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SUMMARY

Transition zones in railway tracks, which occur at changes in track form and or sub-
structure properties, are known to cause issues with track degradation. Examples can
be found where a track section, usually a ballast track, transits to a slab track to cross
a roadway or waterway through supporting structures such as bridges, level crossings,
and culverts. These changes in track form and properties cause an abrupt change in
track support stiffness, which, in turn, generates additional dynamic forces when a ve-
hicle passes by. Over time, the effect of dynamic impact leads to the development of
differential settlement between the settlement-free supporting structures and the con-
necting track. This further increases loads and accelerates the degradation of the track
through successive deterioration of track geometry and components.

The underlying degradation mechanism has been extensively studied in previous
work, where engineers typically engage in the development of mechanistic models to
facilitate the understanding of the physical processes and develop adapted designs (or
countermeasures) to mitigate the dynamic impact at transition zones. This typically
involves a parametric study to analyze how changes in the properties of track compo-
nents, or the countermeasure itself, affect the track performance. However, a parametric
study may only consider a limited range of plausible designs, representing a manual and
intuition-based design approach. This design process can be time-consuming and may
only yield partial improvements in system performance.

On the other hand, parametric optimization is a more structured approach to im-
proving the performance of engineering systems, which seeks to automatically navi-
gate the design space through thousands of model runs. This, however, places greater
demands on the models and solvers involved. In the context of railway engineering,
this can be seen in vehicle-track models, which take into account the dynamic interac-
tion between the track and moving vehicles. These models tend to be black-box (i.e.,
simulation-based), high-dimensional, stochastic, and expensive to evaluate.

This observation has led to the following research goal:

• To develop dedicated modeling approaches for optimizing the design of transition
zones while addressing three main challenges, including (i) improving the com-
putational efficiency of the optimization process, (ii) embedding multiple design
aspects, and (iii) dealing with complexities arising from parameter uncertainties
and high-dimensional cases.

To achieve this goal, specific research objectives are defined, which result in four
main research outcomes as listed in the following.

• A co-simulation approach combining the capabilities of COMSOL for structural
dynamic analysis and MATLAB for dedicated mathematical analysis is proposed to

ix



x SUMMARY

model the vehicle-track coupling dynamics. This approach aims to ease the gen-
eration of complex track models while providing flexibility in model adjustment
and data postprocessing. This simulation approach is validated against an exist-
ing track model to ensure the accuracy of the vehicle-track dynamic simulation in
the optimization process.

• A simulation methodology that incorporates the finite element model into an
adaptive surrogate modeling scheme is presented, where a set of optimization
problems is formulated to minimize dynamic amplification caused by structural
discontinuity within a transition zone. The adaptive scheme allows for efficient
exploration of the design space while achieving a reasonable balance between
solution quality and computational effort.

• Further, a design approach that builds upon the previous one is introduced to
integrate engineering and managerial aspects to model design problems for rail-
way tracks. This approach ensures that stakeholder requirements and preferences,
such as passenger riding comfort, are integrated into the engineering design pro-
cess.

• Finally, a novel sensitivity method called the threshold-based sensitivity method is
proposed. This method focuses on the part of the output space that yields failure
and allows for the evaluation of model sensitivity near system limit states, mak-
ing it closely aligned with the formulation of reliability-based design optimization
(RBDO). This method can be used as a screening tool for factor prioritization and
mechanism reduction, thereby informing the selection of the most influential de-
sign variables (related to the intended objectives) and guiding the formulation of
RBDO problems.

The developed models have been applied to several engineering examples, includ-
ing a rail level crossing, a train-track-bridge system, and a truss example, which are all
formulated based on the finite element method. Further, different types of surrogate
models are applied in this context, including radial basis function, Kriging or Gaussian
process modeling, polynomial chaos expansion, and polynomial chaos-Kriging, with
considerations of two basic surrogate modeling workflows. The performance of these
models is compared. Main findings and observations made during the development
and implementation process are drawn in Chapter 6, where limitations and proposed
avenues for future research are also outlined.

In conclusion, this thesis contributes to the state-of-the-art developments in the
context of railway transition zones. It lays out a methodological basis to connect
vehicle-track models with surrogate modeling and formulate optimization problems
with specific design purposes to mitigate the degradation problems at transition zones.
For future extensions and applications, the methodologies can be easily adapted by
researchers and practitioners to specific design intentions, constraints, and variables.
The integration of more sophisticated vehicle-track models and other types of surrogate
modeling can also be considered.



SAMENVATTING

Overgangszones in spoorlijnen, die voorkomen bij veranderingen in de vorm van het
spoor en/of de eigenschappen van de onderconstructie, staan er bekend om proble-
men te veroorzaken met degradatie van het spoor. Voorbeelden zijn te vinden waar een
spoorsectie, meestal een spoor met ballast, overgaat in een spoor met platen om een rij-
weg of waterweg te kruisen via ondersteunende constructies zoals bruggen, overwegen
en duikers. Deze veranderingen in spoorvorm en -eigenschappen veroorzaken een ab-
rupte verandering in de stijfheid van de ondersteuning, die extra dynamische krachten
genereert wanneer een voertuig passeert. Na verloop van tijd leidt het effect van dyna-
mische impact tot de ontwikkeling van differentiële zetting tussen de civiele constructie
en het aansluitende spoor. Dit verhoogt de krachten nog meer en versnelt de degradatie
van het spoor door opeenvolgende verslechteringen van de spoorgeometrie en de com-
ponenten.

Het onderliggende degradatiemechanisme is uitgebreid bestudeerd in eerder werk,
waarbij ingenieurs meestal mechanistische modellen ontwikkelen om de fysieke proces-
sen beter te begrijpen en aangepaste ontwerpen (of tegenmaatregelen) te ontwikkelen
om de dynamische impact in overgangszones te beperken. Dit houdt meestal een pa-
rametrische studie in om te analyseren hoe veranderingen in de spooreigenschappen,
of de tegenmaatregel zelf, de spoorprestaties beïnvloeden. Een parametrische studie
kan echter slechts een beperkt aantal plausibele ontwerpen in overweging nemen, wat
neerkomt op een handmatige en op intuïtie gebaseerde ontwerpbenadering. Dit ont-
werpproces kan tijdrovend zijn en slechts gedeeltelijke verbeteringen van de systeem-
prestaties opleveren.

Aan de andere kant is parametrische optimalisatie een meer gestructureerde aan-
pak om de prestaties van engineeringsystemen te verbeteren, waarbij geprobeerd wordt
om automatisch door de ontwerpruimte te navigeren via duizenden modelruns. Dit
stelt echter hogere eisen aan de betrokken modellen en oplossers. In de context van
spoorwegtechniek is dit te zien bij voertuig-spoor modellen, die rekening houden met
de dynamische interactie tussen het spoor en voertuigen in beweging. Deze modellen
zijn meestal black-box (d.w.z. simulatie-gebaseerd), hoog-dimensionaal, stochastisch
en duur om te evalueren.

