

Output: The cooperative tracking decision.

Definition: γ = 0.99.
1 Obtain the number of UAVs of group e
2 while each episode in all rounds do
3 Set an initial action µ and receive the relevant state
4 Construct tracking environment

5 while t < T do
6 swarm decomposition using Algorithm 1
7 while E ̸= ∅ do
8 ai,t ←− µθi

(Si,t) +Nt

9 if UAV i acquire cooperation and UAV j selects θi

then
10 U ←− U ∪ j
11 Update concentration θi by (14)
12 Store the experience to Ω, and evaluate the action

using the estimation network
13 Compute the reward using (15), Q-value using

(17), and loss gradients using (16)
14 Update the gradient using (18) and optimize the

action using (19)

centralized training and distributed execution. The imitation
decisions can make UAVs perform sequential tracking for a
high successful tracking ratio.

Lemma 2: Algorithm 2 converges synchronously.
Proof: We start the proof based on the action-value

function in (16) which forms a contraction mapping with the
convergent point Q∗ under the following assumptions.

Assumption 1: The action value is visited infinitely. The
reward is limited by a constant P .

Assumption 2: In the SG process, agents can obtain the
equilibrium policy π∗ = {π∗1 , π∗2 , · · · , π∗M} based on the
greedy iteration in the following cases:

1) The global optimization holds: Eπ∗ [Q
µ
i (S)] ≥

Eπ[Qµ
i (S)],∀π;

2) A saddle point is obtained: Eπ∗ [Q
µ
i (S)] ≥

Eπi
Eπ∗−i

[Qµ
i (S)] and Eπ∗ [Q

µ
i (S)] ≥

Eπi∗Eπ−i [Q
µ
i (S)].

Based on the above assumptions, the SG process Ht with
a tuple {Si, Ai, T , Ri} defined as

Ht+1(x) = (1− αt(x))Ht(x) + αt(x)Ft(x) (20)
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can converge to zero with probability 1, if
1) 0 ≤ αt(x) ≤ 1,

∑
t αt(x) =∞, and

∑
t α

2
t ≤ ∞;

2) x ∈
∑

i Si and
∑

i Si ≤ ∞;
3) ∥E[Ft(x)]|Ft∥d ≤ γ∥Ht∥d + zt, where γ ∈ [0, 1), and

zt can converge to 0;
4) µ[Ft(x)|Ft] ≤ K(1 + ∥Ht∥2d) with K ≥ 0, where ∥∗∥d

is a weighted maximum norm.
The first and second conditions are satisfied. The third and

fourth conditions are proved using the Q-function formulated
in Section V and (20). The Ht and Ft are rewritten as

Ht(St, At) = Qt(St, At)−Q∗(St, At), (21)
Ft(St, At) = Rt + γQµ(St+1)−Q∗(St, At). (22)

Based on (22), the third condition holds because

Ft(St, At) = Rt + γQµ(St+1)−Q∗(St, At)
= Rt + γQµ∗ −Q∗(St, At)

+ γ [Qµ(St+1)−Qµ∗(St, At)]
= Rt + γQµ∗(St+1)−Q∗(St, At) + ct(St, At)
= F ∗t (St, At) + ct(St, At). (23)

With Assumption 2, we can derive that ct(St, At) =
γ [Qµ(St+1)−Qµ∗(St, At)] converges since all the agents
share the same globally or partially optimal equilibrium poli-
cies. Therefore, Qµ can asymptotically converge to Qµ∗. For
the fourth condition, we can derive the following result based
on contraction mapping theory [32]:

µ[Ft(St, At)|Ft] = E
[
(Rt + γQµ(St+1)−Q∗(St, At))2

]
= E

[
(Rt + γQµ(St+1)−

∑
Si,Ai

Q∗)2
]

= µ [Rt + γQµ(St+1)|F] ≤ K(1 + ∥Ht∥2d).
(24)

All the conditions are met to make Ht converge to 0, namely
Qµ converges to Q∗. Consequently, algorithm 2 converges. □

C. Algorithm Complexity Analysis

We analyze the complexity of our tiered DT-assisted MTT
system in two parts: coarse-grained imitation and fine-
grained imitation. For the coarse-grained imitation, we use
a graph convolution algorithm to support the coarse-grained
UAV swarm decomposition for tracking in real time. In this
case, the time complexity of the swarm decomposition is
O(L ·N ·F 2) [33], where L is the layer number of the neural
network; N is the number of the eigenvalues of Â; F is the
number of feature elements of hi. With a two-layer graph
network, the time complexity for the coarse-grained imitation
is O(2 ·N ·F 2). The resource allocation is in polynomial time
with O(1) for the fine-grained imitation. The time complexity
of the primary network falls on the matrix inversion operation
with O(k(θ)), where k(θ) is a function whose input θ is
the number of hidden layers. The overall complexity of our
proposed algorithm is O(2·N ·F 2·k(θ)). The time is lower than
traditional deep reinforcement learning because we divide the
UAV swarm into multiple groups based on tiered MTT instead
of all UAVs with a single-layer MTT operation.

