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Summary

The cost of currently available technologies for CO capture should be further re-
duced to allow for large scale implementation of Carbon Capture and Storage. Sol-
vents for CO capture systems with physical absorption are usually selected based
on heuristics, engineering expertise and experimental trials. The performance of
the separation system is, however, defined by both the properties of the selected
solvent and the process conditions, which should be considered simultaneously. In
this thesis, the Continuous Molecular Targeting - Computer Aided Molecular Design
(CoMT-CAMD) framework is extended and applied to the simultaneous optimization
of process and solvent for CO capture systems with physical absorption.

In Chapter 2 of the thesis, the CoMT-CAMD framework is applied for a pre-
combustion CO capture system. The problem of simultaneous process and solvent
optimization is solved for a reasonably complex process model and for an objec-
tive function defining the overall process performance. The solvent is represented
as the pure component parameters of the Perturbed Chain Statistical Associating
Fluid Theory (PC-SAFT). The optimization is formulated with the pure component
parameters of the solvent (PC-SAFT parameters) and with the process variables
as degrees of freedom. Preceding studies have shown that process inequality con-
straints can be problematic for CoMT-CAMD. A constraint for the solvent for example
was considered in this chapter. This work proposes a Taylor-expansion of the pro-
cess constraints in the direction of the parameters of the PC-SAFT model. QSPR
models for the prediction of pure component properties (ideal gas heat capacity
and molar mass) as function of the PC-SAFT pure component parameters were de-
veloped. These models, together with the PC-SAFT equation, enabled predictions
of full caloric properties and mass specific process streams inside the CoMT-CAMD
framework. Optimal solvents that achieve a minimization of the primary energy
consumption in all stages of the capture process were successfully identified.

Chapter 3 presents a method for the prediction of binary interaction parameters
𝑘 of the PC-SAFT equation of state. The correction required when PC-SAFT is ap-
plied to mixtures is linked to the level of asymmetry in the intermolecular potentials
of the mixture components. Asymmetry in intermolecular potentials is quantified
using relations between the PC-SAFT parameters of the pure components present
in the mixture. Estimates of binary interaction parameters 𝑘 are thus possibly
based only on (combinations of) pure component parameters. A QSPR method is
employed and estimations of 𝑘 are obtained independent from experimental mix-
ture data. The method is implemented to mixtures with non-associating and to
mixtures with associating components.

Chapter 4 uses and assesses the model for estimating 𝑘 -values in the CoMT-
CAMD framework. Phase equilibria for mixtures of the optimized fluid can be de-
scribed more accurately. For the assessment of the 𝑘 -model, the case study of

xi



xii Summary

CoMT-CAMD for polar solvents was examined. For the most promising solvents
resulting from the CoMT-CAMD optimization, 𝑘 -values were individually identified
by adjusting to experimental data and the process conditions for these solvents
were optimized. That made it possible to compare the results to the CoMT-CAMD
calculations with the predictive QSPR-model for 𝑘 . The comparison shows that
CoMT-CAMD with our QSPR-model for 𝑘 gives good estimates for the results of
individually optimized substances. An improvement is found over the model without
binary correction (𝑘 = 0).



Samenvatting

De kosten van de huidige beschikbare technologieën voor de afvang van koolstof-
dioxide (CO ) moeten verder worden gereduceerd, eerde implementatie van CO -
afvang en -opslag (Engels, Carbon Capture and Storage) op grote schaalkan worden
gerealiseerd. De oplosmiddelen voor CO -afvang systemen door middel van fysis-
che absorptie worden doorgaans geselecteerd op basis van een heuristische meth-
ode, technische expertise of experimentele studies. De prestaties vanhet scheid-
ingssysteemworden echter bepaald door zowel de eigenschappen van het gekozen
oplosmiddel als de procescondities. Deze dienentegelijkertijd in ogenschouw te
worden genomen. In dit proefschrift, wordt de Continuous Molecular Targeting -
Computer Aided Molecular Design (CoMT-CAMD) methode uitgebreid en toegepast
op de gelijktijdige optimalisatie van het proces en het oplosmiddel voor CO -afvang
systemen middels een fysisch oplosmiddel.

In hoofdstuk 2 van het proefschrift wordt de CoMT-CAMD methode aangewend
voor een voorverbranding (Engels, pre-combustion) CO -afvang systeem. Het si-
multaan optimaliseren van het proces en het oplosmiddel is gedaan aan de hand
van een tamelijk complex procesmodel en een doelfunctie die de globale pro-
cesprestaties definieert. Het oplosmiddel wordt gerepresenteerd door de zuiv-
ere component parameters van de geperturbeerde-keten statistische associërende
vloeistoftheorie Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT). De
optimalisatie wordt opgesteld met de zuivere componenten parameters van het
oplosmiddel (PC-SAFT parameters) en de procesvariabelen als vrijheidsgraden. Voor-
gaande studies hebben aangetoond dat randvoorwaarden in de vorm van ongeli-
jkheden problematisch kunnen zijn voor CoMT-CAMD. In dit hoofdstuk werd bijvoor-
beeld een randvoorwaarde voor het oplosmiddel in overweging genomen. Dit werk
stelt een Taylor-expansie voor in de vorm van de procesrandvoorwaarden in de
richting van de PC-SAFT parameters. QSPR modellen werden ontwikkeld voor het
voorspellen van de eigenschappen van dezuivere componenten (warmtecapaciteit
van ideaal gas en molaire massa) als functie van de zuivere componenten param-
eters van PC-SAFT. Deze modellen, samen met de PC-SAFT toestandsvergelijking,
maakten het mogelijk om voorspellingen te doen van de volledige calorische eigen-
schappen en massa specifieke processtromen binnen de CoMT-CAMD methode. De
meest optimale oplosmiddelen, die in alle fasen van het afvangproces het primaire
energieverbruik minimaliseren, werden op deze manier succesvol geïdentificeerd.

Hoofdstuk 3 presenteert een methode voor het voorspellen van de binaire in-
teractie parameters 𝑘 van de PC-SAFT toestandsvergelijking. De vereiste correc-
tie, indien PC-SAFT wordt toegepast op mengsels, hangt samen met de mate van
asymmetrie in de intermoleculaire potentialen van de mengselcomponenten. De
asymmetrie in de intermoleculaire potentialen wordt gekwantificeerd middels ver-
banden tussen de PC-SAFT parameters van de pure componenten in het mengsel.

xiii



xiv Samenvatting

Schattingen van de binaire interactie parameters 𝑘 zijn dus mogelijkerwijs alleen
gebaseerd op (combinaties van) pure componenten parameters. Een QSPR meth-
ode wordt toegepast om 𝑘 te schatten onafhankelijk van de experimentele data
van het mengsel. Deze aanpak wordt geïmplementeerd voor zowel mengsels met
niet-associërende als mengsels met associërende componenten.

In hoofdstuk 4 wordt het model toegepast en geëvalueerd voor het schatten van
de 𝑘 -waarden in het CoMT-CAMD kader. Fasenevenwichten van mengsels van het
geoptimaliseerde fluïdum kunnenhiermee nauwkeuriger worden beschreven. Voor
de beoordeling van het 𝑘 -model, werd de case study van CoMT-CAMD voor polaire
oplosmiddelen onderzocht. Voor de meest veelbelovende oplosmiddelen die uit de
CoMT-CAMD optimalisatie voortvloeien, werden individuele 𝑘 -waarden geïdenti-
ficeerddoor ze aan te passen aan de experimentele data. Vervolgens werden de
procescondities voor deze oplosmiddelen geoptimaliseerd. Dit maakte het mogelijk
om de resultaten van de CoMT-CAMD berekeningen te vergelijken met het voor-
spellende QSPR-model voor 𝑘 . De vergelijking toont aan dat CoMT-CAMD met het
QSPR-model goede schattingen van 𝑘 geeft voor de resultaten van de individueel
geoptimaliseerde stoffen. Een verbetering is geconstateerd ten opzichte van het
model dat geen gebruik maakt van de binaire correctie (𝑘 = 0).



1
Introduction

1



..

1

2 1. Introduction

Pre-combustion Carbon Capture and Storage (CCS) with physical absorption for
CO capture is seen as a cost-competitive low carbon emission concept for power
plants. [1, 2] According to public data of the MIT Energy Initiative (’CCS Project
Database’ [3]): 43% of the power plant CCS projects planned to be operated world-
wide consider Integrated Gasification Combined Cycle (IGCC) power plants and em-
ploy pre-combustion CO capture with physical absorption. Physical absorption has
long since been employed for acid gas removal from industrial gas streams [4–7].
Still, the large-scale implementation of CCS systems requires further reduction in
the cost of the currently available technologies for carbon capture. [8] In that light,
interrelated environmental and financial performance targets should be considered.
In power plants, the performance of the carbon capture system affects directly the
production price of electrical power, being crucial to the viability of the entire CCS
project. [1, 9–14] Simultaneous process and solvent optimization can lead to lower-
cost designs for carbon capture systems with physical absorption. The optimization
of absorption systems for CO capture has become a vibrant research topic. [8, 15–
18]

The Continuous Molecular Targeting - Computer Aided Molecular Design (CoMT-
CAMD) [19] approach enables the simultaneous process and solvent optimization
with a single process-driven objective function, utilizing a physically-based ther-
modynamic model, the Perturbed Chain Statistical Associating Fluid Theory (PC-
SAFT) [20–23]. The current thesis proposes extensions to the CoMT-CAMD frame-
work for an overall performance optimization of a pre-combustion CO capture
system with physical absorption.

The process topology of the carbon capture system examined in this work re-
sembles in its’ key features the pre-combustion capture pilot plant at the IGCC
power plant in Buggenum, the Willem Alexander Centrale (WAC). The current work
has been part of the test and R&D program of the CO Catch-up project for the
demonstration of pre-combustion CO capture at the site of the IGCC pilot plant
in Buggenum. The test and R&D program of the CO Catch-up project has been
managed by Vattenfall R&D Projects and performed together with Delft University
of Technology and Energy research Center of the Netherlands (ECN).
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1.1. Solvents for CO2 capture using physical absorp-
tion at IGCC power plants

Physical absorption is a mature technology and appropriate for the pre-combustion
capture of CO at IGCC plants. [10, 16, 24–27] A simplified process scheme for an
IGCC pre-combustion capture concept is given in Figure 1.1. An example of an acid

Figure 1.1: Simplified process scheme for an IGCC pre-combustion capture concept (adopted from Kunze
and Spliethoff [28]).

gas removal (AGR) process for the pre-combustion capture concept is illustrated
in Figure 1.2. The high partial pressure (or better: fugacity) of CO in the shifted
syngas stream of an IGCC process allows for high solubility of CO in the solvent
(absorption step). The lean solvent can be recovered through pressure reduction
in flash drums (desorption step). [29] The desorption step for physical solvents is
more energy efficient and cost effective, than the regeneration step of chemical
solvents in systems for post-combustion CO capture [15, 30, 31].

The most common industrially applied solvents for the physical absorption of
CO are methanol, N-methyl-2-pyrrolidone (NMP), propylene carbonate, 4-formyl-
morpholine and mixtures of polyethylene glycols of dimethylethers (DEPEGs). A
short review about CO separation processes using these solvents is given in the
following.

Methanol is an inexpensive chemical and can achieve sharp separations at high
pressures and low absorption temperatures. [33] Methanol is used in the Rectisol
process, the earliest commercially applied process for acid gas removal. [4] Due
to low operating temperatures, the Rectisol process includes solvent refrigeration
steps. This leads to high primary energy consumption and to complex process de-
signs, leading to high operating and investment costs. The Rectisol process was ini-
tially implemented in the production of syngas in the chemical industry. [4, 29, 34]
For the implementation to CCS systems in IGCC power plants, the original Rectisol
process scheme has to be modified. [33] Improved Rectisol-based processes with
heat integration have recently been studied by Gatti et al. [34].
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4 1. Introduction

Figure 1.2: Acid gas removal process for the IGCC base case presented in Fig.1.1: Simplified flowsheet
of the Selexol process for the removal of and CO , as described in ref. [32]. The solvent recovery
from the CO capturing step is carried out through pressure reduction in flash drums.

N-methyl-2-pyrrolidone (NMP) is a polar solvent, used in the Purisol process.
Due to the higher selectivity of NMP towards H S, the Purisol process has been
mainly implemented in natural gas sweetening processes. [4, 29] Additionally, NMP
has been studied as a component of hybrid solvents (in mixtures with alkanolamines)
for CO capture. [35]

Propylene carbonate, also a polar organic solvent, is used in the Fluor Solvent
process. Propylene carbonate has a higher selectivity towards CO than towards
light hydrocarbons or H . [4] The Fluor process has been mainly employed in natural
gas processing. Recently, propylene carbonate has been studied as solvent for the
absorption of CO in a membrane gas absorption process. [36]

4-formylmorpholine, in mixture with N-acetyl-morpholine, is used in the Mor-
physorb process. The Morphysorb process requires low operating temperatures
due to the low boiling point of the solvent. The process has been recently applied
and tested for the CO capture for natural gas purification. [37] 4-formylmorpholine
has also been studied as solvent in a membrane gas absorption process. [36]

Finally, mixtures of polyethylene glycols of dimethylethers (DEPGs) are used in
the Selexol process. The Selexol process has been already implemented for the
selective removal of H S from flue gas streams that also contain CO . [4] In order
to achieve high purity product streams of H , two Selexol units are usually employed
for the sequential removal of H S and CO . Hydrocarbons of high molecular mass
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are more soluble in DEPGs than CO and H S. [4] Therefore, the Selexol process
is not suitable for acid gas removal from rich hydrocarbon streams. According to a
recent study of Kapetaki et al. [38], the implementation of the Selexol process in
IGCC power plants may lead to CO capture efficiencies1 higher than 90%.

The field of research for superior solvents for CO capture with physical ab-
sorption is constantly developing. Perfluorinated compounds (PFCs) [39–41] and
siloxanes [42, 43] have been studied as promising solvents. Another prominent
research field is the design of ionic liquids (IL). [44–49]

Still, for the large-scale implementation of CCS systems a new generation of
designs for carbon capture is required . New designs should achieve significant
cost reduction for the overall capture process. [31, 50] In this regard, the employed
solvents should facilitate high selectivity for absorbing CO against H , while they
allow for a minimization of the primary energy consumption in all stages of the
capture process. [31]

1.2. Solvent and process optimization with Computer
Aided Molecular Design (CAMD)

The selection of physical solvents for CO capture is often based on heuristics:
Physical properties of the solvent, like CO solubility, CO /H S selectivity, vapor
pressure, thermal stability, viscosity, toxicity and corrosivity are evaluated for given
process conditions. [39–41] The decision about the appropriate solvent is thus
based on engineering expertise, prior knowledge of the process and experimen-
tal trials. [51] In industrial practice, the choice of solvents becomes therefore a
solvent evaluation procedure rather than a true solvent optimization.

Alternatively, the solvent optimization problem can be addressed as a reverse en-
gineering problem and be solved using Computer Aided Molecular Design (CAMD). [52,
53] The goal of the reverse engineering problem is to identify solvent molecules that
meet certain property targets or, more generally, to identify the solvent molecules
that achieve optimal performance regarding specified process measures. CAMD
provides computational methods and systematic frameworks for the solution of this
problem.

1.2.1. Property models in CAMD
Property models are essential in CAMD for the prediction of pure component param-
eters2 and for the prediction of state properties3 of pure components and mixtures.

1Carbon capture efficiency Carbon in product
Carbon in coal Carbon in slag (according to ref. [38])

2The term ’pure component parameters’ is used here to describe physical properties like molar mass,
critical properties, normal boiling and melting points, the standard enthalpy and standard Gibbs energy
of formation. [54]

3Here, the term ’state properties’ refers to the thermal, caloric or transport properties of pure compo-
nents and mixtures (internal energy, enthalpy, entropy, Helmholtz energy and Gibbs energy) and their
derivative properties: a) temperature dependent properties (vapor pressure, liquid density, enthalpy
of vaporization, ideal gas heat capacity, liquid heat capacity, surface tension and speed of sound) [54],
b) transport properties (liquid and vapor viscosity, liquid and vapor thermal conductivity and diffusion
coefficients) [54] and c) properties for phase equilibrium calculations (chemical potential, fugacity and
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Predicted properties are used to identify the molecules that meet the property tar-
gets of the design problem. The accuracy and predictive power of the employed
property model(s) define the accuracy and plausibility of the CAMD solution. [55–
58] Therefore, modeling of physical properties plays a critical role in CAMD.
The property models employed in CAMD are mainly Group-Contribution (GC) meth-
ods [59–63] or Quantitative Structure Property Relationship (QSPR) models with
molecular signature descriptors [64–66].

Strictly speaking, physical properties can be distinguished in pure component
parameters and state properties. [54] In the CAMD literature, it is common to
speak about ’primary properties’ [67], as properties estimated using information
only about the molecular structure. ’Primary properties’ include pure component
parameters and certain temperature dependent state properties at a reference tem-
perature. The GC methods proposed by Joback and Reid [68] have been used in
CAMD (e.g. ref. [69, 70]) for the estimation of ’primary properties’ of pure compo-
nents (i.e. the normal boiling and freezing point temperatures, critical properties,
the ideal gas heat capacity and the enthalpy of vaporization at boiling point tem-
perature). The GC methods of Joback and Reid are based on first order (UNIFAC)
functional groups and were extended by Constantinou and Gani [60]. Constantinou
and Gani included second-order functional groups in order to capture the differences
between isomers and proximity effects. [71] Further, Marrero and Gani [62] intro-
duced GC methods with third-order functional groups for a better description of
complex heterocyclic and large poly-functional acyclic compounds (e.g. ref. [72]).
Constantinou et al. [61] developed a GC method for the estimation of acentric fac-
tors. GC methods are also available for the prediction of properties that characterize
the eco-toxicity of pure components. [73–75]
State properties are calculated from estimated values of ’primary properties’, using
basic thermodynamic relations or empirical correlations. [71, 76–78] For state prop-
erties, some works (e.g. ref. [56, 79]) use the theorem of corresponding states with
GC predictions for the acentric factor and the critical properties. For phase equilib-
rium calculations gE-models (usually UNIFAC) are often used or, less often, cubic
equations of state (e.g. ref. [80, 81]).

Methods that use topological indices (TI) as descriptors in QSPR models are
employed for the prediction of both pure component parameters and state proper-
ties. Topological indices are a particular category of molecular signature descrip-
tors, which are derived from molecular graphs. According to Faulon et al. [82]:
”The (molecular) signature is a systematic codification system over an alphabet of
atom types, describing the extended valence (i.e. neighborhood) of the atoms of a
molecule.” Topological indices based on molecular signature take into account the
molecular architecture and serve as suitable descriptors for a QSPR model for prop-
erty prediction. [64] Raman and Maranas [64] implemented such QSPR models for
the prediction of the boiling point temperature and the critical properties and for
the prediction of the molar volume, the enthalpy of vaporization, the molar refrac-
tivity and the surface tension at a given temperature. Chemmangattuvalappil and
Eden [65] used QSPR models with topological indices for the prediction of the molar

fugacity coefficients, activity and activity coefficients) [54].
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volume [83] and the toxic limit concentration [84], while Patel et al. [66] proposed
a QSPR model with topological indices for the prediction of flash point in CAMD. A
thorough review on the QSPR methods using topological indices in CAMD can be
found in the work of Harini et al. [57].

A combination of QSPR models with topological indices and GC methods, the
GC method [67], has been also implemented in CAMD. The GC method improves
property predictions for complex molecules and is implemented in a way similar to
the original GC methods. For example, Samudra and Sahinidis [76] used GC for the
prediction of ’primary properties’ and external property models for the calculation
of heat conductivities and the volumetric heat capacity. In the work of Conte et
al. [85] the GC method was used for the prediction of surface tension and viscosity.
Gonzalez et al. [86] used GC to predict properties relevant to phase equilibrium
calculations. Based on the GC method, Hukkerikar et al. [87] proposed estimation
methods for environment-related properties.

O’Connell et al. [56] classified the property models in CAMD according to the
way these models are obtained and the level of empiricism they implicate (Figure
1.3). GC and QSPR models use information about the molecular structure in a sys-

Figure 1.3: Iterative steps of property model development (adopted from O’Connell et al. [56]).

tematic way. Still, they are correlations with parameters adjusted to experimental
data. As stated by Raman and Maranas [64], the QSPR models used in CAMD ”do
not necessarily have a casual relationship with the correlated property”. In complex
CAMD problems, depending on the required properties, the combination of different
(GC or QSPR) models may be necessary as well. In that case, the model assump-
tions, the validity range of the employed models and combined uncertainties should
be carefully examined. A recent review on the advantages and limitations of the
various fluid property models used in CAMD is given by van Speybroeck et al. [88].

Physically-based thermodynamic models have been recently introduced in CAMD
frameworks. Physically-based thermodynamic models (for example, SAFT-type mod-
els [89]) originate in statistical mechanics and have a theoretical background (right
end of the scale in Figure 1.3) but also parameters. Due to the physical background
of their molecular parameters, SAFT-type models give a sharp representation of
the optimized molecule inside CAMD frameworks. SAFT-type models can be better
extrapolated and therefore can provide safer predictions for state properties than
(other) GC methods and QSPR models. With a SAFT-type equation of state (EoS)
residual static state properties can be derived directly from the residual Helmholtz
energy. Adjiman et al. [90] illustrate the expanding potential of the implementation
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of SAFT-type models in CAMD. A more detailed discussion about the key-role of the
PC-SAFT [20–23] model as a unified framework for property prediction in CAMD is
given in Sections 1.2.4 and 1.3.1 of the current thesis.

1.2.2. The integrated solvent and process optimization prob-
lem

Solvent optimization problems are particularly demanding due to the strong correla-
tions between the optimal properties of the solvent and the optimal process condi-
tions. In order to achieve an optimal performance for the CO capture process, the
solvent design problem should thus not be decoupled and solved separately from
the process design. [19, 52, 90] The solvent and the process conditions have to be
optimized simultaneously. An integrated process and molecular design approach is
essential.

The fully integrated process and solvent design problem is in its original formu-
lation a mixed integer non-linear optimization program (MINLP) [53]:

min
,
𝑓 (𝑥, 𝑝)

s.t. ℎ (𝑥, 𝑝) = 0 (1.1)
𝑔 (𝑥, 𝑝) ≤ 0

where 𝑥 denotes the vector of process variables defined in ℝ and 𝑝 = [𝑝 ,… , 𝑝 ]
denotes the vector of molecular parameters of the optimized solvent. The molec-
ular parameters 𝑝 are parameters required by the employed property model: the
functional groups of a GC property model, the descriptors of a QSPR model or
the molecular parameters of a physically-based (SAFT-type) thermodynamic model.
The vector of molecular parameters 𝑝 is unique for each real substance and is de-
fined over a discrete vector space, 𝑃 × , where 𝐷 is the number of molecular
parameters 𝑝 and 𝑁 is the number of all real substances. The non-linear objective
function 𝑓 (𝑥, 𝑝) is a representative measure of the overall process performance.
The non-linear constraints of the problem ℎ (𝑥, 𝑝) and 𝑔 (𝑥, 𝑝) represent the equa-
tions of the process model, the equations of the property model and the constraints
on 𝑥 and 𝑝.

The non-linear objective function 𝑓 (𝑥, 𝑝), the non-linear property models in
ℎ (𝑥, 𝑝) and the high dimensionality of the discrete vector space 𝑃 × lead to a
mixed-integer non-linear program of prohibitive size for rigorous and large process
models. Therefore, a solution of problem (1.1) is attainable only through problem
relaxation. CAMD methods can be distinguished according to the relaxation strategy
they employ in order to handle problem (1.1).

1.2.3. CAMD methods for solvent selection and solvent design
In solvent design, most CAMD approaches treat the process and the molecular de-
sign problems separately. Some approaches start with a pre-selection of suitable
candidate species (e.g. ref. [91] and [92]). In a subsequent step, the process
is optimized individually for each candidate solvent, in order to identify the best
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performing solvent. In other CAMD approaches [59, 60, 62, 93] the property tar-
gets and the property constraints are defined for given process conditions. The
molecular structures that meet the thus defined property targets and constraints
are identified through database screening. The considered property databases in-
clude either already existing components or molecular structures generated using
a GC method [53]. In order to avoid the mixed-integer formulation of the molecu-
lar design problem, these approaches decouple the solution of the process design
from the solution of the molecular design problem. All aforementioned CAMD ap-
proaches involve heuristic decisions, either in the step of pre-selection or by the
definition of property targets. The joint search space of the optimal solution of
problem (1.1) is then decomposed, leading inevitably to loss of information and
sub-optimal solutions.

Eden et al. [52] introduced the concept of property integration in a CAMD ap-
proach for the simultaneous optimization of separation processes and solvents.
Property integration allows for process-specific property targets and establishes an
indirect link between the two sub-problems of process and molecular design. [19]
A description of the approach proposed by Eden et al. [52] is given in Figure 1.4.
CAMD approaches based on the concept of property integration preserve the mixed-

Figure 1.4: Reverse problem formulation with property integration for simultaneous separation process
and product design (adopted from Eden et al. [52]).

integer formulation of the molecular design problem in (1.1). Still, the solution of
the MINLP in (1.1) requires a problem relaxation. Problem (1.1) is therefore further
relaxed, in order either to handle the non-linearity of the process design problem,
or in order to reduce the dimension of the discrete molecular search space. Auxil-
iary objective functions (e.g. ref. [94]) or simplified process and property models
(e.g. ref. [52]) are implemented to relax the high non-linearity in 𝑓(𝑥, 𝑝), ℎ(𝑥, 𝑝) and
𝑔(𝑥, 𝑝). A reduction of the discrete molecular search space 𝑃 × is attained through
pre-selection of certain candidate species (molecules or the functional groups of a
GC model, e.g. ref. [95]). Finally, many approaches turn to advanced algorithmic
techniques for the solution of the modified MI(N)LP. A detailed discussion on these
approaches is given in Chapter 2.

Consider, however, the level of complexity in industrial separation processes,
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like the process of capturing CO for a CCS application. The implementation of
simplified process models and auxiliary objective functions may neglect important
interactions between the various process steps. Thereby, critical aspects of the full
process performance will be missed, which may lead to fallacious property targets
and consequently to sub-optimal or even erroneous solutions for the molecular
design problem. Moreover, by implementing an a-priori reduction of the molecular
search space, superior solvents may be omitted.

1.2.4. The Continuous Molecular Targeting (CoMT) - CAMD
method

Continuous Molecular Targeting (CoMT), established by Bardow et al. [19], is an
alternative CAMD method for the solution of the integrated solvent and molecu-
lar optimization problem (1.1). CoMT-CAMD circumvents the mixed-integer for-
mulation of the molecular optimization problem in problem (1.1). The discrete
molecular search space of the thermodynamic model representing real molecules
𝑃 × is regarded as a continuous molecular search space of real and hypothetical
molecules ℝ . The molecular and process optimization variables are all defined in
the continuous domain ℝ and they can be optimized simultaneously. Problem
(1.1) is thereby formulated as a non-linear program (NLP) and it can be solved
using gradient based optimization algorithms. CoMT is empowered by the use of
a physically-based thermodynamic model. In this work, the CoMT-CAMD approach
is implemented with the Perturbed Chain - Statistical Associating Fluid Theory (PC-
SAFT) model [20–23]. The PC-SAFT molecular parameters are used as variables
for the molecular optimization.

Process and molecular optimization take place simultaneously using a single,
well-defined objective function for the process (like annual costs or primary energy
consumption). Individual property targets and auxiliary objective functions are not
required. A single, process-based objective function simultaneously evaluates the
impact of changes in the molecular structure of the solvent and of the process
conditions to the overall process performance. Additionally, the transformation of
problem (1.1) to a non-linear program (NLP) allows for rigorously considering (rea-
sonably complex) process models.

The optimal solution obtained in the CoMT step is the vector of the PC-SAFT
molecular parameters of the optimal, hypothetical, molecule and the correspond-
ing optimal process conditions. The molecular design is completed by identifying
the real components (or more generally the feasible molecular structures), which
give the best achievable performance, closest to the optimal one. The efficiency of
the molecular design step in CoMT-CAMD is founded on the strong physical back-
ground of the PC-SAFT molecular parameters: In PC-SAFT, similar molecular pa-
rameters correspond to similar thermodynamic properties. The performance of real
components is estimated by an approximation of the objective function around the
optimum of the CoMT step. The objective function is approximated using a Taylor
series of 2 order as function of the molecular parameters. The best performing
real molecules are expected to lie close to the local optimum of problem (1.1) in the
joint search space of process variables and molecular parameters. The set of real
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components that are considered during the step of molecular design are either ex-
isting components with known molecular parameters (database mapping) [96, 97]
or molecular structures generated using a GC method for the PC-SAFT parameters
like GPC-SAFT [98] (feasible structure mapping [99]). In the case that molecular
structures are generated using a GC method, a molecular design algorithm with
feasibility constraints has to be implemented. [99] The generic procedure of CoMT-
CAMD is illustrated in Figure 1.5.

Figure 1.5: Continuous Molecular Targeting - Computer Aided Molecular Design for integrated process
and fluid optimization.

1.3. The Perturbed Chain - SAFT (PC-SAFT) thermo-
dynamic model

1.3.1. A unified framework for the calculation of physical prop-
erties in CAMD

The PC-SAFT equation of state (EoS) [20–23] formulates the residual Helmholtz
energy. Any other residual (static) state property can be derived from the resid-
ual Helmholtz energy. For the calculation of full caloric properties, an ideal gas
contribution is additionally required. In process simulation problems, the ideal gas
heat capacity 𝑐ig can be obtained directly from property databases, since the sys-
tem components are known. During the Continuous Molecular Targeting, values of
𝑐ig for the optimized (hypothetical) molecule are not available in databases. Fur-
ther, the molecular mass of the optimized fluid is required in process calculations
that include mass-specific process streams. The QSPR models developed in the
course of the current thesis for the estimation of 𝑐ig and the molecular mass of
pure substances as function of the PC-SAFT pure component parameters are given
in Chapter 2.
Beyond the calculation of caloric properties, the PC-SAFT model can be utilized
for the prediction of several static and dynamic state properties: Surface tension
for pure components and mixtures can be predicted with PC-SAFT in the frame-
work of density functional theory (DFT). [100–102] Viscosity of pure fluids and
fluid mixtures can be predicted using Rosenfeld’s entropy-scaling [103, 104] and
a GC method for the PC-SAFT parameters. [105] On-going work focuses on the
development of models for the prediction of thermal conductivity [106, 107] and
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self-diffusion coefficients.
The implementation of PC-SAFT EoS to mixtures often demands the adjustment of
a binary interaction parameter, 𝑘 , to experimental data of phase equilibria. Since
experimental mixture data are not accessible during molecular design, 𝑘 needs
to be predicted from pure component parameters. This thesis shows that the bi-
nary interaction parameter 𝑘 can be predicted from the pure component PC-SAFT
parameters using a QSPR model (Chapter 3).

The PC-SAFT EoS originates in statistical mechanics and accounts explicitly for
polar and associating intermolecular interactions. [20, 21] PC-SAFT provides good
predictions of pure component and mixture properties and gives better predictions
in phase equilibrium calculations for complex and high pressure systems than cu-
bic EoS or g -models. [108, 109] Due to the theoretical background of the model
parameters, PC-SAFT links thermodynamic properties of pure fluids to molecular
structure. Further, full static and dynamic state properties required in process
systems’ calculations can be derived from residual properties. Thereby, PC-SAFT
serves as a unified framework for the calculation of thermodynamic properties in
the CoMT-CAMD framework.

1.3.2. The PC-SAFT equation of state
The PC-SAFT EoS belongs to the SAFT family of equations of state. SAFT-type
EoS are algebraic approximations of the residual Helmholtz energy. SAFT-type EoS
are based on statistical mechanics and more specifically on Wertheim’s thermody-
namic perturbation theory of first-order (TPT1) [110, 111]. Perturbation theories
provide models for fluid properties based on intermolecular potentials. [112, 113]
A reference fluid is considered in order to describe fluid behavior resulting from
repulsive intermolecular forces. Attractive intermolecular forces are treated as per-
turbation to the behavior of the reference fluid. Molecular distribution functions
characterizing the repulsive part of the intermolecular potential are used. In the
thermodynamic perturbation theory (TPT) of Wertheim the residual Helmholtz en-
ergy is expanded in a series of integrals of molecular distribution functions for the
reference fluid and the association potential. [112] Chapman et al. [114] applied
Wertheim’s theory to mixtures and derived the Statistical Associating Fluid Theory
(SAFT) EoS. In their work, Chapman et al. [114] use a reference fluid of homonu-
clear hard-sphere chains. The contribution to the residual Helmholtz energy due
to association is derived from Wertheim’s perturbation theory of first order (TPT1).
In the same work [114], the effects due to dispersive forces and induction are
accounted through a mean field perturbation term [112].

PC-SAFT [20–23] also utilizes the reference fluid of hard-sphere chains. Gross
and Sadowski [20] applied the perturbation theory of Barker and Henderson [115]
to chain molecules, to calculate the contribution to the residual Helmholtz energy
due to dispersive forces. The contribution due to associating interactions is applied
in a similar way as in the work of Chapman et al. [112] and Huang and Radosz [116].
The contribution of quadrupole-quadrupole, dipole-dipole and dipole-quadrupole
interactions to the residual Helmholtz energy are accounted for, as described in the
work of Gross [22], Gross and Vrabec [23] and Vrabec and Gross [117] respectively.
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PC-SAFT is implemented to mixtures using the one-fluid (van der Waals) mixing
rules.

In the PC-SAFT model, the molecules are represented as chains of spherical
segments. Each pure substance is identified by a vector of molecular parameters
characterizing the shape of the chain and the dispersive, associating and polar inter-
molecular potentials. Non-polar and non-associating molecules are characterized
by the number of segments per chain molecule 𝑚 (segment number), the segment
diameter 𝜎 and the dispersive energy parameter 𝜀/𝑘. Associating molecules need
two additional parameters, the association energy parameter 𝜀 /𝑘 and the associ-
ation volume 𝜅 . Polar molecules require the dipole moment 𝜇 and the quadrupole
moment 𝑄 as parameters.

The equations of the PC-SAFT model, that are required for calculation of ther-
mophysical properties in the present work, are given in the following.

Helmholtz Energy
The following equations are summarized in form of the residual Helmholtz energy
related to the number of chain molecules 𝑁 and their kinetic energy 𝑘𝑇 as

�̃� = 𝐴
𝑁𝑘𝑇 (1.2)

where 𝑘 is the Boltzmann constant and 𝑇 the temperature. The reduced Helmholtz
energy of a real fluid is therefore written as

�̃� = �̃� + �̃� (1.3)

The reduced Helmholtz energy for a mixture in the ideal gas state is given as

�̃� = ∑𝑥 [ln (Λ ⋅ 𝜌 ) − 1] = 1
𝜌 ⋅∑𝜌 [ln (Λ ⋅ 𝜌 ) − 1] (1.4)

where Λ is the de Broglie wavelength, 𝑥 is the mole fraction of species 𝑖 in the
mixture, 𝜌 the molecular density of species 𝑖 and 𝜌 the density of the mixture.
The residual term of the Helmholtz energy is calculated with PC-SAFT. The reduced
residual Helmholtz energy �̃� is expressed as a sum of terms due to the hard-
chain reference contribution �̃� and the terms expressing the contribution due to
attractive interactions: the dispersive �̃� , associating �̃� , quadrupolar �̃� and
dipolar �̃� contribution terms, according to

�̃� = �̃� + �̃� + �̃� + �̃� + �̃� (1.5)

The equations for the calculation of the various contributions to the residual Helmholtz
energy are adopted from ref. [20–23, 112] and they are given in Appendix A.1.

Derived thermodynamic properties from the Helmholtz energy
Compressibility factor. The compressibility factor 𝑍 is written as:

𝑍 = 𝑍 + 𝑍 + 𝑍 + 𝑍 + 𝑍 + 𝑍 = 1 + 𝜂 (𝜕�̃�
res

𝜕𝜂 )
,
. (1.6)
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where 𝜂 is the packing fraction defined in Appendix A.1. The equations for the
calculation of the various contributions to the compressibility are given in ref. [20–
23, 112].

Pressure. The total pressure 𝑃 of the system can be calculated as:

𝑃 = 𝑍𝑘𝑇𝜌 (1.7)

using the compressibility factor 𝑍 given in Eq. (1.6).