Deze observatie heeft geleid tot het volgende onderzoeksdoel:

• Het ontwikkelen van specifieke modelbenaderingen voor het optimaliseren van
het ontwerp van overgangszones, waarbij drie belangrijke uitdagingen worden
aangepakt, waaronder (i) het verbeteren van de computerefficiëntie van het
optimalisatieproces, (ii) het integreren van meerdere ontwerpaspecten en (iii) het
omgaan met complexiteiten die voortkomen uit onzekerheden in parameters en
hoog-dimensionale gevallen.

xi



xii SAMENVATTING

Om dit doel te bereiken, zijn specifieke onderzoeksdoelstellingen gedefinieerd, die
resulteren in vier belangrijke onderzoeksresultaten, zoals hieronder opgesomd.

• Een co-simulatiebenadering die de mogelijkheden van COMSOL voor structuur-
dynamische analyse en MATLAB voor mathematische analyse combineert, wordt
voorgesteld om de dynamica van de interactie tussen voertuig en spoor te mo-
delleren. Deze aanpak is bedoeld om het genereren van complexe spoormodel-
len te vereenvoudigen en tegelijkertijd flexibiliteit te bieden bij het aanpassen van
het model en het achteraf verwerken van gegevens. Deze co-simulatiebenadering
wordt gevalideerd tegen een bestaand spoormodel om de nauwkeurigheid van de
voertuig-spoor dynamische simulatie in het optimalisatieproces te garanderen.

• Een simulatie methodologie die het eindige-elementen model integreert in een
adaptief surrogaat modellering schema wordt gepresenteerd, waar een set van
optimalisatie problemen wordt geformuleerd om dynamische versterking veroor-
zaakt door structurele discontinuïteit binnen een overgangszone te minimalise-
ren. Het adaptieve schema maakt efficiënte exploratie van de te ontwerpen ruimte
mogelijk terwijl een redelijke balans tussen oplossingskwaliteit en rekeninspan-
ning wordt bereikt.

• Verder wordt er een ontwerpbenadering geïntroduceerd die voortbouwt op de vo-
rige om engineering- en managementaspecten te integreren om ontwerpproble-
men voor het spoor te modelleren. Deze aanpak zorgt ervoor dat de eisen en voor-
keuren van belanghebbenden, zoals het rijcomfort van passagiers, worden geïnte-
greerd in het engineering ontwerp proces.

• Eindelijk wordt er een nieuwe sensitiviteitmethode voorgesteld, de op drempel-
waarden gebaseerd sensitiviteitsmethode. Deze methode richt zich op het deel
van de uitvoerruimte dat tot falen leidt en maakt het mogelijk om de gevoeligheid
van het model te evalueren in de buurt van systeemlimiettoestanden, waardoor
het nauw aansluit bij de formulering van op betrouwbaarheid gebaseerde ontwer-
poptimalisatie (RBDO). Deze methode kan worden gebruikt als een screeningsin-
strument voor het prioriteren van factoren en het reduceren van mechanismen,
waardoor de selectie van de meest invloedrijke ontwerpvariabelen (gerelateerd
aan de beoogde doelstellingen) en de formulering van RBDO-problemen moge-
lijk wordt.

De ontwikkelde modellen zijn toegepast op verschillende technische voorbeelden,
waaronder een overweg, een trein-spoor-brugsysteem en een trussstructuur, die alle-
maal geformuleerd zijn op basis van de eindige-elementen methode. Verder worden
verschillende soorten surrogaatmodellen toegepast in deze context, waaronder radiale
basisfunctie, Kriging of Gaussische procesmodellering, polynomiale chaos-expansie en
polynomiale chaos-Kriging. De prestaties van deze modellen worden vergeleken. De
resultaten en observaties tijdens het ontwikkelings- en implementatieproces worden
beschreven in hoofdstuk 6, waar ook de beperkingen en voorgestelde wegen voor
toekomstig onderzoek worden geschetst.
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Concluderend draagt dit proefschrift bij aan de state-of-art ontwikkelingen in de
context van overgangszones. Het legt een methodologische basis om voertuig-spoor
modellen te verbinden met surrogaat modellering en optimalisatieproblemen te for-
muleren met specifieke ontwerpdoelen om degradatieproblemen in overgangszones
te verminderen. Voor toekomstige uitbreidingen en toepassingen kunnen de method-
ologieën gemakkelijk door onderzoekers en praktijkmensen worden aangepast aan
specifieke ontwerpintenties, beperkingen en variabelen. De integratie van meer gea-
vanceerde voertuig-spoor modellen en andere soorten surrogaat modellering kan ook
worden overwogen.
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1
INTRODUCTION

1.1. RAILWAY TRANSITION ZONE. PROBLEM DESCRIPTION

R AIL infrastructure refers to the physical assets used for the functioning of a railway
system. These assets include various components such as lines/tracks, signaling

systems, power installations, and other supporting facilities and equipment. Specifically,
the railway track is linear and non-redundant [1], the safety and availability of a track line
depend on the condition of each individual track section. These sections can be either
regular parts of the track, known as the open track, or supporting structures that are built
to cross waterways, roadways, or valleys through bridges, level crossings, or tunnels [2].

Compared to the open track, the supporting structures are geographically distributed
and limited in length, but they have significant implications for train safety, riding com-
fort, and operational expenses due to local intensified degradation. This frequently oc-
curs in the areas connecting the open track, commonly referred to as transition zones.
Local degradation often manifests itself as irregularities in track geometry, typically lon-
gitudinal level (i.e., differential settlement). For example, Figure 1.1 displays longitudinal
level measurements obtained from a level crossing on the Dutch railway network. The
red dotted lines represent the interface between the crossing and open track. It shows
that the track geometry degradation at the level crossing, especially for the locations
near the interface, is more pronounced than the open track, and the level of differential
settlements on both sides of transitions is largely influenced by the moving direction.

The underlying degradation mechanism has been extensively studied in the litera-
ture. The main factors contributing to the degradation are (i) abrupt variations in me-
chanical properties and (ii) (unloaded) differential settlement (cf. [2]–[5]).

(i) The substantial variations of mechanical properties (e.g., stiffness, damping, and
mass) can be attributed to the presence of non-consistent track forms, such as
connections between ballast track and slab track, or a sudden change in geotech-
nical foundations, such as an embankment transiting onto/off a bridge. These
track discontinuities are mainly reflected in longitudinal variations in track sup-

1
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Figure 1.1: A level crossing and track longitudinal level measurement at the location between August and
November 2018, wherein the red dotted lines indicate the interface between the level crossing and associ-
ated transition zones [3].

port stiffness1 seen by train, which give rise to differential elastic rail deflections
under passing wheels [8]. The uneven deflections disturb the wheel-rail interface
and affect how stresses are distributed beneath the track [9], which leads to local
but often strong amplification of the response field in the structure [10].