TABLE II
SIMULATION PARAMETERS

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
tiered MTT. The sensing of the targets in the simulation is
based on the actual image and UWB data collected by com-
mercial UAVs. The fine-grained imitation is implemented at
the selected leaders in each group with an onboard computing
Manifold [34]. The coarse-grained imitation is executed in
non-leader UAVs, which are also equipped with the Manifold.
We use Python to implement the proposed algorithm based
on Pytorch architecture [35]. We record and represent the
tracking process in NS-3 using C++. The performance of our
proposed algorithm is evaluated under different numbers of
UAVs and mobile targets. The main simulation parameters are
summarized in Table II.

We compare the performance of our tiered MTT with the
following five benchmarks:

1) Fuzzy logic-based target tracking [36]: The fuzzy logic
scheme is leveraged to estimate the priority of tracked
targets based on a given rule. It is integrated into the
genetic algorithm to improve target detection accuracy.

2) Conventional DDPG [37]: Each UAV runs a DDPG
architecture to learn a suitable tracking decision based
on the sensed information.

3) Non-cooperative tracking: It leverages the same
MA-DDPG architecture to implement the multi-grained
MTT imitation. However, the scheme cannot enable
UAVs to recruit cooperators for real-time tracking with-
out the proposed reaction-diffusion method.

4) Evolution theory-based multiple targets tracking [38]:
It utilizes an adaptive differential evolution scheme
to predict trajectories of targets for accurate tracking
cooperatively.

5) Multi-Agent Reinforcement Learning-based Target
Tracking (MARL) [39]: UAVs learn suitable tracking
actions with a centralized training and distributed
execution pattern.

A. Preliminary Evaluation

We randomly fly the targets in an area of interest in our
UESTC campus based on the DJI Pilot APP. The targets’
flight paths are recorded in UAVs. The information includes
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Fig. 7. Target trajectory planning.

Fig. 8. UAV with sensors.

Fig. 9. Target detection using UWB.

the velocities of targets and physical distances between UAVs
and targets sensed by the UWB sensor, the captured target
image by the onboard camera, and the positions of the UAVs
obtained from GPS.

Different target trajectories are leveraged to evaluate the
robustness and effectiveness of our proposed algorithm. The
target trajectories are randomly planned using DJI Pilot APP
shown in Fig. 7. GPS information is transferred to a Cartesian
coordinate using the seven-parameter transformation method.
In Fig. 8, vision cameras recognize the shapes of targets based
on YOLOv5 [40]. UWB sensors obtain the relative physical
distances among the UAVs and the targets and position infor-
mation of the targets [41]. We can ensure accurate tracking
by frequently enabling target detection operations using the
UWB sensor. It causes significant consumption of sensing and
computing resources. We can implement trajectory prediction
using the formulated model (5) to alleviate the highly frequent
target sensing. However, it is difficult to perform accurate
predictions of random target trajectories in the long-term
tracking process due to the accumulation of prediction errors.
Fortunately, our prediction model (5) can provide accurate
prediction results for short-range random moving trajectories
by simulating the random distribution based on a sampling
method [21]. In this case, to trade off the frequent target
detection and accurate tracking, we enable UAVs to implement
trajectory prediction using the model (5) in the following
one fixed motion time slot T based on the current target
detection result. At the time T , we can use the UWB sensor

Fig. 10. UWB-measured distances.

Fig. 11. Swarm decomposition.

to optimize the prediction result of the random motion model.
The way can eliminate the accumulated prediction error to
perform accurate trajectory prediction in lone-term tracking
process. Based on this, UAVs can accurately track randomly
moving targets without frequent target detection. Weather
conditions are obtained by temperature and humidity sensors.
We acquire multiple sets of physical distance data among
UAVs and targets based on UWB sensors in Fig. 9. The
test results scatter around the ground truth (i.e., the actual
physical distance) closely, as shown in Fig. 10. It is because
that UAVs’ postures change dynamically during the tracking
process. We use median values as test results to evaluate the
accuracy and real-time of MTT.