Chemical potential, 𝜇 . The chemical potential 𝜇 of species 𝑖 is the partial
derivative of the Helmholtz energy 𝐴 to the mole number 𝑛 for constant tem-
perature 𝑇 and volume 𝑉:

𝜇 (𝑇, 𝑉, 𝑛) = ( 𝜕𝐴𝜕𝑛 ) , ,
. (1.8)

For the chemical potential 𝜇 of species 𝑖 Eq.(1.8) leads to the following formulation:

𝜇 (𝑇, 𝜌)
𝑘𝑇 = (𝜕

(�̃� ⋅ 𝜌)
𝜕𝜌 )

,
(1.9)

where 𝜌 is the vector of component molar densities 𝜌 = 𝑥 ⋅𝜌 of all species 𝑖 of the
system. For the full chemical potential of a species 𝑖 holds

𝜇
𝑘𝑇 =

𝜇
𝑘𝑇 +

𝜇
𝑘𝑇 . (1.10)

From Eq.(1.4) and Eq.(1.8), for Λ = 1, the chemical potential of species 𝑖 in the
ideal gas state is calculated by

𝜇
𝑘𝑇 = ln(Λ ⋅ 𝜌 ) = ln(𝜌 ). (1.11)

The residual chemical potential 𝜇 of species 𝑖 is calculated with the PC-SAFT EoS
according to

𝜇
𝑘𝑇 = 𝜌 ⋅ (𝜕�̃�𝜕𝜌 )

,
+ �̃� . (1.12)

Fugacity coefficient ln 𝜙 . The fugacity coefficient of species 𝑖 is expressed as
function of the temperature 𝑇 and the pressure 𝑃 as

ln 𝜙 (𝑇, 𝑃, 𝑥) = 𝜇 (𝑇, 𝑃, 𝑥)
𝑘𝑇 = 𝜇 (𝑇, 𝜌)

𝑘𝑇 − ln 𝑍. (1.13)



1.3. The Perturbed Chain - SAFT (PC-SAFT) thermodynamic model ..

1

15

Residual molar entropy, �̂� . In the following, molar thermodynamic proper-
ties �̂� are related to the dimensionless properties as

�̂�
𝑅𝑇 = �̃� =

𝑊
𝑁𝑘𝑇 . (1.14)

From the Maxwell relations the entropy 𝑆 is given as the partial derivative of the
Helmholtz energy 𝐴 over the temperature 𝑇 for constant volume 𝑉 and constant
composition 𝑥 of the mixture

(𝜕𝐴𝜕𝑇) ,
= −𝑆. (1.15)

Eq.(1.15) can be reformulated on the reduced Helmholtz energy �̃� as

(𝜕 ( / )
𝜕𝑇 ) = − 𝑆

𝑁𝑘 which gives (𝜕
(�̃� ⋅ 𝑇)
𝜕𝑇 ) = − �̂�𝑅 . (1.16)

The residual molar entropy of a mixture of molar volume 𝑣 is given by

�̂� (𝑣, 𝑇, 𝑥)
𝑅 = �̂� (𝑇, 𝜌)

𝑅 = −𝑇 ⋅ (𝜕�̃�𝜕𝑇 ) − �̃� =

= −𝑇 ⋅ [(𝜕�̃�𝜕𝑇 ) + �̃�𝑇 ] (1.17)

and
�̂� (𝑃, 𝑇, 𝑥)

𝑅 = �̂� (𝑇, 𝜌)
𝑅 + ln 𝑍. (1.18)

Molar enthalpy, ℎ̂. The molar enthalpy of the mixture ℎ̂ is given as the summa-
tion of the ideal gas term ℎ̂ and the residual term ℎ̂ :

ℎ̂ = ℎ̂ + ℎ̂ . (1.19)

The enthalpy of the mixture in the ideal gas state, for a reference temperature 𝑇 ,
is given according to classical thermodynamics by

ℎ̂ (𝑇, 𝑥) =∑𝑥 ℎ̂ (𝑇) (1.20)

with ℎ̂ (𝑇) − ℎ̂ (𝑇 ) = ∫ �̂� , d𝑇. (1.21)

The residual molar enthalpy ℎ̂ is calculated from the reduced residual Helmholtz
energy and the compressibility factor. The relation between the enthalpy 𝐻 and the
Helmholtz energy 𝐴 written for residual properties is

𝐻 = 𝐴 − 𝑇𝑆 + (𝑃𝑉) = 𝐴 − 𝑇𝑆 + [𝑃𝑉 − (𝑃𝑉) ] . (1.22)
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Eq.(1.7) and (1.22) result to the following expressions for the residual molar en-
thalpy:

ℎ̂
𝑅𝑇 = 𝐻

𝑁𝑘𝑇 = �̃� − �̂�𝑅 + (𝑍 − 1) (1.23)

and
ℎ̂
𝑅𝑇 = −𝑇 ⋅ (𝜕�̃�𝜕𝑇 ) + (𝑍 − 1). (1.24)

Phase equilibrium calculations
For a system with K components and M phases in equilibrium, the equilibrium
conditions write:

𝑇 = 𝑇 = ⋯ = 𝑇 (1.25)

𝑃 = 𝑃 = ⋯ = 𝑃 (1.26)

𝜇 = 𝜇 = ⋯ = 𝜇 ∀𝑖. (1.27)

The chemical potential 𝜇 may be expressed by the fugacity 𝑓 . [54] For a reference
pressure 𝑃

𝜇 (𝑇, 𝑃, 𝑥) = 𝜇 , (𝑇, 𝑃 ) + 𝑅𝑇 ln 𝑓 (𝑇, 𝑃, 𝑥)𝑃 . (1.28)

Then, the equilibrium condition in Eq.(1.27) can be expressed by means of fugacity
as

𝑓 = 𝑓 = ⋯ = 𝑓 ∀𝑖. (1.29)

Using the definition of the fugacity coefficient 𝜙 of species 𝑖 [118]

𝜙 = 𝑓
𝑥 𝑃 (1.30)

the isofugacity relations in Eq.(1.29) can be written as

𝑥 𝜙 (𝑇, 𝑃, 𝑥 ) = 𝑥 𝜙 (𝑇, 𝑃, 𝑥 ) = ⋯ = 𝑥 𝜙 (𝑇, 𝑃, 𝑥 ) ∀𝑖. (1.31)

In phase equilibrium calculations the equations (1.31) are solved iteratively us-
ing the PC-SAFT EoS for the calculation of the fugacity coefficients (Eq.(1.12) and
(1.13)).

The application of PC-SAFT to highly asymmetric mixtures (mixtures of compo-
nents with considerably different intermolecular potentials) requires the adjustment
of a binary correction parameter 𝑘 to experimental mixture data.
Figure 1.6 shows results of phase equilibrium calculations with PC-SAFT for the
binary systems CO - acetophenone and H - cyclohexane. In both examples, we
observe a good description of the vapor phase. An accurate description of the liquid
phase is obtained when the model is corrected with 𝑘 adjusted to experimental
mixture data. However, experimental data are not available for mixtures considered
during molecular design. A method for the estimation of 𝑘 as a function of the PC-
SAFT pure component parameters is proposed and implemented with CoMT-CAMD
in the current thesis.
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Figure 1.6: Results of vapor-liquid equilibrium calculations with PC-SAFT for asymmetric binary systems:
a) CO - acetophenone [119] and b) H - cyclohexane [120, 121]. Phase equilibrium calculations are
compared to isothermal (P-xy) experimental data. Solid lines denote phase equilibrium calculations with
binary interaction parameter adjusted on the experimental data and dashed lines are for .

1.4. Outline of the thesis
An overall performance optimization of CO capture systems with physical absorp-
tion is attainable when all major process trade-offs are taken into account. For this,
the solvent should be optimized simultaneously with the process conditions, using
a single, process-based objective function.

In this work the solution of the integrated solvent and process optimization prob-
lem is approached with the CoMT-CAMD framework, using PC-SAFT. In CoMT-CAMD,
the optimization problem is formulated as a non-linear program. The process and
the solvent are described through continuous variables and are optimized simulta-
neously. The optimal solution of the process and solvent optimization problem is
obtained without pre-selection of candidate solvents and heuristic objectives.

The work in the current thesis unfolds in two levels: a) the implementation
of the CoMT-CAMD framework for the solution of the problem of optimal solvent
selection for a pre-combustion CO capture system and b) the development and
implementation of correlation models for the prediction of auxiliary properties of
the solvent, aiming to enhance the accuracy in calculations inside CoMT-CAMD.

In Chapter 2, the CoMT-CAMD method is presented in detail. The implemen-
tation and application of CoMT-CAMD is developed for the case of simultaneous
solvent and process optimization of a CO capture process with physical absorption
for an IGCC power plant. Calculation of full caloric properties in CoMT-CAMD re-
quires predictions of the ideal gas heat capacity 𝑐 of the optimized solvent. The
calculation of mass specific quantities, such as specific density, requires predictions
of the molar mass. QSPR models for 𝑐 and the molar mass as function of the
PC-SAFT pure component parameters were developed and integrated in the CoMT-
CAMD framework.
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With CoMT-CAMD, a set of optimal solvents is identified from a large database of
organic molecules, without pre-selection of candidates and for a reasonably com-
plex process model. The set of optimal solvents include both state-of-the-art and
new solvents, a fact underlining the validity and the strength of the CoMT-CAMD
method.

The accuracy of PC-SAFT in calculations of state properties is decisive to the
plausibility of the CoMT-CAMD solution. Especially for mixtures with highly unlike
components, a correction (𝑘 ) of the PC-SAFT EoS is usually required. A new
method for the prediction of 𝑘 , independent of experimental mixture data and
based solely on the PC-SAFT parameters of the pure components of the mixture, is
presented in Chapter 3.

Chapter 4 analyzes the effect of predicted binary interaction parameter 𝑘 on the
resulting list of promising candidate solvents from the CoMT-CAMD approach. The
evaluation is done for the case of CO capture as detailed in Chapter 2. The result of
the mapping step (’mapping list’) obtained using 𝑘 predictions is compared to the
result of the mapping step when no correction is used for the binary mixtures of the
solvent (𝑘 = 0). Further, the result of the CoMT-CAMD is also compared to results
from individual process optimizations with 𝑘 values adjusted to experimental data.

Chapter 5 assesses the results of the current work and discusses some ideas for
further extensions to the CoMT-CAMD framework.
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Solvent-based separation systems have a substantial potential for improvement
when the solvent and the process conditions are optimized simultaneously. The
fully integrated design problem, however, leads to an optimization problem of pro-
hibitive size and complexity due to the many discrete degrees of freedom in selecting
a solvent and the nonlinear nature of the process models. We here implement and
extend the method of Continuous Molecular Targeting - Computer Aided Molecular
Design (CoMT-CAMD) for the solvent and process optimization of a pre-combustion
CO -capture system with physical absorption. CoMT-CAMD is a deterministic pro-
cedure that does not require a pre-selection of solvent molecules. The process
topology considered in our study includes all major process operations of an exist-
ing CO -capture system: multi-stage absorption, desorption (two flash desorption
stages with gas recycle) and CO compression. We measure the process perfor-
mance with a single economic objective function. The objective function captures
the process trade-offs and evaluates potential process-solvent on a common basis.
The solvent is represented as the pure component parameters of the Perturbed-
Chain Statistical Associating Fluid Theory (PC-SAFT). The optimization problem is
formulated with the pure component parameters of the solvent (PC-SAFT param-
eters) and with the process variables as degrees of freedom. Necessary auxiliary
properties of the optimized solvent like the ideal gas heat capacity and the molar
mass are predicted with Quantitative Structure Property Relationship (QSPR) mod-
els, based on the pure component PC-SAFT parameters. As a result, one gets a
unified thermodynamic framework for fluid properties based on the PC-SAFT model.
With CoMT-CAMD we obtain a list of the best performing physical solvents for the
considered CO -capture application. The resulting list of best performing solvents
contains state-of-the-art solvents and new green solvent molecules.
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2.1. Introduction
Identifying an optimal solvent for a specific process is a demanding task since the
solvent selection cannot be decoupled from process design. The solvents for carbon
capture by absorption, in particular, are known to critically determine the costs of
possible processes. [1, 2] In pre-combustion carbon capture, for example, very
different types of solvents are used in the main commercially installed processes
(Selexol, Rectisol, Purisol and Fluor Solvent) [3]. On the one hand, the selected
solvent determines the optimal operating point of the separation system [4–8].
On the other hand, specifications of process and operating conditions are decisive
for the selection of new candidate solvents [9–12]. Wilcox et al. [13] recently
revisited film theory for the mass transfer of carbon dioxide and illustrated the strong
coupling between process parameters and solvent properties. In summary, the
selection of an optimal solvent cannot be decoupled from the optimal selection of
process conditions. The optimal performance of a solvent-based separation system
is determined by both the solvent properties and the operating conditions. An
integrated process and product design approach is needed. A full integration of
the solvent and process optimization problems results however, in a mixed-integer
non-linear programming (MINLP) problem

min
,
𝑓(𝑥, 𝑝)

s.t.
ℎ(𝑥, 𝑝) = 0
𝑔(𝑥, 𝑝) ≤ 0
𝑥 ∈ ℜ , 𝑝 = [𝑝 ,… , 𝑝 ] ∈ 𝒫𝐷𝑥𝑁 (2.1)

where 𝑓(𝑥, 𝑝) denotes the objective function of the optimization problem, ℎ(𝑥, 𝑝)
is the set of nonlinear equations representing the process model, 𝑔(𝑥, 𝑝) are the
nonlinear process constraints and 𝑥 is the vector of the process variables. The
process model ℎ(𝑥, 𝑝) and the process constraints 𝑔(𝑥, 𝑝) include equations of the
physical property model, in which a solvent is characterized by a parameter vector
𝑝. Each candidate solvent species 𝑖 is represented by the parameter vector 𝑝 in
the discrete space 𝒫 where 𝐷 is the number of model parameters to represent
a solvent and 𝑁 is the number of all real species considered in the problem. The
choice of a solvent species i is therefore an integer decision in the 𝑁-dimensional
search space. The mathematical formulation, Eq.(2.1), shows that solving the full
MINLP problem for reasonably complex practical tasks is of prohibitive dimension-
ality 𝑁, determined by the number of conceivable molecules. Any attempt to solve
the integrated optimization problem of Eq.(2.1) has to consider a mathematical
or conceptual relaxation step to allow for practical (approximate) solutions. The
various methods to circumvent or simplify the full MINLP problem in Eq.(2.1) can
be used to classify the vivid research in the field of process and product design.
A comprehensive overview of recent developments has been given by Adjman et
al. [14].

One can thereby distinguish between methods that define auxiliary objective
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functions ̆𝑓(𝑝) to (pre)select solvents and methods that preserve the objective func-
tion 𝑓(𝑥, 𝑝) on the process level. Note that an auxiliary objective function is usually
defined such that ̆𝑓(𝑝) does not depend on process variables 𝑥, allowing the min-
imization of ̆𝑓(𝑝) as an independent subproblem. Another class of approaches
introduces simplified process models ℎ(𝑥, 𝑝) in order to make the problem solv-
able. One can further differentiate methods that limit the search space �̆� to certain
chemical structures in advance and methods that require no pre-selection. Another
level of approximation decomposes the MINLP into an optimization problem with
continuous parameter vector 𝑝 and a subsequent integer problem of identifying the
optimal solvent.

In this regard, the structure of the MINLP problem in Eq.(2.1) was maintained in
ref. [15, 16], but in order to ensure a feasible mathematical solution, either simpli-
fied process models are employed or the size of the considered integer (molecular)
search space is limited. Sahinidis et al. [17] proposed an advanced global opti-
mization strategy for the solution of the MINLP problem in Eq.(2.1). As objective
function, their approach considered particular fluid properties as performance mea-
sures of the optimized fluid.
Many approaches decompose the full MINLP problem into two sub-problems, which
are solved independently: First, a short-listing of the solvents is conducted based
on heuristic, predefined performance measures or solvent properties ̆𝑓(𝑝); subse-
quently, the process conditions are optimized for the pre-selected solvent(s). [18–
20] Pre-selection based on heuristics requires, however, practical experience and
process know-how. This decomposition approach has been shown to be powerful,
when expert knowledge of the process is available [21, 22]. This knowledge, how-
ever, is not always available when new designs and processes are examined.
Marcoulaki and Kokossis [23] emphasized the significance of approaches that are
unbiased from pre-selection procedures and thus maintain the potential for novel
solutions. They proposed a framework that allows a maximum number of chemical
structures to be considered for the molecular representation and they applied a
stochastic algorithm for the solution of the optimization problem. They defined the
objective function either on certain physical properties of the optimized molecule
or on individual process streams. [23, 24]
Recent approaches in Computer Aided Molecular Design (CAMD) reduce the ini-
tial molecular search space using elegant mathematical or algorithmic techniques:
Bommareddy et al. use enhanced enumeration techniques of higher order groups
in a group-contribution approach. The process design problem is first solved to
identify ranges of property targets, which are further used as process property con-
straints in a molecular design problem. [25] Samudra and Sahinidis [26] consider
a simplified property model and allow for the solution of a mixed-integer linear
problem (MILP) to define the initial molecular composition. In a following step,
they use molecular graph techniques to define the exact molecular structures. Pa-
padopoulos and Linke [27] implement multi-objective optimization and an iterative
molecular clustering approach to confine the initial molecular search space. For the
demanding case of reactive systems, Chemmangattuvalappil and Eden [28] imple-
ment the concept of molecular signature descriptors and the principles of molecular
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graph theory in property based molecular design. All the above methods are very
elaborate but they still use auxiliary objective functions for the evaluation of the
process performance, in order to reduce the problem complexity on the process
level. Lampe et al. [29], however, showed that the dependence of process per-
formance on molecular properties is not smooth due to process constraints. Such
non-smooth objective functions of the full problem cannot be captured by auxiliary
objective functions ̆𝑓(𝑝) that are solved independent of the process model.
Pereira et al. [30, 31] proposed a Computer Aided Molecular and Process Design
(CAMPD) methodology for solvent selection among alkane-blends. This method
uses a physically based thermodynamic model (SAFT-VR [32]). Thereby, variables
describing the molecular structure can be directly embedded into the process model
calculations. The overall performance is then evaluated with a single objective func-
tion measuring process performance.

The method of Continuous Molecular Targeting - Computer Aided Molecular De-
sign (CoMT-CAMD), introduced by Bardow et al. [33], solves the molecular design
problem simultaneously to the process optimization without pre-selection of can-
didate substances. CoMT-CAMD uses a physically based thermodynamic model to
enable the direct coupling of the molecular structure to the process performance.
In problem Eq.(2.1), the CoMT-CAMD approach relaxes the parameter vector 𝑝
from discrete values to continuous space. The resulting subproblem is a non-linear
optimization problem, where solvent parameters 𝑝 and process variables 𝑥 are op-
timized simultaneously. In a subsequent step, a list of best real solvents is obtained
from the optimized solvent parameters 𝑝 . Lampe et al. [34] successfully imple-
mented the CoMT-CAMD method for the simultaneous process and working fluid
optimization for Organic Rankine Cycles.
Bardow et al. [33] presented a first conceptual implementation of the CoMT-CAMD
method using a simplified topology for the CO capture. In the present work, we
describe the further development of CoMT-CAMD and a comprehensive application
of the method on the solvent and process optimization in separation systems using
physical absorption. The further development concerns on the one hand a method
for predicting the ideal gas heat capacity and the solvents’ molar mass based solely
on the solvent molecular parameters 𝑝. This development enables the modeling
of all thermal and full caloric properties of a target fluid within the CoMT-CAMD
approach. On the other hand, we introduce a method to approximate non-equality
process constraints during the mapping step. Further, a detailed process topology
for the pre-combustion capture of carbon dioxide is now examined. We implement
an economic objective function accounting for the various trade-offs in the absorp-
tion, desorption and CO compression stage. We intend to show how CoMT-CAMD
can be successfully performed for process models that include complex phase equi-
librium calculations of multi-component streams. We demonstrate that CoMT-CAMD
delivers accurate results and identifies the most promising solvents in a fully deter-
ministic procedure.
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2.2. Continuous Molecular Targeting (CoMT)-CAMD
for solvent selection

The CoMT-CAMD method for the integrated process and solvent design is founded
on physically based thermodynamic models. In a physically based thermodynamic
model, the pure component parameters are meaningful for identifying the struc-
ture of the molecules. In CoMT-CAMD, these parameters are used as optimization
variables. Thereby, the solvent optimization is integrated into the process optimiza-
tion level. In this work, we use CoMT-CAMD with the PC-SAFT (Perturbed Chain
Statistical Associating Fluid Theory) thermodynamic model [35–38]. The pure com-
ponent parameters of PC-SAFT describe the geometry, the van der Waals attractive
energy, the strength of hydrogen bonds (association) and the multipole moments
of a molecule. Each real substance is uniquely represented by a set of molecu-
lar parameters. Thus 𝑁 real substances define a discrete parameter vector space
𝒫( × ). As a result, any attempt to iterate the discrete parameter vector 𝑝 of real
solvents together with the process equations leads to a mixed-integer optimization
problem (cf. Eq.(2.1)). In order to circumvent the mixed-integer formulation, we
relax the discrete vector space of the molecular parameters to a continuous domain.
This relaxation strategy allows for the use of the parameters 𝑝 of the thermody-
namic model as continuous optimization variables, along with the process degrees
of freedom 𝑥. In CoMT-CAMD, the integrated process and product design problem
is therefore formulated as a constrained, non-linear optimization problem with an
objective function 𝑓 to evaluate the overall process performance.

The CoMT-CAMD method is generic and its accuracy is determined by the choice
of the thermodynamic model. With this study, we intend to show that the PC-SAFT
equation of state allows for a comprehensive description of thermodynamic proper-
ties of real fluids with good accuracy. Traditionally, PC-SAFT describes only residual
quantities; i.e. quantities in departure of the ideal gas contribution. In this work
we go beyond this scope: by applying Quantitative Structure Property Relationship
(QSPR) methods, we correlate various auxiliary physical properties using only the
pure component parameters of the PC-SAFT model. We achieve a thermodynami-
cally consistent description of fluids based on a single set of parameters.

CoMT-CAMD proceeds in two steps: In the first step (’CoMT step’) we solve
an overall performance optimization problem to define the (hypothetical) optimal
molecule with parameter vector 𝑝 at optimal process conditions 𝑥 . The best
performing real molecules have parameter vectors 𝑝 similar to 𝑝 due to the
physical basis of PC-SAFT. In the second step of the method (’mapping step’) we
identify these real molecules with the best overall performance.

2.2.1. ContinuousMolecular Targeting: Simultaneous process
and molecular optimization

The simultaneous optimization of process variables and molecular parameters is
performed in the first step of the CoMT-CAMD method (’CoMT step’, Figure 2.1).
The integrated design problem, written as a non-linear optimization problem, is
solved with a gradient based non-linear programming algorithm. The mathematical
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problem is here formulated in a slightly more detailed form, compared to problem
(2.1), as

min
,
𝑓(𝑥, 𝑦, 𝑝)

s.t
ℎ(𝑥, 𝑦, 𝑝) = 0 (process model)
𝑔(𝑥, 𝑦, 𝑝) ≤ 0 (process inequality constraints)

𝐴 ⋅ 𝑝 ≤ 𝑏 (convex hull on solvent parameters)
𝑥 ≤ 𝑥 ≤ 𝑥
𝑦 ≤ 𝑦 ≤ 𝑦
𝑝 ≤ 𝑝 ≤ 𝑝 (2.2)

As opposed to Eq.(2.1), where 𝑥 denoted all process variables, we here make a
distinction between the process variables 𝑥 that are defined as degrees of freedom
of the optimization problem and the remaining process variables 𝑦. We minimize
a single process objective function 𝑓 which depends on 𝑥, 𝑦, and the molecular
parameters of the solvent 𝑝. Degrees of freedom for the integrated problem are the
process variables 𝑥 and the molecular parameters of the solvent 𝑝 in the continuous
domain ℛ (with 𝑛 = 𝑚+𝐷 according to Eq.(2.1)). The solution of the optimization
problem is a vector with the optimal molecular parameters of the solvent and the
corresponding optimal process conditions. In order to avoid extreme hypothetical
molecules, we constrain the search space of the molecular parameters in the CoMT
step to a region which is plausible. For this purpose, we confine the parameter
space to the convex hull formed by the molecular parameters of real molecules in
our database (Figure 2.2). In problem Eq.(2.2) the convex hull is written as a set
of linear inequality constraints [39, 40] describing the planes of the convex hull
fronts. Process constraints are considered in the problem formulation of Eq.(2.2)
as non-linear inequality constraints, 𝑔(𝑥, 𝑝, 𝑧).

2.2.2. Mapping step: Identification of the best performing com-
ponents

The second step in the CoMT-CAMD method (’mapping step’, Figure 2.1) identifies
the real substances with similar behavior as the optimal molecule. Similarity in
behavior is thereby measured by the objective function.

For every real substance i included in a database of molecular parameters (’map-
ping database’), we approximate the value of the objective function 𝑓 by a second
order Taylor series expansion around the optimal (hypothetical) molecular param-
eters 𝑝 , as

𝑓 ≈ 𝑓 + 𝐽(𝑝 ) ⋅ (𝑝 − 𝑝 ) + 12 ⋅ (𝑝 − 𝑝 ) ⋅ 𝐻(𝑝 ) ⋅ (𝑝 − 𝑝 ) (2.3)

Every real substance in the database is represented by a known vector of molec-
ular parameters 𝑝 . Here, 𝑓 is the optimal value of the objective function, the
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Figure 2.1: Data flow diagram of the CoMT-CAMD method.

Jacobian 𝐽(𝑝 ) and the Hessian 𝐻(𝑝 ) are the first and second derivatives of
the objective function 𝑓 with respect to the molecular parameters at the opti-
mum, respectively. Both, 𝐽(𝑝 ) and 𝐻(𝑝 ) are calculated in a subsequent step
as described in section 2.3.2.

However, the derivatives of the objective function do not contain information
about how changes of the molecular parameters affect the process constraints
𝑔(𝑥, 𝑦, 𝑝) ≤ 0 in Eq.(2.2). Even constraints that are not active at the optimum can
be violated for small changes of the optimal parameters. In order to account for
possible violations of process constraints, we approximate values of the inequality
constraints 𝑔 from a Taylor series of 1st order around the value of 𝑔 at optimum,
as

𝑔 ≈ 𝑔 + 𝐽 (𝑝 ) ⋅ (𝑝 − 𝑝 ) ≤ 0 (2.4)

where 𝐽 (𝑝 ) is the derivative of 𝑔 with respect to 𝑝 at the optimum. The com-
ponents that do not violate the constraints, according to their approximation with
Eq.(2.4), are further evaluated for their performance with Eq.(2.3). Thereby, the
components are ranked according to the approximated value of the objective func-
tion in the so called ”mapping list”. The best performing components in the mapping
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Figure 2.2: Convex hull defined by real molecules with respect to three molecular parameters ( , , / ).
Real molecules (spherical symbols) define a physically attainable search space. The optimization is
allowed within the convex hull (grey-shaded volume). The fronts of the convex hull (planes defined by
the continuous lines) are represented in the mathematical problem of Eq.(2.2) through linear inequality
constraints.

list (i.e. components with lowest values of 𝑓 in Eq.(2.3)) should be rigorously opti-
mized. Finally, they should be examined for their toxicity, corrosivity, flammability
or any health risks if required.

2.2.3. Prediction of physical properties using PC-SAFT
The PC-SAFT thermodynamic model
The SAFT (Statistical Associating Fluid Theory) equation-of-state (EoS) proposed by
Chapman et al. [41] led to a family of theoretically based engineering equations-
of-state, originating in statistical mechanics and based on Wertheim’s perturbation
theory [42, 43]. The Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT)
equation-of-state (EoS) introduced by Gross and Sadowski [35] is one of the variants
of the SAFT-family of models (for a review see ref. [44]). PC-SAFT is based on a
coarse-grained molecular model representing each molecule as a chain of spherical
segments interacting with other chain molecules.[45] PC-SAFT is formulated as
a residual Helmholtz energy, as function of temperature (𝑇) and the vector 𝜌 of
component molar densities 𝜌 = 𝜌 ⋅ 𝑥 of all species 𝑖 of the system, according to

𝛼 (𝑇, 𝜌) = 𝛼 (𝑇, 𝜌) + 𝛼 (𝑇, 𝜌) + 𝛼 (𝑇, 𝜌) + 𝛼 (𝑇, 𝜌) (2.5)

where 𝜌 is the molar density and 𝑥 here denotes the molar fraction of species
𝑖. The first term 𝛼 of the residual Helmholtz energy in Eq.(2.5) describes the
contribution of the hard-chain reference fluid. The additional terms account for
various attractive parts of the intermolecular potential, namely contributions due to
dispersive (van der Waals), associating (hydrogen bonding) and polar attractions.
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Any other residual (static) thermodynamic property can be derived directly from the
residual Helmholtz energy. For a full description of the PC-SAFT EoS we refer to the
original literature [35–38]. We here refer to the polar version of the model, which
was earlier also termed PCP-SAFT [37, 38], simply as PC-SAFT.

In PC-SAFT non-associating molecules are characterized by three pure-component
parameters: the number of segments per chain molecule (𝑚), the segment diame-
ter parameter (𝜎), and the dispersion energy parameter (𝜀/𝑘). For the description of
polar molecules, the dipole moment (𝜇) and the quadrupole moment (𝑄) are also re-
quired. Associating interactions are determined by two additional pure-component
parameters: the association energy parameter (𝜀 /𝑘) and the effective associa-
tion volume (𝜅 ). In this work, we do not include association parameters of the
PC-SAFT model as degrees of freedom.

Correlation of auxiliary physical properties based on PC-SAFT parameters
For process calculations with PC-SAFT we need to determine full caloric properties,
such as enthalpies. For this purpose, we need a fundamental equation for the
Helmholtz energy for the fluid phase region, with

𝛼(𝑇, 𝜌) = 𝛼 (𝑇, 𝜌) + 𝛼 (𝑇, 𝜌) (2.6)

Thus, an expression for the residual Helmholtz energy 𝛼 from PC-SAFT is not
sufficient; an ideal gas contribution is required. The ideal gas term is fully defined
through the specific isobaric heat capacity 𝑐 of all involved species in pure state.
While many alternative ways of defining the ideal gas contribution are possible,
the route of specifying the ideal gas isobaric heat capacities 𝑐 of pure species
is appropriate, because 𝑐 is available as primary measurement data for many
components.

Our process calculations additionally require knowledge of the solvent’s molec-
ular mass 𝑀 , since equipment sizing, cost functions and emission limits are often
based on mass-averaged stream properties.
For known substances, the physical properties 𝑐 and 𝑀 can easily be drawn from
property databases. During molecular design in the CoMT step, this is not possible,
since the iterated solvent molecule is hypothetical and only characterized by its PC-
SAFT parameters. We therefore propose relations for estimating 𝑐 and 𝑀 based
only on the pure component parameters of the PC-SAFT model.
Correlations between the molar mass and the dispersive pure-component param-
eters of PC-SAFT (𝑚, 𝜎, 𝜀/𝑘) have been investigated by other authors in the past.
Gross and Sadowski [35] examined the underlying correlations for the homologous
series of n-alkanes. Tihic et al. [46] demonstrated the near-linear dependencies
between molar mass and combinations of the dispersive parameters for various
component families, Grenner et al. [47] individually for glycols and Nannan et al.
for polyethyleneglycol dimethylethers [48]. Mac Dowell et al. have also proposed
relations between the pure component molecular parameters and the molecular
mass of n-alkyl-1-amines for the SAFT-VR model. [49] Based on these findings, we
use the four PC-SAFT parameters 𝑚, 𝜎, 𝜀/𝑘 and 𝜇 as descriptors in a quantitative
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structure property relationship (QSPR) model to predict the molar mass.

(𝑀) = 𝛽 ⋅ (𝑚 / ) + 𝛽 ⋅ (𝑚𝜎 ) + 𝛽 ⋅ (𝑚𝜎 / ) + 𝛽 ⋅ (𝑚𝜎 𝜇) (2.7)

For the prediction of 𝑐 , the QSPR descriptors are combinations of the three PC-
SAFT parameters: 𝑚, 𝜎 and 𝜀/𝑘.

(𝑐 ) = 𝛾 +𝛾 ⋅ (𝑚 / )+𝛾 ⋅ (𝑚𝜎 )+𝛾 ⋅ (𝑚𝜎 / ) (2.8)

The heat capacity of pure substance in the ideal gas state accounts for the energy
of the molecule due translation, rotation and all internal vibrations or excitations.
Values of 𝑐 therefore strongly depend on the molecular structure. Although the
PC-SAFT pure component parameters characterize intermolecular interactions, we
argue that they should still be meaningful QSPR-descriptors for intramolecular en-
ergy states: The parameters 𝑚 and 𝜎 should be suitable descriptors for rotational
energies because they reflect a molecules’ geometry in a coarse-grained manner,
while 𝜀/𝑘 measures the effective electron correlation among two sites and the pa-
rameter should thus serve as a sensible descriptor for vibrational energies.

2.3. Application of CoMT-CAMD to solvent selection
for CO2 capture with physical absorption

2.3.1. Process description and process specifications
The CoMT-CAMD method is here implemented for the integrated solvent and pro-
cess optimization of a carbon capture system with physical absorption. We ex-
amine the pre-combustion carbon dioxide (CO ) capture from the syngas stream
of a coal-fired Integrated Gasification Combined Cycle (IGCC) power plant [50–
52]. The process topology resembles in its key features the ’CO Catch-up’ pilot
plant in Buggenum, the Willem Alexander Centrale (WAC), operated by NUON-
Vattenfall. [53] The syngas feed includes three components: hydrogen (H ), car-
bon dioxide (CO ) and water (H O). We particularly account for the presence of
water in the system, since water has a significant impact on the phase equilibrium
calculations. The mole fractions of hydrogen 𝑥 and water 𝑥 , as well as the
temperature 𝑇 g and the pressure 𝑃 of the syngas feed (Table 2.2) considered
here are the same as for the syngas stream that enters the carbon capture pilot
plant in Buggenum. The full process topology includes the major unit operations
of the absorption, the desorption and the carbon dioxide compression stage (Fig-
ure 2.3). The solvent make-up stream consists of pure solvent at ambient pressure
and temperature. All four substances regarded in the flowsheet (CO , H , H O and
the solvent) are present in the gas stream exiting the absorber (’hydrogen outlet’)
and the gas stream after compression (’pipeline gas’). The absorber is defined with
a fixed number of 7 equilibrium stages 𝑁 , with a constant pressure of 2MPa on
the same pressure-level as the syngas stream, and with a constant CO capture
rate of 90% in the absorber. The value of 7 equilibrium stages is the result of a
sensitivity analysis, where we observed little response of both, the optimal solvent
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parameters 𝑝 , optimal process settings 𝑥 , together with only a moderate de-
cline of the objective function for 𝑁 > 7 (see Appendix B.1.1). The desorption
includes a first flash stage which feeds a hydrogen-rich gas back to the absorber,
followed by an additional desorption flash. Both desorption stages are adiabatic
(pressure-reduction) flash units.

For the rich gas and the pipeline compressors we consider a polytropic, adiabatic
compression model as described in Smith [54]. The stream, process and equipment
specifications are summarized in Table 2.2.

solvent 

recycle pump

absorber

syn-gas feed

hydrogen outlet

lean solvent recycle

solvent 

refrigeration system

rich gas flash

desorption flash

pipeline compression

solvent make-up

rich gas 

compression

mixer

rich gas recycle

auxilliary 

pump

mixer
pipeline gas

Figure 2.3: Flowsheet for CO capture with physical absorption, including absorption, desorption in two
flash vessels and gas compression steps.

A more detailed description of the process model is given in Appendix B.1 of this
thesis.

2.3.2. Description of the optimization problem
For our optimization problem (Eq.(2.2)) we define an economic objective function
as the sum of several contributions of the operating costs,

𝑓 =∑𝑓 = 𝑓electr.demand + 𝑓H2 loss + 𝑓solvent loss + 𝑓utilities (2.9)

The term 𝑓electr.demand summarizes the costs of electricity for the solvent recycle
pump and for the compressors (CO -compression to pipeline-pressure and rich gas
compression). We consider an electricity production price equal to 55€/ [56].
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Table 2.1: Stream, process and equipment specifications adopted from the Buggenum pilot plant [53].
The pipeline pressure is taken from ref. [55]; efficiencies from ref. [50].

Stream specifications

/ / 0.5480
Syngas feed composition / / 0.4485

/ / 0.0035
Syngas feed temperature / 313.00
Rich gas recycle temperature rg / 313.00
Pipeline gas temperature / 313.00
Pipeline gas pressure / 11.00
Solvent make-up temperature / 298.15
Solvent make-up pressure / 0.1013

Process specifications

CO capture rate in absorber / 0.90
Absorption pressure / 2.00

Equipment specifications

Absorber - number of stages / 7
Rich gas compressor - number of stages / 1
Pipeline compressor - number of stages / 1
Compressors - efficiency / 0.82
Solvent recirculating pump - efficiency / 1.00
Auxiliary pumps - efficiency . / 0.75
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𝑓utilities takes the operating cost of the cooling systems into account, given that this
is measured through the electric energy demand for their operation [54]: The two
heat exchangers (after the rich-gas compression and after the pipeline compres-
sion, (Figure 2.3)) are operated with cooling water. Thus, the cost contribution
is due to the electrical duty of the cooling-water pumps. For cooling of the lean
solvent recycle stream we consider a vapor compression refrigeration system with
an exergetic efficiency 𝜂 of 25% [54, 57]. The term 𝑓H2 loss is the lost profit
due to hydrogen loss and evaluates the lost opportunity to produce electricity from
the hydrogen that is captured in the CO -rich stream. Finally, the term 𝑓solvent loss
expresses the costs for the fresh solvent. This term accounts for the solvent loss
both in the absorption and desorption stage. We consider an average price of high
molecular mass chemicals of 4,000€/ . All cost-contributions are expressed per
ton of captured CO in the absorber. A more detailed description of the objective
function is given in Appendix B.2.

The process model is given as a set of non-linear equality constraints ℎ(𝑥, 𝑦, 𝑝) =
0. The absorber and the flash units are described by the so called MESH equa-
tions [58]. The process optimization variables 𝑥 = {𝑃 , 𝑃 , 𝑇 } include the
desorption pressure of both desorption stages 𝑃 , 𝑃 and the temperature of the
lean solvent 𝑇 . The solvent optimization variables are the PC-SAFT molecular
parameters of the solvent 𝑝 = {𝑚, 𝜎, 𝜀/𝑘, 𝜇}. Thus, we limit the presentation to
non-associating solvents. As non-linear inequality process constraint 𝑔(𝑥, 𝑦, 𝑝), we
limit the solvent emission 𝑚 in the hydrogen outlet of the absorber to a maximum
of 20 / [59].The convex hull of the molecular parameter search space is given
by the set of linear inequality constraints (Eq.(2.2)). [40]

For the solution of the optimization problem, we use a commercial NLP solver [60]
with an interior Conjugate Gradient (CG) algorithm [61]. The solver delivers only
the approximate Hessian of the Lagrangian at the optimum. For the mapping step,
however, we need the Hessian and the Jacobian of the objective function and of the
constraints at optimum (Eq.(2.3) and (2.4)). We currently calculate these deriva-
tives with finite differences around the optimum with respect to the optimal solvent
parameters 𝑝 . The computation of each Hessian element ( )

,
with

forward finite differences demands four discretization points and one function eval-
uation for each discretization point. We evaluate the objective function 𝑓∗at each
discretization point with 𝑝 = 𝑝 + Δ𝑝 , 𝑝 = 𝑝 + Δ𝑝 and 𝑝 , = 𝑝 ,
solving the following optimization problem:

𝑓 (𝑥, 𝑦, 𝑝 = 𝑝 ) = min 𝑓 (𝑥, 𝑦, 𝑝 = 𝑝 )

s.t.

ℎ(𝑥, 𝑦, 𝑝 = 𝑝 ) = 0 (process model)

𝑔(𝑥, 𝑦, 𝑝 = 𝑝 ) = 0 (process ineq. constraint)
𝑥 ≤ 𝑥 ≤ 𝑥 , 𝑦 ≤ 𝑦 ≤ 𝑦 (2.10)

The resulting Jacobian and Hessian (to be used in Eq.(2.3)) are thus defined for
a surface of optimal process settings 𝑥 = {𝑃 , 𝑃 , 𝑇 }. We verified that for
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the derivative calculations the use of central finite differences is not decisive for
the accuracy of the Taylor approximation in the mapping step. The size of the
differentiation step however should be selected carefully. The implementation of
automatic analytic differentiation techniques can therefore be beneficial. Lampe
et al. [29] successfully used an automatic differentiation tool in the CoMT-CAMD
application for the Organic Rankine Cycle (ORC) process model.

2.3.3. Predicting phase equilibria with PC-SAFT
The PC-SAFT pure component parameters of carbon dioxide, hydrogen and wa-
ter are taken from the literature. Carbon dioxide is considered as a quadrupolar
molecule. [37] The vapor-liquid equilibrium of pure hydrogen covers low temper-
atures, where quantum corrections are needed. We therefore considered hydro-
gen as a simple Lennard-Jones fluid and adopted parameters from Hirschfelder et
al. [62], based on data of second Virial coefficients. The pure component param-
eters for water are taken from ref. [36] 1. The heat capacity of ideal gas states,
𝑐 (𝑇), for CO , H and H O is taken from the literature ref. [65].