(ii) The open track is often formed by sections of ballast tracks, which over time are
susceptible to settlement or plastic deformations. This is particularly true for the
ballast layer made up of granular materials, which settles resulting from particle
fouling, compaction, and abrasion [3], [8], and for tracks laid on soft soils [11],
[12]. In contrast, tracks laid on supporting structures (e.g., bridge decks) or slab
tracks (with concrete plates) are designed for minimal settlement. This leads to
uneven deformation between sections over a number of loading cycles.

Both factors are sources of disturbance to the train-track interaction. They are also
interactive such that the additional dynamic response (e.g., wheel-rail forces) caused by
factor (i) is associated with rapid changes in the vertical position of the moving wheels,
which combined with factor (ii) will lead to the development of differential permanent
settlements under repeated train loading [13]. This further amplifies the response field
and exacerbates the local degradation. Without interventions, degradation in track ge-
ometry is often associated with hanging sleepers [13], i.e., loss of contact between the
sleeper and ballast layer when the track is unloaded, and defects in track components,
e.g., breakage of ballast particles [14].

In normal conditions, defects in track geometry can be corrected through ballast
tamping, which is a regular network-level maintenance activity. Extensive work has fo-

1Track support stiffness refers to the equivalent stiffness provided by all the track components located beneath
the rail [6], [7].
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cused on measuring the track geometry condition and modeling the degradation pro-
cess, followed by making decisions on optimal scheduling of inspection and mainte-
nance activities [15].2 However, a further concern is the effectiveness of tamping at tran-
sition zones. A trackside measurement was set up on a level crossing in the UK [13].
It showed that hanging sleepers observed before tamping reoccurred very soon after a
track renewal, stressing that the local defects in some transition zones may not be effec-
tively rectified by tamping.

MODEL DEVELOPMENT FOR ANALYSIS VERSUS OPTIMIZATION
Studies on transition zones typically involve (i) establishing field measurements to gain
insight into transient or long-term track responses at specific locations and (ii) devel-
oping mechanistic models to analyze the dynamic behavior of the track under moving
loads or vehicles. The mechanistic models can be summarized under two categories.3

(i) From the fundamental-theoretical perspective, researchers generally associate the
amplification of response field in transition zones to the phenomenon of tran-
sition radiation, referring to the radiation emitted into the track (in the form of
waves) when a train approaches and crosses an inhomogeneity in a railway track
(i.e., a transition zone) [10], [16]. The phenomenon is mainly investigated using
integral-transform methods. Examples of recent studies are [5], [17], [18]. These
studies are able to provide fundamental insight into the underlying mechanism.
However, they are often associated with a high level of mathematical abstractness.
The models are simplified and may not provide a specific spatial characterization
of a system. Therefore, they may be less suitable for making precise predictions of
system behavior, especially when dealing with highly localized or detailed features
of a system.

(ii) From the engineering application perspective, researchers in this field develop
time-domain models with different levels of complexity to study case-specific
transition zones. This is often supplemented by field instrumentation for model
calibration and validation. The time-domain models are mainly developed using
the finite element method and solved by numerical integration, e.g., [4], [19]. This
method can be computationally intensive, partly due to the fact that the finite
element method deals with finite domains while railway tracks are practically infi-
nite. To eliminate boundary effects, a large volume of the computational domain
has to be considered when modeling a railway track. However, the time-domain
models are flexible in characterizing structural behavior with regard to various
factors, such as the complex geometry of the track [9], [20], nonlinear behavior
of the ballast layer [21], [22], and interaction with vehicle motions, soil [23], and
supporting structures (e.g., bridges [24]).

The current state-of-the-art in modeling transition zones reflects a learning process
where engineers typically engage in the development of increasingly complex models to

2This research stream typically adopts a data-driven (or empirical modeling) approach, which is elaborated in
Chapter 2.

3See an extensive discussion in Chapter 2.
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better understand the physical processes leading to the degradation in transition zones.
This understanding can then be reflected in adapted designs that incorporate mitigation
measures to reduce dynamic impact and improve long-term track performance.

Various mitigation measures have been developed for transition zones in newly built
or renewed track sections. A general design guiding principle is to minimize the varia-
tions of track support stiffness in the vicinity of the transition zones [25]. Examples of
these measures include reducing the sleeper spacing at the interface of a ballast-slab
connection [26], varying subgrade filling materials for a tunnel-culvert transition [27],
and the use of under sleeper pad for a bridge approach [28]. A comprehensive review
can be found in [2].

These adapted designs mostly rely on the analysis and adjustment of design param-
eters through repetitive model evaluations. The parameters typically include the geo-
metric and mechanical properties of track components, which are tested for an arbitrary
range of values. However, determining an optimal combination of the parameters can be
challenging, especially when a large set of design variables is involved with high variabil-
ity. Therefore, adapted designs are often evaluated by perturbing one or two parameters
at a time while keeping others constant, a method known as parametric studies. This
manual, intuition-based iterative design process can be time-consuming and may only
yield partial improvements in performance.

A more systematic way of improving the track design is parametric optimization,
which leverages optimization algorithms to facilitate the exploration of the design space
and accelerate the design cycle. The search process allows for a trade-off between a set
of design parameters and aims for an optimal combination of the studied parameters
that fulfill certain design objective(s) and constraint(s). While a parametric study may
only consider a limited range of plausible designs, optimization seeks to explore the de-
sign space through thousands of model runs, placing greater demands on the models
and solvers involved.

DEVELOPMENT GAP

Previous research in the field of railway engineering has focused on optimizing various
design aspects, including rail profiles [29]–[31] and track stiffness [31], [32] in turnouts,
railway alignments [33], rail corrugation [34], and vehicle suspension [35]. However,
there has been limited research on the design optimization specific to transition zones.
The most relevant study in this context [25] employed a multi-objective genetic algo-
rithm (GA) to search for optimal design in a generic ballast-slab connection. GA is an
evolutionary algorithm that can handle a range of optimization problems, such as non-
convex, mixed-integer, and multi-objective ones, but the method is population-based
and operates with many individuals through many generations [36]. This results in thou-
sands of function evaluations to find optimal solutions, and the overall computational
cost of optimization can become prohibitively high when the functions involved are
computationally expensive.

Optimization in engineering design typically involves the modeling of physical sys-
tems to evaluate objective (and constraint, if any) function values for a given design [37].
For railway track design, it is necessary to consider the coupling dynamics between the
track and moving vehicles. This is particularly relevant to transition zones where track
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discontinuities give rise to unfavorable wheel-rail interaction, which in turn amplifies
the response of both systems.

While numerical models have improved in accuracy to simulate the coupling dynam-
ics, the computational time required to run these models has not necessarily decreased.
In practice, a single evaluation of these models may take hours. This poses a significant
challenge for engineering tasks that rely on them, such as design optimization, reliabil-
ity analysis, and uncertainty propagation, which require exploration of the design space
and involve a large number of model evaluations. Additionally, most of the models used
in this context are simulation-based, meaning they are given as black-box models with-
out reliable analytical or numerical derivative information [38]. In such cases, gradient-
based algorithms that are efficient in exploring the design space cannot be effectively
utilized.