B. Evaluation of Coarse-Grained Imitation

When the cloud server is available, it can decompose UAVs
into multiple groups based on hi and hi,j . Furthermore,
UAVs can autonomously decompose based on our algorithm
in Section V-A when the cloud server is unavailable. We use
NS-3 to imitate the swarm decomposition for optimal target
association. Fig. 11 depicts the swarm performance of our
coarse-grained tracking imitation method. All the tracking
scenarios with different numbers of mobile targets realize
learning convergence with stable performance. The conver-
gence performance improves with the increase in the number
of targets because implementing the deep learning algorithm
requires a large training data size. The specific decomposition
process is represented in Fig. 12.

We present the decomposition results with different tar-
gets to estimate the coarse-grained imitation performance.
Fig. 12(a) depicts the swarm decomposition with 20 UAVs
and 40 targets. Our algorithm decomposes the UAV swarm into
four groups, each marked with different colors. We use differ-
ent shapes and labels to mark UAVs and targets. The UAV is
marked as a circle with the label “U”. The target is signed as a
triangle with the label “T”. Based on their geographic position
information, our algorithm can always allocate feasible UAVs
to associate targets moving in different locations. The ratio of
the number of UAVs to the number of targets is approximately
equal for different sub-groups. UAVs can effectively schedule
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Fig. 12. The swarm decomposition results under 20 UAVs.

Fig. 13. The transient state of swarm cooperation under 20 UAVs.

their computing resources for low-latency imitation using our
cooperative imitation method. The imitation results can ensure
accurate tracking and provide optimal computing resources
for each sub-group for the fine-grained imitation. The result
of 20 UAVs tracking 60 targets is given in Fig. 12(b). We can
discover that UAVs can sense suitable targets. UAVs cannot
continue to implement the tracking operation when targets
escape from the detection area. Our algorithm still achieves
the optimal associations when the number of targets increases.
Fig. 12(c) shows the decomposition result with 20 UAVs and
80 targets. Our algorithm always explores and obtains the
optimal decomposition result. Our algorithm achieves high
robustness and stability as the number of targets increases.

C. Evaluation of Fine-Grained Imitation

The coarse-grained tracking imitation re-decomposes UAV
swarms to track high-speed moving targets in real time.
However, ensuring inter-group tracking cooperation with col-
lision avoidance among UAVs is necessary. We present the
inter-group tracking cooperation performance in Fig. 13 with
diverse targets. We simulate the tracking process using the NS3
simulation tool with 20 UAVs and 40 targets in Fig. 13(a).
We find that the UAV U11 can accurately observe multiple
targets, and meanwhile, can cooperatively track the T16. Our
fine-grained imitation method can assist UAVs in acquiring
mobile trajectories of targets to dynamically associate feasi-
ble targets. UAVs can cooperatively predict the trajectories

of targets by exchanging the trajectory information with
neighbors for intra-group tracking cooperation with a high suc-
cessful tracking ratio. In addition, UAVs can share lightweight
prediction results with neighbors to cooperatively plan tracking
paths for real-time tracking. In this case, UAVs can also
dynamically associate optimal targets to further enhance the
cooperative intra-group tracking capability.

The case of 20 UAVs tracking 60 targets is shown in
Fig. 13(b). The U2 and U3 track T7 – which moves at high
speed within the detection area – cooperatively at different
slots. The system’s robustness is verified by tracking diverse
targets with random velocities. Our reaction-diffusion scheme
is effective in guaranteeing inter-group cooperation. In a more
complex MTT system with 20 UAVs and 80 targets, as shown
in Fig. 13(c), these targets can also be accurately sensed and
tracked by the UAVs with a high successful tracking ratio.
We find that different UAVs can continuously track targets at
various speeds. The qualitative analysis shows that our system
is robust under the scenarios of other numbers of targets with
multiple velocities.

D. System Evaluation

We continue to present the evaluation of the whole system
shown in Fig. 14(a). Under 20 UAVs, all the rewards gradually
increase to a stable status with 500 tests. In addition, the
highest reward is obtained in the scenario of 80 targets
with sufficient target information. All the convergence times
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Fig. 14. The multi-dimensional comparisons under 20 UAVs and different number of targets.

Fig. 15. Data size overhead vs. number of targets.