For the vapor-liquid equilibrium calculations of the binary mixtures of CO /H O,
CO /H and H /H O we use non-zero binary interaction parameters 𝑘 . According
to our correlation results, the maximum Absolute Average Deviation in both the liq-
uid and the vapor phase occurs for the binary system CO /H with AAD(x / ) =
1.6521% and AAD(x / ) = 1.3677% 2. We note that for the three binary mix-
tures, the binary interaction parameter 𝑘 is treated as temperature independent.
This is a simplification for the binary systems containing H O, which however avoids
additional non-linearities in the NLP optimization problem. For the binary mixtures
of the solvent with CO , H and H O respectively, we have set 𝑘 values equal to
zero. Methods to predict 𝑘 values as a function of the PC-SAFT parameters are an
objective of our current and future work. In order to provide some confidence in the
phase equilibrium calculations of a relevant process solvent, Figure 2.4 shows the
phase equilibrium of the ternary system CO − H −methanol at 2MPa and 288K3.
The calculation results of PC-SAFT, with 𝑘 = 0 for all pairs of substances involving
methanol, can be considered in good agreement to the experimental data.

For the phase equilibrium calculations, we solve the adiabatic-isobaric flash
problem. The sub-problem of the isothermal-isobaric two-phase flash is solved with
the successive substitution Rachford-Rice algorithm (Michelsen and Mollerup) [66].

1 A summary of the parameters is published in ref. [63], available online as Supporting Information to
the work of Stavrou et al. [64]

2The calculated values of the binary interaction parameters and the correlation results are published
in ref. [63], available online as Supporting Information to the work of Stavrou et al. [64]

3Results for the same ternary mixture at other temperatures are published in ref. [63], available online
as Supporting Information to the work of Stavrou et al. [64]
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Figure 2.4: Ternary phase diagram for at and . Comparison
of predictions ( for the methanol pairs methanol-CO , methanol-H ) obtained from PC-SAFT
(squares) to experimental data (circular points). Experimental data are taken from ref. [67].

2.3.4. Mapping database of the PC-SAFT pure component pa-
rameters

Our study is based on a PC-SAFT pure component parameter database covering 657
real, non-associating components. The pure component parameters were adjusted
to (quasi)experimental data taken from the DIPPR database [68]. The value of
the dipole moment 𝜇 for the polar components was taken directly from the DIPPR
database. The n-polyethylene glycol dimethylethers included in our database (de-
noted hereafter as ’DEPG-n’) are considered to be non-polar components and their
molecular parameters have been adopted from the work of Nannan et al. [48].

For the design of the mapping database, we limit the database to components
fulfilling the physical bounds of given process conditions: Substances are consid-
ered too volatile to be solvents if they have a normal boiling point temperature lower
than 300K. Further, we require a melting point temperature lower than 298.15K
and we exclude amines, nitriles and nitrates known to react with CO .

As a result, the mapping database includes 612 polar and non-polar, non-associating
components. We further divide the mapping database in two subordinate databases:
The first includes 168 non-polar, non-associating components (denoted hereafter
as the ’database of non-polar components’). The second includes 444 polar, non-
associating components (denoted hereafter as the ’database of polar components’).
It is sensible to introduce these subordinate databases since the components are
described by different (sub)sets of PC-SAFT parameters (cf. Section 2.2.3). The
definition of the mapping database was made prior to the CoMT step, so that the
same database is used both, for the calculation of the convex hull during the opti-
mization, and for the mapping afterward. A list of the 612 components comprising
the mapping database is given in Appendix C.

It is straightforward to extend the approach formally to associating mixtures by
including the corresponding pure component parameters as variables. Still, asso-
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ciating components are currently not included in either of our databases because
associating compounds in mixture with CO , H and H O are expected to require
non-zero binary interaction parameters. Vapor-liquid equilibrium calculations for
these mixtures with zero binary interaction parameters 𝑘 would therefore not al-
low the desired level of accuracy of CoMT-CAMD. A sound implementation of asso-
ciating solvents for the present mixture would thus require predictive methods for
the binary interaction parameters 𝑘 which is an active topic of current research
(see e.g., Haslam et al. [69])

2.4. Results
2.4.1. Prediction of pure component ideal gas heat capacity

and molar mass using PC-SAFT parameters
For the prediction of the ideal gas heat capacity 𝑐 and of the molar mass 𝑀 with
the QSPR method as described in section 2.2.3, we use Eq.(2.8) and Eq.(2.7) re-
spectively. For the prediction of 𝑐 , we have used constant temperature data for
300K. For both 𝑐 and𝑀, the QSPR coefficients in Eq.(2.8) and Eq.(2.7) have been
estimated using ordinary multivariate normal maximum likelihood estimation, as-
suming normally distributed errors. We have used the multivariate linear regression
algorithm mvregress provided in the Matlab Statistics Toolbox [70]. The squared
correlation coefficient 𝑅 used to evaluate the quality of the fitting is given by

𝑅 = 1 −
∑ (𝑤 − 𝑤 )
∑ (𝑤 − 𝑤 )

(2.11)

We adjusted the QSPR coefficients separately for the two major component classes
defined in section 1.3.4. For the ideal gas heat capacity 𝑐 we find values of 𝑅 =
0.991 for non-polar and 𝑅 = 0.970 for polar components. The QSPR multivariable
regression for the molar mass 𝑀 results to 𝑅 = 0.966 for non-polar and 𝑅 =
0.932 for polar components.4 From all training sets, we excluded the inorganic
components. Halogenated components are not taken into account for the QSPR
model of the molar mass 𝑀, since they have very different QSPR-characteristics
compared to other organic components. For the training set of 𝑐 values, we
consider components for which data at 300K were available in the DIPPR database.
Figure 2.5 illustrates the QSPR results for 𝑐 and molar mass 𝑀 for non-polar
components.5 We assess the accuracy of the QSPR correlation as sufficient. In
particular, we do not expect the prediction of 𝑐 and of the molar mass 𝑀 to cause
significant error propagation in the process calculations of the CoMT step.

4The size of the training sets, the squared correlation coefficients and the resulting coefficients of
the QSPR models are published in ref. [63], available online as Supporting Information to the work of
Stavrou et al. [64]

5The corresponding results for polar components are published in ref. [63], available online as Supporting
Information to the work of Stavrou et al. [64]
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Figure 2.5: Literature values vs. QSPR results for (a) the ideal gas specific heat capacity at
and (b) the molar mass of non-polar components. The dashed lines indicate ± % relative error.

2.4.2. Simultaneous solvent and process optimization: CoMT-
CAMD for polar and non-polar solvents

Here, we present the results of CoMT-CAMD for the simultaneous process and sol-
vent optimization for a CO pre-combustion capture process. Non-polar compo-
nents are fully described by three PC-SAFT parameters (𝑚, 𝜎, 𝜀/𝑘). Polar compo-
nents also require the dipole moment 𝜇. Due to this difference in parameter sets,
we choose to solve the CoMT-CAMD problem for polar and non-polar components
separately.

The pure component parameters of PC-SAFT are known to be correlated. We
have made an attempt of defining less correlated coordinates by combining pure
component parameters: the molecular ’volume’ (𝑚 ⋅ 𝜎 ), the molecular ’energy’
(𝑚 ⋅ 𝜀/𝑘) and (𝑚 ⋅ 𝜎 ⋅ 𝜀/𝑘) as an expression that approximately scales the dimen-
sionless Helmholtz energy [71]. The molecular optimization variables 𝑝 for polar
components are the dispersive PC-SAFT parameters (𝑚, 𝜎, 𝜀/𝑘) and the reduced
(dimensionless) dipole moment 𝜇∗ = / ⋅ ⋅ / / .

In both cases, the process optimization variables 𝑥 = {𝑃 , 𝑃 , 𝑇 } are the
pressure of the rich gas flash, the pressure of the desorption flash and the temper-
ature of the lean solvent, respectively. The process inequality constraint limits the
solvent emission in absorber 𝑚 to a maximum value of 20 / .

The CoMT optimization for the non-polar solvents is initialized with the molecular
parameters of Pentaethylene Glycol Dimethylether (DEPG-5). DEPG-5 is a common
component in mixtures of physical solvents for CO absorption and therefore repre-
sents a suitable starting point. The result of the CoMT step and of the CoMT-CAMD
method for non-polar solvents is summarized in Table 2.2. In Table 2.2, we com-
pare the molecular parameters, the optimal operating conditions, and the value of
the objective function for the initial substance DEPG-5, for the optimal (hypothet-
ical) fluid and for the best real molecule (in the non-polar database). The CoMT
optimization for polar solvents uses the parameters of N-methyl-2-pyrrolidone as
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Table 2.2: Comparison of starting point, the result of the CoMT-step and the result of the CoMT-CAMD
method for non-polar solvents. The CoMT-step defines the optimal (hypothetical) non-polar molecule.
The ’mapping step’ (which completes CoMT-CAMD) identifies the real molecule with best overall perfor-
mance

starting optimal nonpolar best nonpolar
molecule molecule real molecule

DEPG-5 hypothetical 1,5,9-
cyclododecatriene

/ / 266.33 174.22 162.27
/ 7.8895 3.1544 2.7575
/Å 3.5853 4.5177 4.5709
/ / 253.93 360.37 377.14

optimal process conditions
/ 0.197 0.239 0.234
/ 0.711 0.689 0.705
/ 265.3 273.4 274.2

/ / 0.0008 4.208 13.61

electr.demand/€/ . 7.894 7.228 7.197

H2 loss/€/ . 0.158 0.188 0.219

solvent loss/€/ . 0.000016 0.089 0.316

utilities/€/ . 2.478 1.199 1.563

/€/ . 10.53 8.704 9.295

starting values. Table 2.3 compares results of the starting condition (with opti-
mized process conditions 𝑥) to the results of the the CoMT-step and to results of
the CoMT-CAMD method. Table 2.3 shows the pure component parameters, the
optimal process conditions, and the value of the objective function for N-methyl-
2-pyrrolidone (starting molecule), for the optimal (hypothetical) molecule and for
the best real polar molecule (propylene carbonate). We note that the optimization
converges to the same optimum from many starting points (real or hypothetical)
in both cases. The computations have been performed on a standard desktop PC.
For non-polar solvents the problem has 77 model variables in total, including the 3
molecular optimization variables and the 3 process optimization variables. In our
implementation the NLP solver converges to the optimal solution in 44 iterations.
For polar solvents the problem has 78 model variables in total, including the addi-
tional molecular optimization variable of dipole moment. For this problem the NLP
solver converges to the optimal solution in 51 iterations.

In both cases, polar and non-polar components, the simultaneous process and
solvent optimization leads to a successful minimization of the objective function.
The optimal molecular parameters (hypothetical fluid) and the optimal operating
process conditions obtained in the CoMT step define the best overall performance.
The result is a lower bound to the minimization problem, as the best solution of the
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Table 2.3: Comparison of starting point, the result of the CoMT-step and the result of the CoMT-CAMD
method for polar solvents. The CoMT-step defines the optimal (hypothetical) polar molecule. The
”mapping”-step (which completes CoMT-CAMD) identifies the real molecule with best overall perfor-
mance.

starting optimal polar best polar
molecule molecule real molecule

N-methyl- hypothetical propylene
2-pyrrolidone carbonate

/ / 99.131 100.47 102.09
/ 3.2008 3.2860 3.3130
/Å 3.5095 3.3814 3.3598
/ / 314.59 308.57 313.92
/ 4.0771 4.9655 4.9765

optimal process conditions
/ 0.228 0.235 0.236
/ 0.650 0.631 0.633
/ 276.0 275.7 276.4

/ / 19.28 4.143 2.697

electr.demand/€/ . 7.143 7.067 7.107

H2 loss/€/ . 0.016 0.005 0.004

solvent loss/€/ . 0.375 0.071 0.044

utilities/€/ . 0.569 0.518 0.518

/€/ . 8.104 7.662 7.674

minimization problem that is mathematically achievable with the selected thermo-
dynamic model (PC-SAFT). The cost break-down on the various specific cost terms
illustrates the benefit of using a single objective function: although some terms of
the objective function are clearly dominant, the process trade-offs are balanced to
enable an overall performance optimization. The best real component determined
in the mapping-step is similar to the optimal hypothetical fluid, both, in terms of the
pure component parameters and in terms of the corresponding process conditions.
The performance of the best real component lies in the immediate vicinity of the
optimum.

Tables 2.2 and 2.3 additionally show that state-of-the-art separation processes
can be substantially improved, when solvent parameters and process conditions
are optimized simultaneously. We compare the optimal performance of DEPG-5 (a
typical component of the Selexol mixture) to the optimal performance of the best
real molecules (1,5,9-cyclododecatriene and propylene carbonate) as measured by
our objective function. There is a significant reduction of the specific cost: by
12% for the best non-polar component and by 27% for the best polar component.
This improvement is even more significant if one takes into account that some
cost contributions are fixed and cannot be improved by the solvent. Namely, the
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compression of the CO captured in the absorber (which is the same for all cases)
from a pressure of 2MPa (syngas feed) to the pipeline pressure of 11MPa leads to
a cost of 2€/ .

The CoMT-CAMD method approximates the solution of the full MINLP problem
in Eq.(2.1). More specifically it is the mapping step, i.e. the Taylor expansion
Eq.(2.3) used to identify best performing real substances and the corresponding
best process settings 𝑥, where the procedure is approximate. In order to assess
the quality of the mapping step, we have conducted individual process optimiza-
tions for all components included in both databases. The mapping list with the 10
best non-polar components is given in Table 2.4 and for the polar components in
Table 2.5. The ranking predicted in the mapping-step (’mapping ranking’) is com-
pared to the ranking after the individual process optimizations (’real ranking’). The
process optimization variables 𝑥 = {𝑃 , 𝑃 , 𝑇 } of the CoMT step were
used as degrees of freedom for the individual process optimizations. These optimal
process conditions along with the value of the process inequality constraint at op-
timum m for each substance are also listed in Tables 2.4 and 2.5. The melting
point temperature 𝑇 is the lowest temperature we allowed during each individual
process optimization to avoid solvent solidification.

The results presented by Tables 2.4 and 2.5 are the core results of this study.
Since the approximation made in the mapping step (Eq.(2.3) and (2.4)) is the only
approximation towards the real solution of the full MINLP problem (Eq.(2.1)), it
is important to find the rank list from the CoMT-CAMD procedure (’mapping rank-
ing’) in good agreement to the rank list of the individually optimized components.
Tables 2.4 and 2.5 confirm that the ’mapping ranking’ is very similar to the ’real
ranking’ and that all best components are feasible with respect to the process con-
straint (m ≤ 20 / ).

A comparison between the optimal process conditions for the optimal molecule
(Tables 2.2 and 2.3) and the optimal process conditions for the best real components
(Tables 2.4 and 2.5, respectively) show that the identified molecules have strong
similarities to the optimal molecule. The PC-SAFT parameters of the hypothetical
molecule take on reasonable values, in a range, where real molecules occur. This is
a significant observation, since no a priori constraints on parameter combinations
are applied, beyond the convex hull.

We note that the specific cost values reported in this study serve as meaningful
performance indicators. They should not, however, be interpreted as full cost esti-
mates for a Carbon Capture and Sequestration (CCS) system, as usually presented
in a techno-economic analysis of CCS systems (see e.g., ref. [72] and [73]). In
particular, investment cost was neglected in our work. However, the cost objective
function implemented here carries essential attributes of the full cost estimation
and should allow discriminating between different solvents and process conditions.

2.4.3. Assessing the proposed solvents
Since the problem of solvent selection for CO capture with physical absorption
is well established both in the literature and in the industrial practice, it is possi-
ble to validate (or at least evaluate) the proposed solvents. An important sign for
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Table 2.4: Best non-polar candidate solvents identified by CoMT-CAMD. The ranking predicted in the
mapping step (’mapping ranking’) is compared to the ranking after individual process optimization (’real
ranking’). The optimal process conditions { , , } are given. The value of indicates a
components’ feasibility against the inequality process constraint / . The melting point
temperature is the lower temperature bound to avoid solidification of the solvent.

IUPAC Name ranking
mapping real €/ . /

1,5,9- 1 1 9.295 13.61 0.234 0.705 274.2 256.4
cyclododecatriene
bis(alpha-methyl- 2 4 9.399 0.750 0.233 0.705 278.0 243.2
benzyl)-ether
bicyclohexyl 3 3 9.351 17.51 0.253 0.676 281.8 276.8
2-ethylnapthalene 4 5 9.419 2.120 0.219 0.698 274.2 265.8
n-heptylbenzene 5 2 9.342 1.650 0.226 0.699 267.6 225.2
1,2,4-triethylbenzene 6 7 9.489 7.450 0.222 0.702 267.9 195.2
n-hexylbenzene 7 6 9.457 4.710 0.223 0.701 267.9 212.0
n-pentylbenzene 8 14 9.661 15.66 0.217 0.707 268.3 198.2
1-n-propylnapthalene 9 8 9.510 0.710 0.218 0.699 272.5 264.6
n-undecane 10 16 9.750 12.26 0.219 0.711 263.1 247.6

Table 2.5: Best polar candidate solvents identified by CoMT-CAMD. The ranking predicted in the mapping
step (’mapping ranking’) is compared to the ranking after individual process optimization (’real ranking’).
The optimal process conditions { , , } are given. The value of indicates a components’
feasibility against the inequality process constraint / . The melting point temperature

is the lower temperature bound to avoid solidification of the solvent.

IUPAC Name ranking
mapping real €/ . /

propylene carbonate 1 1 7.674 2.697 0.236 0.633 276.4 224.9
gamma-valerolactone 2 2 7.795 20.00 0.195 0.674 274.5 242.2
methyl maleic 3 5 8.384 19.94 0.245 0.642 281.2 281.2
anhydride
n-methyl- 4 3 8.104 19.28 0.228 0.650 276.0 249.2
2-pyrrolidone
diethyl sulfate 5 6 8.407 9.190 0.229 0.668 271.1 248.2
butyric anhydride 6 7 8.524 9.940 0.230 0.677 266.1 199.9
isobutyric anhydride 7 4 8.247 20.00 0.185 0.729 262.7 219.7
diphenyldichlorosilane 8 12 8.869 0.050 0.225 0.684 269.8 251.2
4-formylmorpholine 9 27 10.18 10.47 0.213 0.684 293.7 293.7
2-ethylhexyl acrylate 10 14 9.022 4.882 0.229 0.695 265.2 183.2
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the validity of the proposed method is the fact that the mapping list of the polar
candidates (Table 2.5) includes three state-of-the-art solvents: Propylene Carbon-
ate (Fluor solvent process) [3], n-Methyl-2-Pyrrolidone (Purisol process) [3] and
4-Formylmorpholine (Morphysorb process) [74]. We note that the solvents iden-
tified in this study are different from the solvents identified with CoMT-CAMD for
the pre-combustion CO capture in the previous work of Bardow et al. [33]. This is
the result of implementing a different process topology and an economic objective
function. In addition, an extended mapping database is used in this work com-
pared with our earlier study. Generally, the identified solvents are a result of how
the objective function is defined together with the process specifications we have
laid out in Table 2.1. A strength of the CoMT-CAMD approach is that any change in
the process specifications or the objective function very swiftly leads to a new list
of promising solvents. Comparing the mapping lists of polar and non-polar compo-
nents with each other (Tables 2.4 and 2.5) we observe, that the additional degree
of freedom of polar substances is used in the optimization, leading to a lower value
of the objective function. We also see that the best performing molecules possess
certain functional groups. Almost all of the best performing polar molecules con-
tain carbonylic groups, while phenyl rings are present in almost all identified polar
and non-polar components. The phenyl rings and the carbonylic oxygen provide
favorable interactions with CO . These findings are reasonable and confirm earlier
studies: Karazian et al. [75] demonstrated the specific interactions between CO
and the carbonylic oxygen using IR spectroscopy. Nelson et al. [76] showed, using
ab initio calculations, that CO will primarily interact with the carbonylic oxygen and
that interactions with the phenyl ring can also be present but are weaker. Similar
observations about the presence of certain functional groups in solvents for the
physical absorption of CO are also discussed in the work of Miller et al. [11].

Enick et al. [10] mentioned siloxanes as potential solvents for the physical ab-
sorption of CO due to good CO solubilities. In our work, siloxanes are considered
during the mapping of polar components. They are feasible components regarding
the process constraint but they didn’t appear in the 10 best polar components.

DEPGs are state-of-the-art solvents and they are feasible components accord-
ing to our model but they are not included in the top-list of non-polar solvents
(Table 2.4). The ether-oxygen in the DEPG molecule provides also a favorable
interaction site for CO , leading to relatively high CO solubility. In CoMT-CAMD
though components are evaluated for their overall performance. DEPGs, mainly
due to their high molecular volume and the low absorption temperature required,
lead to higher electricity demand and utilities’ cost. The result is that according
to our objective function they demonstrate a lower overall performance than small
molecules with phenyl rings. If solvent loss gets a higher economic weight than in
our objective function (e.g. by introducing an additional economic penalty for air
pollution), the findings can be very different. DEPG components have a low vapor
pressure leading to very low solvent loss (cf. Table 2.2).

The objective function evaluates the solvent performance beyond individual sol-
vent properties and leads to molecules that: have sufficiently small molecular vol-
ume (to keep the specific cost of electricity demand in the pump low), are selec-
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tive towards CO and not towards H (to achieve the same CO absorption rate
for smaller solvent volumetric flows and lower hydrogen loss), are hydrophobic (to
avoid water accumulation in the system), are less volatile and achieve the necessary
cooling on a low cost.

Out of 612 non-associating components with diverse structural properties, CoMT-
CAMD identifies those substances that optimize the overall process performance,
without any prior judgment on favored functional groups and without using heuris-
tics. The CoMT-CAMD results allow for conclusions about the proper molecular
structure of the solvent and the optimal process conditions for a defined objec-
tive function through a continuous, deterministic mathematical procedure. In the
mapping step, the database search could also be replaced by a molecular design
algorithm to generate new molecular structures. Instead of mapping the optimal
molecular parameters onto an existing database of pure component PC-SAFT pa-
rameters, one can map the optimal molecular parameters onto PC-SAFT param-
eters derived from a group-contribution approach. This would allow identifying
substances beyond an existing database. This combinatorial approach requires a
group contribution approach [77] and has already been implemented for the design
of ORC fluids [78].

CoMT-CAMD also identifies new components which were previously not regarded
for CO capture. An interesting example is the component gamma-Valerolactone,
which is the second best polar solvent in the mapping list (Table 2.5). Gamma-
Valerolactone has already been described by other authors as a promising green
solvent for bio-refineries. [79, 80]

Further refinements of the flowsheet are possible, for example by considering
additional flashes for the desorption or a heat integration scheme [81]. Any modi-
fication of the process specifications or of the objective function will result in a new
rank list of solvents together with corresponding optimal process settings.

2.5. Conclusions
We analyze and further develop CoMT-CAMD for the simultaneous process and
solvent optimization by considering a physical absorption process, namely a pre-
combustion capture process of CO , where the absorption solvent is a degree of
freedom. We developed QSPR models for the ideal gas heat capacity and the molar
mass of the optimized solvent based on pure component parameters of the PC-SAFT
equation of state and found very satisfying accuracy of these approaches for or-
ganic solvents. With these extensions, PC-SAFT provides a unified thermodynamic
framework for predicting solvent properties throughout all steps of a systematic
solvent and process optimization using CoMT-CAMD.

We observed that the rank list from the CoMT-CAMD method is a good approxi-
mation to the real rank list of the full MINLP problem of solvent and process design.
We came to this conclusion by individually optimizing the process conditions of 612
substances (representing our database) in order to assess the results obtained by
CoMT-CAMD. The agreement between the predicted rank list of best solvents is in
very satisfying agreement to the actual rank list of individually optimized solvents.
Moreover the predicted optimal process setting to each member of the most promis-
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ing solvents is in very good agreement to the individually optimized process setting.
Further, the predicted rank list of best solvents includes only feasible components
without a priori pre-selecting fluids.

The process topology examined here represents the CO -capture process of
an existing IGCC power plant [53], including all three major steps of absorption,
desorption and CO compression and an emission limit for the solvent as a process
constraint. CoMT-CAMD allows to measure the performance of the system with a
single objective function that can be formulated freely according to the problem
at hand. Our cost function summarizes several contributions to simultaneously
evaluate all process trade-offs on a common basis. Since pre-combustion capture
of CO is a well-studied process, it was reassuring to find that the rank-list of CoMT-
CAMD comprises several state-of-the-art solvents. But, also new promising solvent
candidates were identified.

CoMT-CAMD is a deterministic approach that does not involve any pre-selection
or heuristic decisions. It is a versatile and generic method. CoMT-CAMD can be im-
plemented with any physically based thermodynamic model. It is a suitable method
for the integrated process and molecular design for a wide spectrum of existing ap-
plications as well as for new process designs, when limited process know-how is
available.
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Statistical Associating Fluid Theory (SAFT) equations of state (EoS) for mixtures
require cross-interaction parameters. For real systems, combining rules, such as the
Lorenz-Berthelot combining rules, have to be corrected using at least one binary
interaction parameter, 𝑘 . Values of 𝑘 are usually adjusted to experimental data
of phase equilibria. Here, we correlate 𝑘 to the pure component parameters of
the Perturbed Chain - Statistical Associating Fluid Theory (PC-SAFT) EoS, using a
Quantitative Structure Property Relationship (QSPR) model. The coefficients of the
proposed QSPR model are regressed separately for mixtures with non-associating
components and for mixtures with associating components. The QSPR model is
validated using the statistical measures of the QSPR method. We compare the
values of 𝑘 that are estimated from the QSPR model to values of 𝑘 estimated from
London’s dispersive theory. Phase equilibrium calculations carried out with these
two approaches of estimating 𝑘 values are compared to experimental data. The
estimation of 𝑘 values as function of the pure component PC-SAFT parameters can
be applied to problems of process design and in Computer Aided Molecular Design
(CAMD), to allow for calculations that are reasonably accurate and independent
from the availability of experimental mixture data.
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3.1. Introduction
Statistical Associating Fluid Theory (SAFT) equations of state (EoS) are expressions
of the residual Helmholtz energy that represent approximate algebraic solutions
of equations from statistical mechanics [1–4]. For mixtures, a SAFT EoS requires
the intermolecular potential 𝜙 between the unlike molecules 𝑖 and 𝑗. Usually, a
conformal solution theory is applied, requiring cross-interaction parameters, such
as a size-parameter 𝜎 and an energy parameter 𝜀 . Strictly speaking the 𝑖 − 𝑗
cross-interaction potential, just as the potential between like 𝑖 − 𝑖 species, has to
be determined by quantum mechanical calculations. For van der Waals (disper-
sive) interactions, however, combining rules are often successful for estimating of
cross-interaction parameters. Most variants of the SAFT-type EoS use the Lorenz-
Berthelot combining rules: 𝜎 = 1/2(𝜎 + 𝜎 ) and 𝜀 = √𝜀 𝜀 . For an accu-
rate correlation of real systems, the combining rules have to be corrected using
at least one interaction parameter, 𝑘 for every binary pair. As a modification of
the Lorenz-Berthelot combining rules, the binary interaction parameter 𝑘 is in-
troduced as a correction to the dispersive energy parameter for the binary pair:
𝜀 = (1 − 𝑘 )√𝜀 𝜀 . Binary interaction parameters are often adjusted to experi-
mental phase equilibrium data of the binary mixtures.

SAFT-type EoS were successfully applied to a wide range of complex systems,
that include polar and associating components, polymers, ionic liquids, pharmaceu-
ticals and bio-molecules (see for example ref. [1–3, 5–8]). SAFT-type EoS are often
more accurate and more predictive than cubic EoS and extrapolate more reliably
than g -models [1]. For mixtures of substances where the intermolecular potentials
are dominated by van der Waals interactions, SAFT-type EoS often give accurate re-
sults, even without binary correction (𝑘 ≃ 0). Many mixtures of industrial interest
however require adjusting a binary interaction parameter 𝑘 .

Experimental data of phase equilibria are not always available for the estimation
of 𝑘 values. Consider the design of novel processes or a molecular design problem.
In Computer Aided Molecular Design (CAMD) for example, thermodynamic models
are required to evaluate some objective function quantifying the performance of
the designed molecule [9, 10]. CAMD problems are formulated as reverse prop-
erty prediction problems [11]. In CAMD problems it is not possible to adjust binary
interaction parameters on experimental mixture data. Early stages of process de-
sign and CAMD rely on predictions of mixture behavior, which in our context means
predictions of 𝑘 values.

O’Connell et al. [10] studied several thermodynamic property models and sug-
gested SAFT-type EoS to have a potential for accurate property predictions in CAMD.
In a recent study, Ng et al. [12] gave a thorough review of the various approaches
and advances in CAMD methods. Among the most recent advances are CAMD
frameworks that use a SAFT-type model [13–19]. Adjiman et al. [20] presented
the rapid progress made in the field of SAFT-based CAMD and discussed the role of
SAFT-type EoS in tackling previously challenging problems in molecular and process
design. In a SAFT-based CAMD framework, variables that characterize the structure
of the optimized molecule are utilized as additional degrees of freedom inside the
process optimization. The molecular optimization can thereby be integrated with
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the process optimization problem, based on an objective function for the entire
process. The problem of integrated process and fluid design has in the past been
circumvented, by defining individual or collected property targets for the optimized
fluid [21–23].

Pereira et al. [13, 15] introduced the framework of Computer Aided Molecular
and Process Design (CAMPD) that uses the SAFT-VR EoS [24]. In their work, the
authors applied CAMPD for the solvent selection among alkane blends. The molec-
ular search space was defined over the homologous series of n-alkanes and the
number of carbon atoms of the n-alkane was treated as a continuous molecular
optimization variable. The necessary SAFT-VR parameters were expressed as func-
tions of the molecular mass and therefore as functions of the optimized number of
carbon atoms. The values of 𝑘 for the SAFT-VR EoS were adjusted to experimen-
tal phase equilibrium data of binary mixtures relevant to the examined system and
they were held constant throughout CAMPD. Recently, Burger et al. [25] proposed
a CAMPD method that uses the SAFT-𝛾 Mie GC EoS [26] and a hierarchical optimiza-
tion approach. The authors demonstrated the proposed method for the problem of
solvent selection adopted from Pereira et al. In their work, Burger et al. [25] applied
a group contribution (GC) approach for SAFT and considered additional chemical
families extending the search space to linear alkyl ethers.

The framework of Continuous Molecular Targeting - Computer Aided Molecular
Design (CoMT-CAMD), established by Bardow et al. [14], uses the PC-SAFT EoS [27–
30]. CoMT-CAMD considers the parameters of the thermodynamic model (e.g. rep-
resenting a solvent) as additional degrees of freedom in an integrated process and
fluid optimization problem. In CoMT-CAMD the discrete search space of parameters
representing a real substance is relaxed to a continuous parameter domain. Specif-
ically, the molecular optimization variables (PC-SAFT pure component parameters)
are treated as continuous variables. This relaxation allows formulating a non-linear
optimization problem with a single objective function, whereby a detailed process
model can be maintained without the need for pre-selecting candidate molecules.
CoMT-CAMD has been implemented, so far, for the selection and design of working
fluids for organic rankine cycles (ORCs) [16, 19] and for the selection and design
of physical solvents for CO capture [18, 19]. In phase equilibrium calculations no
binary interaction correction was introduced to the PC-SAFT EoS for binary systems
involving the optimized fluid (𝑘 = 0).

The result of a CAMD approach is determined by the employed thermodynamic
model. The accuracy of the SAFT model therefore plays a crucial role in the pre-
dictive capability of the CAMD framework.

In order to improve predictions of mixture properties (with 𝑘 = 0), many
studies have revisited the Lorentz-Berthelot combining rules [31–38]. More re-
cently, Haslam et al. [39] derived a new combining rule using a generalization of
the Hudson-McCoubrey combining rules, including additional terms for the dipole-
dipole and the dipole-induced dipole interactions. The authors presented results
of their theory with the SAFT-VR EoS [24] for mixtures with large non-polar and
polar components and for mixtures with a single associating component. Singh et
al. [40] and Leonhard et al. [41] proposed the prediction of pure component param-
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eters based on quantum mechanical calculations and a new combining rule for the
unlike-dispersion interaction, derived from London’s dispersive theory. Leonhard et
al. applied the proposed combining rule with the PC-SAFT EoS. Both of the above
approaches have a theoretical background and gave good results for mixtures.

Group contribution approaches are promising for estimating binary interaction
corrections 𝑘 to the Lorenz-Berthelot combining rules. Peters et al. [42] proposed
a group contribution method for determining binary interaction parameters of the
PC-SAFT EoS for polymer-solvent mixtures. Inspired by London’s dispersive theory,
Huynh et al. [43, 44] proposed the correlation of 𝑘 to pseudo-ionization energies
of the constituents of the mixture. The method was developed for the GC-SAFT
EoS [45] and was shown to lead to very good results. London’s dispersive theory
applied to the Mie potential function has been used by Coutinho et al. [46] to derive
a new combining rule for the cross-energy parameter in cubic EoS and in the Cubic
Plus Association EoS [47].

Due to the analogy between the combining rules of SAFT-type EoS and the
combining rules in cubic EoS, we mention the work of Shacham et al. [48] and the
work of Abudour et al. [49]. Both studies proposed the prediction of 𝑘 values for
cubic EoS using a Quantitative Structure Property Relationship (QSPR) method with
automatically generated molecular descriptors.

The CoMT-CAMD approach requires the prediction of mixture properties (i.e.
estimating a suitable 𝑘 ) based on pure component parameters of PC-SAFT for
the optimized fluid. On that grounds, two of the approaches for estimating 𝑘
mentioned above particularly lend themselves for the CoMT-CAMD framework: the
estimation of 𝑘 based on predicted ionization potentials and the QSPR estimation
method.

In this work, we relate the binary interaction parameter 𝑘 to pure component
parameters of both substances, in order to allow for predicting mixture properties in
CAMD applications, especially in the CoMT-CAMD framework. Two approaches are
examined. Values of 𝑘 are estimated based on London’s dispersive theory using
experimental ionization potentials. Further, we propose a multilinear regression
model for estimating 𝑘 based only on the PC-SAFT pure component parameters.
For the development of the proposed model, a QSPR method is applied.

3.2. Estimation of 𝑘𝑖𝑗 based on London’s dispersive
theory

For a mixture of conformal fluids, i.e. fluids with the same functional form of van
der Waals intermolecular pair potentials, theoretical expressions of the 𝑘 value
can be derived from London’s dispersive theory. Most common is the expression
based on the work of Hudson and McCoubrey [50]. Hudson and McCoubrey wrote
the equation of London’s attractive potential 𝜙 as function of the ionization
potentials 𝐼 and 𝐼 and the (scalar valued) static polarizabilities 𝛼 and 𝛼 of the
two constituents of the mixture

𝜙 = −32
𝐼 𝐼

(𝐼 + 𝐼 )
𝛼 𝛼
𝑟 (3.1)
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Eq.(3.1) combined with the attractive part of the Lennard-Jones potential

𝜙 = 4𝜀 ([
𝜎
𝑟 ] − [

𝜎
𝑟 ] ) (3.2)

and using the arithmetic mean for the segment diameter parameter 𝜎

𝜎 = 1
2 (𝜎 + 𝜎 ) (3.3)

led to an expression for the depth of the attractive potential well due to dispersive
interactions 𝜀 , i.e. the Hudson-McCoubrey rules

𝜀 = [2 ⋅
(𝐼 𝐼 ) /

(𝐼 + 𝐼 ) ] ⋅ [2 ⋅
𝜎 𝜎

(𝜎 + 𝜎 )
] ⋅ √𝜀 𝜀 . (3.4)

For a SAFT-type EoS Eq.(3.4) leads to an approximation of 𝑘 as function of the
segment diameter parameters and the ionization potentials of the two Lennard-
Jones fluids in the mixture

𝑘 = 1 − [2 ⋅
(𝐼 𝐼 ) /

(𝐼 + 𝐼 ) ] ⋅ [2 ⋅
𝜎 𝜎

(𝜎 + 𝜎 )
] . (3.5)

For details on the derivation of Eq.(3.4) and Eq.(3.5) we refer to the original work
of Hudson and McCoubrey [50] and to the study of Haslam et al. [39].

The expression in Eq.(3.5), derived from London’s theory, accounts only for the
asymmetry in dispersive interactions. For mixtures of polar or associating compo-
nents, however, 𝑘 does not only serve as correction to the dispersive intermolecu-
lar potential, as already pointed out by Hiza and Duncan [32] and Kontogeorgis [51].
Rather, 𝑘 corrects a SAFT-type model regarding any other model deficiency, in-
cluding those arising from attractive interactions, not explicitly accounted for. How-
ever, London’s dispersive theory is appealing for (CoMT-) CAMD applications, and
more generally for predicting mixture properties, because only pure component
properties of the mixtures’ constituents are required. In this work, we evaluate
phase equilibria predicted using 𝑘 values from Eq.(3.5) applied with the PC-SAFT
model, using experimental values for the required ionization potentials.

3.3. Multivariate regression model for 𝑘𝑖𝑗 prediction
3.3.1. Contribution of asymmetric intermolecular potentials to

the value of 𝑘
QSPR studies focus mainly on the prediction of properties for pure substances. In
most QSPR studies, QSPR software like CODESSA [52] or DRAGON [53] is em-
ployed to generate constitutional, topological, geometrical, electrostatic, quantum
chemical or thermodynamic molecular descriptors (e.g. ref. [49, 54, 55]). The
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significant descriptors are then selected using various stochastic or deterministic
methods. Subsequently, the selected descriptors are combined to generate QSPR
models. The resulting QSPR models are evaluated and compared based on multi-
variate statistics. In this study, we aim to develop a QSPR model for the estimation
of 𝑘 , whereby 𝑘 is a mixture attribute. While a large number of descriptors are
available for pure substances, the number of descriptors characterizing molecular
pairs is very limited [56]. Here, we define the QSPR descriptors in an ad hoc man-
ner, based on two principles. The descriptors for the estimation of 𝑘 should: First,
be a function of the PC-SAFT pure component parameters only, and second, effec-
tively relate dissimilarities in the molecular structure of two components to the 𝑘
value of their binary mixture.

In PC-SAFT, each pure component is identified by a unique set of molecular pa-
rameters: the segment number 𝑚, the segment size parameter 𝜎, the dispersive
energy parameter 𝜀/𝑘, the dipole moment 𝜇, the quadrupole moment 𝑄, the as-
sociation energy parameter 𝜀 /𝑘 and the effective association volume 𝜅 . The
equation of the QSPR model for the estimation of the value of 𝑘 (𝑘 ) as function
of the molecular parameters of the mixture components is therefore

𝑘 =∑𝑐 ⋅ 𝐷 (𝑝 , 𝑝 ) (3.6)

where 𝑁 is the number of descriptors, 𝐷 (𝑝 , 𝑝 ) are the descriptors as function
of the PC-SAFT molecular parameters 𝑝 = {𝑚 , 𝜎 , 𝜀 /𝑘, 𝜇 , 𝑄 , 𝜀 /𝑘} and 𝑝 =
{𝑚 , 𝜎 , 𝜀 /𝑘, 𝜇 , 𝑄 , 𝜀 /𝑘} of the two components, 𝑖 and 𝑗, of the mixture, and
𝑐 are the corresponding regression coefficients.