Another obstacle in optimizing vehicle-track systems is the high dimensionality of
the models. Improvement in model accuracy, such as capturing the deformation of bal-
last using the discrete element method4, has led to models with a growing number of
input parameters. This imposes greater computational demands on the optimization
process. Specifically, the solver has to examine a larger number of objective function
measuring locations, which can quickly render the design process intractable.

Dealing with these high-dimensional models is further complicated by parameter
uncertainty. Some vehicle-track parameters are inherently random due to material vari-
ability, manufacturing-induced tolerances, and varied operating conditions. This vari-
ability may turn a feasible design solution obtained from optimization with determin-
istic inputs into an unfeasible one [39]. Therefore, it is necessary to account for uncer-
tainties in optimization processes. This can be typically achieved through robust design
optimization (RDO) and reliability-based design optimization (RBDO), which address
uncertainty in different ways [37].

Both RDO and RBDO represent probabilistic formulations of design optimization
problems. Behind the probabilistic optimization is the propagation of input uncertain-
ties through a computational model to output variability as captured by statistical mea-
sures such as variance and quantiles in RDO [39], [40], and reliability measures in RBDO
[41]. Solving these problems requires the use of forward-propagation methods, e.g.,
sampling-based techniques. Specifically, RBDO solutions are sought by jointly solving
an optimization problem and performing reliability analysis. This can incur significant
computational costs, in addition to the optimization process itself, especially when com-
putationally intensive and high-dimensional models are involved.

The development gap identified by this study is the absence of dedicated methods
for optimizing the design of railway transition zones, while effectively addressing the
challenges posed by the expensive, black-box, and high-dimensional nature of the mod-
els used in the search process. Moreover, from an asset management viewpoint, there is
a lack of research on integrating the technical and social relevance of the railway track
into the engineering design process.

The need to consider long-term track performance in the design process becomes
increasingly important due to aging infrastructure and growing traffic demand. This
calls for a proper integration of both engineering and managerial aspects into the

4See an extensive discussion in Chapter 2.
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early design stage. To achieve this, a shift is required from the traditional, single-sided
mechanics-based design approach to an integrated, multidisciplinary design optimiza-
tion approach. This approach accounts for various design aspects such as asset safety,
serviceability, and affordability, effectively reflecting the requirements and preferences
of multiple stakeholders [42].

1.2. OBJECTIVES AND SCOPE
Following the problem description, the goal of this research is to develop dedicated mod-
eling approaches to optimize the design of transition zones in railway tracks. The meth-
ods proposed aim to improve the multifaceted performance of the track structure while
targeting three main challenges:

CH-1 Improvement in computational efficiency of the optimization process, specifically
concerning the refined use of optimization solvers;

CH-2 Embedding multiple design aspects, transitioning from a strictly mechanical per-
formance focus to include socio-technical considerations;

CH-3 Dealing with complexities arising from parameter uncertainties and high-dimens-
ional cases, specifically concerning the development of a tool for dimension re-
duction. This tool simplifies the design process and contributes further to im-
proving computational efficiency.

To achieve this goal, the following specific objectives are defined.

O-1 Design optimization of transition zones requires the modeling of the correspond-
ing structure to compute the objective (and constraint) function values for a given
design. The first objective is therefore to develop a computational model to char-
acterize the dynamic behavior of transition zones, considering the interaction with
the moving vehicle.

O-2 The second objective is to formulate a set of optimization problems with design
purposes that cover the technical requirement solely or in combination with the
social relevance of railway transition zones. This process translates the design in-
tent into a mathematical statement that can then be linked to the parameterized
model developed in objective O-1 and solved by an adequate optimization solver.

O-3 The third objective is to tackle the complexities related to parameter uncertainties
and high-dimensional cases, thus addressing challenge CH-3. The aim is to de-
velop a method that can guide or simplify the formulation of RBDO problems for
design-under-uncertainty cases. This method serves as a screening tool to identify
input factors that are most relevant to the target objective(s), which in essence is
a sensitivity method. Implementing this sensitivity method can reduce the prob-
lem dimensions by screening the most important input factors as design variables
while fixing the less important ones as parameters. Consequently, this can elimi-
nate unnecessary model evaluations, thereby reducing the overall computational
costs involved in solving RBDO problems.
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The methods proposed are grounded in a design principle aiming to smooth vari-
ations in track support stiffness along the line. Such variations are a leading cause of
degradation in these zones, as discussed under factor (i) in Section 1.1. This focus in-
dicates that the current research primarily concerns the initiation phase of degradation
while formulating design optimization problems for transition zones. The idea is to de-
sign a transition zone in such a way that the major source of degradation, or the risk of
differential settlements, is minimized.

1.3. METHODOLOGY
In line with the defined objectives, this research is conducted in five steps as presented
in Figure 1.2.

Concrete slab
Track

Embedded rail systemBallast track

Vehicle

Wheel-rail contact

Carbody

Secondary suspension

Bogie

Primary suspension

Wheelset

Step A

Simulation of vehicle-track interaction dynamics

Step B

Experimental design
Step C

Surrogate modeling

Step D

Design optimization

Step E

Screening module for 

probabilistic optimization

Step D’ 

Adaptive Sampling

Single objective or multi-objective

optimization

Objective O-1

 Objective O-2

Objective O-3

Figure 1.2: Research workflow: Step A provides a schematic representation of a vehicle-track interaction model.
Steps B and C are demonstrative figures showing the idea of surrogate modeling based on a two-dimensional
function. Step D formulates and solves a set of optimization problems. Step D’ is an additional step that can
be included or bypassed in surrogate-based optimization. Step E concerns the development of a screening
module to assist in the formulation of RBDO problems.

Step A is designed to fulfill objective O-1. It consists in developing a vehicle-track
model that is used to analyze the dynamic behavior of a track section (transition zone)
under a moving vehicle and compute objective and constraint functions for any given
design configurations.

Steps B-D, including Step D’, are designed to address objective O-2. These steps form
a workflow focused on formulating and solving optimization problems in an efficient
manner, which further aids in railway track design. This process leverages surrogate
modeling techniques and employs the simulation model developed in Step A.

Surrogate modeling, also known as metamodeling or response surface methodology,
can be an efficient means to solve engineering problems that involve expensive simula-
tion models. It replaces the original or true function with an approximation that is faster
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to evaluate while retaining sufficient accuracy away from the observed points. The de-
cision to implement surrogate modeling techniques in this research was guided by lit-
erature research covering domains of operations research, civil engineering (including
railway engineering), and machine learning.

As demonstrated in Figure 1.2, surrogate models are constructed by querying the
original model (Step A) at given input points. These input points are sampled based on
an experimental design (Step B). The resulting function values are known as high-fidelity
solutions, referring to solutions that are evaluated based on the original but computa-
tionally expensive functions [43]. Once a surrogate is constructed from the sampled
points (Step C), it can be queried to predict output for new input points.