Fig. 16. Energy consumption vs. number of targets.

are acceptable under an average of 500 iterations. UAVs
can explore optimal paths to perform tracking cooperation.
It is verified in Fig. 14(b) by being compared to the bench-
marks. Our algorithm realizes low-energy tracking using the
same system parameters as in the benchmarks. The evolution
theory-based algorithm consumes the maximal energy con-
sumption. It is because multiple UAVs may track the same
target simultaneously with heuristic characteristics. Compared
to the non-cooperative, fuzzy logic-based, and conventional
DDPG algorithms, our algorithm reduces the system energy
consumption by 33.3%, 52.3%, and 64.3%, respectively.

Fig. 14(c) shows the system latency under 20 UAVs. The
system latency increases gradually with the number of tar-
gets for all the benchmarks. It is time-consuming to track
incremental targets. Nonetheless, the speed of increase for
the system latency is the lowest in our algorithm. This is
because our multi-grained imitation method decouples the
heavy tracking missions based on the difference of resources
among the UAVs, the edge, and the cloud. We can achieve
low-latency tracking for diverse numbers of targets. Besides,
our MTT system is stable under various velocities of targets.
It validates that our tiered DT can enhance tracking efficiency.
The evolution theory-based algorithm has the highest latency

Fig. 17. Success tracking ratio vs. number of targets.

Fig. 18. System latency vs. number of targets.

due to frequent trial and error operations. Our system reduces
the system latency by 38.5%, 66.7%, 75.0%, and 80.9%
on average, compared to non-cooperative, fuzzy logic-based,
conventional DDPG, and evolution-based algorithms.

Fig. 15 and Fig. 16 compare communication overhead with
data size overhead and energy consumption on communication
under different numbers of targets. Our solution can reduce the
communication data size and energy consumption compared
to the conventional DDPG algorithm and the non-cooperative
algorithm. It is because cooperative imitation can assist UAVs
in finding feasible cooperators accurately based on the tiered
DT framework. The proposed reaction-diffusion mechanism
can effectively reduce the extra data size and the energy con-
sumption on communication. It can enable UAVs to exchange
information with partial neighbors instead of all the UAVs. Our
solution reduces the energy consumption on communication
by 25.0% and 76.9%, compared to the non-cooperative and
the DDPG algorithm, respectively.

The successful tracking ratio ȷ is defined from (1):ȷ =
limT→∞

1
T

∑T
t=0

∑M
i=1

∑K
k=1 Pi,k

MK . The comparison is shown
in Fig. 17 under different numbers of targets. Our algorithm
maintains a successful tracking ratio of over 90% under
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different tracking scenarios. In theory, 20 UAVs can coop-
eratively sense up to 153 mobile targets while maintaining a
75% successful tracking ratio. The fuzzy logic-based algorithm
reduces the successful tracking ratio when the number of
targets increases. The logic-based algorithm is based on a
pre-designed matching rule, making it unsuitable for the
dynamic MTT. Our tiered DT can effectively observe multiple
targets with high speeds to implement accurate MTT based on
multi-grained cooperative imitation. The imitation can ensure
a high successful tracking ratio with low imitation latency.
Meanwhile, the high system stability is maintained to extend
to large-scale tracking applications with overloaded targets.
Compared to the MARL, non-cooperative, and evolution
theory-based algorithms, ours improves the successful tracking
ratio by 15.4%, 26.7%, and 30.1%, respectively.

The moving speeds of the targets can also affect the
tracking performance. The MTT system is expected to ensure
low-latency overhead with deep swarm cooperation. Fig. 18
depicts the comparison between system latency and veloc-
ities of the mobile targets. Based on the average speed of
UAVs at 56 km/h, the whole latency increases with the
velocities of the targets for all the algorithms. Nonetheless,
our algorithm holds the lowest latency overhead under 1.5s.
The response latency is acceptable based on the parameters
in Table II. The evolution theory-based algorithm performs
worst with high exploration time, especially in complicated
MTT scenarios. Our algorithm, on average, can reduce 50.0%,
74.1%, and 79.4% of the latency, respectively, compared to the
fuzzy logic-based, conventional DDPG, and evolution-based
algorithms.

VII. CONCLUSION

We design a tiered DT-assisted tracking framework to ensure
accurate and real-time MTT. To improve tracking performance
of UAV swarm, we propose a multi-grained cooperative MTT
system for real-time tracking response. We propose a cooper-
ative tracking algorithm to ensure a high successful tracking
ratio by coordinating remote UAVs for sequential tracking.
The results demonstrate that our proposed algorithm reduces
tracking energy consumption with optimal tracking paths for
high-efficiency MTT. There still exist technical challenges of
DT for imitating higher-speed moving targets in real time
based on our tiered DT framework. In the future, we will
deeply explore the integration of the physical world and the
virtual world with the multi-tiered imitation pattern for a more
effective MTT.
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