Let 𝑝 , be the 𝑘 element of the PC-SAFT pure component parameter vector
𝑝 , e.g. 𝑝 , = 𝑚 . Relations such as ratios of the pure component parameters,
𝑎 = 𝑝 , /𝑝 , or absolute differences, 𝛿 = |𝑝 , − 𝑝 , | can be used as measures
of the asymmetry of intermolecular potentials in the binary mixture. Parameter
ratios 𝑎 and absolute differences 𝛿 can also be defined over combinations of the
PC-SAFT parameters: 𝑎 = ℎ(𝑝 )/ℎ(𝑝 ) and 𝛿 = |ℎ(𝑝 ) − ℎ(𝑝 )|. The departure
of 𝑎 from unity and of 𝛿 from zero quantify the difference between the 𝑖 − 𝑖 and
the 𝑗 − 𝑗 property for the two components of the mixture, respectively. In order to
make the parameter ratio 𝑎 invariant for interchanging the component indices 𝑖
and 𝑗 for the pair of substances, we further define the ratio operator

⟨𝑎 ⟩ = {𝑎
( )
| | 𝑎 ≠ 𝑎

1 𝑎 = 𝑎
(3.7)

Measures of this type were combined to form the candidate descriptors for the
QSPR model.

Unlike intermolecular potentials are caused by asymmetric dispersive, polar and
associating forces. In order to quantify the contribution of the aforementioned
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asymmetries to the 𝑘 value, we defined eight descriptors. The initial form of the
descriptors was mainly motivated by parameter combinations as they appear in
the mathematical formulation of the PC-SAFT EoS. The exponents used in the final
mathematical formulation of the descriptors are defined empirically.

Dispersive interactions
We define the descriptor 𝐷LJ to express the asymmetry in the dispersive intermolec-
ular potential, as

𝐷LJ = 1 − ⟨𝜎 (𝜀 /𝑘)𝜎 (𝜀 /𝑘) ⟩ (3.8)

by taking into account the segment diameter 𝜎 , 𝜎 and the Lennard-Jones en-
ergy potentials 𝜀 /𝑘, 𝜀 /𝑘. Our starting point for this descriptor has been the ratio

⟨ ( / )
( / ) ⟩ as motivated from the first order term of the perturbation theory for

dispersive attraction. The exponents were varied empirically, usually in the integer-
range of ±2. 𝐷LJ will approach zero for very similar components and if no other
types of interactions exist (e.g. polar or associating interactions).

Polar interactions
For contributions to the value of 𝑘 due to polar interactions, we define four descrip-
tors. The contribution due to asymmetry in dipole-dipole interactions is expressed
through the descriptors 𝐷 , and 𝐷 , . Descriptor 𝐷 , measures the absolute
difference in the reduced dipole moments.

𝐷 , = ||
𝜇

√𝑚 𝜎 (𝜀 /𝑘)
−

𝜇

√𝑚 𝜎 (𝜀 /𝑘)
|| (3.9)

The difference in the reduced dipole moments contributes in a different way to the
asymmetry in mixtures with only one dipolar component than in the case when
both mixture components are dipolar. In order to distinguish these two cases, we
introduce the descriptor 𝐷 , .

𝐷 , = √𝜇 𝜇 ⋅ (𝜇 − 𝜇 ) (3.10)

A further contribution due to asymmetry in quadrupole-quadrupole interactions
is given by the descriptor 𝐷 . Descriptor 𝐷 considers the difference of the scaled
quadrupole moments over the potential energy of the chain molecule. The dif-
ference in the quadrupole moments is scaled by the ratio of segment diameters
according to

𝐷 = [ 𝑄
𝑚 (𝜀 /𝑘) −

𝑄
𝑚 (𝜀 /𝑘)] ⋅ ⟨

𝜎
𝜎 ⟩ (3.11)
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Finally, we account for the case that dipole-dipole and quadrupole-quadrupole
interactions occur simultaneously with the descriptor 𝐷 .

𝐷 = ||
𝜇

√𝑚 𝜎 (𝜀 /𝑘)
−

𝜇

√𝑚 𝜎 (𝜀 /𝑘)
|| ⋅ [

𝑄
𝑚 (𝜀 /𝑘) −

𝑄
𝑚 (𝜀 /𝑘)] (3.12)

Association
Naive combining rules are not suited to describe cross-association of two sub-
stances, because cross-association can not be detached from electrostatic concepts
of partial charge distributions in individual molecules. In that light, it is surprising
that simple combining rules have shown promising results for a collection of chem-
ical species [28, 51, 57]. (A group contribution approach on the other hand is
in our view a rather promising concept). In studies where combining rules for
cross-association are applied, a binary interaction correction is often applied to the
dispersive interactions, rather than to the cross-association.

Consequently, mixtures with (cross-)associating substances are demanding for
our approach, where the binary mixture shall be described based on pure compo-
nent parameters of both species. With some reservation, we include associating
mixtures in this study. It is important to note that the 𝑘 parameters adjusted
to such mixtures usually show rather high (positive or negative) values, because
of the uncertainty in cross-associating interactions. We account for the contribu-
tion of self- and cross-association effects with three descriptors. Descriptor 𝐷 ,

measures the strength of self-association for component 𝑖 against the strength of
self-association for component 𝑗.

𝐷 , = √(𝜀 /𝑘)(𝜀 /𝑘) ⋅ [𝜎 (𝜀 /𝑘) − 𝜎 (𝜀 /𝑘)] (3.13)

Kontogeorgis and Folas [58] distinguish between five different types of cross-association.
We turn to the effect of cross-association between two dipolar components, when
at least one of them is self-associating. Kleiner and Sadowski [57] proposed an ap-
proach to account for the cross-association that is likely to occur for such mixtures;
they refer to these interactions as ‘induced association’. We also observed that the
combining rule for induced association [28, 59]

𝜀 = 1
2 (𝜀 + 𝜀 ) (3.14)

𝜅 = √𝜅 𝜅 ⋅ (
𝜎 𝜎

1/2 (𝜎 + 𝜎 )) (3.15)

noticeably improves the accuracy of phase equilibrium calculations for this type of
mixtures. The descriptor for the contribution due to induced association is defined
as

𝐷 , = √𝜇 𝜇 ⋅
[(𝜀 /𝑘) + (𝜀 /𝑘)]

√(𝑚 𝜎 ⋅ 𝑚 𝜎 )
(3.16)
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The indices 𝑠 and 𝑐 in Eq.(3.13) and (3.16) are for ”self” and ”cross” association
contributions, respectively. The contribution to the value of 𝑘 due to induced asso-
ciation accounts for the mutual strength of the dipole moments [60]. The contribu-
tion of the association energy parameters and the dipole moments in the descriptor
𝐷 , is scaled by the molecular volume of the two components. This provides
a better description for mixtures with small but strong associating molecules (e.g.
mixtures of acetic acid) [61]. In mixtures with one associating and one non-polar,
non-associating component, the effect of induced-association should not be ac-
counted for. In this case, the descriptor 𝐷 , is therefore equal to zero and
no discrete decisions are necessary to distinguish between cases. The contribu-
tion of induced association in the asymmetry of a mixture is different when both
components are self-associating species than when the mixture contains only one
self-associating component and one dipolar, non-associating component. We in-
troduced the third descriptor 𝐷 , , in order to decouple the two cases when
describing these types of mixtures with the same model simultaneously. The de-
scriptor 𝐷 , is active only for mixtures with two self-associating components

𝐷 , = (𝜇 𝜇 ) ⋅ √(𝜀 /𝑘)(𝜀 /𝑘) ⋅ |[𝜎 (𝜀 /𝑘)] − [𝜎 (𝜀 /𝑘)] | . (3.17)

3.3.2. Pure component parameters
The necessary PC-SAFT pure component parameters were either adopted from ref.
[27–30, 62] or, if not available, they were identified in the present work. In those
cases, the pure component parameters (𝑚, 𝜎, 𝜀/𝑘, 𝜀 /𝑘) were adjusted to exper-
imental data of vapor pressure and liquid density. We have implemented the 2𝐵
association scheme [63] for all associating components. The association energy pa-
rameter 𝜀 /𝑘 and the effective association volume 𝜅 are known to be strongly
correlated, which is why a constant effective association volume 𝜅 = 0.03 was
used, as previously suggested by Ruether and Sadowski [64]. Dipole moments
were taken from the DIPPR database [65] and they originate either from ab initio
calculations or from measurements. The quadrupole moments were taken from
ref. [29].

3.3.3. Database of 𝑘 values adjusted to experimental data of
phase equilibria

For isolating the effect of the different descriptors, we define four classes of sub-
stances: non-associating, non-polar (nAnP), non-associating, dipolar (nAdP), non-
associating, quadrupolar (nAqP) and associating, dipolar (AdP). From the four classes
of pure components, we define 10 groups of binary mixtures. The 10 groups of bi-
nary systems considered in our study and the number of mixtures per group are
listed in Table 3.1.

For every binary mixture in our database, we adjusted the binary interaction
parameter 𝑘 using experimental vapor-liquid equilibrium (VLE) data. The selected
experimental data comprised sets of isothermal (P,x) and (P,x,y) data obtained
from the Dortmund Database (DDB) [66], which passed the standard thermody-
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namic consistency tests, namely the point-to-point test and the area-test. [67] For
mixtures with several experimental isotherms, we adjusted a single temperature-
independent value of 𝑘 . The objective function for adjusting the 𝑘 values is

Table 3.1: The database of binary mixtures is divided in 10 groups (here denoted as G1 to G10). The
binary mixtures are categorized according to the type of components they consist of: (a) non-associating,
non-polar (nAnP), (b) non-associating, dipolar (nAdP), (c) non-associating, quadrupolar (nAqP) and (d)
associating, dipolar (AdP). The number of mixtures for each subgroup in the database is listed.

comp. 𝑗
nAnP nAdP nAqP AdP

nAnP ( )48
comp. 𝑖 nAdP ( )47 ( )23

nAqP ( )44 ( )32 ( )5
AdP ( )67 ( )90 ( )43 ( )53

formulated on the combined residuals of the mole fraction of the liquid phase and
the residuals of the pressure for every experimental point [68]:

𝐹 = [
exp

∑
(Δ𝑥 ) ⋅ (Δ𝑃 )
(Δ𝑥 ) + (Δ𝑃 )

]
/

(3.18)

with 𝑛exp as the number of experimental data points, Δ𝑥 = |𝑥 − 𝑥 | the ab-
solute residuals in the mole fraction of the liquid phase resulting from isobaric-

isothermal flash calculations and Δ𝑃 = | − 1| the relative residuals in pres-

sure resulting from bubble point calculations.

3.3.4. Quantitative Structure Property Relationship (QSPR) for
predicting 𝑘

Multivariate regression
The QSPR model for predicting 𝑘 was built in steps: Initially, the QSPR model
was developed for the simplest case; for predicting 𝑘 in mixtures of two non-
associating, non-polar components (group 1), using only the descriptor for the
asymmetry in the dispersive intermolecular potential 𝐷LJ. Additional groups of bi-
nary mixtures were considered progressively and the model was supplemented with
the necessary descriptors. In this way, the model was extended to all groups of
mixtures with non-associating components (groups 1 to 6). Subsequently, the mix-
tures of associating components (groups 7 to 10) were considered. The QSPR
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model for all groups of binary mixtures reads

𝑘QSPR =∑𝑐 ⋅ 𝐷 (3.19)

with model coefficients

𝑐 ∈ {𝑐LJ, 𝑐dd,a, 𝑐dd,b, 𝑐qq, 𝑐dq, 𝑐assoc,s, 𝑐assoc,c, 𝑐assoc,sc}

and with corresponding descriptors 𝐷

𝐷 ∈ {𝐷LJ, 𝐷dd,a, 𝐷dd,b, 𝐷qq, 𝐷dq, 𝐷assoc,s, 𝐷assoc,c, 𝐷assoc,sc}

as introduced in Eq.(3.8) to (3.17). A non-weighted non-linear least squares prob-
lem is solved for the regression of the model coefficients 𝑐 . The objective function
for the model regression is defined as the total sum of the squared residuals be-
tween the values of 𝑘 individually adjusted to experimental data 𝑘fit and the values

of 𝑘 calculated from the QSPR model 𝑘QSPR in Eq.(3.19) as

min𝑄 =
tr

∑ (𝑘fit
, − 𝑘QSPR

, ) (3.20)

with 𝑁tr the number of mixtures used for the regression. The least squares min-
imization was conducted using the solver nlinfit provided in Matlab [69]. For the
95% confidence interval of the model coefficients Δ𝑐 , we use the t-distribution
with 𝑁tr − 𝑁 − 1 degrees of freedom [70]

Δ𝑐 , = 𝑡 . , tr ⋅ √𝑆 ⋅ √𝑉 (3.21)

with 𝑆 as the estimated model variance

𝑆 =
∑ tr (𝑘fit

, − 𝑘QSPR
, )

𝑁tr − 𝑁 − 1 (3.22)

and with 𝑉 as the corresponding diagonal element of the coefficient covariance
matrix.

Training and test set
The quality and the morphology of the data sets used to derive and validate the
QSPR model coefficients (QSPR database) is decisive. The set used to derive the
QSPR model coefficients (training set) should span the whole region of the descrip-
tor space, it should be diverse and it should include data points close to the data
points used for the external validation of the model (test set) [71, 72]. In order to
ensure these conditions, we define the training and test set respectively in a three-
step procedure: In step 1, we a priori detect and remove from the QSPR database
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the binary mixtures with unreliable 𝑘 values [70, 73]. In step 2, we divide the
QSPR database in training and test set, using a uniform design method for subset
selection [74]. In step 3, we iteratively remove the outliers from the training set.
The steps are discussed in more detail in the following.

In step 1 we use as measure for the quality of the adjusted 𝑘 values the
value of the objective function 𝐹 in Eq. (3.18), divided by the total number of the
experimental data points, according to

𝑓 = 𝐹/𝑛exp . (3.23)

The value of 𝑘 for a mixture m is considered as unreliable if 𝑓 > 0.95⋅max(𝑓) and
the absolute average residuals AAD-𝑥 and AAD-𝑃 are higher than 15%. Those
cases either correspond to binary mixtures with experimental data of poor quality
or to mixtures, where PC-SAFT leads to inaccurate results with the chosen pure
component parameters.

After unreliable data were removed, the curated database (𝑁 binary mixtures)
is divided into the training and the test set in step 2. In our case, we define the split
fraction between the training and the test set 𝑁tr/𝑁ts equal to 9 (with 𝑁tr+𝑁ts = 𝑁
). For the selection of the training set, we have used an in-house implementation
of the Kennard and Stone algorithm. The Kennard and Stone (KS) algorithm [75]
is a well-established method for uniform design in the field of chemometrics [74].
The selection principle of the algorithm [75] ensures that the points which are
excluded (test set) are close to the points of the design set (training set). Here, we
implemented the KS algorithm individually for each one of the 10 binary mixture
groups (‘clusters’) defined in Section 3.3. For all groups we used the same fraction
of training to test set, as for the complete database (𝑁 , /𝑁 , = 9).
Implementing the KS algorithm individually for each group is a way to ensure that all
groups are represented in the training set, even if the number of available data per
group is limited [76] (e.g. binary mixtures with two non-associating, quadrupolar
components). Since the KS algorithm uses the Euclidean norm of the descriptor
vector, the results are sensitive to descriptor scaling [77]. For better scaling of the
highly irregular multidimensional descriptor space, we used the standardized values
of the descriptors [78]

�̂� , = 𝐷 , − 𝐷
𝑆 (3.24)

with �̂� , the standardized value of descriptor 𝐷 for mixture m, 𝐷 denotes the
average value of descriptor 𝐷 for all mixtures, and 𝑆 is the standard deviation
of descriptor 𝐷 for all mixtures of the database. In our implementation, the KS
algorithm is initialized on the boundaries of the multidimensional descriptor space.
Thus, the designed training set is expected to be sensitive to outliers [76].

We exclude outliers from the training set iteratively in step 3. We fit the model
coefficients 𝑁 times, excluding one mixture 𝛽 at a time (”Leave-One-Out” proce-
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dure), and we calculate the corresponding sum of the residuals 𝑟 ,

𝑟 , = ∑ (𝑘fit
, − 𝑘QSPR

, ) (3.25)

with 𝛽 ∈ {1, 2, … , 𝑁 }. We determine the mean value

𝑟 = 1
𝑁 ⋅∑𝑟 , (3.26)

and the standardized value of the residual for each mixture 𝛽 around the mean
value 𝑟 as

�̂� , =
𝑟 , − 𝑟

𝑆 (3.27)

where 𝑆 is the standard deviation of the residuals. Mixtures that led to �̂� ,
values greater than three standard deviation units (3𝑆 ) were considered as outliers
and were excluded. [70, 71, 79]

Model validation
Model validation is an integral part of any QSPR method. On the one hand, the
goodness-of-fit, the robustness of the model and its internal predictive power are
measured by internal validation techniques. On the other hand, the actual predictive
power of the model is evaluated by external validation. External validation is defined
through data that was not used for the model regression [72].

The goodness-of-fit is measured by the coefficient of multiple determination 𝑅 .
The coefficient of multiple determination estimates the portion of the variation in
the independent variable (here 𝑘fit) that is explained by the regression [72, 73, 79].
𝑅 is calculated over all mixtures of the training set (𝑁tr) and is defined as

𝑅 = 1 −
∑ tr (𝑘fit

, − 𝑘QSPR
, )

∑ tr (𝑘fit
, − 𝑘

fit
)

(3.28)

where 𝑘
fit

is the average value of 𝑘fit for all mixtures of the training set. A QSPR
model with 𝑅 higher than 0.6 can be considered predictive [73]. However, Trop-
sha [73] also points out, that the predictive power of a QSPR model needs to be
further evaluated for compounds that were not included in the training set.

The Leave-One-Out (LOO) cross-validated correlation coefficient 𝑄LOO and the
Leave-Many-Out (LMO) cross-validated correlation coefficient 𝑄LMO measure the
robustness of the model and its internal predictive power. The cross-validated cor-
relation coefficients should be calculated over a large number of trials. In both the



3.3. Multivariate regression model for 𝑘 prediction ..

3

71

LOO and LMO procedures, a certain subset of the training set is omitted at each
trial.

For the calculation of the LOO cross-validated correlation coefficient 𝑄LOO the
number of trials is equal to the total number of mixtures in the QSPR database
𝑁 . At each trial a mixture is individually omitted. The QSPR model coefficients
are regressed using the remaining 𝑁 − 1 mixtures as training set. Using this
regression, one can now predict the 𝑘 value (𝑘 / ) for mixture m (which
was temporarily excluded from the training set). The definition of 𝑄LOO according
to the guidlines of the Organization of Economic Co-operation and Development
(OECD) [72] is

𝑄LOO = 1 −
∑ (𝑘fit

, − 𝑘 /
, )

∑ (𝑘fit
, − 𝑘

fit
)

. (3.29)

At each trial of the LMO procedure, more mixtures than one are simultaneously
excluded. Here, we have calculated the value of 𝑄LMO over 2𝑁 number of trials. At
each trial, 50% of the complete database was excluded [71] (𝑁LMO = 0.5𝑁 ). The
value of the LMO cross-validated correlation coefficient for each trial 𝑄 / , is
calculated as

𝑄 / , = 1 −
∑ LMO (𝑘fit

, − 𝑘 /
, )

∑ (𝑘fit
, − 𝑘

fit
)

(3.30)

with 𝑘 /
, representing the predicted 𝑘 value for each mixture m that is part

of the excluded set. The standard deviation and the average value of 𝑄 / ,
over all trials are used as indicators of the robustness in the model prediction. A
robust model should remain invariant to changes of the training set and it is thus
expected to exhibit small difference between the average value of 𝑄LMO and 𝑅 . [80]
We should note that the LMO procedure demands to generate as many different
training sets as the number of trials. The Kennard and Stone algorithm described
in Section 3.4.2 is initialized on a fixed point of the descriptor space and therefore
provides a single design for the training set. Thus, for the calculation of 𝑄LMO , we
used a straightforward random selection of the training set.

An important indicator of the actual predictive capability of the model is the
external explained variance 𝑄 . The external explained variance is a measure for
the quality of prediction for data that were not included in the set used for the model
development. There are several approaches in the literature for the calculation of
𝑄 [71, 72, 81, 82]. In our implementation, the training set is much larger than
the test set. In this case, the definition of Consonni et al. [81] is appropriate, with

𝑄 = 1 −
[∑ ts (𝑘fit

, − 𝑘QSPR
, ) ] /𝑁ts

[∑ tr (𝑘fit
, − 𝑘

fit
) ] /𝑁tr

. (3.31)
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The numerator in Eq.(3.31) sums over data of the test set, whereas the denominator
sums over the training set.

3.4. Results
3.4.1. Estimation of 𝑘 based on London’s dispersive theory

for mixtures
Calculating 𝑘 values from London’s dispersive theory, according to Eq.(3.5), re-
quires segment diameters 𝜎 and 𝜎 and the ionization potentials 𝐼 and 𝐼 . Ex-
perimental values of the ionization potentials were taken from the literature [83].
We limit consideration to mixtures of two non-polar, non-associating components
(group 1). Figure 3.1 compares the values of 𝑘 calculated with Eq.(3.5) to the
values of 𝑘 individually adjusted on experimental data. A detailed list of the ex-
amined binary mixtures with the corresponding values of 𝑘 (𝜎, 𝐼) and 𝑘fit is given
in Table E.1 in Appendix E.

𝑘 calculated with Eq.(3.5) cannot take on negative values. For mixtures of
non-polar, non-associating components this limitation is not strongly restricting the
results, because the negative 𝑘fit values are all fairly close to zero. Figure 3.2
shows that for the mixtures of group 1 with negative values of 𝑘fit (mixtures #
1,9,15,19,26,30,34,44,45) the results of phase equilibrium calculations remain good
for calculations with the slightly positive 𝑘 values from Eq.(3.5). Mixtures with
polar and associating components, though, often demand more negative 𝑘 values.
In this case, the predictions of 𝑘 with Eq.(3.5) are expected to lead to more
significant errors.
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Figure 3.1: Comparison of ( , ) values estimated from the London’s dispersive theory (Eq. (3.5))
to fit values individually adjusted to experimental data for mixtures of two non-polar, non-associating
components (group 1). The dashed lines illustrate the absolute deviations of ± . for the value of

fit.



3.4. Results ..

3

73

1 6 11 16 21 26 31 36 41 46
0

0.02

0.04

0.06

0.08

0.1

f 
=

 F
/n

ex
p 

mixture #

 

 

Group1

2

3

4

8
11

13
27

k
ij
(σ,I)

k
ij
fit

Figure 3.2: Deviations of PC-SAFT EoS from experimental binary phase equilibrium data of two non-
associating, non-polar components (group 1). The deviations are defined as / exp according to
Eq.(3.23). The red line serves as a reference and is obtained for individually optimized fit values. The
symbols (connected by black line) are obtained using estimated values ( , ). For hexadecane no
ionization potential was available, which is why ( , ) was set to zero for mixtures #12 and #43.

Higher deviations in the prediction of 𝑘 are observed for binary mixtures in-
cluding carbon monoxide (mixtures 2, 3 and 4 in Figures 3.1 and 3.2) and for
binary mixtures including methane (mixtures 8, 13 and 27). These mixtures de-
mand higher values of 𝑘 for an adequate description. We conjecture that in those
cases, 𝑘 does not only correct the dispersive intermolecular potential of the mix-
ture but compensates other model deficiencies. Below we show that a QSPR model
based on semi-empirical descriptors takes the necessary contributions into account
to model the value of 𝑘 for these mixtures.

3.4.2. QSPR estimation of 𝑘 - Model regression and assess-
ment of the results

The descriptors of the QSPR model for the estimation of 𝑘 values were constructed
using the PC-SAFT molecular parameters. The initial structure of the descriptors
was defined in an ad hoc manner and their exact structure was adjusted empir-
ically, by varying exponents, as described in Section 3.1. In the course of this
process, different sets of descriptors were generated. For each set of descriptors,
the coefficients of the QSPR model were regressed as described in Section 3.4.1.
The performance of each QSPR model was evaluated using the internal and exter-
nal validation techniques described in Section 3.4.3. The training and the test set
remained unchanged. The QSPR model that achieved the best overall description
for all groups of mixtures based on the value of 𝑅 has been obtained with the de-
scriptors defined in Eq.(3.8) to (3.17). Here, we limit our discussion to the results
of this model.

Mixtures with associating components are the most difficult to describe. For the
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regression of the model coefficients, we therefore distinguish two cases: In the
first case, we estimate the model coefficients only for mixtures of non-associating
components (”1st regression case”: groups 1 to 6). In the second case, we adjust
the model only to mixtures containing associating components (”2nd regression
case”: groups 7 to 10).

In the first case, the database of mixtures with only non-associating components
includes 199 binary mixtures. Unreliable data and outliers have been removed
according to the rationale described in Section 3.4.2. Then, the training set consists
of 151 and the test set of 22 binary mixtures. The adjusted model coefficients 𝑐
along with the values of their 95% confidence intervals Δ𝑐 , are given in Table 3.2.
For all regressed model coefficients we observed |Δ𝑐 , | << |𝑐 | , which qualifies
a stable regression model [84]. For mixtures of groups 1 to 6 the values of 𝑘
predicted with the QSPR model are given in Appendix E (Tables E.3 to E.8). In

Table 3.2: Results of the regressed model coefficients for mixtures of non-associating components
(groups 1 to 6). The values of the coefficients and their % confidence interval , for the QSPR
model defined in Eq.(3.19) and (3.21), with assoc,s , assoc,c and assoc,sc .

mixtures with
non-associating components

⋅ , ⋅
LJ . ± .

dd,a . ± .
dd,b . ± .

qq . ± .
dq . ± .

the second case, for associating mixtures the database includes 253 mixtures with
at least one associating component. After unreliable data and outliers have been
removed, the training set consists of 167 and the test set of 23 binary mixtures. The
adjusted model coefficients 𝑐 for mixtures with at least one associating component
and their 95% confidence intervals Δ𝑐 , are given in Table 3.3. For this ”2nd

regression case” we also find |Δ𝑐 , | << |𝑐 |. The regression model for mixtures
of the groups 7 to 10 can therefore be characterized stable as well. For mixtures
of groups 7 to 10 the predicted values of 𝑘 are given in Appendix E (Tables E.9
to E.12). The multiple correlation coefficient 𝑅 for the QSPR model adjusted to
mixtures of non-associating components is 88.4%. For the QSPR model adjusted to
mixtures of associating components 𝑅 is 70.1%. In both cases, the model can, in
the jargon of QSPR methods, be considered to be predictive. Figure 3.3 shows the
values of the multiple correlation coefficient (𝑅 ) calculated individually for each
group of binary mixtures. Values of 𝑅 have been calculated using Eq.(3.20),
with the summation running over all mixtures of the training set for each particular
group. The results of the internal and external validation of the QSPR model for
both regression cases are summarized in Table 3.4.
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Table 3.3: Results of the regressed model coefficients for mixtures with at least one associating com-
ponent (groups 7 to 10). The values of the coefficients and their % confidence interval , for
the QSPR model defined in Eq.(3.19) and (3.21).

mixtures with
associating components

⋅ , ⋅
LJ . ± .

dd,a . ± .
dd,b . ± .

qq . ± .
dq . ± .

assoc,s . ± .
assoc,c . ± .

assoc,sc . ± .
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Figure 3.3: Coefficient of multiple determination for: (a) mixtures of two non-associating components
(groups 1 to 6) and (b) mixtures including at least one associating component (groups 7 to 10).

The QSPR model adjusted to mixtures of non-associating components describes
all types of non-associating mixtures reasonably well. The results are satisfac-
tory, especially considering the diversity of mixtures in our database. The value of
the LOO cross-validated coefficient 𝑄LOO and the average value of the LMO cross-
validated coefficient �̂�LMO/ (Table 3.4) are close to the value of 𝑅 . The proposed
model for mixtures with non-associating, polar or non-polar components can be
thus characterized as sufficiently robust [80]. Further, the low standard-deviation
of 𝑄LMO/ (5.4%) over 346 trials indicates that the model is robust against strong
variations of the training set.

For the model adjusted to mixtures of associating components (”2nd regression
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Table 3.4: Results of internal and external validation of the QSPR model (Eq.(3.19)) developed for
mixtures of non-associating and mixtures of associating components.

mixtures with
non-associating components

(%) LOO(%) ̂
LMO/ (%) (%)

88.4 86.5 84.5 92.4

mixtures with
associating components

(%) LOO(%) ̂
LMO/ (%) (%)

70.1 64.3 57.9 82.3

case”) the coefficients of multiple determination 𝑅 (explained variance) for the
individual groups are also high, particularly for the groups 7, 9 and 10. Group 8
contains mixtures of species with widely differing pure component parameters which
we call asymmetry. To properly and transferably account for this asymmetry in the
resulting 𝑘 values was only partially successful in our QSPR approach. We note
that mixtures of group 8 represent 34% of the training set used for the adjustment
of the QSPR model coefficients in the ”2nd regression case”. When mixtures of
group 8 are omitted during the Leave-One-Out (LOO) or Leave-Many-Out (LMO)
validation tests, the QSPR model demonstrates a much better overall performance
in terms of the 𝑄LOO and �̂�LMO/ QSPR validation measures. The model adjusted
to mixtures of associating components is more uncertain than the QSPR model for
mixtures of non-associating components. The choice of the training set acts on
the result. This is reflected directly in a) the high standard deviation of the 𝑄LMO/
coefficient over 380 trials (22.6%) and b) the higher difference between the value of
𝑅 and the values of the cross validated coefficients �̂�LMO/ and 𝑄LOO (Table 3.4).

The external explained variance 𝑄ext by the QSPR model adjusted to mixtures
of non-associating components is 92%. For the QSPR model adjusted to mixtures
of associating components 𝑄ext is 82%. The high values of 𝑄ext indicate the high
predictive power of the QSPR model in both cases. Nevertheless, the results of 𝑄ext
should be interpreted cautiously. One should bear in mind that the size of the test
set is much smaller and less diverse than the size of the training set (𝑁tr/𝑁ts = 9).

Generally, the proposed QSPR model is stable and robust and has (in the sense of
a QSPR method) a good predictive capacity. The statistical measures (Table 3.4) in-
dicate that the QSPR model predicts 𝑘 values in binary mixtures of non-associating
components with sufficient accuracy. For mixtures of associating components, the
model is also reliable (in the jargon of QSPR). However, the estimations of 𝑘 for
mixtures containing one dipolar, non-associating component and one associating
component are more uncertain and should be used with reservation.
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3.4.3. Evaluating phase equilibria with predicted 𝑘 values
The 𝑘 values used for the regression of the QSPR model (𝑘fit) are not experimental
data, but parameters fitted to experimental data. We therefore find it important to
evaluate the QSPR model beyond just the statistical measures of the QSPR method.
We have examined the results of phase equilibrium calculations with the predicted
𝑘 values for each group of mixtures. The parity plots and the diagrams that show
the results in phase equilibrium calculations for all groups of mixtures are given in
Appendix E (Figures E.1 to E.4).

Here, we discuss in more detail the results for mixtures of group 4 (mixtures
of one non-associating, quadrupolar and one non-associating, dipolar component).
We find the performance for mixtures of group 4 representative of the overall per-
formance of the QSPR predictions of 𝑘 for non-associating mixtures (𝑅group 4 =
88.1% ≃ 𝑅 ). Moreover, the prediction for mixtures of group 4 is of practical inter-
est, for example by the application of CAMD for polar solvents, for the CO capture
with physical absorption [18].

Figure 3.4 compares the estimated values, 𝑘QSPR, to the reference values, 𝑘fit,
for group 4. Further, Figure 3.5 illustrates the accuracy in phase equilibrium calcu-
lations with PC-SAFT for the mixtures of group 4 with 𝑘 values estimated with the
QSPR model adjusted to non-associating mixtures (Table 3.2). The results in phase
equilibrium calculations are compared to experimental VLE data. We consider the
same experimental data that were used for the individual fitting of 𝑘 values. We
assess the results using the average value 𝑓 of the combined residuals in the liquid
mole fraction and the pressure, over the number of experimental data points for
each mixture as defined in Eq.(3.23). In Figure 3.5, we also present the results
in phase equilibrium calculations, when no correction is used for the PC-SAFT EoS
(𝑘 = 0), as well as the results achieved when 𝑘 is individually adjusted to the
experimental data, namely 𝑓(𝑘fit). We observe that for the majority of the mixtures
in group 4 (in both the training and the test set) phase equilibrium calculations
with the QSPR estimations of 𝑘 give lower residuals than if no correction is used
(𝑘 = 0).

It is however difficult to quantify the relationship between the error in 𝑘 predic-
tion Δ𝑘 = |𝑘fit−𝑘QSPR| and the subsequent error in phase equilibrium calculations

Δ𝑓 = |𝑓(𝑘fit) − 𝑓(𝑘QSPR)|. For different mixtures, the sensitivity of the objective
function 𝐹 (and thereby 𝑓) to the value of 𝑘 is different, depending on differ-
ent factors, like azeotropy or supercritical regions. Let us, for example, examine
the performance of the 𝑘 prediction and phase equilibrium calculations for mix-
ture #4 (carbon dioxide - 1-bromobenzene) compared to mixture #20 (1-hexene -
ethylene). For mixture #4, the error in the estimation of 𝑘 is much higher than the
error in the estimation of 𝑘 for mixture #20 (Figure 3.4, Table S5). Still, the error
in phase equilibrium calculations is almost identical for both mixtures (Figure 3.5).

Finally, the 𝑘 values estimated from London’s dispersive theory 𝑘 (𝜎, 𝐼) (Eq.(3.5))
were used in phase equilibrium calculations for the mixtures of group 4. A list of
the estimated values 𝑘 (𝜎, 𝐼) is given in Table E.2 in Appendix E. In Figure 3.6,
phase equilibrium calculations carried out with the estimated values 𝑘QSPR are com-



..

3

783. Estimation of 𝑘 for PC-SAFT Based on Pure Component Parameters

−0.05 0 0.05 0.1 0.15
−0.05

0

0.05

0.1

0.15

k
ij
fit

k ijQ
S

P
R

Group 4−−− δk
ij
= ± 0.005

4

20

6

15

7

17

Figure 3.4: Comparison of the estimated QSPR values with fit values individually adjusted to experimen-
tal data for mixtures of one non-associating, dipolar and one non-associating, quadrupolar component
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Figure 3.5: Deviations of PC-SAFT from experimental binary phase equilibrium data of one non-
associating, dipolar and one non-associating, quadrupolar component (group 4). The deviations are
defined as / exp according to Eq.(3.23). The red line serves as a reference and is obtained for
individually optimized fit values. The symbols (connected by black line) are obtained using estimated

values QSPR. The blue dashed line represent phase equilibrium calculations, when the PC-SAFT EoS is
not corrected ( ).

pared to phase equilibrium calculations with the estimated values from London’s
dispersive theory 𝑘 (𝜎, 𝐼). The results obtained with the estimated value 𝑘QSPR are
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in most cases better than the results obtained with 𝑘 (𝜎, 𝐼). For example, mix-
ture #7 (dimethyl ether-carbon dioxide) requires a negative 𝑘 value. Negative
𝑘 values cannot be calculated using Eq.(3.5). As discussed in Section 4.1, this
limitation has a higher impact on mixtures containing polar components. For mix-
ture #7, the estimated 𝑘QSPR is negative. With 𝑘QSPR, the PC-SAFT EoS is corrected
and phase equilibrium calculations are considerably better. Moreover, for mixtures
that require high positive 𝑘 values, the predicted value 𝑘QSPR leads to significantly
lower residuals in the phase equilibrium calculations. Representative examples are
mixture #2 (nitrogen-propylbenzene) and mixture #17 (nitrogen-toluene). The

0

0.02

0.04

0.06

0.08

0.1

f 
=

 F
/n

ex
p

mixture #
 

 

Group4

2

7

17

k
ij
(I,σ)

k
ij
QSPR

k
ij
fit

Figure 3.6: Deviations of PC-SAFT from experimental binary phase equilibrium data of one non-
associating, dipolar and one non-associating, quadrupolar component (group 4). The deviations are
defined as / exp according to Eq.(3.23). The red line serves as a reference and is obtained for
individually optimized fit values. The black line represents phase equilibrium calculations, when the

PC-SAFT EoS is corrected with QSPR. The blue solid line is for results using ( , ) from London’s
dispersive theory.

𝑘 values predicted by the proposed QSPR model (with the descriptors defined
in Eq.(3.8) to (3.17) and the regressed coefficients given in Tables 3.2 and 3.3)
are used in phase equilibrium calculations for all mixtures considered in our QSPR
database. In Figure 3.7, a general overview is given of the improvement potential
in phase equilibrium calculations, using the 𝑘 values estimated with the proposed
QSPR model. For each group of mixtures, Figure 3.7 displays the percentage of
cases in which phase equilibrium calculations are more accurate with the estimated
value 𝑘QSPR. The percentage of cases when phase equilibrium calculations with
𝑘 = 0 are more accurate and the percentage of cases when phase equilibrium
calculations are equally good for 𝑘QSPR and 𝑘 = 0 are given as well. For all groups
of mixtures (associating and non-associating) the proposed QSPR model provides
𝑘 estimates that generally improve the accuracy of PC-SAFT in phase equilibrium
calculations. According to Figure 3.7, the most significant improvement is achieved
for mixtures of group 5. However, the small size of group 5 (Table 3.1) and its’
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Figure 3.7: Assessing phase equilibrium calculations: Black surface represents the percentage of cases
for which calculations with estimated QSPR values are more accurate than with . The gray
shaded area represents the percentage of cases when both cases are equivalent.

limited diversity (Table E.7) do not allow us to draw a generalized conclusion about
the performance of the method for mixtures of two non-associating, quadrupolar
components. Further, in the group with the least improvement, for mixtures of two
dipolar, non-associating components (group 6), the individually adjusted 𝑘 values
are close to zero (see Appendix E). Calculation results for 𝑘 = 0 are thus close to
optimal, so that the use of estimated 𝑘QSPR cannot lead to significant improvements
for group 6.

3.5. Conclusions
We developed and analyzed a multivariate regression model for the estimation of
the binary interaction parameter 𝑘 of the PC-SAFT EoS using a QSPR method. The
descriptors of the regression model are based on the pure component parameters of
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the PC-SAFT model. The regression models were developed separately for mixtures
with non-associating components and for mixtures with at least one associating
component.