Surrogate-based optimization uses surrogate model(s) to perform optimization
tasks. In this context, a surrogate model can be either constructed entirely upfront,
thereby bypassing Step D’, or it can be sequentially updated through a process known
as adaptive sampling (Step D’). In the latter case, optimization algorithms interrogate
between the surrogate and original models.

Finally, Step E addresses objective O-3 by developing a screening tool or a sensitivity
method to reduce the problem dimensions and streamline the probabilistic optimiza-
tion process, particularly in the context of formulating RBDO problems.

1.4. THESIS CONTRIBUTIONS
A mind map of the thesis is shown in Figure 1.3. This figure highlights the main contribu-
tions or outcomes of the thesis in relation to the overarching goal and specific objectives
detailed in Section 1.2. It also indicates the corresponding scientific challenges that have
been tackled throughout the work.

To develop dedicated modeling

approaches to optimize the design

of transition zones

Goal

Challenges

(i) Improvement in

computational efficiency 

Objectives

(i) To develop a vehicle-track model

Contributions/Outcomes

(ii) Embedment of 

multiple design aspects

(iii) Handling uncertainties

& high-dimensional cases

(iii) To develop a screening tool for 

reliability-based design

(ii) To formulate & solve optimization

problems with multiple design objectives

A sensitivity method focusing on system limit

states & corresponding design thresholds 

A design approach integrating engineering & 

managerial aspects in railway track design 

A simulation methodology integrating the FE

model & an adaptive surrogate modeling scheme 

An FE-based co-simulation approach for solving

vehicle-track dynamic interaction problems

Figure 1.3: Mind map of the thesis.

First, a co-simulation approach combining the capabilities of COMSOL for struc-
tural dynamic analysis and MATLAB for dedicated mathematical analysis is proposed
to model the vehicle-track coupling dynamics. This approach aims to ease the genera-
tion of complex track models while providing flexibility in model adjustment and data
postprocessing.

In this approach, the track structure is first generated in COMSOL [44]. The corre-
sponding system matrices are exported to MATLAB [45] via the Livelink interface [46].
The Livelink allows for seamless integration of the two platforms and it is used here for
model adjustment and data postprocessing. Simultaneously, the vehicle system ma-
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trices are formulated in MATLAB. These two sets of matrices are then coupled to form
global system matrices, and the coupled equations of motion that govern the vehicle-
track dynamics are solved in the time domain by implementing the Newmark-β inte-
gration scheme. Finally, the results generated from this process are post-processed in
MATLAB for further analysis. This co-simulation approach is validated against an exist-
ing track model to ensure the accuracy of the vehicle-track dynamic simulation in the
optimization process.

The second outcome presents a simulation methodology that incorporates the finite
element (FE) model into an adaptive surrogate modeling scheme, where a set of opti-
mization problems is formulated to minimize dynamic amplification caused by struc-
tural discontinuity within a transition zone. The adaptive scheme allows for efficient
exploration of the design space while achieving a reasonable balance between solution
quality and computational effort. This methodology is implemented in MATLAB, where
the FE model, specifically the track part developed in COMSOL, is parameterized via the
Livelink interface. The configuration is fully compatible with the optimization solver and
the setup of the defined optimization problems. This includes defining the design vari-
ables with their respective bounds, objective functions, and constraints. The objective
functions and constraints are defined based on design variables and are implemented as
callback functions, which are then passed to the solver. As the solver conducts the search
process, it calls back these functions whenever necessary. Additionally, each evaluation
of the objective functions requires calling the model in COMSOL.

The third outcome, which builds upon the previous one, introduces a design ap-
proach that integrates engineering and managerial aspects to model design problems for
railway tracks. This approach ensures that stakeholder requirements and preferences,
such as passenger riding comfort, are integrated into the engineering design process.
The integration is achieved by incorporating preference modeling into the FE model,
thereby optimizing the design of transition zones with stakeholder preferences incorpo-
rated.

Finally, a novel sensitivity method called the threshold-based sensitivity method is
proposed in the thesis. This method allows for the evaluation of model sensitivity near
system limit states by generalizing the optimization-based sensitivity method [47] to a
wider range of targeted portions of the output space, specifically from extreme values
(either maximum or minimum) to thresholds. These quantities are highly relevant to
reliability-based design problems, where the focus lies on the regions of the output space
that lead to failure. Therefore, the present sensitivity method is targeted to address the
specific regions to investigate the relevance of input factors on the intended design ob-
jective(s).

This thesis has also led to the development of open-source contributions, including
publications and MATLAB-based code files that drive the research outcomes. The author
of the thesis is the main author of these publications and is responsible for writing (origi-
nal & editing) the work presented, as well as the conceptualization, development, imple-
mentation, and analysis of the proposed methodology. Table 1.1 provides a summary of
the publications included in the thesis, along with their respective code contributions.
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Table 1.1: Overview of thesis contributions.

Chapter Publication1 MATLAB code files

2 [3] Not applicable due to qualitative nature

3 [48] Available on request due to confidentiality reasons

4 [49] PreferenceBasedOpt2

5 [50] SA-TTB3

1References:
[3] Y. Shang, M. Nogal, H. Wang, A.R.M. Wolfert. Systems thinking approach for improving maintenance
management of discrete rail assets: a review and future perspectives, Structure and Infrastructure
Engineering, 19(2), 197-215 (2021).
[48] Y. Shang, M. Nogal, R. Teixeira, A.R.M. Wolfert. Optimal design of rail level crossings and associated
transition zones using adaptive surrogate-assisted optimization, Engineering Structures, 282, 115740
(2023).
[49] Y. Shang, R. Binnekamp, A.R.M. Wolfert. Multi-stakeholder service life design for rail level
crossings, in Life-Cycle of Structures and Infrastructure Systems (pp. 949-956). CRC Press (2023).
[50] Y. Shang, M. Nogal, R. Teixeira, A.R.M. Wolfert. Extreme-oriented sensitivity analysis using sparse
polynomial chaos expansion. Application to train-track-bridge systems, Reliability Engineering &
System Safety, 243, 109818 (2024).

2Available on 4TU Research Data repository with doi: 10.4121/cc86b3ce-6149-4b77-86ff-fb8f10b48fc7.
3Available on 4TU Research Data repository with doi: 10.4121/9a572878-a5b9-4976-a5a4-1de891f55fc8.

1.5. THESIS OUTLINE
The outline of this thesis is presented in Figure 1.4, which is linked to the main contribu-
tions as detailed in Section 1.4.