For mixtures with non-associating components, values of 𝑘 were also esti-
mated from London’s dispersive theory, using the expression of Hudson and Mc-
Coubrey [50]. Values of 𝑘 predicted with the QSPR model (𝑘QSPR) and values of 𝑘
estimated from London’s dispersive theory (𝑘 (𝜎, 𝐼)) were compared to values of 𝑘
individually fitted on experimental data. For mixtures containing non-associating,
polar components the QSPR regression model allows for negative values of 𝑘 and
leads to more accurate predictions than the expression of Hudson and McCoubrey.
The QSPR regression model considers additional contributions to the value of 𝑘
than just the asymmetry in the dispersive intermolecular forces.

The coefficient of multiple determination 𝑅 of the QSPR regression model for
mixtures with non-associating components is 88.4%. For mixtures with at least
one associating component 𝑅 is 70.1%. Thus, for both regression cases the QSPR
model can, in the jargon of QSPR methods, be characterized as stable and robust
and with good predictive capacity.

The 𝑘 values estimated as function of the pure component PC-SAFT parame-
ters, with the proposed QSPR regression model, can be used to enhance the ac-
curacy of phase equilibrium calculations with PC-SAFT. With the proposed QSPR
model for the estimation of 𝑘 , no prior knowledge of the real behavior of the ex-
amined binary mixture is demanded. The QSPR approach can be implemented in a
CAMD framework that uses the pure component parameters of the optimized fluid
directly as optimization variables. In that case, we expect that phase equilibrium
calculations and thus the accuracy of CAMD results can be enhanced.
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The CoMT-CAMD approach relies on the predictive capabilities of the chosen
thermodynamic model. Separation processes, in particular, require the estimation
of mixture properties. Predictions of mixture phase equilibria or other properties
that require a sufficiently accurate representation of excess properties are partic-
ularly demanding for thermodynamic models. This Chapter investigates how two
modeling approaches for the PC-SAFT equation of state impact the resulting list of
the proposed solvents for the CO -capture process. The two models are:

1. PC-SAFT, applied with 𝑘 =0 for all pairs of substances involving the target
solvent

2. PC-SAFT, applied with the QSPR-relation for 𝑘 developed in Chapter 3 for
pairs of substances involving the hypothetical target solvent

Both modeling approaches are assessed by comparison to results obtained with
individually optimized 𝑘 -parameters and with fully optimized process settings.
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4.1. Case study: Process and problem description
The examined case study preserves the topology of the pre-combustion CO capture
process described in Chapter 2 (Figure 2.3, Appendix B.1). The process specifica-
tions are given in Table 4.1 and differ slightly from Chapter 2. The efficiency of the
pump for lean solvent recirculation has been changed according to ref. [1]. Be-
sides, the compressor is now modeled with 3 compression stages for the (CO -rich)
vapor stream exiting the desorption flash to the pipeline pressure (𝑁 = 3 ).
A 3-staged compression is a more realistic design option, leading to adequate com-
pression ratios 𝑟 [1], in the range between 2.9 and 4.81.

The simultaneous process and solvent optimization problem is formulated as in
problem (2.2), for the cost objective function described in Chapter 2 and Appendix
B.2. In the current chapter, only the case of polar solvents was examined. The
implementation of CoMT-CAMD to polar solvents is a more demanding problem than
the implementation to non-polar solvents due to the additional degree of freedom
of dipole moment. In order to examine the limits of the proposed implementation of
𝑘 -predictions, the problem of simultaneous process and polar solvent optimization
is therefore seen as a more suitable case-study.

The degrees of freedom are the process variables 𝑥 = {𝑃 , 𝑃 , 𝑇 } and
the molecular parameters of the solvent 𝑝 = {𝑚, 𝜎, 𝜀/𝑘, /( ( / )) . }. The lower
and upper bounds of the variables during optimization remain also unchanged.
The database of candidate solvents used in the mapping step is the database of
polar, non-associating organic components (Appendix C), same as for the problem
described in Chapter 2.

Residual caloric properties and phase equilibria are calculated with the PC-SAFT
EoS. The ideal gas heat capacity 𝑐 and the molar mass 𝑀 of the solvent are
estimated with QSPR models, as functions of the PC-SAFT pure component param-
eters. Binary interaction parameters 𝑘 for mixtures of the optimized solvent with
CO and H either are predicted using QSPR models (Chapter 3), or 𝑘 is set to
zero for these binary pairs. The CoMT-CAMD results are compared. The 𝑘 values
for the binary mixtures CO - H O, CO - H and H - H O were adjusted to exper-
imental mixture data. The PC-SAFT pure component parameters for CO , H and
H O and the 𝑘 values of their binary mixtures used in this case study2 are given
in Tables 4.2 and 4.3.

1 ( )
( / )

and ( )
( / )

with . and

. .
2 The PC-SAFT pure component parameters for CO and H are the same with those used in Chapter
2. The PC-SAFT pure component parameters for H O are slightly different, since the dipole moment
of H O is additionally considered. The values for the binary mixtures of CO , H and H O were
adjusted to a higher number of experimental data and using the PC-SAFT pure component parameters
given in Table 4.2.
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Table 4.1: Stream, process and equipment specifications adopted from the Buggenum pilot plant [2].
The pipeline pressure is taken from ref. [3]; efficiencies from ref. ([4]); the efficiency of the lean solvent
pump and the number of compression stages for the pipeline compressor estimated according to ref.
[1].

Stream specifications

/ / 0.5480

Syngas feed composition / / 0.4485

/ / 0.0035

Syngas feed temperature / 313.00

Rich gas recycle temperature rg / 313.00

Pipeline gas temperature / 313.00

Pipeline gas pressure / 11.00

Solvent make-up temperature / 298.15

Solvent make-up pressure / 0.1013

Process specifications

capture rate in absorber / 0.90

Absorption pressure / 2.00

Equipment specifications

Absorber - number of stages / 7

Rich gas compressor - number of stages / 1

Pipeline compressor - number of stages / 3

Compressors - efficiency / 0.82

Solvent recirculating pump - efficiency / 0.90

Auxiliary pumps - efficiency . / 0.75
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Table 4.2: PC-SAFT pure component parameters for , and used in the current study.

Substance / / Ref.

⋅ ̊ ̊

44.01 1.5131 3.1869 163.33 - 4.4 - - [5]

2.016 1.0000 2.9280 37.00 - - - - [6]

18.02 1.3886 2.7139 339.14 1.85 - 0.03 1687.1 this work

Table 4.3: Binary interaction parameters for the mixtures CO -H O, CO -H and H -H O adjusted
to experimental VLE data.

Number of

Binary mixture % ( ) % ( ) Temp. range experimental Ref.

data points

- -0.0766 0.16 0.70 56 [7–10]

- -0.0623 1.45 2.23 92 [11–13]

- -0.3945 0.09 - 40 [14, 15]

4.2. Prediction of 𝑘𝑖𝑗 values for the solvent binary
mixtures

Values of the binary interaction parameter 𝑘 for mixtures of the optimized solvent
with CO and H are estimated using the descriptors of the QSPR model presented
in Eq.(3.6) to (3.17) (Chapter 3). The limited accuracy of the QSPR model in the
prediction of 𝑘 values for binary mixtures of one non-associating, dipolar and one
associating component has been taken into consideration. Therefore, the values of
𝑘 for the binary mixtures of polar solvents with H O have been set equal to zero
(no correction is implemented).
The QSPR model presented in Chapter 3 leads, generally, to satisfactory correla-
tions of 𝑘 and better predictions of phase equilibria with PC-SAFT. Nevertheless,
the training set of the QSPR method presented in Chapter 3 does not include mix-
tures with H . Binary mixtures with H require unusual 𝑘 -values and mixtures
with H were deliberately excluded from the training set in Chapter 3. Here, val-
ues of 𝑘 for mixtures of the solvent with H are estimated using the descriptors
of the QSPR model presented in Chapter 3 (Eq.(3.6) to (3.17)), with coefficients
adjusted only for binary mixtures containing H . The training set and the corre-
sponding coefficients of the QSPR model for the estimation of 𝑘 values for binary
mixtures with H are given in Appendix E.4. Additionally, the training set for binary
mixtures with one non-associating, dipolar and one non-associating, quadrupolar
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component was extended here to include additional mixtures with CO . In order
to provide more accurate predictions of 𝑘 for mixtures including CO , the QSPR
model coefficients were adjusted individually for this group. The new model coeffi-
cients and the extended training set are given in Appendix E.5. The performance of
both QSPR models, evaluated using the internal and external validation techniques
of the QSPR method, is given in Table 4.4.
With multiple correlation coefficients 𝑅 ≥ 80%, both models can be considered to
be predictive. The high values of 𝑄 indicate high predictive power of the QSPR
models. (For a more detailed discussion on the meaning of the QSPR-measures for
internal and external model validation see Chapter 3).

Table 4.4: Results of internal and external validation of the QSPR models (Eq.(3.19)) with coefficients
adjusted for binary mixtures with H and CO (Appendix E.4 and E.5).

QSPR model (%) (%)
mixtures with H 83.9 88.3

mixtures with CO 79.5 99.2

4.3. CoMT-CAMD results
The PC-SAFT parameters of the optimal (hypothetical) polar solvent 𝑝 at optimal
process conditions 𝑥 are calculated in the CoMT step. The calculations in the
CoMT step were carried out using 𝑘 -estimations (𝑘 ) and with 𝑘 =0, sepa-
rately. The results of the CoMT step for both cases are presented in Table 4.5. The
PC-SAFT parameters and the optimal process conditions for the best identified real
molecule (propylene carbonate) are given as a reference: The value of 𝑘 for the
binary mixture of propylene carbonate with CO is directly adjusted to experimental
data (𝑘 ). The estimation of 𝑘 relies on the PC-SAFT parameters. For the set
of PC-SAFT parameters of the hypothetical molecule, the estimated value of 𝑘 for
the mixture hypothetical solvent-CO is very close to zero (𝑘 ,( .) = 0.0004).
Thus, the results of the CoMT step with 𝑘 -estimations and with 𝑘 = 0 in Table
4.5 are very similar.

The best performing polar components are identified using the mapping pro-
cedure described in Chapter 2: First, the process inequality constraint (solvent
emission m ) of 444 polar, non-associating real molecules is approximated us-
ing a first-order Taylor series expansion (Eq.(2.4)); then, the performance of the
real molecules, that are feasible according to the approximation of the constraint
(m ≤ 20 / ), is evaluated using a second-order Taylor approximation of
the cost objective function 𝑓 (Eq.(2.3)); finally, a ranking of the feasible real
molecules regarding their performance measured by 𝑓 delivers the mapping
list. The set of the ten best performing components identified in the mapping step
is presented in Table 4.6. The results in Table 4.6 confirm the findings of Chapter
2. The mapping procedure successfully identifies the real molecule that lies in the
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Table 4.5: Comparison of the result of the CoMT step with -estimations for polar solvents to the result
of the CoMT step with and to the result of individual process optimization for the best identified
real molecule (propylene carbonate). The value of for the binary mixture of propylene carbonate
with CO is adjusted to experimental data.

optimal polar optimal polar best polar

molecule molecule real molecule

hypothetical hypothetical propylene carbonate

( ) ( pred . ) ( fit . )
/ / 99.57 98.72 102.09

/ 3.3116 3.3067 3.3386

/Å 3.3689 3.3728 3.3506

/ / 309.80 308.00 312.75

/ 4.9669 4.9629 4.9765

optimal process conditions

/ 0.139 0.139 0.131

/ 0.893 0.892 0.898

/ 277.85 277.18 278.78

/ / 3.577 3.828 3.006

electr.demand/€/ . 5.612 5.624 5.966

H2 loss/€/ . 0.068 0.101 0.131

solvent loss/€/ . 0.112 0.118 0.090

utilities/€/ . 0.745 0.767 0.894

/€/ . 6.537 6.610 7.081

immediate vicinity of the optimal (hypothetical) one, with respect to the molec-
ular parameters and optimal process conditions. Results from individual process
optimizations (’real ranking’) confirm the validity of the mapping step (’mapping
ranking’ of the 10 best performing components according to the approximation of
the objective function).
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Table 4.6: Best polar candidate solvents identified by CoMT-CAMD. The ranking predicted in the mapping
step (’mapping ranking’) is compared to the ranking after individual process optimization (’real ranking’).
The optimal process conditions { , , } and the value of the objective function ( )
from individual process optimizations are given. The value of indicates a components’ feasibility
against the inequality process constraint / . Components’ entries with active con-
straints at optimum (infeasible components) are noted with a star (*). The melting point temperature

is the lower bound of temperature allowed in individual process optimizations to avoid solidification
of the solvent.

IUPAC Name ranking
mapping real ( )

propylene carbonate 1 1
diethyl sulfate 2 2
-valerolactone 3 5

methyl maleic anhydride 4 *
N-methyl-2-pyrrolidone 5 4
butyric anhydride 6 3
-butyrolactone 7 8

isobutyric anhydride 8 7
propionic anhydride 9 11
diethyl malonate 10 12

IUPAC Name ( )
€/ . /

propylene carbonate 6.837 1.962 0.144 0.927 274.6 224.9
diethyl sulfate 7.138 2.842 0.148 0.934 260.0 248.2
-valerolactone 7.322 10.952 0.144 0.927 269.4 242.2

methyl maleic anhydride * * * * * 281.1
N-methyl-2-pyrrolidone 7.284 8.077 0.142 0.927 268.1 249.2
butyric anhydride 7.254 4.003 0.155 0.938 255.4 199.9
-butyrolactone 7.668 15.694 0.135 0.929 275.1 229.8

isobutyric anhydride 7.589 7.189 0.160 0.940 251.6 219.7
propionic anhydride 7.816 12.623 0.151 0.932 254.1 228.2
diethyl malonate 8.309 1.570 0.142 0.948 253.6 224.3
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In Table 4.7, the ’mapping list’ (10 best performing solvents) obtained by CoMT-
CAMD with the 𝑘 -estimation models is compared to the ranking of the same com-
ponents in the ’mapping list’ obtained by CoMT-CAMD with 𝑘 = 0. Propylene car-
bonate, N-methyl-2-pyrrolidone and 𝛾-valerolactone are among the best performing
solvents in both mapping lists. The difference in the ranking of the components can
be attributed to the implementation of the 𝑘 -estimation models.

Table 4.7: Influence of -estimations on the mapping ranking. The mapping ranking of the 10 best
performing solvents obtained by CoMT-CAMD with -estimations ( ) is compared to the mapping
ranking of the same components obtained by CoMT-CAMD with .

mapping ranking

IUPAC Name # #
( -estimations) ( )

propylene carbonate 1 1
diethyl sulfate 2 5
-valerolactone 3 2

methyl maleic anhydride 4 3
N-methyl-2-pyrrolidone 5 4
butyric anhydride 6 8
-butyrolactone 7 6

isobutyric anhydride 8 10
propionic anhydride 9 13
diethyl malonate 10 21

In the following, results from individual process optimizations with predicted
𝑘 values for the binary mixture of the solvent with CO are compared to results
with 𝑘 values independently adjusted to experimental data. Due to the scarcity
of experimental data for binary mixtures with H , the 𝑘 values for binary mixtures
of the solvent with H were in both cases set equal to the predicted values. A
further comparison with results from individual process optimizations with 𝑘 = 0
for the solvent binary mixtures intends to show in which extend the accuracy of the
CoMT-CAMD result is improved by the implementation of the 𝑘 -estimation method.
Besides, for the sake of consistency, 𝑘 values for binary mixtures of the solvent
with H O are defined equal to zero throughout. A matrix that summarizes the 𝑘
estimation method for each case is given in Table 4.8. The results of the individual
process optimizations are shown in Table 4.9.

According to the results in Table 4.9, the predicted performance with estimated
𝑘 values (case 1) is closer to the actual one (reference: case 2). When no correc-
tion is used in phase equilibrium calculations (𝑘 = 0), the value of the objective
function is consistently underestimated. The phase equilibrium diagrams presented
in Figure 4.1 support this observation. Compared to experimental data, PC-SAFT
predictions with 𝑘 = 0 overestimate the concentration of CO in the liquid phase.
For the binary mixture of propylene carbonate with CO , no significant correction
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Table 4.8: Comparison matrix for results evaluation, according to the estimation method.

evaluation method
case 1: case 2: case 3:

binary mixture ( ) ( ) ( )
solvent-CO QSPR model exp. data 0
solvent-H QSPR model QSPR model 0
solvent-H O 0 0 0

Table 4.9: Influence of estimation method to the calculated optimal performance of the system. Re-
sults from individual optimizations (’real ’) and the resulting ranking of the components (’real ranking’)
are presented for the 3 cases of estimation methods in Table 4.8. The value of the objective function

is given in units €/ .

mapping list real real ranking
(CoMT-CAMD with (individual process optimizations) (individual process optimizations)

-estimations) case 1 case 2 case 3 case 1 case 2 case 3
( ) ( ) ( ) ( ) ( ) ( )

propylene carbonate 6.837 7.081 6.545 1 1 1
diethyl sulfate
-valerolactone 7.322 7.433 6.923 3 3 3

methyl maleic anhydride
N-methyl-2-pyrrolidone 7.284 7.162 6.963 2 2 4
butyric anhydride
-butyrolactone 7.668 7.479 6.722 4 4 2

isobutyric anhydride
propionic anhydride
diethyl malonate

is achieved with the estimated 𝑘 value. As can be seen in Table 4.10, the esti-
mated 𝑘 value for this mixture is too low, closer to 0 than to the correction actually
necessary. However, the evaluation of the results generally shows that phase equi-
librium calculations with estimated 𝑘 values describe the real performance of the
examined systems (experimental data) with higher accuracy (Table 4.8).
A final point should be commented, namely the decision not to implement a bi-

nary interaction correction for the mixtures of the solvent with H O. Mixtures of
H O with dipolar, non-associating components are difficult to predict for thermody-
namic models and they require correction (𝑘 ≠ 0) for more accurate descriptions
of phase equilibria. As already discussed in Chapter 3, mixtures with one dipolar,
non-associating component and one associating component are most demanding,
due to the effects of induced association [21]. In order to avoid introducing un-
necessary uncertainties, more accurate correlations of 𝑘 are required for this type
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Figure 4.1: Vapor-liquid equilibria for binary mixtures of best performing polar solvents with CO : a) CO
- propylene carbonate [16], b) CO - -valerolactone [17], c) CO - N-methyl-2-pyrrolidone [18, 19] and
d) CO - -butyrolactone [20]. Predictions of PC-SAFT with estimated values ( ) are compared
to isothermal experimental data. Correlations with values adjusted to experimental data ( ) and

without correction ( ) are also included. The values of the binary interaction parameter (
and ) used in the calculations for each binary mixture are given in Table 4.10.

of mixtures. Generally, an improved description of mixtures with H O is necessary.
In this case an extension of the process model to include water separation units
and the implementation of robust methods for liquid-liquid equilibrium calculations
might be needed.
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Table 4.10: Binary interaction parameters for the binary mixtures of CO with polar solvents.
was estimated using a QSPR model (Appendix E.5). was adjusted to experimental data, which were
obtained from the Dortmund DataBase [22] and passed the thermodynamic consistency tests [23].

Binary mixture Temp. range Ref.

CO - propylene carbonate 0.0010 0.0314 245 DDB [22]
CO - -valerolactone 0.0243 0.0466 40 DDB [22]
CO - N-methyl-2-pyrrolidone 0.0131 0.0163 139 DDB [22]
CO - -butyrolactone 0.0221 0.0184 62 DDB [22]



4.4. Conclusions ..

4

99

4.4. Conclusions
𝑘 -estimation models were implemented in the CoMT-CAMD framework for the bi-
nary mixtures of the solvent with CO and H . The implementation of 𝑘 -estimation
models in CoMT-CAMD has an impact on the mapping ranking. QSPR relations
for the prediction of 𝑘 are embedded into the PC-SAFT model. Thereby, the
derivatives calculated at optimum for the approximation of the objective function
𝑓 (𝑥, 𝑦) and of the constraint 𝑚 (𝑥, 𝑦) are different than the derivatives with
𝑘 = 0. Although the optimal parameters of the hypothetical molecule (result of
the CoMT step) with 𝑘 -estimations and with 𝑘 = 0 are similar, the mapping rank-
ing is different, because the same change in the molecular parameters results to a
different change in the objective function.

A comparison of phase equilibria calculations with predicted 𝑘 -values and with
𝑘 = 0 to experimental data of vapor-liquid equilibria was carried out for best
performing real solvents. The results of phase equilibria calculations with predicted
values of 𝑘 are closer to the experimental data than the results obtained with
𝑘 = 0. Considering values of the objective function obtained by calculations with
𝑘 adjusted to experimental data as a reference, the implementation of the 𝑘 -
estimations gives more representative results than when 𝑘 = 0 is used.

The results of this chapter show, that the prediction of 𝑘 -values with the QSPR
models developed in this thesis enhances the accuracy in phase equilibria calcula-
tions and thereby the accuracy of CoMT-CAMD results.
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5.1. Conclusions
5.1.1. Further development of the CoMT-CAMD method
In this thesis, the framework of Continuous Molecular Targeting - Computer Aided
Molecular Design (CoMT-CAMD) is further developed and implemented for the si-
multaneous process and solvent design for CO capture.

The main performance trade-offs of the CO -capture system are evaluated using
a single, cost-based, objective function. Limitations about the environmental per-
formance of the solvent are, additionally, considered through a process inequality
constraint. The performance of candidate solvents is evaluated by an approxima-
tion of the objective function using a Taylor series expansion around the optimal
solution of the CoMT optimization problem (mapping step). Evaluation of inequality
process constraints was included in the mapping step using a linear approximation.
Thereby, real components that do not satisfy the process inequality constraints (”in-
feasible components”), are excluded from the set of best performing candidates. As
proven by individual process optimizations (validation of the CoMT-CAMD results),
the best performing components identified in the mapping step are indeed the fea-
sible components with best achievable performance for the problem at hand.
The results of the case studies examined in chapters 2 and 4 showed that CoMT-
CAMD can be successfully solved for rigorous (reasonably complex) process models
and that minor changes in the process model do not alter significantly the set of
best performing real solvents. Changes in the objective function are expected, how-
ever, to have higher influence on the result of the problem. Here lies also one of
the main strengths of CoMT-CAMD, being a deterministic method. In this regard,
the objective function should be carefully chosen and consider all major trade-offs
of the design problem.

Further, predictions of the ideal gas specific heat capacity 𝑐 and the molar mass
𝑀 of pure components, as function of the PC-SAFT pure component parameters,
were developed. Reasonable correlations of 𝑐 and 𝑀 are established using QSPR-
models, with correlation coefficients R higher than 0.98 and 0.93, respectively.
In CoMT-CAMD, the PC-SAFT pure component parameters of the optimized fluid
(i.e. solvent) are molecular degrees of freedom for the optimization problem. The
proposed QSPR models incorporated in CoMT-CAMD enable the calculation of full
caloric properties and mass specific quantities.

Prediction of mixture properties and phase equilibria are particularly demanding
for thermodynamic models. Often, binary interaction parameters adjusted to ex-
perimental data have to be applied, in order to allow for more accurate calculations
of excess properties. In CAMD problems, binary interaction parameters cannot be
adjusted to experimental mixture data. Therefore, in the course of this thesis, a
QSPR-model, that relates the binary interaction parameter 𝑘 to the PC-SAFT pure
component parameters, has been developed.
Good predictions of 𝑘 were obtained for binary mixtures of two non-associating
substances, of one non-associating and one associating substance and of two as-
sociating substances. For these types of binary mixtures, 𝑘 can be successfully
correlated to the PC-SAFT parameters of the mixture components. 𝑘 predictions
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with the proposed QSPR-model for binary mixtures of one dipolar, non-associating
and one associating substance were, however, only partially successful. The ef-
fects of induced association present in this type of mixtures are not trivial and their
influence should be further examined.

In the last chapter of this thesis, the role of binary interaction parameters for
an improved prediction of mixture properties has been investigated. CoMT-CAMD
was implemented for the simultaneous process and solvent optimization for CO -
capture, with estimations of 𝑘 in binary mixtures of the optimized solvent. The
evaluation of the results showed that the accuracy of the CoMT-CAMD approach
can be further enhanced by using the developed QSPR-models for 𝑘 .

5.1.2. Optimal solvents for pre-combustion CO capture
The process examined in this thesis resembles in its’ key features the process of
CO capture of the pre-combustion capture pilot plant at the IGCC power plant in
Buggenum. The applied process model considers the main steps of absorption,
desorption and CO compression. The performance of the system is measured by
a single, process-based cost objective function. The objective function is written as
the sum of operating costs covering the primary energy consumption, consumption
of raw materials and product loss in the major stages of the process. In addition
to an economic penalty for solvent loss, a maximum value for solvent loss was
considered as an inequality constraint, reflecting an emission threshold. Thereby
the optimization of the overall performance of the system is attained, subject to
environmental constraints.

Non-polar and polar solvents were examined separately. The set of best per-
forming real components includes state-of-the-art solvents, like propylene carbon-
ate and N-methyl-2-pyrrolidone. Because the optimization and the mapping pro-
cedure are fully deterministic, independent from pre-selection of candidates and
heuristics, the presence of state-of-the-art solvents gives some additional confi-
dence regarding the plausibility of the entire list of best performing solvents. Simi-
larities in the molecular structure of the best performing components are also ob-
served. Carbonylic oxygen and phenyl rings are present in the molecule of almost all
best performing components. The favorable interactions of carbonylic oxygen and
phenyl rings with CO have been already studied by other authors [1–3]. The best
components generally correspond to small molecules (low values of the segment
number and segment diameter in the PC-SAFT representation), with high dispersive
energy and dipole moment.

The best identified polar solvents show a higher potential to improve the overall
performance of the process. The best polar solvents outperform DEPGs. DEPG-
blends have been successfully employed in applications for pre-combustion CO
capture. It should be taken into account, though, that such applications (e.g. the
Selexol process) are designed for the sequential removal of H S and CO . Here,
the removal of H S is not evaluated by the objective function.

A promising result of this work is the identification of 𝛾-valerolactone among
the best performing polar solvents. 𝛾-Valerolactone has been classified by some
authors [4, 5] as a green solvent for bio-refineries and appears to be a promis-
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ing solvent for CO capture as well. For the binary mixture 𝛾-valerolactone - CO
only scarce experimental data are available, for low pressure vapor-liquid equilib-
ria. Additional VLE measurements at elevated pressures for the binary systems of
𝛾-valerolactone with CO , H and H O are suggested. A more thorough experimen-
tal research may confirm the result of CoMT-CAMD and reveal 𝛾-valerolactone as a
prospective, green solvent for pre-combustion CO capture.

5.2. Perspectives
Founded on the use of physically based thermodynamic models, CoMT-CAMD grows
fast, together with the PC-SAFT model. Developments in the PC-SAFT model sup-
port CoMT-CAMD and broaden its’ application range. On the other side, CoMT-CAMD
poses constantly challenging questions regarding the prediction of thermodynamic
properties with PC-SAFT.

A prospective future extension of the CoMT-CAMD framework is to consider
investment costs in the objective function. Estimating investment costs requires
sizing (i.e. dimensioning) of key equipment, which in turn necessitates transport
properties, like viscosity, heat transfer and diffusion coefficients. In CoMT-CAMD,
the transport properties of the optimized fluid have to be expressed as functions of
the PC-SAFT pure component parameters. The prediction of viscosity, heat transfer
and diffusion coefficients for pure substances and mixtures with PC-SAFT is an on-
going work [6, 7], that will allow, for example, the design of heat exchangers and
rate-based models for absorption.

CoMT-CAMD has been implemented for the design of new solvent molecules,
beyond an existing substance-database. [8] The procedure for the identification of
the optimal molecule at optimal process conditions (CoMT optimization step) re-
mains unchanged. For the design of new solvent molecules, a group-contribution
approach of PC-SAFT (GPC-SAFT [9]) is employed and together with feasibility con-
straints on the molecular structure in the mapping step, as described in ref. [8] by
the present author and co-workers. The PC-SAFT pure component parameters of
the designed solvent are calculated from the parameters of functional groups, us-
ing GPC-SAFT [9]. So far, only molecular structures with a single polar group have
been considered. The parameterization of GPC-SAFT to molecules with multiple
polar groups will increase accuracy and thus allow for the design of more power-
ful fluids. Further, the implementation of a hetero-segmented group-contribution
approach for PC-SAFT (ref. [9]) may allow for the distinction between isomers.

A first step towards the extension of CoMT-CAMD to the design of fluid mixtures
has already been taken by the implementation of the method to working fluid mix-
tures for ORC applications [10]. For the design of binary fluid mixtures, the pure
component parameters of the second fluid are introduced as additional molecular
degrees of freedom to the optimization problem. In the mapping step, the imple-
mentation of a CAMD approach, with predictions of 𝑘 values based on GPC-SAFT,
seems to be a promising approach.

The presence of water is for many problems a limiting design factor. The imple-
mentation of robust methods for the prediction of liquid-liquid phase equilibria with
PC-SAFT would help to consider the influence of water in mixture streams with the
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optimized fluid. Finally, robust liquid-liquid equilibrium calculations will support the
implementation of CoMT-CAMD to the optimization of liquid extraction process.

A perspective of CoMT-CAMD on a somewhat longer time scale is given for
the modeling of (solid) materials and products determined by structure including
interfaces.

CoMT-CAMD is a platform, on which molecular thermodynamics, process engi-
neering and modern algorithmic techniques combine their strengths, in order to ap-
proach the demanding problem of integrated process and molecular design. Heuris-
tic decisions give their place to deterministic solutions and CoMT-CAMD allows for
a new generation of optimal process and fluid designs.
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A
The PC-SAFT EoS

This appendix summarizes the equations used for calculating thermodynamic properties from
the PC-SAFT equation-of-state (EoS). The equations presented bellow are directly adopted
from ref. [1–5].

A.1. Helmholtz energy
Hard-chain (reference fluid) contribution. The contribution of the hard-chain
reference fluid is given as

�̃� = 𝑚�̃� −∑𝑥 (𝑚 − 1) ln 𝑔 (𝜎 ) (A.1)

with 𝑚 = ∑ 𝑥 𝑚 the mean segment number in the mixture.
The contribution of the hard-sphere reference �̃� is given by

�̃� = 1
𝜁 ⋅ [ 3𝜁 𝜁(1 − 𝜁 ) +

𝜁
𝜁 (1 − 𝜁 )

+ (𝜁𝜁 − 𝜁 ) ln (1 − 𝜁 )] (A.2)

where 𝜁 is defined as

𝜁 = 𝜋
6𝜌∑𝑥 𝑚 𝑑 𝑛 ∈ {0, 1, 2, 3} (A.3)

𝜌 is the number density of molecules and 𝑑 is the temperature-dependent diameter
of component 𝑖, given by

𝑑 = 𝜎 [1 − 0.12 exp (−3 𝜀𝑘𝑇)] (A.4)

The radial distribution function at contact distance of two hard spheres [6, 7] is
given by

𝑔 = 1
(1 − 𝜁 ) +

𝑑 𝑑
𝑑 + 𝑑 ⋅ 3𝜁

(1 − 𝜁 )
+ (

𝑑 𝑑
𝑑 + 𝑑 ) ⋅ 2𝜁

(1 − 𝜁 )
(A.5)
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Dispersive contribution. The contribution due to dispersive intermolecular po-
tentials for chain molecules is given as a sum of first- and second-order contribu-
tions [8]:

�̃� = �̃� + �̃� (A.6)

�̃� = −2𝜋𝜌 ⋅ 𝐼 (𝜂,𝑚) ⋅ 𝑚 𝜀𝜎 (A.7)

�̃� = −𝜋𝜌𝐶 ⋅ 𝐼 (𝜂,𝑚) ⋅ 𝑚 𝜀 𝜎 (A.8)

where 𝜂 is the packing fraction defined as 𝜂 = 𝜁 and the integrals of the perturba-
tion theory 𝐼 (𝜂,𝑚) and 𝐼 (𝜂,𝑚) are substituted by power series in density [1]:

𝐼 (𝜂,𝑚) =∑𝑎 (𝑚)𝜂 (A.9)

𝐼 (𝜂,𝑚) =∑𝑏 (𝑚)𝜂 (A.10)

The coefficients of Eq.(A.9) and (A.10) are adjusted to experimental pure compo-
nent data of elongated molecules i.e. the series of n-alkanes and they are given in
the work of Gross and Sadowski [1]. The abbreviated terms 𝑚 𝜀𝜎 , 𝑚 𝜀 𝜎 and
𝐶 are given as

𝑚 𝜀𝜎 =∑∑𝑥 𝑥 𝑚 𝑚 (
𝜀
𝑘𝑇)𝜎 (A.11)

𝑚 𝜀 𝜎 =∑∑𝑥 𝑥 𝑚 𝑚 (
𝜀
𝑘𝑇) 𝜎 (A.12)

𝐶 = 𝑘𝑇 (𝜕𝜌𝜕𝑃) = 𝑚 ⋅ (1 + 𝑍 + 𝜌𝜕𝑍𝜕𝜌 ) =

(1 +𝑚 ⋅ 8𝜂 − 2𝜂
(1 − 𝜂)

+ (1 − 𝑚) ⋅ 20𝜂 − 27𝜂 + 12𝜂 − 2𝜂
[(1 − 𝜂)(2 − 𝜂)]

)
(A.13)

The dispersive parameters of a pair of unlike segments are given by the Lorentz-
Berthelot combining rules:

𝜎 = 1
2 (𝜎 + 𝜎 ) (A.14)

𝜀 = (1 − 𝑘 )√𝜀 𝜀 (A.15)

where 𝑘 is the binary interaction parameter that corrects the equation-of-state for
unlike intermolecular potentials.
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Association contribution. The term of the residual Helmholtz energy due to
associating intermolecular potentials �̃� is calculated as described in the work
of Chapman et al. [5]. The radial distribution function 𝑔 is here the one defined
in Eq.(A.5). For mixtures

�̃� = ∑𝑥 [∑[ln𝑋 − 𝑋2 ] + 12𝑀 ] (A.16)

where 𝑀 is the number of associating sites of the molecule of component 𝑖 in the
mixture and summation runs over all different types of association sites (A, B, C,
...) in each molecule 𝑖. 𝑥 is the mole fraction of all molecules of component 𝑖 and
the mole fraction 𝑋 of molecules not bonded at site A is given by

𝑋 = [1 + 𝑁 ⋅∑∑𝜌 𝑋 Δ ] (A.17)

where ∑ runs over all mixture components, ∑ runs over all different sites on
molecule 𝑗 (𝐴 , 𝐵 , 𝐶 , … ) and 𝜌 = 𝑥 ⋅ 𝜌 is the molar density of component 𝑗. The
association strength Δ between a site of type A in molecule 𝑖 and a site of type
𝐵 in molecule 𝑗 is given by

Δ = 𝜎 𝑔 (𝜎 )𝜅 [𝑒𝑥𝑝 (𝜀𝑘𝑇 ) − 1] (A.18)

The cross-association parameters are calculated from pure-component association
parameters using the Wolbach and Sandler [9] combining rules:

𝜀 = 1
2 (𝜀 + 𝜀 ) (A.19)

𝜅 = √𝜅 𝜅 ⋅ [
2 (𝜎 𝜎 )
𝜎 + 𝜎 ] (A.20)

In the current work the PC-SAFT EoS for associating components is implemented
using the 2B-association scheme, according to Huang and Radosz [10]. The as-
sumptions of the 2B-association scheme for mixtures can be summarized as:

Δ = Δ = Δ = Δ = 0
Δ = Δ ≠ 0
Δ = Δ
𝑋 = 𝑋
𝑋 ≠ 𝑋 (A.21)
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Contribution of quadrupole-quadrupole,dipole-dipole and dipole-quadrupole
interactions. The term of the residual Helmholtz energy due to quadrupolar in-
teractions is based on a perturbation theory of third-order, written in the Padè
approximation [3, 11]:

�̃�qq = �̃�qq

1− ̃qq/ ̃qq
(A.22)

with

�̃�qq = −𝜋 (34) 𝜌∑∑𝑥 𝑥 𝜀
𝑘𝑇 ⋅

𝜀
𝑘𝑇 ⋅

𝜎 𝜎
𝜎 ⋅ 𝑄∗ ⋅ 𝑄∗ ⋅ 𝐽qq

, (A.23)

�̃�qq =𝜋3 (
3
4) 𝜌∑∑𝑥 𝑥 ( 𝜀𝑘𝑇)

/
(
𝜀
𝑘𝑇 )

/
⋅
𝜎 / 𝜎 /

𝜎 2 ⋅ 𝑄∗ ⋅ 𝑄∗ ⋅ 𝐽qq
, +

4𝜋
3 (34) 𝜌 ∑∑∑𝑥 𝑥 𝑥 ⋅ 𝜀𝑘𝑇 ⋅

𝜀
𝑘𝑇 ⋅

𝜀
𝑘𝑇 ⋅

𝜎 𝜎 𝜎
𝜎 𝜎 𝜎 ⋅

⋅ 𝑄∗ ⋅ 𝑄∗ ⋅ 𝑄∗ ⋅ 𝐽qq
,

(A.24)

where 𝑄∗ = 𝑄 / (𝑚 𝜎 𝜀 ) is the dimensionless squared quadrupole moment.
𝐽qq
, and 𝐽qq

, are the integrals over the pair correlation function of the reference
fluid and 𝐽qq

, is the integral over three-body correlation functions. As described in
the work of Gross [3] the integral 𝐽qq

, is assumed to be equal to zero. The integral
𝐽qq
, for a pure fluid is assumed to be only a function of 𝑇 and 𝜌 and a functional of

elongation (or segment number, 𝑚):

𝐽qq
, = ∑(𝑎 , + 𝑏 , ⋅

𝜀
𝑘𝑇) ⋅ 𝜂 (A.25)

The integral 𝐽qq
, is assumed to be temperature-independent and it is approximated

as

𝐽qq
, = ∑𝑐 , ⋅ 𝜂 (A.26)

Gross [3] adjusted the model constants of Eq.(A.25) and (A.26) to molecular sim-
ulation data [12] of spherical and non-spherical molecules respectively. The ad-
justment of the model constants, that was carried out for varying elongations of a
two-centers Lennard-Jones (2CLJ) fluid, allows an expression of quadrupolar inter-
actions, which is valid for varying chain lengths [3].

In an analogous manner the terms of the residual Helmholtz energy due to
dipole-dipole and dipole-quadrupole interactions are derived [4, 13].
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B
Process model and objective

function

B.1. Process model for the pre-combustion CO2 cap-
ture

The process topology for the pre-combustion CO capture (Figure B.1) considers
the main stages of absorption, desorption and CO compression to pipeline pres-
sure. The number of stages in the absorber has been defined using a sensitivity
analysis as described in section 2.3.1 and detailed in B.1.1. Desorption includes
two sequential pressure reduction flash stages. The absorber and the two des-
orption flashes are modeled using a phase equilibrium stage model. Two recycle
streams are considered; the H rich gas stream from the first (rich gas) desorption
flash (’rg’) and the liquid stream of the lean solvent (’lean’). The process simulation
problem is formulated as a system of non-linear equations

𝐫(𝑦) = 0 (B.1)

where 𝑦 is the vector of the iterated process variables. The equations in (B.1)
are formulated on the residuals between the iterated and calculated values of the
process variables for: a) the internal streams of the absorber 𝐫 (𝑦) and b) the
process variables of the two recycle streams 𝐫 , (𝑦) and 𝐫 (𝑦). Finally, (B.1)
includes the equation of the process specification for constant CO capture rate in
the absorber 𝐫 (𝑦).

𝐫(𝑦) ∶= {𝐫 (𝑦), 𝐫 , (𝑦), 𝐫 , (𝑦), 𝐫 (𝑦)} (B.2)

In process optimization as well as in simultaneous process and solvent optimization,
the equations in (B.2) represent the equality process constraints of the optimization
problem.
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solvent 

recycle pump
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solvent 
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rich gas flash

desorption flash

pipeline compression

solvent make-up

rich gas 

compression

mixer
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auxilliary 

pump

mixer
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Figure B.1: Process topology of pre-combustion CO capture system (adopted from Stavrou et al. [1]).

B.1.1. Absorption
For the absorber an equilibrium stage model is considered. Figure B.2 gives a
general schematic representation of the 𝑗-th stage of the absorber. The so-called

Figure B.2: General representation of an adiabatic equilibrium stage of the absorber model.
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MESH equations used to model the equilibrium stages 𝑗 are: the component balance
equations (M), the equilibrium relations (E), the summation equations (S) and the
energy balance equations (H). [2]
The summation equations for the vapor and liquid streams are

∑𝑥 , = 1 and ∑𝑥 , = 1 (B.3)

where 𝑥 , and 𝑥 , are the mole fractions of each system component 𝑖 in the vapor 𝑉
and the liquid 𝐿 stream exiting stage 𝑗 and 𝑁 is the total number of components.
The component balance equation for component 𝑖, for the 𝑗-th stage of the absorber
writes

𝑥 , ⋅ 𝑉 + 𝑥 , ⋅ 𝐿 − 𝑥 , ⋅ 𝑉 − 𝑥 , ⋅ 𝐿 = 0 (B.4)

When Eq. (B.4) is formulated for all 𝑁 components, the equation of the total mass
balance is redundant.
For the 𝑗-th stage of the adiabatic absorber, where the heat stream �̇� = 0, the
energy balance equation writes

ℎ ⋅ 𝑉 + ℎ ⋅ 𝐿 − ℎ ⋅ 𝑉 − ℎ ⋅ 𝐿 = 0 (B.5)

where ℎ and ℎ denote the molar enthalpy of the vapor and the liquid stream,
respectively.
The phase equilibrium condition is solved for all components 𝑖 using the isofugacity
condition

𝑥 , ⋅ 𝜑 , − 𝑥 , ⋅ 𝜑 , = 0 (B.6)

where 𝜑 , and 𝜑 , are the fugacity coefficients of component 𝑖 in the vapor and
liquid phase, respectively.

Calculation of internal streams using a simultaneous correction method
Equilibrium stage models for multi-stage, multi-component separation problems
have been extensively studied in the literature. A summary of the various solution
methods for equilibrium stage models can be found in ref. [3] and [2].
In the current work, the absorber model is solved using a simultaneous correction
method [2]. Simultaneous correction methods are computationally efficient and
are considered as robust regarding the convergence in physical property calcula-
tions. [2] The MESH equations are solved simultaneously.
The variables used in the current implementation are slightly different from the
variables shown in Figure B.2. The iterated variables are the component vapor and
liquid molar flows and the temperature of the internal streams of the absorber.
More specifically, for the 𝑗-th stage of the absorber (with 𝑗 = 2,… ,𝑁 − 1) the tem-
peratures 𝑇 and 𝑇 of the exiting vapor and liquid streams are iterated alongside
with the component molar flows 𝑣 ∶= {𝑣 , , … , 𝑣 , } and 𝑙 ∶= {𝑙 , , … , 𝑙 , }. The
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molar enthalpies of the exiting streams are calculated as function of the pressure
𝑃 , the iterated temperature and component molar flows:

ℎ = ℎ (𝑃 , 𝑇 , 𝑥 ) and ℎ = ℎ (𝑃 , 𝑇 , 𝑥 ) (B.7)

with 𝑥 , =
𝑣 ,

∑ 𝑣 ,
and 𝑥 , =

𝑙 ,
∑ 𝑙 ,

For a countercurrent multi-equilibrium-stage model, such as an absorption column,
one needs to iteratively solve internal variables. For the 1 stage of the absorber
(𝑗 = 1) we define as iterated variables the temperature 𝑇 and component molar
flows of the exiting liquid stream 𝑙 ; for the last stage of the absorber (𝑗 = 𝑁) only
the temperature 𝑇 and component molar flows of the exiting vapor stream 𝑣 are
iterated.
The pressure drop along the absorption column is neglected, thus

𝑃 = 𝑃 = 𝑃. (B.8)

A schematic representation of the equilibrium stage model with the modified simu-
lation variables is given in Figure B.3.

Phase equilibrium calculations are carried out using an adiabatic-isobaric flash
algorithm (PQ-flash). For every stage 𝑗 (with 𝑗 = 1,… ,𝑁) a pseudo-feed stream with
total molar flow 𝐹 , composition 𝑥 and molar enthalpy ℎ is defined. The pseudo-
feed stream is calculated from the iterated streams entering stage 𝑗, namely the
liquid stream exiting stage 𝑗 − 1 and the vapor stream exiting stage 𝑗 + 1:

𝐹 =∑𝑙 , +∑𝑣 , (B.9)

𝑥 , =
𝑙 , + 𝑣 ,

𝐹 (B.10)

and ℎ =
∑ 𝑙 ,

𝐹 ⋅ ℎ +
∑ 𝑣 ,

𝐹 ⋅ ℎ . (B.11)

For the 1 stage the pseudo-feed stream is calculated using Eq.(B.9) to (B.11) with
the iterated component molar flows 𝑣 of the vapor stream exiting stage 2 and

the iterated component molar flows 𝑙 of the lean solvent recycle that enters
the absorber in stage 1. The pseudo-feed stream for the last stage 𝑁 is calculated
using Eq.(B.9) to (B.11) with the iterated component molar flows 𝑙 of the liquid
stream exiting stage 𝑁− 1 and the iterated component molar flows of the rich gas
recycle stream 𝑣 entering the absorber in stage 𝑁.
Using the pseudo-feed stream defined in Eq.(B.9) to (B.11), phase equilibrium cal-
culations deliver for every stage 𝑗 the calculated values of the component molar

flows �̂� ∶= {�̂� , , … , �̂� , } and ̂𝑙 ∶= { ̂𝑙 , , … , ̂𝑙 , }, the temperatures �̂� = �̂� = �̂�
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Figure B.3: In the -th iteration for stage of the absorber (with , … , ) the component molar

flows ( ) and
( )

and the temperatures ,( ) and ,( ) of the vapor and the liquid exiting streams
are iterated, respectively.

and thereby the molar enthalpies ℎ̂ and ℎ̂ of the exiting vapor and liquid streams
(Figure B.4). For the 𝑗-th stage of the absorber (with 𝑗 = 2,… ,𝑁−1) the equations
of the residuals between iterated variables and their calculated values then write

𝐫 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

ℎ − ℎ̂
ℎ − ℎ̂
𝑣 , − �̂� ,
𝑣 , − �̂� ,

⋮
𝑣 , − �̂� ,
𝑙 , − ̂𝑙 ,
𝑙 , − ̂𝑙 ,

⋮
𝑙 , − ̂𝑙 ,

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

, for 𝑗 ≠ 1 and 𝑗 ≠ 𝑁 (B.12)
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(a) (b)

Figure B.4: Generic representation of the input and output variables of the adiabatic-isobaric flash (PQ-
Flash) calculations for stage . (a): The actual input variables for PQ-flash are the iterated component
molar flows and molar enthalpies (function of the iterated temperature) of the streams entering the
equilibrium stage. Stage is considered adiabatic ( ̇ ). (b): A pseudo-feed stream is defined
for stage as function of the iterated variables of the liquid and vapor streams entering stage , as
presented in (a). Phase equilibrium calculations with PQ-flash give the component molar flows and the
molar enthalpies of the vapor and liquid streams exiting stage in equilibrium.

For the 1 stage

𝐫 =
⎛
⎜
⎜
⎜

⎝

ℎ − ℎ̂
𝑙 , − ̂𝑙 ,
𝑙 , − ̂𝑙 ,

⋮
𝑙 , − ̂𝑙 ,

⎞
⎟
⎟
⎟

⎠

(B.13)

while for the last stage 𝑁

𝐫 =
⎛
⎜
⎜
⎜

⎝

ℎ − ℎ̂
𝑣 , − �̂� ,
𝑣 , − �̂� ,

⋮
𝑣 , − �̂� ,

⎞
⎟
⎟
⎟

⎠

(B.14)

The residual equations for the internal streams of the absorber formulate the square
2(𝑁 + 1)(𝑁 − 1) equation system

𝐫 (𝑦) ∶= {𝐫 , 𝐫 , … , 𝐫 , 𝐫 } (B.15)

𝐫 (𝑦 ) is a subset of the equation system in (B.2).



B.1. Process model for the pre-combustion CO capture ..

B

121

Phase equilibrium calculations
For phase equilibrium calculations in the absorber the adiabatic-isobaric flash prob-
lem (PQ-flash) is solved for every stage 𝑗 (Figure B.4). The isothermal-isobaric
two-phase flash problem (PT-flash), which is a sub-problem of PQ-flash, is solved
using the successive substitution Rachford-Rice algorithm (according to Michelsen
and Mollerup) [4]. The required caloric properties (residual part) and fugacities in
the PT-flash and PQ-flash problems are calculated with the PC-SAFT EoS.

Process specifications
For the examined pre-combustion CO capture system a constant CO capture rate
in the absorber of 90% is specified. In this work, the CO capture rate 𝛼 is
defined as CO captured in the absorber with respect to the CO molar flow in the
syngas stream 𝑣

𝛼 = 1 −
�̂� ,
𝑣 (B.16)

where �̂� , is the (calculated) value of the CO molar flow in the gas stream exiting
the 1 stage of the absorber. The residual equation 𝐫 (𝑦) then writes

𝐫 (𝑦) = (1 − 𝛼 ) ⋅ 𝑣 − �̂� , (B.17)

The independent variable for the specification in Eq.(B.17) is the molar flow of the
solvent make-up stream 𝑙 .

Estimation of the number of absorption stages

Note: Parts of this section have been published as Supporting Information to the work of
Stavrou et al. [1].

For the simultaneous process and solvent optimization in the CoMT step an eco-
nomic objective function is minimized. The degrees of freedom for the optimization
are the pressure levels in the rich gas and desorption flash 𝑃 and 𝑃 , the tem-
perature of the lean solvent 𝑇 and the PC-SAFT molecular parameters of the
solvent 𝑝 = {𝑚, 𝜎, 𝜀/𝑘, 𝜇}. In the current work the number of stages in the ab-
sorber is not considered as degree of freedom for the CoMT optimization problem
(Eq. (2.2)), because such an optimization would require consideration of investment
costs as part of the objective function. In order to define a reasonable number of
equilibrium stages, a sensitivity analysis was carried out and the influence of the
number of absorption stages on the CoMT optimization results was examined. Fig-
ures B.5 and B.6 show that the number of absorption stages has a low impact on
the optimal molecular parameters of the solvent calculated in the CoMT step. Fig-
ures B.7 and B.8 show that increasing the number of absorption stages above 7
will only have a moderate effect on the optimal process conditions and the opti-
mal value of the objective function. The absorber is therefore defined with a fixed
number of 𝑁 = 7 equilibrium stages.
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Figure B.5: Sensitivity of the optimal molecular parameters of the solvent: (a) segment number
and (b) segment diameter for varying number of absorption stages for non-polar (red diamond
symbols) and polar molecules (black square symbols).
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Figure B.6: Sensitivity of the optimal molecular parameters of the solvent: (a) dispersion energy /
and (b) dipole moment for varying number of absorption stages for non-polar (red diamond
symbols) and polar molecules (black square symbols).
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Figure B.7: Sensitivity of the optimal process conditions: (a) optimal pressure of the second desorption
flash , (b) optimal pressure of the hydrogen-rich gas desorption flash and (c) optimal temper-
ature of the lean solvent for varying number of absorption stages for non-polar (red diamond
symbols) and polar molecules (black square symbols).
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Figure B.8: Sensitivity of the optimal value of the objective function for varying number of absorption
stages in the absorber for non-polar (red diamond symbols) and polar molecules (black square
symbols).
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B.1.2. Desorption
The desorption flash units are modeled using the equilibrium stage model described
in Section B.1.1. For each flash unit the phase equilibrium problem is solved for the
adiabatic-isobaric flash using the PQ-flash algorithm (Figure B.4). The solution of
the phase equilibrium problem for the desorption flashes is, however, more simple
than in the case of the absorber. The phase equilibrium problems for the two
desorption flashes are solved independently and do not require the simultaneous
convergence of internal variables.

B.1.3. Recycle streams
The examined process topology includes two recycle streams entering the absorber:
the (vapor) recycle stream returning from the first desorption stage (rich gas flash)
after compression and cooling (hereafter noted with the superscript ’rg’) and the
(liquid) recycle stream of the lean solvent after pumping and cooling (hereafter
noted with the superscript ’lean’) (Figure B.1). For both recycle streams the iterated
variables are the component molar flows and the temperature

𝑦 ∶= {𝑇 , 𝑣 } and 𝑦 ∶= {𝑇 , 𝑙 }

The molar enthalpies of the recycle streams are calculated as function of the pres-
sure and the iterated temperature and component molar flows

ℎ = ℎ (𝑃 , 𝑇 , 𝑣 ) and ℎ = ℎ (𝑃 , 𝑇 , 𝑣 ) (B.18)

In addition, calculated values for the component molar flows and the molar en-
thalpy of the rich gas recycle are obtained through process calculations for the
units following the absorber. The equations of the residuals between the iterated
and calculated values of the variables form the equation subsystem 𝐫 , (𝑦) in
(B.2)

𝐫 , =
⎛
⎜
⎜
⎜

⎝

ℎ − ℎ̂
𝑣 − �̂�
𝑣 − �̂�

⋮
𝑣 − �̂�

⎞
⎟
⎟
⎟

⎠

(B.19)

In a similar fashion, the equation subsystem 𝐫 , (𝑦) is defined for the recycle
stream of the lean solvent entering the absorber at stage 1 after pumping and
cooling

𝐫 , =
⎛
⎜
⎜
⎜

⎝

ℎ − ℎ̂
𝑙 − ̂𝑙
𝑙 − ̂𝑙

⋮
𝑙 − ̂𝑙

⎞
⎟
⎟
⎟

⎠

(B.20)
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B.1.4. Pressure change units
Compressors
The vapor stream exiting the rich gas flash is recycled to the absorber and is com-
pressed to the absorption pressure 𝑃 . The vapor stream that exits the desorption
flash is being compressed to the pipeline pressure 𝑃 .

In both cases polytropic, staged compressors are considered according to the
model described in ref. [5]. The duty required for the gas compression �̇�
(here defined as a positive stream) is

�̇� = | 1
𝜂 𝑁 ⋅ 𝑃 ⋅ �̇� ⋅ [1 − 𝑟( )] ⋅ ( 𝑛

𝑛 − 1) | (B.21)

with 𝜂 the efficiency of the compressor, 𝑛 the polytropic exponent, 𝑁 the
number of compression stages, 𝑃 the inlet pressure, �̇� the volumetric molar flow
of the stream entering the compressor, and 𝑟 the pressure ratio for minimum
work for 𝑁 stages.
Regarding compression both vapor streams are treated as ideal gas streams. Thereby,
the polytropic exponent 𝑛 is assumed to be approximately equal to the heat capac-
ity ratio 𝛾 = . The heat capacity ratio 𝛾 is held constant equal to 1.3, which is a
fair assumption for gas streams containing mainly CO and H in the temperature
range between 250 and 400K [6].
The pressure ratio 𝑟 is given by:

𝑟 = (𝑃𝑃 )
/

(B.22)

where 𝑃 is the outlet pressure of the compressed stream (𝑃 and 𝑃 respec-
tively). The inlet pressures 𝑃 of both compressors (𝑃 for the compressor after
the rich gas flash and 𝑃 for compressor after the desorption flash) are degrees
of freedom in the simultaneous process and solvent optimization problem.

Pumps
The lean solvent stream is recycled to the absorber with a recirculating pump. The
duty required by the pump �̇� is

�̇� = 1
𝜂 ⋅ �̇� ⋅ (𝑃 − 𝑃 ) (B.23)

with 𝜂 the efficiency of the pump, �̇� the volumetric molar flow of the lean
solvent stream, 𝑃 the pressure in the absorber 𝑃 and 𝑃 the pressure of the
desorption flash 𝑃 .
The liquid stream exiting the desorption flash is mixed with the fresh solvent make-
up to the lean solvent stream. The work required by the auxiliary pump of the make-
up stream (Figure B.1) is calculated according to Eq.(B.23) for 𝑃 = 0.1013MPa
and 𝑃 = 𝑃 .
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B.1.5. Heat exchange units
In the examined process topology heat exchangers are considered for the cooling
of gas and liquid streams after compression and pumping respectively (Figure B.1).

Cooling of compressed gas streams
First, the rich gas recycle is compressed to the absorption pressure 𝑃 and mixed
with the syngas stream. After compression and before mixing, the rich gas recycle
has to be cooled to the temperature of the syngas stream 𝑇 = 313K. Second,
the vapor stream exiting the desorption flash is compressed to the pipeline pressure
and has to be cooled to the specified temperature for the pipeline gas 𝑇 (here
𝑇 = 313K). In both cases simple coolers with water as cooling medium are
considered. No pressure drop is assumed. The required cooling duty �̇� , is

�̇� , = �̇� ⋅ (ℎ − ℎ ) (B.24)

with �̇� as the molar flow of the compressed gas stream.
For the cooling of the compressed rich gas stream

ℎ = ℎ (𝑇 , 𝑃 , 𝑥 , )

ℎ = ℎ (𝑇 , 𝑃 , 𝑥 , )

while for the cooling of the compressed gas stream after desorption

ℎ = ℎ (𝑇 , 𝑃 , 𝑥 , )

ℎ = ℎ (𝑇 , 𝑃 , 𝑥 , ) .

The required molar flow of the cooling medium �̇� (here liquid water) can be
calculated as

�̇� =
�̇� ,
𝑐 ⋅ Δ𝑇

(B.25)

considering a minimum temperature difference Δ𝑇 of 10K for the heat transfer and
an average specific heat capacity for water 𝑐 = 0.5 ⋅ (𝑐 (283K) + 𝑐 (293K)). In
the current implementation, the values of 𝑐 (𝑇) were obtained from the DIPPR
database [6].

Lean solvent cooling
The temperature of the lean solvent entering the absorber 𝑇 is an additional
degree of freedom in the process and solvent optimization problem. For the cooling
of the lean solvent to the temperature 𝑇 a vapor-compression refrigeration (VCR)
system is considered. Here a simple VCR cycle is implemented (Figure B.9). Simple
VCR cycles can provide cooling as low as typically 233K [5] and possess an adequate
operating range for the requirements of the optimization problem (𝑇 = 253K).
The cooling of the lean solvent is provided in the evaporator. The required duty
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Figure B.9: Vapor-compression refrigeration cycle (VCR) [5, 7]. (a): Schematic of a simple VCR system.
(b): Temperature-entropy diagram for the VCR system presented in (a). The vapor-liquid mixture of the
refrigerant is evaporated at (process ’1-2’) and provides the required duty ̇ , to cool the
lean solvent from to . The refrigerant (saturated vapor at state ’2’) is compressed
from to (process ’2-3’). The refrigerant enters the condenser as superheated vapor (state
’3’), where it is cooled and condensed at (process ’3-4’). The (saturated) liquid refrigerant (state
’4’) is isenthalpicaly expanded to the pressure (process ’4-1’).

�̇� , is

�̇� , = �̇� ⋅ (ℎ − ℎ ) (B.26)

where �̇� is the molar flow of the lean solvent stream, ℎ is the molar enthalpy
of the lean solvent stream entering the refrigeration system and ℎ is the molar
enthalpy of the cooled lean solvent stream. ℎ is given by the energy balance
for the pump

ℎ = ℎ , +
�̇�
�̇� . (B.27)
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ℎ is calculated using the PC-SAFT EoS (with QSPR estimations for the ideal gas
specific heat capacity of the solvent 𝑐 , ) as

ℎ = ℎ (𝑇 , 𝑃 , 𝑥 )

with 𝑇 = 𝑇 and 𝑥 the vector of component mole fractions of the lean
solvent stream exiting the pump.
The compression duty �̇� for the reversible refrigeration process (process ’1s-2-
3s-4’ in Figure B.9b) is

�̇� = �̇� , (𝑇𝑇 − 1) (B.28)

where 𝑇 and 𝑇 are the condensation and evaporation temperatures of the
refrigerant. The coefficient of performance of the reversible process COP [5, 7]
is

COP =
�̇� ,
�̇� . (B.29)

Accordingly, for the real process (process ’1-2-3-4’ in Figure B.9b) the coefficient of
performance COP is

COP =
�̇� ,
�̇� (B.30)

where �̇� is the real compression duty. Here a constant ratio equal to
0.25 [8] is assumed. The real compression duty �̇� is then calculated as

�̇� = �̇� ⋅ ( COP
COP ) . (B.31)

The temperature 𝑇 in Eq.(B.28) is defined by the temperature of the lean sol-
vent 𝑇 , considering a minimum temperature difference Δ𝑇 of 10K in the
evaporator:

𝑇 = 𝑇 − Δ𝑇 . (B.32)

In the condenser, the temperature 𝑇 at which heat is transferred from the re-
frigerant is set to 323.15K. The constant value of 𝑇 is estimated as follows:
For 𝑇 ≥ 𝑇 should hold:

𝑇 ≥ 𝑇 − Δ𝑇 . (B.33)

The temperature 𝑇 is a degree of freedom in the process and solvent optimiza-
tion problem. Thus,

(𝑇 ) = 𝑇 − Δ𝑇 (B.34)

where 𝑇 is the upper bound of 𝑇 during the optimization, equal to 333.15K.
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B.2. Definition of the objective function
Note: Parts of this Appendix have been published as Supporting Information to the work of
Stavrou et al. [1].

The total specific cost per ton of captured CO accounts for the specific cost
contributions as: electricity demand, hydrogen loss, fresh solvent consumption and
demand in cooling utilities, according to

𝑓tot = 𝑓electr.demand + 𝑓H2 loss + 𝑓solvent loss + 𝑓utilities (B.35)

Cost term for the electric energy demand, 𝑓 . . The specific cost
associated with the electricity demand 𝑓 . accounts for the costs of:
the pump with duty �̇� , the CO compression to pipeline pressure with duty
�̇� , and the rich gas compression with duty �̇� , (in MW):

𝑓 . =
(�̇� , + �̇� , + �̇� ) ⋅ 𝑐

�̇� ,
(B.36)

where 𝑐 is the electricity production price [9] equal to 55€/ and �̇� , is
the mass flow rate of CO captured in absorber (in / ).
The mass flow of captured CO �̇� , is expressed in terms of the CO -capture
rate 𝛼 (Eq.(B.16)) from the absorber and the molar flow rate of CO in the
syngas �̇� , , as

�̇� , = 𝛼 ⋅ �̇� , ⋅ 𝑀 . (B.37)

Cost term for hydrogen loss, 𝑓 . The specific cost associated with the
hydrogen unintentionally captured and stored with the CO -rich stream is evaluated
according to lost opportunity to produce electricity from the hydrogen with

𝑓 =
�̇� ⋅ Δ𝐻
�̇� ,

⋅ 𝜂 ⋅ 𝑐 (B.38)

where Δ𝐻 is the enthalpy of combustion for hydrogen, �̇� is the molar flow of
hydrogen in the vapor stream exiting the desorption flash (in / ) and 𝜂 is the
efficiency of power production for the combined cycle, once hydrogen is present at
high pressure, set equal to 65%.1

Cost term for solvent loss, 𝑓 . The specific cost of solvent loss 𝑓
measures the required fresh solvent make-up stream �̇� (in / ) and accounts
for the solvent loss both in the absorption and desorption stage:

𝑓 = �̇� ⋅ v
�̇� ,

⋅ 𝑐 (B.39)

1Note that is set equal to % for the case study presented in Chapter 4.
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The specific molar volume of the solvent v is calculated with the PC-SAFT EoS at
constant temperature (298.15K) and pressure (0.1013MPa). For the fresh solvent
cost we consider an average price of high molecular weight chemicals of 4,000€/ .
We estimate the price for bulk chemicals 𝑐 equal to 4,040€/ using the molar
volume of DEPG-5 by 298.15K and 0.1013MPa.

Cost term for the utilities demand, 𝑓 . The specific cost of utilities 𝑓
takes into account the electric energy demand for the operation of the cooling sys-
tems [5], with three contributions from the duties �̇� , , �̇� , and
�̇� according to

𝑓 =
(�̇� , + �̇� , + �̇� )

�̇� ,
⋅ 𝑐 (B.40)

The coolers, after the rich-gas compression and after the pipeline compression
(section B.1.5) are operated with cooling water, so that the cost contribution is due
to the electrical duty of the cooling-water pumps, �̇� , and �̇� , ,
respectively. The required molar flow of cooling water is given by Eq.(B.25). The
duty �̇� required by the vapor-compression system for the lean solvent cooling
is given by Eq.(B.26) to (B.31).
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C
Database of candidate
components for solvent

selection

This Appendix has been published as Supporting Information to the work of Stavrou et al. [1].

Table C.1 presents the 168 non-polar, non-associating components considered
in our study as the mapping database of non-polar components. Table C.2 presents
the 444 polar, non-associating components considered as the mapping database of
polar components. For each component in the list we give its CAS number and
name according to the DIPPR database [2].

Table C.1: List of the 168 non-polar, non-associating components comprising the database of non-polar
components. Each component is denoted with its CAS number and name [2].

CAS Number Name CAS Number Name
109660 n-PENTANE 291645 CYCLOHEPTANE
110543 n-HEXANE 292648 CYCLOOCTANE
107835 2-METHYLPENTANE 1072055 2,6-DIMETHYLHEPTANE
96140 3-METHYLPENTANE 6747323 2,2-DIMETHYL-3-ETHYLPENTANE
75832 2,2-DIMETHYLBUTANE 1068877 2,4-DIMETHYL-3-ETHYLPENTANE
79298 2,3-DIMETHYLBUTANE 646048 trans-2-PENTENE
142825 n-HEPTANE 4050457 trans-2-HEXENE
591764 2-METHYLHEXANE 3269528 trans-3-HEXENE
589344 3-METHYLHEXANE 3769231 4-METHYL-1-HEXENE
617787 3-ETHYLPENTANE 760214 2-ETHYL-1-BUTENE
590352 2,2-DIMETHYLPENTANE 563780 2,3-DIMETHYL-1-BUTENE
108087 2,4-DIMETHYLPENTANE 558372 3,3-DIMETHYL-1-BUTENE
562492 3,3-DIMETHYLPENTANE 563791 2,3-DIMETHYL-2-BUTENE
464062 2,2,3-TRIMETHYLBUTANE 3404715 2-ETHYL-1-PENTENE
111659 n-OCTANE 4686136 trans-2-HEPTENE
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592278 2-METHYLHEPTANE 4686147 trans-3-HEPTENE
589811 3-METHYLHEPTANE 4038044 3-ETHYL-1-PENTENE
589537 4-METHYLHEPTANE 3404613 3-METHYL-1-HEXENE
590738 2,2-DIMETHYLHEXANE 594569 2,3,3-TRIMETHYL-1-BUTENE
592132 2,5-DIMETHYLHEXANE 3389429 trans-2-OCTENE
563166 3,3-DIMETHYLHEXANE 107391 2,4,4-TRIMETHYL-1-PENTENE
609267 2-METHYL-3-ETHYLPENTANE 107404 2,4,4-TRIMETHYL-2-PENTENE
1067089 3-METHYL-3-ETHYLPENTANE 1632162 2-ETHYL-1-HEXENE
564023 2,2,3-TRIMETHYLPENTANE 5026766 6-METHYL-1-HEPTENE
540841 2,2,4-TRIMETHYLPENTANE 4919018 trans-3-OCTENE
560214 2,3,3-TRIMETHYLPENTANE 4850238 trans-4-OCTENE
565753 2,3,4-TRIMETHYLPENTANE 693890 1-METHYLCYCLOPENTENE
111842 n-NONANE 6746864 2,3-DIMETHYL-1-HEXENE
3522949 2,2,5-TRIMETHYLHEXANE 592450 1,4-HEXADIENE
7154805 3,3,5-TRIMETHYLHEPTANE 706310 1,5,9-CYCLODODECATRIENE
6747301 2,4,4-TRIMETHYLHEXANE 764136 2,5-DIMETHYL-2,4-HEXADIENE
1067205 3,3-DIETHYLPENTANE 629209 1,3,5,7-CYCLOOCTATETRAENE
7154792 2,2,3,3-TETRAMETHYLPENTANE 928494 3-HEXYNE
1186534 2,2,3,4-TETRAMETHYLPENTANE 71432 BENZENE
1070877 2,2,4,4-TETRAMETHYLPENTANE 106423 p-XYLENE
6747389 2,3,3,4-TETRAMETHYLPENTANE 622968 p-ETHYLTOLUENE
111013 SQUALANE 108678 MESITYLENE
124185 n-DECANE 99876 p-CYMENE
3475815 2,2,3,3-TETRAMETHYLHEXANE 105055 p-DIETHYLBENZENE
1071814 2,2,5,5-TETRAMETHYLHEXANE 877441 1,2,4-TRIETHYLBENZENE
3178221 tert-BUTYLCYCLOHEXANE 1078713 n-HEPTYLBENZENE
1120214 n-UNDECANE 104723 n-DECYLBENZENE
112403 n-DODECANE 538681 n-PENTYLBENZENE
629505 n-TRIDECANE 1077163 n-HEXYLBENZENE
629594 n-TETRADECANE 2189608 n-OCTYLBENZENE
629629 n-PENTADECANE 1081772 n-NONYLBENZENE
544763 n-HEXADECANE 6742547 n-UNDECYLBENZENE
629787 n-HEPTADECANE 123024 n-TRIDECYLBENZENE
5911046 3-METHYLNONANE 1459105 n-TETRADECYLBENZENE
871830 2-METHYLNONANE 123013 n-DODECYLBENZENE
7301949 4-METHYLNONANE 1074551 1-METHYL-4-n-PROPYLBENZENE
5869859 5-METHYLNONANE 2765186 1-n-PROPYLNAPHTHALENE
3221612 2-METHYLOCTANE 939275 2-ETHYLNAPHTHALENE
2216333 3-METHYLOCTANE 7058017 sec-BUTYLCYCLOHEXANE
2216344 4-METHYLOCTANE 123911 1,4-DIOXANE
5869804 3-ETHYLHEPTANE 93969 BIS(alpha-METHYLBENZYL) ETHER
1071267 2,2-DIMETHYLHEPTANE 56235 CARBON TETRACHLORIDE
287923 CYCLOPENTANE 110576 1,4-DICHLORO-trans-2-BUTENE
96377 METHYLCYCLOPENTANE 127184 TETRACHLOROETHYLENE
1640897 ETHYLCYCLOPENTANE 156605 trans-1,2-DICHLOROETHYLENE
1638262 1,1-DIMETHYLCYCLOPENTANE 355420 PERFLUORO-n-HEXANE
1192183 cis-1,2-DIMETHYLCYCLOPENTANE 509148 TETRANITROMETHANE
822504 trans-1,2-DIMETHYLCYCLOPENTANE 26047 TETRACHLOROSILANE
2532583 cis-1,3-DIMETHYLCYCLOPENTANE 75150 CARBON DISULFIDE
2040962 n-PROPYLCYCLOPENTANE 7146603 2,3-DIMETHYLOCTANE
3875512 ISOPROPYLCYCLOPENTANE 4032944 2,4-DIMETHYLOCTANE
6747505 1-METHYL-1-ETHYLCYCLOPENTANE 5869893 2,5-DIMETHYLOCTANE
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2040951 n-BUTYLCYCLOPENTANE 2051301 2,6-DIMETHYLOCTANE
110827 CYCLOHEXANE 1072168 2,7-DIMETHYLOCTANE
108872 METHYLCYCLOHEXANE 3524730 5-METHYL-1-HEXENE
1678917 ETHYLCYCLOHEXANE 5870107 2-METHYL-1-HEPTENE
590669 1,1-DIMETHYLCYCLOHEXANE 2131182 n-PENTADECYLBENZENE
6876239 trans-1,2-DIMETHYLCYCLOHEXANE 678262 PERFLUORO-n-PENTANE
638040 cis-1,3-DIMETHYLCYCLOHEXANE 335579 PERFLUORO-n-HEPTANE
2207036 trans-1,3-DIMETHYLCYCLOHEXANE 7550450 TITANIUM TETRACHLORIDE
624293 cis-1,4-DIMETHYLCYCLOHEXANE 2980714 2-METHYL-1-NONENE
1795262 1-trans-3,5-TRIMETHYLCYCLOHEXANE 111966 DIETHYLENE GLYCOL

DIMETHYL ETHER
1678928 n-PROPYLCYCLOHEXANE ·        112492 TRIETHYLENE GLYCOL

DIMETHYL ETHER
696297 ISOPROPYLCYCLOHEXANE ·        143248 TETRAETHYLENE GLYCOL

DIMETHYL ETHER
1678939 n-BUTYLCYCLOHEXANE 1191873 PENTAETHYLENE GLYCOL

DIMETHYL ETHER
493016 cis-DECAHYDRONAPHTHALENE 1072408 HEXAETHYLENE GLYCOL

DIMETHYL ETHER
493027 trans-DECAHYDRONAPHTHALENE 1191919 HEPTAETHYLENE GLYCOL

DIMETHYL ETHER
92513 BICYCLOHEXYL n.a OCTAETHYLENE GLYCOL

DIMETHYL ETHER
1795160 n-DECYLCYCLOHEXANE n.a. NONAETHYLENE GLYCOL

DIMETHYL ETHER

Table C.2: List of the 444 polar, non-associating components comprising the database of polar compo-
nents. Each component is denoted with its CAS number and name [2].