Chapters 2 - 5 constitute the main body of the thesis. Specifically, Chapter 2 is based
on [3] and presents a systematic review of studies related to transition zones in rail-
way tracks. The review includes an assessment of track behavior under moving vehicles
and modeling of track geometry degradation, which is a primary factor driving frequent
maintenance in these areas. The dynamic behavior of the track at transition zones is typ-
ically assessed through experimental studies and mechanistic modeling, with the latter
approach being the focus of this review. The review proposes a classification of short-
term and long-term analyses to structure existing approaches. Meanwhile, the modeling
of track geometry degradation largely employs a data-driven approach. The review pro-
poses a taxonomy based on the methods used and modeling purposes to facilitate model
comparisons. The interdependencies and synergies between the mechanistic and data-
driven approaches are elaborated, which points out limitations in existing studies and
possible paths for future research.

Chapter 3 is based on [48], which aligns with objectives O-1 and O-2 (see Figure 1.3)
and focuses on the mechanical performance of railway tracks. This chapter addresses
one of the gaps identified in Chapter 2 by focusing on optimizing the design of level
crossings and associated transition zones. It introduces a surrogate-based simulation
methodology including the development of a vehicle-track model to search for an op-
timal combination of parameters relevant to the geometry and elasticity of track struc-
tures.

Chapter 4 is based on [49], which corresponds to objective O-2 by focusing on the

https://doi.org/10.4121/cc86b3ce-6149-4b77-86ff-fb8f10b48fc7
https://doi.org/10.4121/9a572878-a5b9-4976-a5a4-1de891f55fc8
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Figure 1.4: Outline of the thesis.

socio-technical relevance of railway track design. This chapter presents a design ap-
proach that integrates engineering and managerial aspects to model design problems
for railway tracks, where the requirements and preferences of stakeholders are aligned
within the engineering design process.

The previous two chapters have addressed the formulation of optimization prob-
lems considering deterministic inputs. Chapter 5 moves to the probabilistic formula-
tion, which corresponds to objective O-3. This chapter is based on [50] and introduces a
novel sensitivity method that focuses on the part of the output space that yields failure,
i.e., for reliability-based design.

Finally, Chapter 6 concludes the thesis with the main findings and limitations of this
research, which also outlines potential avenues for future research.
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2
STATE-OF-THE-ART: TRANSITION

ZONES & TRACK GEOMETRY

DEGRADATION

This chapter provides a systematic review of ongoing research on the mechanistic model-
ing of track behavior at transition zones. This is complemented by a thorough synthesis
of studies examining the degradation of track geometry, as this degradation is a primary
factor driving frequent maintenance in transition zones. In the review, a classification of
short-term and long-term analyses is proposed to structure existing approaches for mech-
anistic modeling of transition zones. Besides, the modeling of track geometry degradation
largely employs a data-driven approach, where a taxonomy based on the methods used
and modeling purposes is proposed to facilitate model comparisons. These two research
streams are interdependent and synergistic, which are reviewed and compared in detail.
Limitations in existing studies are identified and directions for future research are out-
lined.

Parts of this chapter have been published verbatim in Structure and Infrastructure Engineering, 19(2), 197-215
(2021) [1].
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2.1. INTRODUCTION
The local degradation of transition zones has been known for a long time, and extensive
research has been conducted to understand the underlying mechanisms and evaluate
the effectiveness of countermeasures, which can be summarized under two main cate-
gories, namely experimental studies and computational modeling.

Experimental studies use laboratory tests or field measurements to investigate the re-
sponse of different track components at transition zones under various situations. Due
to limitations in scale and composition to accommodate relevant features [2], limited
work [3], [4] has been carried out in laboratories to model transition zones, whereas
more research effort has been made on in-situ measurements to monitor and assess the
track response in real-time scenarios. Examples can be found in investigating the dy-
namic behavior of the ballast-slab connections [4], [5] and transitions to bridges [6]–[11],
level crossings [12], [13], and culverts [14]. These investigations are often combined with
the assessment of the efficacy of modified design or maintenance solutions to alleviate
degradation problems. For example, under sleeper pads [7], wedge-shaped backfills [9],
and asphalt underlaid substructure [13] are countermeasures that have been incorpo-
rated in modified designs. In addition to conventional tamping, stone blowing is another
alternative method used to adjust track geometry conditions [11]. This method involves
the use of specialized machines that ‘blow’ or inject stone ballast underneath the sleep-
ers, raising the track level without disturbing the pre-established packing arrangement
of the existing ballast [11].

These studies are very useful in assessing the main features of degradation at tran-
sition zones, which highlight the importance of identifying the governing degradation
mechanism(s) before implementing a proper mitigation measure. However, they are less
viable to evaluate and optimize mitigation measures, as any alteration would require
new construction [15]. Besides, the knowledge developed through trackside measure-
ments tends to be site-specific and difficult to generalize [16]. Long-term monitoring
of track response is necessary to gain a comprehensive understanding of transition per-
formance, but this is challenging considering many types of transition zones operating
under varied conditions.

The use of computational modeling provides an alternative method to investigate
the behavior of railway tracks at transition zones. With a single model, multiple design
options for a specific transition can be evaluated, and the response of the track struc-
ture can be analyzed under various operating scenarios. As such, most of the work has
focused on developing mechanistic models to evaluate the track dynamic response at
transition zones under train loading.

This chapter presents a systematic review of ongoing research on the mechanistic
modeling of track behavior at transition zones, which are classified into short-term and
long-term analyses in Section 2.2. The degradation of track geometry, a primary cause
for frequent maintenance in transition zones, is explored in Section 2.3. These studies
typically follow a data-driven approach that integrates elements of condition measure-
ment, degradation modeling, and maintenance planning. The objective of this approach
is to identify the condition of the track geometry and various influencing variables, such
as tonnage, train speed, ballast fouling, and moisture content. This information forms
the basis for predicting future track conditions and assists in the maintenance decision-
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making process. These two research areas are interdependent and synergistic, which are
investigated and compared in Section 2.4.

2.2. MECHANISTIC APPROACH
Mechanistic models are developed based on the mechanical properties and layout of all
the components that constitute the track structure and vehicles [17]. The track compo-
nents can be classified based on their principal properties, including those with mass
and inertia properties (e.g., rails and sleepers), those with elastic properties (e.g., rail
pads), or both (e.g., ballast). Together with the track design, these mechanical proper-
ties define the relationship between the forces acting on the track and the correspond-
ing track responses, such as forces, stresses, and displacement [17]. In this context, two
paths of modeling solutions are recognized, namely analytical modeling and numerical
modeling.

Analytical modeling is suitable for solving problems in a continuous support condi-
tion with a limited number of connections and loading positions, which facilitates the
retrieval of closed-form solutions to track responses [17]. For railway transition zones,
the fundamental insight into the underlying degradation mechanism can be obtained by
simplified models, where many researchers have proposed analytical or semi-analytical
solutions and they associate the amplification of the response field in transition zones
to the phenomenon of transition radiation [18].