CAS Number Name CAS Number Name
78784 ISOPENTANE 110009 FURAN
1678984 iso-BUTYLCYCLOHEXANE 109999 TETRAHYDROFURAN
109671 1-PENTENE 61015 cis-1,3-DICHLOROPROPENE
627203 cis-2-PENTENE 61026 trans-1,3-DICHLOROPROPENE
563462 2-METHYL-1-BUTENE 628762 1,5-DICHLOROPENTANE
513359 2-METHYL-2-BUTENE 75092 DICHLOROMETHANE
592416 1-HEXENE 67663 CHLOROFORM
7688213 cis-2-HEXENE 75343 1,1-DICHLOROETHANE
7642093 cis-3-HEXENE 107062 1,2-DICHLOROETHANE
763291 2-METHYL-1-PENTENE 79005 1,1,2-TRICHLOROETHANE
760203 3-METHYL-1-PENTENE 78875 1,2-DICHLOROPROPANE
691372 4-METHYL-1-PENTENE 71556 1,1,1-TRICHLOROETHANE
625274 2-METHYL-2-PENTENE 630206 1,1,1,2-TETRACHLOROETHANE
922623 3-METHYL-cis-2-PENTENE 79345 1,1,2,2-TETRACHLOROETHANE
691383 4-METHYL-cis-2-PENTENE 75296 ISOPROPYL CHLORIDE
674760 4-METHYL-trans-2-PENTENE 96184 1,2,3-TRICHLOROPROPANE
592767 1-HEPTENE 513360 ISOBUTYL CHLORIDE
6443921 cis-2-HEPTENE 507200 tert-BUTYL CHLORIDE
6094026 2-METHYL-1-HEXENE 616217 1,2-DICHLOROBUTANE
7642106 cis-3-HEPTENE 79016 TRICHLOROETHYLENE
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111660 1-OCTENE 107051 3-CHLOROPROPENE
124118 1-NONENE 87683 HEXACHLORO-1,3-BUTADIENE
872059 1-DECENE 100447 BENZYL CHLORIDE
821954 1-UNDECENE 108907 MONOCHLOROBENZENE
112414 1-DODECENE 95501 o-DICHLOROBENZENE
2437561 1-TRIDECENE 541731 m-DICHLOROBENZENE
1120361 1-TETRADECENE 95498 o-CHLOROTOLUENE
3360617 1-PENTADECENE 106434 p-CHLOROTOLUENE
629732 1-HEXADECENE 156592 cis-1,2-DICHLOROETHYLENE
112889 1-OCTADECENE 126998 CHLOROPRENE
142290 CYCLOPENTENE 540545 n-PROPYL CHLORIDE
110838 CYCLOHEXENE 109693 n-BUTYL CHLORIDE
628922 CYCLOHEPTENE 78864 sec-BUTYL CHLORIDE
931884 CYCLOOCTENE 543599 1-CHLOROPENTANE
7642048 cis-2-OCTENE 76017 PENTACHLOROETHANE
7642151 cis-4-OCTENE 75354 1,1-DICHLOROETHYLENE
4850227 cis-3-OCTENE 124732 1,2-DIBROMO-

TETRAFLUOROETHANE
6765395 1-HEPTADECENE 74964 BROMOETHANE
5989275 d-LIMONENE 79276 1,1,2,2-TETRABROMOETHANE
1574410 cis-1,3-PENTADIENE 106945 1-BROMOPROPANE
2004708 trans-1,3-PENTADIENE 75263 2-BROMOPROPANE
591935 1,4-PENTADIENE 109659 1-BROMOBUTANE
78795 ISOPRENE 629049 1-BROMOHEPTANE
598254 3-METHYL-1,2-BUTADIENE 557915 1,1-DIBROMOETHANE
5194514 trans,trans-2,4-HEXADIENE 354585 1,1,1-TRICHLORO-

TRIFLUOROETHANE
542927 CYCLOPENTADIENE 108861 BROMOBENZENE
513815 2,3-DIMETHYL-1,3-BUTADIENE 74884 METHYL IODIDE
592574 1,3-CYCLOHEXADIENE 75036 ETHYL IODIDE
628411 1,4-CYCLOHEXADIENE 107084 n-PROPYL IODIDE
111784 1,5-CYCLOOCTADIENE 75309 ISOPROPYL IODIDE
237347 trans-1,3-HEXADIENE 306832 2,2-DICHLORO-

1,1,1-TRIFLUOROETHANE
1647161 1,9-DECADIENE 91667 N,N-DIETHYLANILINE
503173 DIMETHYLACETYLENE 96548 N-METHYLPYRROLE
627190 1-PENTYNE 120945 N-METHYLPYRROLIDINE
693027 1-HEXYNE 110861 PYRIDINE
629050 1-OCTYNE 121697 N,N-DIMETHYLANILINE
598232 3-METHYL-1-BUTYNE 109068 2-METHYLPYRIDINE
108883 TOLUENE 75081 ETHYL MERCAPTAN
100414 ETHYLBENZENE 107039 n-PROPYL MERCAPTAN
95476 o-XYLENE 75661 tert-BUTYL MERCAPTAN
108383 m-XYLENE 513440 ISOBUTYL MERCAPTAN
103651 n-PROPYLBENZENE 513531 sec-BUTYL MERCAPTAN
98828 CUMENE 111319 n-HEXYL MERCAPTAN
611143 o-ETHYLTOLUENE 1455216 n-NONYL MERCAPTAN
620144 m-ETHYLTOLUENE 111886 n-OCTYL MERCAPTAN
526738 1,2,3-TRIMETHYLBENZENE 75332 ISOPROPYL MERCAPTAN
95636 1,2,4-TRIMETHYLBENZENE 1569693 CYCLOHEXYL MERCAPTAN
104518 n-BUTYLBENZENE 100538 BENZYL MERCAPTAN
538932 ISOBUTYLBENZENE 624895 METHYL ETHYL SULFIDE
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135988 sec-BUTYLBENZENE 3877154 METHYL n-PROPYL SULFIDE
98066 tert-BUTYLBENZENE 6163640 METHYL t-BUTYL SULFIDE
527844 o-CYMENE 111477 DI-n-PROPYL SULFIDE
535773 m-CYMENE 352932 DIETHYL SULFIDE
141935 m-DIETHYLBENZENE 3698940 ETHYL n-OCTYL SULFIDE
488233 1,2,3,4-TETRAMETHYLBENZENE 75183 DIMETHYL SULFIDE
7364194 p-tert-BUTYL ETHYLBENZENE 110021 THIOPHENE
717748 1,3,5-TRIISOPROPYLBENZENE 110816 DIETHYL DISULFIDE
605016 PENTAETHYLBENZENE 5332525 UNDECYL MERCAPTAN
934747 5-ETHYL-m-XYLENE 143102 n-DECYL MERCAPTAN
1074175 1-METHYL-2-n-PROPYLBENZENE 110667 n-PENTYL MERCAPTAN
1827870 1,2,4-TRIMETHYL-3-ETHYLBENZENE 624920 DIMETHYL DISULFIDE
7851273 1,2,4-TRIMETHYL-5-ETHYLBENZENE 629196 DI-n-PROPYL DISULFIDE
100425 STYRENE 112550 n-DODECYL MERCAPTAN
611154 o-METHYLSTYRENE 1639094 n-HEPTYL MERCAPTAN
100801 m-METHYLSTYRENE 109795 n-BUTYL MERCAPTAN
7564638 o-ETHYLSTYRENE 108985 PHENYL MERCAPTAN
7525624 m-ETHYLSTYRENE 110010 TETRAHYDROTHIOPHENE
622979 p-METHYLSTYRENE 67685 DIMETHYL SULFOXIDE
98839 alpha-METHYLSTYRENE 75365 ACETYL CHLORIDE
536743 ETHYNYLBENZENE 79049 CHLOROACETYL CHLORIDE
766905 cis-1-PROPENYLBENZENE 76028 TRICHLOROACETYL CHLORIDE
1746232 p-tert-BUTYLSTYRENE 98884 BENZOYL CHLORIDE
90120 1-METHYLNAPHTHALENE 98566 p-CHLOROBENZOTRIFLUORIDE
119642 1,2,3,4-TETRAHYDRONAPHTHALENE 462066 FLUOROBENZENE
95136 INDENE 107302 CHLOROMETHYL METHYL ETHER
496117 INDANE 392563 HEXAFLUOROBENZENE
123386 PROPANAL 111444 DI(2-CHLOROETHYL)ETHER
123728 BUTANAL 97938 TRIETHYL ALUMINUM
78842 2-METHYLPROPANAL 3268493 3-(METHYLMERCAPTO)PROPANAL
110623 PENTANAL 68122 N,N-DIMETHYLFORMAMIDE
111717 HEPTANAL 106898 alpha-EPICHLOROHYDRIN
66251 HEXANAL 98011 FURFURAL
124130 OCTANAL 108656 PROPYLENE GLYCOL

MONOMETHYL ETHER ACETATE
124196 NONANAL 7719122 PHOSPHORUS TRICHLORIDE
623369 2-METHYL-2-PENTENAL 25873 PHOSPHORUS OXYCHLORIDE
112312 DECANAL 25782 TRICHLOROSILANE
112447 UNDECANAL 7791255 SULFUR CHLORIDE
112549 DODECANAL 7719097 THIONIL CHLORID
486198 TRIDECANAL 107460 HEXAMETHYLDISILOXANE
96173 2-METHYLBUTYRALDEHYDE 141639 DODECAMETHYLPENTASILOXANE
590863 3-METHYLBUTYRALDEHYDE 124709 METHYL VINYL DICHLOROSILANE
107028 ACROLEIN 4814096 [3-(MERCAPTO)PROPYL]

TRIETHOXYSILANE
123739 trans-CROTONALDEHYDE 556672 OCTAMETHYLCYCLOTETRASILOXANE
93538 2-PHENYLPROPIONALDEHYDE 7789200 DEUTERIUM OXIDE
100527 BENZALDEHYDE 925780 3-NONANONE
123637 PARALDEHYDE 616126 3-METHYL-trans-2-PENTENE
67641 ACETONE 616024 METHYL MALEIC ANHYDRIDE
78933 METHYL ETHYL KETONE 589402 sec-BUTYL FORMATE
96220 3-PENTANONE 540885 tert-BUTYL ACETATE
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108101 METHYL ISOBUTYL KETONE 547637 METHYL ISOBUTYRATE
565617 3-METHYL-2-PENTANONE 97621 ETHYL ISOBUTYRATE
109499 5-HEXEN-2-ONE 622457 CYCLOHEXYL ACETATE
106354 3-HEPTANONE 108327 PROPYLENE CARBONATE
123193 4-HEPTANONE 84662 DIETHYL PHTHALATE
589388 3-HEXANONE 131113 DIMETHYL PHTHALATE
107879 2-PENTANONE 123251 DIETHYL SUCCINATE
563804 METHYL ISOPROPYL KETONE 111820 METHYL DODECANOATE
591786 2-HEXANONE 141059 DIETHYL MALEATE
110430 2-HEPTANONE 624486 DIMETHYL MALEATE
141797 MESITYL OXIDE 2998085 sec-BUTYL ACRYLATE
75978 3,3-DIMETHYL-2-BUTANONE 616386 DIMETHYL CARBONATE
108838 DIISOBUTYL KETONE 2315686 n-PROPYL BENZOATE
565800 DIISOPROPYL KETONE 628557 DIISOBUTYL ETHER
872504 N-METHYL-2-PYRROLIDONE 628717 1-HEPTYNE
624420 ETHYL ISOAMYL KETONE 462953 ETHYLAL
502567 5-NONANONE 629141 1,2-DIETHOXYETHANE
821556 2-NONANONE 1191997 2,3-DIHYDROFURAN
120923 CYCLOPENTANONE 8970440 1-ETHYL-2-ISOPROPYLBENZENE
108941 CYCLOHEXANONE 142289 1,3-DICHLOROPROPANE
111137 2-OCTANONE 78886 2,3-DICHLOROPROPENE
98862 ACETOPHENONE 98088 BENZOTRIFLUORIDE
57578 beta-PROPIOLACTONE 74953 DIBROMOMETHANE
108292 gamma-VALEROLACTONE 74975 BROMOCHLOROMETHANE
565695 ETHYL ISOPROPYL KETONE 151677 HALOTHANE
814788 METHYL ISOPROPENYL KETONE 75627 BROMOTRICHLOROMETHANE
108247 ACETIC ANHYDRIDE 354234 1,2-DICHLORO-

1,1,2-TRIFLUOROETHANE
123626 PROPIONIC ANHYDRIDE 1717006 1,1-DICHLORO-

1-FLUOROETHANE
106310 BUTYRIC ANHYDRIDE 76120 1,1,2,2-TETRACHLORO-

DIFLUOROETHANE
107313 METHYL FORMATE 638459 n-HEXYL IODIDE
109944 ETHYL FORMATE 542698 n-BUTYL IODIDE
110747 n-PROPYL FORMATE 108758 2,4,6-TRIMETHYLPYRIDINE
592847 n-BUTYL FORMATE 108485 2,6-DIMETHYLPYRIDINE
542552 ISOBUTYL FORMATE 108996 3-METHYLPYRIDINE
638493 n-PENTYL FORMATE 108894 4-METHYLPYRIDINE
79209 METHYL ACETATE 420122 THIACYCLOPROPANE
141786 ETHYL ACETATE 628295 METHYL n-BUTYL SULFIDE
109604 n-PROPYL ACETATE 4290927 ETHYL t-BUTYL SULFIDE
123864 n-BUTYL ACETATE 287274 TRIMETHYLENE SULFIDE
110190 ISOBUTYL ACETATE 554143 2-METHYLTHIOPHENE
123922 ISOPENTYL ACETATE 616444 3-METHYLTHIOPHENE
108214 ISOPROPYL ACETATE 127195 N,N-DIMETHYLACETAMIDE
105464 sec-BUTYL ACETATE 105395 ETHYLCHLOROACETATE
108054 VINYL ACETATE 4394858 4-FORMYLMORPHOLINE
554121 METHYL PROPIONATE 1184583 DIMETHYLALUMINUM CHLORIDE
105373 ETHYL PROPIONATE 107517 OCTAMETHYLTRISILOXANE
106365 n-PROPYL PROPIONATE 556694 OCTADECAMETHYLOCTASILOXANE
590012 n-BUTYL PROPIONATE 631367 TETRAETHYL SILANE
105668 n-PROPYL n-BUTYRATE 541015 HEXADECAMETHYLHEPTASILOXANE
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623427 METHYL n-BUTYRATE 96106 DIETHYLALUMINUM CHLORIDE
105544 ETHYL n-BUTYRATE 97723 ISOBUTYRIC ANHYDRIDE
96333 METHYL ACRYLATE 6737117 sec-BUTENYL ACETATE
140885 ETHYL ACRYLATE 3938952 ETHYL TRIMETHYL ACETATE
141322 n-BUTYL ACRYLATE 106650 DIMETHYL SUCCINATE
108645 ETHYL ISOVALERATE 1795091 2-METHYLTHIACYCLOPENTANE
80626 METHYL METHACRYLATE 1551322 2-ETHYL-TETRAHYDROTHIOPHENE
628637 n-PENTYL ACETATE 872559 2-ETHYLTHIOPHENE
103093 2-ETHYLHEXYL ACETATE 1551275 2-n-PROPYLTHIOPHENE
140114 BENZYL ACETATE 638028 2,5-DIMETHYLTHIOPHENE
659701 ISOPENTYL ISOVALERATE 453317 ETHYL PROPYL DISULFIDE
142927 n-HEXYL ACETATE 100685 METHYL PHENYL SULFIDE
120514 BENZYL BENZOATE 544401 DI-n-BUTYL SULFIDE
136607 n-BUTYL BENZOATE 4110503 ETHYL PROPYL SULFIDE
112061 n-HEPTYL ACETATE 143226 2-(2-(2-BUTOXYETHOXY)ETHOXY)

ETHANOL
112141 n-OCTYL ACETATE 124630 METHANESULFONYL CHLORIDE
112174 n-DECYL ACETATE 585079 tert-BUTYL METHACRYLATE
131168 DI-n-PROPYL PHTHALATE 7784341 ARSENIC (III) CHLORIDE
109217 n-BUTYL n-BUTYRATE 78104 TETRAETHOXYSILANE
103117 2-ETHYLHEXYL ACRYLATE 75547 METHYL DICHLOROSILANE
97869 ISOBUTYL METHACRYLATE 75796 METHYL TRICHLOROSILANE
97881 n-BUTYL METHACRYLATE 75945 VINYLTRICHLOROSILANE
93583 METHYL BENZOATE 1067534 TRIS(2-METHOXYETHOXY)VINYLSILANE
93890 ETHYL BENZOATE 681845 METHYL SILICATE
105588 DIETHYL CARBONATE 545990 SULFUR DICHLORIDE
95921 DIETHYL OXALATE 75241 TRIMETHYLALUMINUM
105533 DIETHYL MALONATE 78002 TETRAETHYL LEAD
110429 METHYL DECANOATE 1066359 DIMETHYLCHLOROSILANE
110270 ISOPROPYL MYRISTATE 75774 TRIMETHYLCHLOROSILANE
60297 DIETHYL ETHER 75785 DIMETHYLDICHLOROSILANE
108203 DIISOPROPYL ETHER 541026 DECAMETHYLCYCLOPENTASILOXANE
142961 DI-n-BUTYL ETHER 540976 DODECAMETHYLCYCLOHEXASILOXANE
1634044 METHYL tert-BUTYL ETHER 80104 DIPHENYLDICHLOROSILANE
557175 METHYL n-PROPYL ETHER 115219 ETHYLTRICHLOROSILANE
598538 METHYL ISOPROPYL ETHER 1719535 DICHLORODIETHYLSILANE
628284 METHYL n-BUTYL ETHER 75876 TRICHLOROACETALDEHYDE
628320 ETHYL PROPYL ETHER 78400 TRIETHYL PHOSPHATE
104461 ANETHOLE 2768027 VINYLTRIMETHOXYSILANE
693652 DI-n-PENTYL ETHER 2487903 TRIMETHOXYSILANE
637923 tert-BUTYL ETHYL ETHER 1112396 DIMETHYLDIMETHOXYSILANE
919948 ETHYL tert-PENTYL ETHER 98135 PHENYLTRICHLOROSILANE
109875 METHYLAL 149746 PHENYLMETHYLDICHLOROSILANE
105577 ACETAL 107528 TETRADECAMETHYLHEXASILOXANE
75569 1,2-PROPYLENE OXIDE 141628 DECAMETHYLTETRASILOXANE
109922 ETHYL VINYL ETHER 625605 ETHYL THIOLACETATE
111433 DI-n-PROPYL ETHER 77781 DIMETHYL SULFATE
628819 n-BUTYL ETHYL ETHER 64675 DIETHYL SULFATE
110714 1,2-DIMETHOXYETHANE 111159 ETHOXYETHYL ACETATE
100663 ANISOLE 141979 ETHYL ACETOACETATE
103731 PHENETOLE 594445 ETHANESULFONYL CHLORIDE
103504 DIBENZYL ETHER 540636 1,2-ETHANEDITHIOL
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9177049 1-METHYL-3-(METHYLETHOXY)BENZENE 763699 ETHYL-3-ETHOXYPROPIONATE
534156 1,1-DIMETHOXYETHANE 108225 METHYLVINYL ACETATE
1708298 2,5-DIHYDROFURAN 5878193 METHOXYACETONE
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D
QSPR models for the

prediction of 𝑐ig𝑝 and molar
mass

The size of the training sets and the squared correlation coefficients 𝑅 of the QSPR
multivariable regression model for the prediction of 𝑐 and of the molar mass 𝑀
are given in Table D.1.

Table D.1: QSPR multivariable regression model for the prediction of molar mass and : Size of the
training set (number of components) used to adjust the coefficients of the QSPR-model and the resulting
squared correlation coefficient for non-polar and polar components.

non-polar components polar components

Ideal gas specific heat capacity by

training set size 156 525
0.997 0.987

Molar mass

training set size 168 445
0.966 0.932

Tables D.2 and D.3 present the QSPR model coefficients used in Eq.(2.8) and
Eq.(2.7) of Chapter 2 for the prediction of the ideal gas heat capacity 𝑐 and of the
molar mass 𝑀, respectively. The coefficients of the QSPR models were adjusted for
the PC-SAFT pure component database, as described in Chapter 2.
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Table D.2: Coefficients of the QSPR model for the prediction of the ideal gas heat capacity given by
Eq.(2.8).

QSPR coefficients - Ideal gas specific heat capacity by

non-polar components polar components

-16955.243 -20257.909
-3829.1124 13051.796
1279.9093 914.33815
-327.68470 -227.59750

Table D.3: Coefficients of the QSPR model for the prediction of the molar mass given by Eq.(2.7).

QSPR coefficients - Molar mass

non-polar components polar components

0.0978500 0.0011995
-0.0020034 0.5673782
0.0006309 0.0001554

0 0.0308482



E
QSPR models for the

prediction of 𝑘𝑖𝑗
The contents of Appendices E.1 to E.3 are published as Supporting Information to the work
of Stavrou et al. [1].

E.1. Comparison with kij predictions based on Lon-
don’s dispersive theory

Table E.1: Mixtures of two non-associating, non-polar components (group 1): For each mixture the
component names are given (component i, component j), their CAS-Numbers (CAS-i, CAS-j), the value
of fitted to experimental data ( ), the value of prediction with the QSPR model ( ) and
the value of prediction with the Hudson-McCoubrey expression[2] ( ( , )).

Group 1 (nAnP - nAnP)
# component component CAS- CAS- ( , )
1 3-METHYLPENTANE OCTANE 96140 111659 -0.0003 0.0000 0.0001
2 CARBON-MONOXIDE PROPANE 630080 74986 0.0517 0.0622 0.0161
3 CARBON-MONOXIDE METHANE 630080 74828 0.0287 0.0301 0.0141
4 CARBON-MONOXIDE ETHANE 630080 74840 0.0258 0.0462 0.0094
5 PROPANE METHYLCYCLOHEXANE 74986 108872 0.0102 0.0153 0.0095
6 ETHANE METHYLCYCLOHEXANE 74840 108872 0.0169 0.0226 0.0162
7 METHANE PROPANE 74828 74986 0.0012 0.0082 0.0029
8 METHANE METHYLCYCLOHEXANE 74828 108872 0.0338 0.0357 0.0133
9 METHANE ETHANE 74828 74840 -0.0046 0.0041 0.0029

10 PROPANE CYCLOHEXANE 74986 110827 0.0141 0.0119 0.0042
11 METHANE HEXADECANE 74828 544763 0.0545 0.0259 0.0000
12 METHANE OCTANE 74828 111659 0.0174 0.0198 0.0088
13 METHANE ETHYLCYCLOHEXANE 74828 1678917 0.0278 0.0436 0.0174
14 METHANE HEXANE 74828 110543 0.0135 0.0174 0.0064
15 PROPANE ISOBUTANE 74986 75285 -0.0048 0.0022 0.0012
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16 HEPTANE METHYLCYCLOHEXANE 142825 108872 0.0021 0.0065 0.0020
17 ETHANE HEXANE 74840 110543 0.0066 0.0095 0.0065
18 HEXANE HEXADECANE 110543 544763 0.0011 0.0032 0.0000
19 HEXANE OCTANE 110543 111659 -0.0030 0.0009 0.0002
20 ETHANE OCTANE 74840 111659 0.0174 0.0112 0.0089
21 METHANE BUTANE 74828 106978 0.0014 0.0126 0.0040
22 METHANE NONANE 74828 111842 0.0148 0.0204 0.0095
23 CYCLOHEXANE METHYLCYCLOHEXANE 110827 108872 0.0016 0.0016 0.0012
24 METHANE HEPTANE 74828 142825 0.0112 0.0180 0.0076
25 HEXANE CYCLOHEXANE 110543 110827 0.0016 0.0045 0.0002
26 2-METHYLPENTANE OCTANE 107835 111659 -0.0019 0.0005 0.0001
27 METHANE DECANE 74828 124185 0.0244 0.0201 0.0098
28 HEXANE METHYLCYCLOPENTANE 110543 96377 0.0007 0.0029 0.0001
29 METHANE PENTANE 74828 109660 0.0104 0.0156 0.0054
30 PROPANE BUTANE 74986 106978 -0.0051 0.0024 0.0006
31 METHANE ISOBUTANE 74828 75285 0.0062 0.0121 0.0040
32 ETHANE DECANE 74840 124185 0.0196 0.0114 0.0096
33 BUTANE DECANE 106978 124185 0.0071 0.0034 0.0018
34 ISOBUTANE BUTANE 75285 106978 -0.0006 0.0002 0.0001
35 PENTANE DECANE 109660 124185 0.0051 0.0018 0.0007
36 HEPTANE OCTANE 142825 111659 0.0047 0.0007 0.0001
37 PROPANE DECANE 74986 124185 0.0060 0.0066 0.0046
38 HEPTANE p-XYLENE 142825 106423 0.0053 0.0040 0.0033
39 CYCLOHEXANE HEPTANE 110827 142825 0.0012 0.0042 0.0001
40 2-3-DIMETHYLBUTANE HEXANE 79298 110543 0.0005 0.0023 0.0012
41 PENTANE HEXANE 109660 110543 0.0067 0.0007 0.0001
42 HEXADECANE ETHANE 544763 74840 0.0064 0.0156 0.0000
43 2-METHYLPENTANE HEPTANE 107835 142825 -0.0007 0.0002 0.0002
44 3-METHYLPENTANE HEPTANE 96140 142825 -0.0001 0.0007 0.0002
45 HEXANE HEPTANE 110543 142825 -0.0038 0.0002 0.0001
46 CYCLOHEXANE OCTANE 110827 111659 0.0004 0.0034 0.0000
47 PENTANE OCTANE 109660 111659 0.0047 0.0017 0.0005

Table E.2: Mixtures of a non-associating, dipolar and a non-associating, quadrupolar component (group
4): For each mixture the component names are given (component i, component j), their CAS-Numbers
(CAS-i, CAS-j), the value of fitted to experimental data ( ), the value of prediction with

the QSPR model ( ) and the value of prediction with the Hudson-McCoubrey expression[2]
( ( , )).

Group 4 (nAdP - nAqP)
# component component CAS- CAS- ( , )
1 ACETONE NITROGEN 67641 7727379 0.0336 0.0146 0.0284
2 NITROGEN PROPYLBENZENE 7727379 103651 0.1658 0.1433 0.0527
3 BENZENE 1-BROMOBENZENE 71432 108861 -0.0082 0.0033 0.0002
4 CARBON-DIOXIDE 1-BROMOBENZENE 124389 108861 0.0462 0.0407 0.0446
5 SULFUR-DIOXIDE BENZENE 7446095 71432 0.0494 0.0529 0.0864
6 CARBON-DIOXIDE PROPYLBENZENE 124389 103651 0.0382 0.0533 0.0516
7 DIMETHYL-ETHER CARBON-DIOXIDE 115106 124389 -0.0574 -0.0285 0.0132
8 PROPYLENE NITROGEN 115071 7727379 0.0642 0.0466 0.0282
9 BUTYLBENZENE BENZENE 104518 71432 -0.0101 0.0013 0.0011
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10 CARBON-DIOXIDE 1-HEXENE 124389 592416 0.0125 0.0244 0.0346
11 VINYL-ACETATE ETHYLENE 108054 74851 -0.0159 0.0071 0.0045
12 CARBON-DIOXIDE o-XYLENE 124389 95476 0.0343 0.0445 0.0477
13 CARBON-DIOXIDE ISOPROPYL-ETHANOATE 124389 108214 0.0019 -0.0158 0.0181
14 PROPYLENE BENZENE 115071 71432 0.0087 0.0166 0.0035
15 DIETHYL-ETHER CARBON-DISULFIDE 60297 75150 0.0057 0.0206 0.0026
16 CARBON-DIOXIDE TOLUENE 124389 108883 0.0246 0.0461 0.0427
17 NITROGEN TOLUENE 7727379 108883 0.1223 0.1304 0.0462
18 CARBON-DIOXIDE CHLOROBENZENE 124389 108907 0.0351 0.03 0.0412
19 PROPYLENE ETHYLENE 115071 74851 -0.0004 0.0054 0.001
20 1-HEXENE ETHYLENE 592416 74851 0.0443 0.013 0.0054
21 1-HEXENE BENZENE 592416 71432 0.0011 0.0076 0.0002
22 BENZENE CHLOROBENZENE 71432 108907 -0.002 0.0016 0.0000
23 CARBON-DIOXIDE ETHYLBENZENE 124389 100414 0.0345 0.0451 0.0471
24 BENZENE TOLUENE 71432 108883 -0.0062 0.0015 0.0003

E.2. Binary mixture database of the QSPR method
- Results and comparison with 𝑘𝑖𝑗 values ad-
justed to experimental VLE data

Table E.3: Regression results for mixtures of two non-associating, non-polar components (group 1). For
each mixture the component names are given (component i, component j), their CAS-Numbers (CAS-i,
CAS-j), the values of fitted on experimental VLE data ( ) and the values of predicted with the

QSPR model ( ). The mixtures that demonstrate azeotropic behavior are noted with ”ones” in the
last column. The mixtures are listed separately for the training and the test set.

Group 1 (nAnP - nAnP)
# component component CAS- CAS- azeo

Training set
1 3-METHYLPENTANE OCTANE 96140 111659 -0.0003 0 0
2 CARBON-MONOXIDE PROPANE 630080 74986 0.0517 0.0622 0
3 CARBON-MONOXIDE METHANE 630080 74828 0.0287 0.0301 0
4 CARBON-MONOXIDE ETHANE 630080 74840 0.0258 0.0462 0
5 PROPANE METHYLCYCLOHEXANE 74986 108872 0.0102 0.0153 0
6 ETHANE METHYLCYCLOHEXANE 74840 108872 0.0169 0.0226 0
7 METHANE PROPANE 74828 74986 0.0012 0.0082 0
8 METHANE METHYLCYCLOHEXANE 74828 108872 0.0338 0.0357 0
9 METHANE ETHANE 74828 74840 -0.0046 0.0041 0

10 PROPANE CYCLOHEXANE 74986 110827 0.0141 0.0119 0
11 METHANE HEXADECANE 74828 544763 0.0545 0.0259 0
12 METHANE OCTANE 74828 111659 0.0174 0.0198 0
13 METHANE ETHYLCYCLOHEXANE 74828 1678917 0.0278 0.0436 0
14 METHANE HEXANE 74828 110543 0.0135 0.0174 0
15 PROPANE ISOBUTANE 74986 75285 -0.0048 0.0022 0
16 HEPTANE METHYLCYCLOHEXANE 142825 108872 0.0021 0.0065 0
17 ETHANE HEXANE 74840 110543 0.0066 0.0095 0
18 HEXANE HEXADECANE 110543 544763 0.0011 0.0032 0
19 HEXANE OCTANE 110543 111659 -0.003 0.0009 0
20 ETHANE OCTANE 74840 111659 0.0174 0.0112 0
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21 METHANE BUTANE 74828 106978 0.0014 0.0126 0
22 METHANE NONANE 74828 111842 0.0148 0.0204 0
23 CYCLOHEXANE METHYLCYCLOHEXANE 110827 108872 0.0016 0.0016 0
24 METHANE HEPTANE 74828 142825 0.0112 0.018 0
25 HEXANE CYCLOHEXANE 110543 110827 0.0016 0.0045 0
26 2-METHYLPENTANE OCTANE 107835 111659 -0.0019 0.0005 0
27 METHANE DECANE 74828 124185 0.0244 0.0201 0
28 HEXANE METHYLCYCLOPENTANE 110543 96377 0.0007 0.0029 0
29 METHANE PENTANE 74828 109660 0.0104 0.0156 0
30 PROPANE BUTANE 74986 106978 -0.0051 0.0024 0
31 METHANE ISOBUTANE 74828 75285 0.0062 0.0121 0
32 ETHANE DECANE 74840 124185 0.0196 0.0114 0
33 BUTANE DECANE 106978 124185 0.0071 0.0034 0
34 ISOBUTANE BUTANE 75285 106978 -0.0006 0.0002 0
35 PENTANE DECANE 109660 124185 0.0051 0.0018 0
36 HEPTANE OCTANE 142825 111659 0.0047 0.0007 0
37 PROPANE DECANE 74986 124185 0.006 0.0066 0
38 HEPTANE p-XYLENE 142825 106423 0.0053 0.004 0
39 CYCLOHEXANE HEPTANE 110827 142825 0.0012 0.0042 0
40 2-3-DIMETHYLBUTANE HEXANE 79298 110543 0.0005 0.0023 0
41 PENTANE HEXANE 109660 110543 0.0067 0.0007 0

Test set
42 HEXADECANE ETHANE 544763 74840 0.0064 0.0156 0
43 2-METHYLPENTANE HEPTANE 107835 142825 -0.0007 0.0002 0
44 3-METHYLPENTANE HEPTANE 96140 142825 -0.0001 0.0007 0
45 HEXANE HEPTANE 110543 142825 -0.0038 0.0002 0
46 CYCLOHEXANE OCTANE 110827 111659 0.0004 0.0034 0
47 PENTANE OCTANE 109660 111659 0.0047 0.0017 0

Table E.4: Regression results for mixtures of non-associating, non-polar with non-associating, dipolar
components (group 2). For each mixture the component names are given (component i, component j),
their CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( ) and the values

of predicted with the QSPR model ( ). The mixtures that demonstrate azeotropic behavior are
noted with ”ones” in the last column. The mixtures are listed separately for the training and the test
set.

Group 2 (nAnP - nAdP)
# component component CAS- CAS- azeo

Training set
1 CARBON-MONOXIDE 1-OCTENE 630080 111660 0.0705 0.0944 0
2 CYCLOHEXANE N-METHYL- 110827 872504 0.0166 0.0203 0

2-PYRROLIDONE
3 METHANE PROPYLBENZENE 74828 103651 0.0318 0.0341 0
4 CYCLOHEXANE TOLUENE 110827 108883 0.0144 0.0019 0
5 ETHYL-ETHANOATE METHYLCYCLOHEXANE 141786 108872 0.0508 0.0274 1
6 METHYLCYCLOHEXANE CHLOROBENZENE 108872 108907 0.0121 0.0085 0
7 ETHANE PROPYLBENZENE 74840 103651 0.0252 0.0219 0
8 CHLOROBUTANE METHYLCYCLOHEXANE 109693 108872 0.0122 0.017 0
9 PROPANE TOLUENE 74986 108883 0.0201 0.0135 0

10 HEXANE CHLOROBENZENE 110543 108907 0.0075 0.0154 0
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11 METHANE PROPYLENE 74828 115071 -0.0046 0.0091 0
12 CHLOROBUTANE HEPTANE 109693 142825 0.009 0.0115 0
13 CYCLOHEXANE ISOPROPYL-ETHANOATE 110827 108214 0.0303 0.0199 1
14 NONANE PROPYLBENZENE 111842 103651 0.0047 0.0057 1
15 ETHYL-ETHANOATE CYCLOHEXANE 141786 110827 0.0501 0.0238 1
16 HEXANE N-METHYL- 110543 872504 0.0093 0.0239 0

2-PYRROLIDONE
17 PROPANE DIMETHYL-ETHER 74986 115106 0.026 0.0136 1
18 HEPTANE BUTYL-ETHANOATE 142825 123864 0.0289 0.0112 0
19 ETHANE PROPYLENE 74840 115071 -0.0058 0.0044 0
20 CYCLOHEXANE BUTYL-ETHANOATE 110827 123864 0.0265 0.0163 0
21 DIMETHYL-ETHER ISOBUTANE 115106 75285 0.0281 0.0165 1
22 OCTANE o-XYLENE 111659 95476 -0.0032 0.0068 0
23 CYCLOHEXANE CHLOROBENZENE 110827 108907 0.0121 0.0101 0
24 METHYLCYCLOHEXANE TOLUENE 108872 108883 0.012 0.0035 0
25 CHLOROBENZENE DECANE 108907 124185 -0.0082 0.0139 0
26 1-HEXENE HEXANE 592416 110543 0.0033 0.0034 0
27 METHYLCYCLOHEXANE BUTYL-ETHANOATE 108872 123864 0.0276 0.0189 0
28 HEXANE ETHYLBENZENE 110543 100414 0.0076 0.0077 0
29 TOLUENE DECANE 108883 124185 0.0054 0.0049 0
30 ETHYLBENZENE p-XYLENE 100414 106423 0.0003 0.0033 0
31 1-HEXENE OCTANE 592416 111659 0.0006 0.0044 0
32 ETHYL-ETHANOATE HEPTANE 141786 142825 0.0419 0.0169 1
33 1-BUTENE BUTANE 106989 106978 0 0.0037 0
34 ETHYLBENZENE NONANE 100414 111842 0.0072 0.0063 0
35 HEPTANE TOLUENE 142825 108883 0.0046 0.0059 0
36 PROPYLENE PROPANE 115071 74986 0.0069 0.0039 0
37 HEPTANE o-XYLENE 142825 95476 0.0051 0.0077 0
38 HEPTANE CHLOROBENZENE 142825 108907 0.0073 0.0151 0
39 OCTANE PROPYLBENZENE 111659 103651 0.0066 0.006 0
40 HEPTANE ETHYLBENZENE 142825 100414 0.0073 0.0075 0

Test set
41 HEXANE CHLOROBUTANE 110543 109693 0.008 0.0117 1
42 1-HEXENE HEPTANE 592416 142825 0.0039 0.0037 0
43 HEPTANE N-METHYL-2-PYRROLIDONE 142825 872504 0.01 0.0236 0
44 TOLUENE OCTANE 108883 111659 0.0072 0.005 0
45 CYCLOHEXANE PROPYL-ETHANOATE 110827 109604 0.0355 0.0197 1

Table E.5: Regression results for mixtures of non-associating, non-polar with non-associating, quadrupo-
lar components (group 3). For each mixture the component names are given (component i, component
j), their CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( ) and the

values of predicted with the QSPR model ( ). The mixtures that demonstrate azeotropic be-
havior are noted with ”ones” in the last column. The mixtures are listed separately for the training and
the test set.

Group 3 (nAnP - nAqP)
# component component CAS- CAS- azeo

Training set
1 NITROGEN METHYLCYCLOHEXANE 7727379 108872 0.1245 0.1592 0
2 BENZENE p-XYLENE 71432 106423 -0.0049 0.0017 0
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3 CARBON-DIOXIDE ETHYLCYCLOHEXANE 124389 1678917 0.0707 0.0797 0
4 NITROGEN ISOBUTANE 7727379 75285 0.1001 0.0741 0
5 CARBON-DIOXIDE BUTANE 124389 106978 0.0358 0.0312 0
6 NITROGEN METHANE 7727379 74828 0.0226 0.0309 0
7 CARBON-DIOXIDE PENTADECANE 124389 629629 0.0551 0.0528 0
8 NITROGEN NONANE 7727379 111842 0.1232 0.1038 0
9 METHANE BENZENE 74828 71432 0.0265 0.0323 1

10 CARBON-DIOXIDE p-XYLENE 124389 106423 0.0282 0.0539 0
11 CARBON-DIOXIDE ETHANE 124389 74840 0.0195 0.0174 1
12 NITROGEN ETHANE 7727379 74840 0.039 0.0444 0
13 ETHYLENE OCTANE 74851 111659 0.0182 0.0171 0
14 NITROGEN PROPANE 7727379 74986 0.0623 0.0593 0
15 CARBON-DIOXIDE METHYLCYCLOHEXANE 124389 108872 0.0573 0.067 0
16 CARBON-DIOXIDE OCTANE 124389 111659 0.0451 0.0428 0
17 NITROGEN PENTANE 7727379 109660 0.089 0.0865 0
18 CARBON-DIOXIDE PROPANE 124389 74986 0.0327 0.0241 0
19 NITROGEN HEPTANE 7727379 142825 0.1098 0.095 0
20 DODECANE CARBON-DIOXIDE 112403 124389 0.0501 0.0479 0
21 CARBON-DIOXIDE CYCLOHEXANE 124389 110827 0.0608 0.056 0
22 CARBON-DIOXIDE PENTANE 124389 109660 0.0384 0.0362 0
23 CARBON-DISULFIDE CYCLOPENTANE 75150 287923 0.0011 0.0078 1
24 CARBON-DIOXIDE HEPTANE 124389 142825 0.0427 0.0399 0
25 ETHANE BENZENE 74840 71432 0.0196 0.0208 0
26 BENZENE OCTANE 71432 111659 0.0038 0.0052 0
27 BENZENE METHYLCYCLOHEXANE 71432 108872 0.0089 0.0027 0
28 NITROGEN OCTANE 7727379 111659 0.1222 0.1016 0
29 CARBON-DIOXIDE OCTADECANE 124389 593453 0.0843 0.0544 0
30 ETHYLENE ETHANE 74851 74840 0.0124 0.0031 0
31 BENZENE DODECANE 71432 112403 -0.0005 0.0039 0
32 HEXANE BENZENE 110543 71432 0.006 0.0063 1
33 CARBON-DIOXIDE NONANE 124389 111842 0.0332 0.0437 0
34 METHYLCYCLOPENTANE BENZENE 96377 71432 0.0076 0.003 1
35 NITROGEN DECANE 7727379 124185 0.1109 0.1026 0
36 CARBON-DIOXIDE UNDECANE 124389 1120214 0.0605 0.0474 0

Test set
37 CARBON-DISULFIDE CYCLOHEXANE 75150 110827 -0.0029 0.0049 0
38 BENZENE DECANE 71432 124185 0.0008 0.005 0
39 CARBON-DIOXIDE DECANE 124389 124185 0.0518 0.0432 0
40 METHANE ETHYLENE 74828 74851 0.0095 0.0029 0
41 BENZENE HEPTANE 71432 142825 0.005 0.006 0

Table E.6: Regression results for mixtures of non-associating, dipolar with non-associating, quadrupolar
components (group 4). For each mixture the component names are given (component i, component j),
their CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( ) and the values

of predicted with the QSPR model ( ). The mixtures that demonstrate azeotropic behavior are
noted with ”ones” in the last column. The mixtures are listed separately for the training and the test
set.

Group 4 (nAdP - nAqP)
# component component CAS- CAS- azeo
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Training set
1 ACETONE NITROGEN 67641 7727379 0.0336 0.0146 0
2 NITROGEN PROPYLBENZENE 7727379 103651 0.1658 0.1433 0
3 BENZENE 1-BROMOBENZENE 71432 108861 -0.0082 0.0033 0
4 CARBON-DIOXIDE 1-BROMOBENZENE 124389 108861 0.0462 0.0407 0
5 SULFUR-DIOXIDE BENZENE 7446095 71432 0.0494 0.0529 0
6 CARBON-DIOXIDE PROPYLBENZENE 124389 103651 0.0382 0.0533 0
7 DIMETHYL-ETHER CARBON-DIOXIDE 115106 124389 -0.0574 -0.0285 0
8 PROPYLENE NITROGEN 115071 7727379 0.0642 0.0466 0
9 BUTYLBENZENE BENZENE 104518 71432 -0.0101 0.0013 0

10 CARBON-DIOXIDE 1-HEXENE 124389 592416 0.0125 0.0244 0
11 VINYL-ACETATE ETHYLENE 108054 74851 -0.0159 0.0071 0
12 CARBON-DIOXIDE o-XYLENE 124389 95476 0.0343 0.0445 0
13 CARBON-DIOXIDE ISOPROPYL-ETHANOATE 124389 108214 0.0019 -0.0158 0
14 PROPYLENE BENZENE 115071 71432 0.0087 0.0166 0
15 DIETHYL-ETHER CARBON-DISULFIDE 60297 75150 0.0057 0.0206 1
16 CARBON-DIOXIDE TOLUENE 124389 108883 0.0246 0.0461 0
17 NITROGEN TOLUENE 7727379 108883 0.1223 0.1304 0
18 CARBON-DIOXIDE CHLOROBENZENE 124389 108907 0.0351 0.03 1
19 PROPYLENE ETHYLENE 115071 74851 -0.0004 0.0054 0
20 1-HEXENE ETHYLENE 592416 74851 0.0443 0.013 0
21 1-HEXENE BENZENE 592416 71432 0.0011 0.0076 0

Test set
22 BENZENE CHLOROBENZENE 71432 108907 -0.002 0.0016 0
23 CARBON-DIOXIDE ETHYLBENZENE 124389 100414 0.0345 0.0451 0
24 BENZENE TOLUENE 71432 108883 -0.0062 0.0015 0

Table E.7: Regression results for mixtures of two non-associating, quadrupolar components (group 5).
For each mixture the component names are given (component i, component j), their CAS-Numbers (CAS-
i, CAS-j), the values of fitted to experimental VLE data ( ) and the values of predicted with

the QSPR model ( ). The mixtures that demonstrate azeotropic behavior are noted with ”ones” in
the last column. The mixtures are listed separately for the training and the test set.

Group 5 (nAqP - nAqP)
# component component CAS- CAS- azeo

Training set
1 CARBON-DIOXIDE BENZENE 124389 71432 0.0502 0.0479 0
2 CARBON-DISULFIDE BENZENE 75150 71432 0.0134 0.0032 0
3 NITROGEN BENZENE 7727379 71432 0.1374 0.1365 0

Test set
4 NITROGEN ETHYLENE 7727379 74851 0.0616 0.0326 0
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Table E.8: Regression results for mixtures of two non-associating, dipolar components (group 6). For
each mixture the component names are given (component i, component j), their CAS-Numbers (CAS-i,
CAS-j), the values of fitted to experimental VLE data ( ) and the values of predicted with the

QSPR model ( ). The mixtures that demonstrate azeotropic behavior are noted with ”ones” in the
last column. The mixtures are listed separately for the training and the test set.

Group 6 (nAdP - nAdP)
# component component CAS- CAS- azeo

Training set
1 N-N-DIMETHYL- 1-METHYLNAPHTHALENE 68122 90120 -0.0059 0 0

FORMAMIDE
2 m-XYLENE o-XYLENE 108383 95476 0 0.002 0
3 DICHLOROMETHANE o-XYLENE 75092 95476 -0.0002 0.0199 0
4 ISOBUTENE N-METHYL-2 115117 872504 -0.014 -0.0246 0

PYRROLIDONE
5 DIETHYL-ETHER ACETONE 60297 67641 0.0028 -0.001 0
6 ACETONE TOLUENE 67641 108883 0.0007 0.0138 0
7 PROPYLENE DIMETHYL-ETHER 115071 115106 0 0.0078 0
8 ACETONE 3-PENTANONE 67641 96220 0.0031 0.0085 0
9 2-METHYLPROPANAL N-N-DIMETHYL- 78842 68122 -0.0013 -0.001 0

FORMAMIDE
10 ACETALDEHYDE ACETONITRILE 75070 75058 -0.0017 0.0014 0

Test set
11 ACETONITRILE PROPIONITRILE 75058 107120 0 0.0078 0
12 ACETONE o-XYLENE 67641 95476 0.0095 0.013 0

Table E.9: Regression results for mixtures of non-associating, non-polar with associating, dipolar com-
ponents (group 7). For each mixture the component names are given (component i, component j), their
CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( ) and the values of

predicted with the QSPR model ( ). The mixtures that demonstrate azeotropic behavior are
noted with ”ones” in the last column. The mixtures are listed separately for the training and the test
set.

Group 7 (nAnP - AdP)
# component component CAS- CAS- azeo

Training set
1 ETHANE 1-OCTANOL 74840 111875 0.0011 0.0011 0
2 CARBON-MONOXIDE PROPIONIC-ACID 630080 79094 0.0708 0.1111 0
3 DIETHYLAMINE HEPTANE 109897 142825 -0.0333 -0.004 0
4 DODECANE epsilon-CAPROLACTAM 112403 105602 -0.0136 0.0033 1
5 CYCLOHEXANE n-HEXANOIC-ACID 110827 142621 -0.0236 -0.0119 0
6 HEXANE ISOPROPANOL 110543 67630 0.0402 0.0338 1
7 METHYLAMINE HEXANE 74895 110543 0.01 0.0073 0
8 METHANOL HEPTANE 67561 142825 -0.0093 0.0097 1
9 TRIDECANE 1-DODECANOL 629505 112538 0.012 -0.0075 0

10 1-OCTANOL n-HEPTYLBENZENE 111875 1078713 0.0274 0.0217 0
11 ETHANOL NONANE 64175 111842 0.0189 0.02 1
12 HEXANE 1-HEXADECANOL 110543 36653824 0.0008 -0.013 0
13 HEPTANE NEOPENTANOIC-ACID 142825 75989 0.01 0.025 0
14 HEPTANE 2-METHYL-1-BUTANOL 142825 137326 0.0149 0.0094 1
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15 CYCLOHEXANE NEOPENTANOIC-ACID 110827 75989 0.0272 0.0406 0
16 PENTANE 1-PENTANOL 109660 71410 0.01 0.0081 0
17 1-PROPANOL HEPTANE 71238 142825 0.026 0.0193 1
18 METHANOL CYCLOHEXANE 67561 110827 0.0122 0.0205 1
19 CYCLOHEXANE 1-HEXANOL 110827 111273 0.0217 0.0114 0
20 PROPANE 1-DECANOL 74986 112301 0.0042 -0.0018 0
21 CYCLOHEXANE PYRROLIDINE 110827 123751 -0.0158 -0.0049 1
22 BUTANE ETHANOL 106978 64175 0.0105 0.0108 1
23 CYCLOHEXANE 1-BUTANOL 110827 71363 0.0426 0.0335 1
24 2-2-DIMETHYLBUTANE 1-PENTANOL 75832 71410 0.0141 0.0158 0
25 HEXANE 1-HEXANOL 110543 111273 0.011 0.0027 0
26 METHYLCYCLOHEXANE 1-BUTANOL 108872 71363 0.0467 0.041 1
27 DECANE 1-OCTANOL 124185 111875 0.0201 0.0073 1
28 1-BUTANOL DODECANE 71363 112403 0.0246 0.0256 0
29 PROPANE 1-PROPANOL 74986 71238 -0.0044 0.0078 0
30 ETHANOL HEXADECANE 64175 544763 0.0167 0.0266 0
31 CYCLOHEXANE 1-PROPANOL 110827 71238 0.0321 0.0329 1
32 CYCLOPENTANE CYCLOHEXANOL 287923 108930 0.019 0.0132 0
33 CYCLOHEXANE CYCLOHEXANOL 110827 108930 0.0245 0.0195 0
34 1-PROPANOL UNDECANE 71238 1120214 0.0289 0.0247 0
35 ETHYLAMINE HEXANE 75047 110543 -0.0006 0.0009 0
36 HEXANE 1-DECANOL 110543 112301 0.0054 -0.0059 0
37 BUTANE ETHYLAMINE 106978 75047 0.003 0.0049 1
38 3-METHYLPENTANE 1-PENTANOL 96140 71410 0.0157 0.0118 0
39 HEXANE ETHANOL 110543 64175 0.0102 0.0165 1
40 1-BUTANOL DECANE 71363 124185 0.0351 0.0223 1
41 PENTANE 1-PROPANOL 109660 71238 0.022 0.0165 0
42 1-PROPANOL NONANE 71238 111842 0.0296 0.0221 1
43 METHYLAMINE NONANE 74895 111842 0.0106 0.0094 0
44 HEPTANE 1-OCTANOL 142825 111875 0.01 0.0056 0

Test set
45 OCTANE 1-OCTANOL 111659 111875 0.0223 0.0071 0
46 2-3-DIMETHYLBUTANE 1-PENTANOL 79298 71410 0.016 0.0153 0
47 2-METHYLPENTANE 1-PENTANOL 107835 71410 0.0134 0.0106 0
48 HEPTANE 1-PENTANOL 142825 71410 0.0255 0.0102 1
49 HEXANE 1-PENTANOL 110543 71410 0.0179 0.0097 0
50 HEXANE 1-PROPANOL 110543 71238 0.0238 0.0186 1

Table E.10: Regression results for mixtures of non-associating, dipolar with associating, dipolar compo-
nents (group 8). For each mixture the component names are given (component i, component j), their
CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( ) and the values of

predicted with the QSPR model ( ). The mixtures that demonstrate azeotropic behavior are
noted with ”ones” in the last column. The mixtures are listed separately for the training and the test
set.

Group 8 (nAdP - AdP)
# component component CAS- CAS- azeo

Training set
1 ETHANOL ACETONITRILE 64175 75058 -0.0313 -0.0571 1
2 ACETONE ANILINE 67641 62533 -0.0286 0.0079 0
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3 DIETHYLAMINE CHLOROBENZENE 109897 108907 -0.0446 -0.0313 0
4 WATER SULFOLANE 7732185 126330 -0.0244 -0.0405 0
5 PHENOL NITROBENZENE 108952 98953 -0.0151 -0.0406 0
6 ACETONE METHANOL 67641 67561 -0.033 -0.0358 1
7 ETHANOL TOLUENE 64175 108883 0.0332 0.0205 1
8 DIETHYLAMINE ETHYL-ETHANOATE 109897 141786 -0.0036 0.0192 0
9 NITROMETHANE 1-HEXANOL 75525 111273 0.0078 -0.0264 0

10 METHYLAMINE TRIMETHYLAMINE 74895 75503 -0.024 -0.0019 1
11 METHANOL gamma- 67561 96480 -0.0212 -0.0334 0

BUTYROLACTONE
12 CHLOROBENZENE PROPIONIC-ACID 108907 79094 -0.0335 -0.0541 0
13 1-PROPANOL N-METHYL-2- 71238 872504 -0.0594 -0.0183 0

PYRROLIDONE
14 1-BROMOBENZENE CYCLOHEXANOL 108861 108930 0.0337 0.0241 1
15 METHANOL DIMETHYL-DISULFIDE 67561 624920 0.0275 -0.0005 1
16 ACRYLONITRILE WATER 107131 7732185 -0.05 -0.0416 1
17 1-HEXENE PROPIONIC-ACID 592416 79094 -0.0154 -0.0508 0
18 CHLOROBENZENE ANILINE 108907 62533 -0.0051 -0.0508 0
19 METHYL-PROPANOATE 1-BUTANOL 554121 71363 0.006 -0.0015 0
20 METHANOL METHYL- 67561 628284 -0.0355 -0.0089 1
20 n-BUTYL-ETHER
21 ACETONITRILE 1-PROPANOL 75058 71238 -0.0381 -0.0427 1
22 DIETHYLAMINE TRIETHYLAMINE 109897 121448 -0.0381 -0.0059 0
23 METHYL-ACETATE ETHANOL 79209 64175 -0.0327 -0.0157 0

PROPYLENE-GLYCOL-
24 DIISOPROPYL-ETHER MONOMETHYL-ETHER 108203 107982 -0.0035 -0.0067 0
25 1-PROPANOL N-N-DIMETHYL- 71238 68122 -0.0593 -0.0302 0

FORMAMIDE
26 ACETONITRILE WATER 75058 7732185 -0.0485 -0.0349 1
27 ETHANOL N-METHYL-2- 64175 872504 -0.078 -0.0299 0

PYRROLIDONE
28 TOLUENE ANILINE 108883 62533 -0.005 -0.0388 0
29 ACETONE CYCLOHEXANOL 67641 108930 0.0031 -0.013 0
30 1-2-DICHLOROETHANE 1-PROPANOL 107062 71238 0.0361 0.0095 1
31 ETHANOL N-N-DIMETHYL- 64175 127195 -0.078 -0.0302 0

ACETAMIDE
32 TOLUENE 1-BUTANOL 108883 71363 0.0433 0.0268 1
33 METHANOL ACETONITRILE 67561 75058 -0.0284 -0.0613 1
34 DIISOPROPYL-ETHER 1-BUTANOL 108203 71363 0.0132 0.0044 0
35 CYCLOHEXANONE CYCLOHEXANOL 108941 108930 0.0049 0.0086 0
36 METHANOL 4-HEPTANONE 67561 123193 -0.0266 -0.0106 0
37 ACETONE ETHANOL 67641 64175 -0.0376 -0.0256 1
38 ETHANOL DI-n-BUTYL-ETHER 64175 142961 0.0022 0.0026 0
39 METHANOL 1-2-DICHLOROETHANE 67561 107062 0.0039 -0.0086 1
40 ETHYL-PROPANOATE PROPIONIC-ACID 105373 79094 -0.0745 -0.0542 0
41 TOLUENE n-BUTYRIC-ACID 108883 107926 -0.0235 -0.0413 0
42 METHANOL VINYL-ACETATE 67561 108054 -0.0255 -0.0214 1
43 DIETHYL-ETHER ETHANOL 60297 64175 -0.0173 -0.0078 0
44 PROPYLENE ETHANOL 115071 64175 0.0223 -0.008 0
45 ETHANOL 1-2-DICHLOROETHANE 64175 107062 0.0269 0.0017 1
46 DIETHYLAMINE ETHYLBENZENE 109897 100414 -0.0539 -0.0236 0
47 PROPYLBENZENE PHENOL 103651 108952 0.0234 0.0055 1
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48 NITROMETHANE 1-BUTANOL 75525 71363 0.0137 -0.0214 1
49 METHANOL BUTYL-ETHANOATE 67561 123864 -0.0514 -0.0117 0
50 DIETHYL-SULFIDE 1-PROPANOL 352932 71238 0.03 0.0168 1
51 CHLOROFORM ETHANOL 67663 64175 -0.0032 -0.0014 1
52 DI-n-PROPYL-ETHER 1-OCTANOL 111433 111875 0.0043 -0.0028 0
53 THIOPHENE PHENOL 110021 108952 0.0221 0.0006 0
54 1-2-DICHLOROETHANE 1-BUTANOL 107062 71363 0.0356 0.0121 0
55 DIISOPROPYL-ETHER ETHANOL 108203 64175 -0.0009 -0.0032 1
56 DI-n-PROPYL-ETHER 1-BUTANOL 111433 71363 0.0122 0.0091 0

Test set
57 METHYL-BUTANOATE 1-BUTANOL 623427 71363 0.0065 0.002 0
58 ETHYLBENZENE ANILINE 100414 62533 -0.008 -0.0408 0
59 DICHLOROMETHANE ETHANOL 75092 64175 0.0101 -0.0153 1
60 ETHANOL METHYL-PROPANOATE 64175 554121 -0.0033 -0.0122 1
61 TOLUENE PHENOL 108883 108952 0.0181 0.0034 0
62 DIETHYLAMINE TOLUENE 109897 108883 -0.0396 -0.0222 0
63 TOLUENE p-CRESOL 108883 106445 0.0151 0.0029 0

Table E.11: Regression results for mixtures of non-associating, quadrupolar with associating, dipolar
components (group 9). For each mixture the component names are given (component i, component j),
their CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( ) and the values

of predicted with the QSPR model ( ). The mixtures that demonstrate azeotropic behavior are
noted with ”ones” in the last column. The mixtures are listed separately for the training and the test
set.

Group 9 (nAqP - AdP)
# component component CAS- CAS- azeo

Training set
1 ETHYLENE 1-DECANOL 74851 112301 -0.0054 0.0067 0
2 CARBON-DIOXIDE ACETIC-ACID 124389 64197 -0.0341 -0.0174 0
3 CARBON-DIOXIDE METHANOL 124389 67561 -0.0081 -0.0017 0
4 BENZENE ACETIC-ACID 71432 64197 -0.0565 -0.072 0
5 NITROGEN 1-DECANOL 7727379 112301 0.153 0.0955 0
6 AMMONIA BENZENE 7664417 71432 0.0416 0.0237 0
7 CARBON-DIOXIDE n-DECANOIC-ACID 124389 334485 -0.0176 -0.0182 0
8 CARBON-DIOXIDE 1-BUTANOL 124389 71363 -0.0094 -0.0068 0
9 CARBON-DIOXIDE METHYL-LACTATE 124389 547648 -0.0205 -0.049 0

10 NITROGEN CYCLOHEXANOL 7727379 108930 0.1133 0.0621 0
11 BENZENE PROPIONIC-ACID 71432 79094 -0.0638 -0.0375 0
12 DIETHYLAMINE BENZENE 109897 71432 -0.0601 -0.0345 0
13 BENZENE 1-PROPANOL 71432 71238 0.0256 0.0247 1
14 NITROGEN ETHANOL 7727379 64175 0.0355 0.0382 0
15 CARBON-DIOXIDE PHENOL 124389 108952 -0.0041 0.0205 0
16 BENZENE ANILINE 71432 62533 -0.0328 -0.0427 0
17 CARBON-DIOXIDE ETHANOL 124389 64175 -0.0112 -0.0029 0
18 NITROGEN 1-OCTANOL 7727379 111875 0.1203 0.0665 0

ETHYLENE-GLYCOL-
19 CARBON-DIOXIDE MONOPROPYL-ETHER 124389 2807309 -0.0179 0.0119 0
20 CARBON-DIOXIDE 1-DECANOL 124389 112301 0.0146 -0.0046 0
21 NITROGEN 1-PROPANOL 7727379 71238 -0.0154 0.0361 0
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22 CARBON-DISULFIDE 1-PENTANOL 75150 71410 0.0114 0.027 0
23 ETHANOL BENZENE 64175 71432 0.0165 0.0248 1
24 ISOPROPANOL BENZENE 67630 71432 0.0444 0.0432 1
25 BENZENE PHENOL 71432 108952 0.0034 0.0004 0
26 CARBON-DIOXIDE 1-HEPTANOL 124389 111706 0.0092 -0.0019 0
27 CARBON-DISULFIDE 1-BUTANOL 75150 71363 0.0265 0.0418 0
28 NITROGEN 2-HEXANOL 7727379 626937 0.0818 0.053 0
29 CARBON-DIOXIDE 1-PROPANOL 124389 71238 -0.0194 -0.0058 0
30 CARBON-DIOXIDE 1-PENTANOL 124389 71410 -0.0012 0.0007 0
31 CARBON-DIOXIDE 1-OCTANOL 124389 111875 0.0065 -0.0029 0

Test set
32 CARBON-DIOXIDE 1-HEXANOL 124389 111273 0.001 -0.001 0
33 CARBON-DISULFIDE 1-PROPANOL 75150 71238 0.0293 0.0412 0
34 CARBON-DIOXIDE 2-METHYL-1-BUTANOL 124389 137326 0.0143 -0.004 0
35 CARBON-DIOXIDE n-DODECANOIC-ACID 124389 143077 -0.0069 -0.0151 0
36 CARBON-DIOXIDE p-CRESOL 124389 106445 -0.0032 0.0164 0

Table E.12: Regression results for mixtures of two associating, dipolar components (group 10). For
each mixture the component names are given (component i, component j), their CAS-Numbers (CAS-i,
CAS-j), the values of fitted to experimental VLE data ( ) and the values of predicted with the

QSPR model ( ). The mixtures that demonstrate azeotropic behavior are noted with ”ones” in the
last column. The mixtures are listed separately for the training and the test set.

Group 10 (AdP - AdP)
# component component CAS- CAS- azeo

Training set
1 ACETIC-ACID ACETAMIDE 64197 60355 -0.0993 -0.0734 0
2 CYCLOHEXYLAMINE CYCLOHEXANOL 108918 108930 -0.1334 -0.1459 0
3 PROPIONIC-ACID n-BUTYRIC-ACID 79094 107926 -0.0164 -0.0744 0
4 METHANOL ANILINE 67561 62533 0.0558 0.0467 0
5 WATER 1-2-BENZENEDIOL 7732185 120809 -0.1136 -0.1507 0

PROPYLENE-GLYCOL-
6 MONOMETHYL-ETHER 1-2-PROPYLENE-GLYCOL 107982 57556 -0.003 -0.0379 0

PROPYLENE-GLYCOL-
7 ISOPROPANOL MONOMETHYL-ETHER 67630 107982 0.0328 0.0265 0
8 p-CRESOL 1-2-BENZENEDIOL 106445 120809 -0.0486 -0.0633 0
9 CYCLOHEXYLAMINE ANILINE 108918 62533 -0.1601 -0.1225 0

10 METHANOL 1-DECANOL 67561 112301 -0.0193 -0.0186 0
11 ANILINE ETHYLENE-GLYCOL 62533 107211 0.0608 -0.007 1
12 3-METHYL-2-BUTANOL 1-PENTANOL 598754 71410 0.0035 -0.0089 0
13 WATER PROPIONIC-ACID 7732185 79094 -0.1378 -0.1047 1
14 AMMONIA DIETHYLAMINE 7664417 109897 0.0827 0.0438 0
15 ACETIC-ACID n-BUTYRIC-ACID 64197 107926 -0.0513 -0.021 0
16 ACETIC-ACID 1-DODECANOL 64197 112538 -0.0451 0.0048 0
17 WATER GLYCEROL 7732185 56815 -0.0679 -0.0845 0
18 PROPIONIC-ACID PHENOL 79094 108952 -0.0625 -0.0471 0
19 n-BUTYLAMINE 1-BUTANOL 109739 71363 0.0025 0.0422 0
20 AMMONIA HYDRAZINE 7664417 302012 0.0158 -0.0031 0

PROPYLENE-GLYCOL-
21 WATER MONOMETHYL-ETHER 7732185 107982 -0.094 -0.0334 1
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22 ETHANOL WATER 64175 7732185 -0.0997 -0.0665 1
23 ETHANOL 1-PROPANOL 64175 71238 0.0001 -0.0443 0
24 n-BUTYLAMINE PIPERIDINE 109739 110894 0.0058 -0.0012 0
25 METHANOL 2-BUTANOL 67561 78922 -0.0443 -0.0339 0
26 WATER ETHYLENE-GLYCOL 7732185 107211 -0.0546 -0.0951 0
27 WATER 2-ETHOXYETHANOL 7732185 110805 -0.0987 -0.0264 1
28 1-PROPANOL WATER 71238 7732185 -0.0736 -0.0413 1
29 1-BUTANOL PYRROLE 71363 109977 0.0081 0.0033 1
30 ISOPROPANOL WATER 67630 7732185 -0.0958 -0.0264 1
31 METHANOL WATER 67561 7732185 -0.0994 -0.0871 0
32 ETHANOL 2-METHYL-1-PROPANOL 64175 78831 0.0011 -0.0344 0
33 ISOBUTYRIC-ACID n-PENTANOIC-ACID 79312 109524 -0.0091 -0.011 0
34 ISOPROPANOL 1-PROPANOL 67630 71238 0.0002 -0.0233 0
35 WATER 1-BUTANOL 7732185 71363 -0.0762 -0.0304 1
36 2-METHYL-1-BUTANOL 1-PENTANOL 137326 71410 -0.0015 -0.0215 0

Test set
37 2-BUTANOL 1-BUTANOL 78922 71363 0.0006 -0.0172 0
38 ETHANOL 1-BUTANOL 64175 71363 -0.0083 -0.0359 0
39 METHANOL ETHANOL 67561 64175 -0.0156 -0.0717 0
40 ACETIC-ACID PROPIONIC-ACID 64197 79094 -0.0297 -0.0316 0
41 1-PROPANOL PYRROLE 71238 109977 0.0068 -0.0009 0

Table E.13: List of the binary mixtures identified as outliers. These mixtures are not included neither
in the training nor in the test set. For each mixture the component names are given (component i,
component j), their CAS-Numbers (CAS-i, CAS-j), the values of fitted to experimental VLE data ( )
and the group of mixtures they are categorized to (group). The mixtures that demonstrate azeotropic
behavior are noted with ”ones” in the last column.

excluded mixtures (outliers)
# component component CAS- CAS- group azeo
1 ’CARBON-MONOXIDE’ ’p-XYLENE’ 630080 106423 1 0.0902 0
2 ’ETHYL-METHANOATE’ ’CYCLOHEXANE’ 109944 110827 2 0.0686 1
3 ’ETHYLENE’ ’DODECANE’ 74851 112403 3 -0.0412 0
4 ’NITROGEN’ ’ETHYLCYCLOHEXANE’ 7727379 1678917 3 0.1241 0
5 ’NITROGEN’ ’HEXADECANE’ 7727379 544763 3 0.1693 0
6 ’CARBON-DIOXIDE’ ’ACETONE’ 124389 67641 4 -0.0045 0
7 ’DICHLOROMETHANE’ ’CARBON-DIOXIDE’ 75092 124389 4 0.0089 0
8 ’NITROGEN’ ’CARBON-DIOXIDE’ 7727379 124389 4 -0.0910 1
9 ’CARBON-DIOXIDE’ ’ETHYL-ETHANOATE’ 124389 141786 4 -0.1641 0

10 ’CARBON-DIOXIDE’ ’ETHYL-METHANOATE’ 124389 109944 4 -0.1446 0
11 ’CARBON-DIOXIDE’ ’ETHYL-PROPANOATE’ 124389 105373 4 -0.1016 0
12 ’CARBON-DIOXIDE’ ’PROPYL-ETHANOATE’ 124389 109604 4 -0.1413 0
13 ’CARBON-DIOXIDE’ ’PROPYL-PROPIONATE’ 124389 106365 4 -0.0652 0
14 ’CARBON-DIOXIDE’ ’CARBON-DISULFIDE’ 124389 75150 5 0.1145 0
15 ’ACETONE’ ’ACETIC-ACID’ 67641 64197 6 -0.0898 0
16 ’DIETHYL-ETHER’ ’METHANOL’ 60297 67561 6 -0.0602 1
17 ’CHLOROFORM’ ’PIPERIDINE’ 67663 110894 6 -0.0845 0
18 ’WATER’ ’PROPYLENE-CARBONATE’ 7732185 108327 6 -0.0097 0
19 ’1-METHYLNAPHTHALENE’ ’TRIETHYLENE-GLYCOL’ 90120 112276 6 0.0416 0
20 ’HYDROGEN-CHLORIDE’ ’TRIFLUOROACETIC-ACID’ 7647010 76051 6 0.0928 0
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21 ’ACETONE’ ’WATER’ 67641 7732185 6 -0.1167 0
22 ’ETHYLENE-OXIDE’ ’WATER’ 75218 7732185 6 -0.0702 0
23 ’TETRAHYDROFURAN’ ’WATER’ 109999 7732185 6 -0.0910 1
24 ’HYDROGEN’ ’1-OCTANOL’ 1333740 111875 8 0.0514 0
25 ’METHANE’ ’1-PROPANOL’ 74828 71238 8 -0.0373 0
26 ’CARBON-MONOXIDE’ ’ACETIC-ACID’ 630080 64197 8 0.0662 0
27 ’HYDROGEN’ ’ACETIC-ACID’ 1333740 64197 8 0.0850 0
28 ’CYCLOHEXANE’ ’ANILINE’ 110827 62533 8 0.0255 0
29 ’METHYLCYCLOHEXANE’ ’ANILINE’ 108872 62533 8 0.0078 0
30 ’PHENOL’ ’DODECANE’ 108952 112403 8 0.0386 1
31 ’CARBON-MONOXIDE’ ’ETHANOL’ 630080 64175 8 -0.0253 0
32 ’HYDROGEN’ ’METHANOL’ 1333740 67561 8 -0.0259 0
33 ’OCTANE’ ’epsilon-CAPROLACTAM’ 111659 105602 8 -0.0217 0
34 ’WATER’ ’3-HEPTANONE’ 7732185 106354 10 -0.0644 0
35 ’ETHYLAMINE’ ’ETHANOL’ 75047 64175 10 -0.1002 0
36 ’AMMONIA’ ’METHANOL’ 7664417 67561 10 -0.1388 0
37 ’FORMIC-ACID’ ’PROPIONIC-ACID’ 64186 79094 10 -0.1562 0
38 ’AMMONIA’ ’WATER’ 7664417 7732185 10 -0.1768 0
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Figure E.1: Parity plots for the prediction in mixtures of non-associating components
(groups 1 to 6). The fitted values ( ) are plotted against the predicted values

( ). The white circles correspond to the mixtures of the training set and the black
diamonds correspond to the mixtures of the test set. The dashed lines designate the
± . absolute deviation on the value of ( ).
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Figure E.2: Parity plots for the prediction in mixtures including associating components
(groups 7 to 10). The fitted values ( ) are plotted against the predicted values

( ). The white circles correspond to the mixtures of the training set and the black
diamonds correspond to the mixtures of the test set. The dashed lines designate the
± . absolute deviation on the value of ( ).
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Figure E.3: Deviations of PC-SAFT from experimental binary phase equilibrium data for
mixtures of non-associating components (groups 1 to 6). The deviations are defined
as / exp according to Eq.(3.23). The red line serves as a reference and is ob-
tained for individually optimized fit values. The symbols (connected by black line) are

obtained using estimated values QSPR. The blue dashed line represent phase equilib-
rium calculations, when the PC-SAFT EoS is not corrected ( ). The negative values
indicate cases, when either the isobaric-isothermal flash calculations or the bubble point
calculations did not converge for certain equilibrium data points. Azeotropic mixtures are
marked with a square instead of a circle.
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Figure E.4: Deviations of PC-SAFT from experimental binary phase equilibrium data for
mixtures with at least one associating component (groups 7 to 10). The deviations are
defined as / exp according to Eq.(3.23). The red line serves as a reference and is
obtained for individually optimized fit values. The symbols (connected by black line) are

obtained using estimated values QSPR. The blue dashed line represent phase equilibrium
calculations, when the PC-SAFT EoS is not corrected ( ). The negative values
indicate cases, when either the isobaric-isothermal flash calculations or the bubble point
calculations did not converge for certain equilibrium data points. Azeotropic mixtures are
marked with a square instead of a circle.
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E.4. Estimation of 𝑘𝑖𝑗 for binarymixtures with
H2

Table E.14: Results of the regressed model coefficients for mixtures of non-associating
components with H . The values of the coefficients and their % confidence interval

, for the QSPR model defined in Eq. (3.19) and (3.21), with assoc,s , assoc,c

and assoc,sc .

mixtures of non-associating components with H

⋅ , ⋅
LJ . ± .

dd,a . ± .
dd,b . ± .

qq . ± .
dq . ±
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Table E.15: Regression results for mixtures of non-associating components with H . For each mixture the
component names are given (component i, component j), their CAS-Numbers (CAS-i, CAS-j), the values of

fitted to experimental VLE data ( ) and the values of predicted with the QSPR model ( ).
The mixtures that demonstrate azeotropic behavior are noted with ”ones” in the last column.

# component component CAS- CAS- azeo
Training set

1 HYDROGEN BICYCLOHEXYL 1333740 92513 0.3774 0.4919 0
2 HYDROGEN PROPANE 1333740 74986 0.2133 0.1309 0
3 HYDROGEN CYCLOHEXANE 1333740 110827 0.2901 0.2842 0
4 HYDROGEN DECANE 1333740 124185 0.2610 0.2160 0
5 HYDROGEN PENTANE 1333740 109660 0.2398 0.1841 0
6 HYDROGEN TETRADECANE 1333740 629594 0.2848 0.2542 0
7 HYDROGEN BUTANE 1333740 106978 0.2069 0.1623 0
8 HYDROGEN HEXANE 1333740 110543 0.1511 0.1971 0
9 HYDROGEN 1-METHYLNAPHTHALENE 1333740 90120 0.2633 0.3703 0

10 HYDROGEN PROPYLENE-CARBONATE 1333740 108327 -0.7299 -0.5732 0
11 HYDROGEN 1-HEXENE 1333740 592416 0.1498 0.1030 0
12 HYDROGEN CYCLOHEXANONE 1333740 108941 0.1460 -0.1330 0
13 HYDROGEN BENZENE 1333740 71432 0.2007 0.2007 0

Test set
14 HYDROGEN 2-2-4-TRIMETHYLPENTANE 1333740 540841 0.3907 0.2756 0
15 HYDROGEN HEXADECANE 1333740 544763 0.3022 0.2582 0
16 HYDROGEN 1-OCTENE 1333740 111660 0.1424 0.1250 0
17 HYDROGEN CHLOROBENZENE 1333740 108907 0.2080 0.0772 0
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E.5. Estimation of 𝑘𝑖𝑗 for binary mixtures with CO2

Table E.16: Results of the regressed model coefficients for mixtures of non-associating dipolar with non-
associating quadrupolar components. The values of the coefficients are adjusted only for mixtures of
group 4 (Table E.17). The % confidence interval , for the QSPR model defined in Eq. (3.19) and
(3.21), with assoc,s , assoc,c and assoc,sc .

mixtures of non-associating dipolar with
non-associating quadrupolar components

⋅ , ⋅
LJ . ±0.261

dd,a . ± .
dd,b . ± .

qq . ± .
dq . ± .
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Table E.17: Regression results for mixtures of a non-associating dipolar with a non-associating quadrupolar
component (group 4) for the QSPR model coefficients adjusted only to mixtures of this group. For each
mixture the component names are given (component i, component j), their CAS-Numbers (CAS-i, CAS-j),
the values of fitted to experimental VLE data ( ) and the values of predicted with the QSPR

model ( ). The mixtures that demonstrate azeotropic behavior are noted with ”ones” in the last
column.

# component component CAS- CAS- azeo
Training set

1 NITROGEN PROPYLBENZENE 7727379 103651 0.1658 0.1527 0
2 CARBON-DIOXIDE PROPYLENE-CARBONATE 124389 108327 0.0314 0.0010 0
3 BUTYLBENZENE BENZENE 104518 71432 -0.0101 -0.0026 0
4 CARBON-DIOXIDE ACETYLACETONE 124389 123546 0.0502 0.0637 0
5 CARBON-DIOXIDE BUTYLBENZENE 124389 104518 0.0473 0.0328 0
6 SULFUR-DIOXIDE BENZENE 7446095 71432 0.0494 0.0373 0
7 CARBON-DIOXIDE BENZALDEHYDE 124389 100527 0.0355 0.0230 0
8 PROPYLENE NITROGEN 115071 7727379 0.0642 0.0484 0
9 CARBON-DIOXIDE n-HEXYL-ACETATE 124389 142927 0.0004 0.0043 0

10 CARBON-DIOXIDE 1-BROMOBENZENE 124389 108861 0.0462 0.0447 0
11 VINYL-ACETATE ETHYLENE 108054 74851 -0.0159 -0.0040 0
12 ACETONE NITROGEN 67641 7727379 0.0336 0.0354 0
13 CARBON-DIOXIDE gamma-VALEROLACTONE 124389 108292 0.0466 0.0243 0
14 CARBON-DIOXIDE DIETHYL-OXALATE 124389 95921 -0.0314 -0.0023 0
15 CARBON-DIOXIDE 1-PENTENE 124389 109671 0.0276 0.0082 0
16 CARBON-DIOXIDE 1-METHYLNAPHTHALENE 124389 90120 0.0422 0.0604 0
17 CARBON-DIOXIDE METHYL-BENZOATE 124389 93583 0.0096 0.0179 0
18 DIETHYL-ETHER CARBON-DISULFIDE 60297 75150 0.0057 0.0155 1
19 CARBON-DIOXIDE ETHYL-BENZOATE 124389 93890 0.0212 0.0255 0
20 CARBON-DIOXIDE METHYL-DODECANOATE 124389 111820 0.0210 0.0105 0
21 CARBON-DIOXIDE STYRENE 124389 100425 0.0260 0.0329 0
22 CARBON-DIOXIDE gamma-BUTYROLACTONE 124389 96480 0.0184 0.0221 0
23 CARBON-DIOXIDE PHENYL-ACETATE- 124389 122792 -0.0077 0.0092 0
24 PROPYLENE BENZENE 115071 71432 0.0087 0.0136 0
25 CARBON-DIOXIDE DIETHYL-PHTHALATE 124389 84662 0.0050 0.0071 0
26 CARBON-DIOXIDE DECANAL 124389 112312 -0.0080 0.0058 0
27 BENZENE 1-BROMOBENZENE 71432 108861 -0.0082 -0.0037 0
28 CARBON-DIOXIDE o-XYLENE 124389 95476 0.0343 0.0323 0
29 CARBON-DIOXIDE CYCLOHEXANONE 124389 108941 0.0157 0.0273 0
30 NITROGEN TOLUENE 7727379 108883 0.1223 0.1402 0
31 CARBON-DIOXIDE DIISOPROPYL-ETHER 124389 108203 0.0178 -0.0003 0
32 CARBON-DIOXIDE ACETOPHENONE 124389 98862 0.0241 0.0227 0
33 CARBON-DIOXIDE 1-HEPTENE 124389 592767 0.0271 0.0133 0
34 CARBON-DIOXIDE METHYL-tert-BUTYL-ETHER 124389 1634044 -0.0301 0.0037 0
35 CARBON-DIOXIDE ISOPROPYL-ETHANOATE 124389 108214 0.0019 -0.0026 0
36 CARBON-DIOXIDE CYCLOPENTENE 124389 142290 0.0312 0.0224 0
37 CARBON-DIOXIDE CHLOROBENZENE 124389 108907 0.0351 0.0352 1
38 CARBON-DIOXIDE N-METHYL-2- 124389 872504 0.0163 0.0131 0

PYRROLIDONE
39 CARBON-DIOXIDE NONANAL 124389 124196 0.0033 0.0026 0
40 CARBON-DIOXIDE TOLUENE 124389 108883 0.0246 0.0311 0
41 1-HEXENE BENZENE 592416 71432 0.0011 0.0044 0
42 CARBON-DIOXIDE DIETHYLENE-GLYCOL- 124389 111966 -0.0287 0.0078 0

DIMETHYL-ETHER
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43 CARBON-DIOXIDE 1-OCTENE 124389 111660 0.0287 0.0109 0
44 CARBON-DIOXIDE n-OCTYL-ACETATE 124389 112141 0.0294 0.0068 0
45 1-HEXENE ETHYLENE 592416 74851 0.0443 0.0099 0
46 CARBON-DIOXIDE 2-METHYL-1-PENTENE 124389 763291 0.0028 0.0108 0
47 CARBON-DIOXIDE DIETHYL-SUCCINATE 124389 123251 -0.0229 0.0012 0
48 CARBON-DIOXIDE CUMENE 124389 98828 0.0432 0.0306 0
49 CARBON-DIOXIDE 1-HEXENE 124389 592416 0.0125 0.0091 0

Test set
50 BENZENE CHLOROBENZENE 71432 108907 -0.0020 -0.0057 0
51 CARBON-DIOXIDE CYCLOHEXYL-ACETATE 124389 622457 0.0073 0.0072 0
52 CARBON-DIOXIDE ETHYLBENZENE 124389 100414 0.0345 0.0313 0
53 PROPYLENE ETHYLENE 115071 74851 -0.0004 0.0015 0
54 CARBON-DIOXIDE PROPYLBENZENE 124389 103651 0.0382 0.0339 0
55 BENZENE TOLUENE 71432 108883 -0.0062 -0.0022 0
56 CARBON-DIOXIDE m-XYLENE 124389 108383 0.0287 0.0304 0
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