The first study on transition radiation of elastic waves was conducted in [18], where
an infinite string on a piecewise-homogeneous Winkler foundation is subjected to a con-
stant moving load. Later in [19], both abrupt and smooth variations were considered in
the support stiffness to evaluate the corresponding effect on transient vibrations of a
string. To account for the flexural rigidity, transition radiation in a beam resting on a
Winkler foundation was studied in [20]–[22]. More recent works in this field have been
extended to consider a 2D continuum [23], nonlinear elastoplastic foundation [24], ve-
hicle inertia [25], and sleeper periodicity [26].

These studies mainly use integral-transform methods to investigate the transition
radiation phenomenon in railway tracks, which facilitates a fundamental understanding
of the underlying mechanism. However, the methods often exhibit a high level of math-
ematical abstraction [27]. The complexity of the equations can increase significantly for
nonlinear systems. Therefore, the models in these studies often involve simplifying as-
sumptions and may not provide specific spatial characterization, which renders them
less suitable for making accurate predictions [16], especially when dealing with highly
localized or detailed features of a system.

Numerical modeling, on the other hand, allows for a more accurate representation
of system characteristics, including geometry and (nonlinear) material behavior. There-
fore, it has been widely used to simulate the dynamic response with specific features
of track inhomogeneity, e.g., stiffness variations, track geometry irregularities, and loss
of contact between sleepers and ballast. This represents another research stream that
adopts time-domain methods to investigate the dynamic behavior of the railway track
at transition zones. Analyses are often case-specific and supplemented with field mea-
surements. These measurements provide detailed site information, which can be used
to develop, calibrate, and validate the models.
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The time domain models are mainly developed using the FE method, with focus on
addressing track geometry irregularities [28], [29], nonlinear behavior of the ballast layer
[30], [31], and interaction with vehicle motions, supporting structures (e.g., bridges [32]),
and soil [33]. The inclusion of vehicle motions is necessary when examining the dynamic
behavior of transition zones, as track discontinuities can result in undesirable wheel-rail
interactions that amplify the dynamic response of both systems. Consequently, most
time-domain models incorporate VTI dynamics to assess the transition performance.
These models typically include three subsystems that represent the behavior of the ve-
hicle, the track, and the interaction between the two.

The vehicle system can be represented by a moving force, moving mass, or moving
vehicle-system model. The moving force is the simplest but the dynamic behavior of
trains and the corresponding effect on the track vibration are not considered. The mov-
ing mass model accounts for the mass and inertia of the running vehicle but neglects
the vibration absorbing effect of the suspension system. The moving vehicle-system
model can represent the mechanical properties of the vehicles and vary in complexity
concerning the vehicle degrees of freedom (DOF). It is established based on the theory
of multibody simulation, where the vehicle is represented by an assembly of rigid bodies
connected by flexible and massless elements [32]. The bodies typically include a car-
body, two bogies, and four wheelsets. Each of them has a maximum of six DOFs and
a simplified vehicle model can be achieved by setting physical constraints according to
the simulation purpose [34].

The characterization of wheel-rail contact is of significance for analyzing the track
performance at transition zones, where the vehicle at some points passes over the unlev-
elled (track geometry irregularities) and suspended (hanging sleepers) track may cause
oscillations and influence the interaction with the track [34]. The behavior of wheel-rail
contact is complex and a multitude of contact theories have been proposed to under-
stand, model, and optimize the wheel-rail contact mechanics problem. A comprehen-
sive review of the contact models and related experimental studies can be found in [35].
In general, the problem can be divided into normal and tangential contact [35], where
Hertizan and non-Hertzian theories are formulated to solve normal ones, and Kalker’s
linear theory and its derivatives are the well-known theories for tangential contact.

Despite several restrictive assumptions (see details in [35]), Hertzian contact theory
is widely used to analyze wheel-rail contact in studies relevant to transition zones. This
means that most time-domain models for analyzing the dynamic performance of transi-
tion zones only account for normal contact in wheel-rail interaction. The reason behind
this is the necessity for large-scale models to characterize the track performance, con-
sidering that one transition zone can extend to tens of meters. Such models can be com-
putationally expensive, especially when complex geometries, nonlinear material behav-
ior, and interactions with other systems are incorporated. Therefore, using simplified
wheel-rail interaction models can help reduce overall computational costs.

Modeling of the track structure can be distinguished from the representation of track
components. At the superstructure level, the rails are usually modeled using beam el-
ements, such as Euler-Bernoulli or Timoshenko beams. These beam elements can also
represent sleepers, which can alternatively be modeled using mass or solid elements.
The railpads and ballast are usually modeled by spring elements, and some more ad-
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vanced ways to model ballast behavior include solid elements, discrete elements, and
lattice models. The track substructure can be represented as rigid (for engineering struc-
tures beneath the track), a mass-spring-damper system (Winkler-type), or a 2D/3D con-
tinuum.

Numerical models have been proposed extensively to evaluate the track perfor-
mance at transition zones, which differ in levels of complexity in terms of dimensions,
forms of track inhomogeneity, types of mitigation measures, material behavior, and
many more. An overview of these studies is provided below, where two aspects are dis-
tinguished, namely (i) transient analysis that focuses on the instantaneous or short-term
dynamic response during train passage, and (ii) long-term prediction that emphasizes
the static change of the track geometry resulting from repeated loading.

2.2.1. SHORT-TERM PERFORMANCE EVALUATION

As discussed in Section 1.1, the main factors contributing to the degradation in transition
zones are (i) variations in mechanical properties, typically stiffness variations, and (ii)
unloaded differential settlement.

To investigate the effect of factor (i) on the track performance, the track structure was
treated as a stochastic system in [36]. An Euler-Bernoulli beam resting on a Kelvin foun-
dation was used to represent a railway track, and the variation in vertical support stiff-
ness was described by a weakly homogeneous random process. Since the randomness
in stiffness properties prevents direct analytical solutions, a perturbation approach was
proposed to compute the stationary responses of the beam and vehicle, which was fur-
ther validated against an FE model. Similarly, a stochastic track model was developed in
[37] to investigate the influence of randomness in railpad stiffness, ballast stiffness, and
dynamic ballast-subgrade mass on track responses, where field and laboratory tests were
combined to support the stochastic model. Further in [38], track stiffness data retrieved
from a rolling stiffness measurement vehicle was incorporated into the track model to
analyze the effect of stiffness variations on the system responses.

The impact study of stiffness variations contributes to the adapted design solutions
for transition zones, with the key idea of smoothing the variations along the track line.
For instance, a 3D FE model was configured to calculate various geometries of cross sec-
tions and geotechnical features of materials [39]. The model was then applied to the
key points with abrupt stiffness variations on a Spanish railway line to calculate the cor-
responding vertical stiffness value, and cross-section designs were proposed for those
locations to control the variations. Similarly, various subgrade fillings were evaluated in
a 3D FE model for a tunnel-culvert transition to explore economic filling materials [40].
Alternative measures including longer sleepers, auxiliary rails, and improved subgrade
were investigated in [41]. For further details on the mitigation measures, the reader is
referred to [2].

Factor (ii) is mostly attributed to ballast settlement from fouling and degradation
(particle compaction and abrasion), and settlement of fill and subgrade layers. This of-
ten appears in bridge approaches and ballast-slab track transitions, where the ballast
track at the approaches settles more than the adjacent track on bridge abutments or slab
tracks. This issue is particularly severe in soft soil regions [14]. Field monitoring on a
culvert transition in the Netherlands revealed that the track settlement consists of two
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stages: initial ballast compaction after maintenance, followed by major settlement from
embankment and peat layers [14]. By contrast, settlement measurements on a bridge
approach in the US showed that the ballast layer is the primary source of differential
settlement [8].

Various techniques have been used to incorporate differential settlement in track
models, such as reducing local track vertical stiffness [42], describing track irregulari-
ties through random processes [43], and imposing assumed uneven settlement profiles
[44]–[47], measured variations in track longitudinal level [28], [29], and a transition angle
at the rail elevation [48]. Some studies have evaluated the impact of both contributors on
transition performance and concluded that differential settlement is more critical than
stiffness variations [28], [42], [47], [48].

While the continuum models in FE modeling are widely used, some studies have pro-
posed alternative ways to gain insight into the particle-to-particle nature of load transfer
within the ballast layer. This is particularly relevant to the ballast settlement from fouling
and degradation. A discrete element model (DEM) that accounts for the particulate na-
ture of varying-sized and -shaped ballast particles was developed to predict the magni-
tude of field ballast settlement under repeated loading [49]. However, simulating the be-
havior of ballast particles and transition as a whole using DEM can be time-consuming
due to the extended length of transition zones. To address this issue, an integrated ap-
proach was proposed in [31], where loading profiles simulated from a validated analyt-
ical track model were used as input for a DEM to predict ballast particle accelerations.
Further in [15], a lattice model, an alternative to DEM, was proposed to represent bal-
last particles while assuming that they are of equal size, regularly distributed, and their
contacts remain constant. This approach bypasses the need for contact calculations,
thereby reducing computational time.

Differential settlement often leads to the issue of hanging sleepers, which has led
some researchers to focus on modeling the sleeper-ballast interface in their studies on
transition-related problems. Different methods have been utilized to achieve this. For
instance, a settlement law was used in [4] to calculate the ballast settlement value at each
sleeper. This value was then used as a threshold at the interface to identify gaps between
the sleeper and ballast. Further, a piecewise equation was formulated to represent the
on/off contact between the sleeper and ballast layer, which was incorporated into a 3D
FE model for a culvert transition [50]. A similar approach was reported in [28]. An alter-
native method involves using solid elements to model the sleeper and the ballast layer,
allowing for their interaction to be represented by surface-to-surface contact [14], [42],
[47].

The aforementioned studies provide valuable insights by simulating transient dy-
namic responses under train passages at various levels and locations of track compo-
nents. They provide a comprehensive understanding of the physical mechanisms driv-
ing track degradation. However, the resultant transient analysis is not directly applicable
to represent and predict the evolution of track behavior, as this requires an extension of
the analysis to include the following long-term analysis.
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2.2.2. LONG-TERM PREDICTION OF TRACK DEGRADATION
Numerical modeling can be used to predict long-term track performance, where much
attention has been paid to the degradation of track geometry at the longitudinal level,
i.e., track settlement. The prediction process typically involves integrating a VTI model
for transient dynamic analysis with an empirical equation to account for permanent de-
formation in the ballast or subgrade. This is then followed by an iterative procedure that
consists of two modules in the following.

As shown in Figure 2.1, one is the dynamics calculation module with a VTI model to
obtain track responses during train passage, including the wheel force [51], [52], sleeper-
ballast contact force [53], [54], track-subgrade contact stress [55], sleeper deflection [30],
and ballast stress [56]. The other is the cumulative settlement calculation module consid-
ering the repeated loading, where an empirical settlement equation is coupled with the
VTI model by the following calculation procedure: (1) the simulated response is used as
input to the settlement equation; (2) the transient dynamic analysis is updated in each
iteration to account for the new state of the track response; (3) the accumulated settle-
ment is calculated through repeated procedures until a certain limit value is reached,
e.g., the total number of loading cycles.

Start

Vehicle-track interaction model

Module 1

Dynamic simulation

Module 2

Cumulative settlement calculation Threshold reached?

Update track longitudinal level

Output: transient response

- wheel force

- sleeper-ballast contact force

- track-subgrade contact stress

- ballast stress

- sleeper settlement 

Record the current result

End

Yes

No

Figure 2.1: Flowchart of the iterative procedure for settlement prediction.

The track models used in Module 1 are mostly developed using FE modeling, with ex-
ceptions using the finite difference method [51] and multibody simulation [53]. For the
prediction of track settlement, various empirical models have been developed over the
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years, and a critical review of the relevant works is presented in [57]. Typically, in transi-
tion zones, Sato’s settlement law [58] has been coupled to FE models for the prediction of
ballast settlement at bridge approaches [54], [56]. This model takes into account various
parameters, including annual tonnage, train speed, structure factor, whether the rail is
jointed or continuously welded, and the quality of the subgrade. However, considering
that the existing settlement models cannot accurately incorporate the loading history
(e.g., with continuous changes in loading magnitude), a new settlement model focusing
on the magnitude and evolution of ballast forces was proposed in [30]. This model was
configured to account for hanging sleepers and the nonlinear constitutive behavior of
the ballast. Subsequently, the focus shifted from predicting ballast settlement to consid-
ering the subgrade plastic deformation in slab tracks [55]. An FE model was developed
to account for the weight of the track and any local contact loss between the track and
subgrade.

Those coupled models for simulating long-term track degradation can be seen as a
hybrid approach that fuses mechanical responses from physics-based models with em-
pirical relations. Physics-based models are crucial in mapping the relationships between
mechanical properties and responses, thereby contributing to the fundamental under-
standing of the subject. However, the use of empirical relations has some limitations.

First, these empirical equations were extrapolated site specifically, mainly relying on
the number of loading cycles and/or load magnitude, but not considering the properties
of the ballast and subgrade [57]. This may limit their ability to account for the actual
track condition and to be generalized across varied operational and environmental con-
ditions, especially at transition zones. In these track areas, the degradation process is
accelerated compared to the open track, and the empirical relations for settlement pre-
diction may become inapplicable.

Second, the applicability of these empirical equations in the track models cannot be
validated at the current stage. This restricts the reliability of the prediction results for
maintenance planning. Nonetheless, settlement prediction is useful for comparing the
performance of different mitigation measures aimed at reducing the need for regular
maintenance, such as tamping.

In view of the limitations, a recent update in [59] integrated a geotechnical rheo-
logical model into a 3D FE model. This model aims to include the viscoelastic–plastic
behavior of the substructure layers in the prediction of settlement at transition zones.
To model the plastic response of geomaterials, slider elements were used, which are de-
scribed by constitutive laws rather than empirical relations used in most of the previous
studies. The methodology was then applied to a bridge approach and results showed
that increasing the thickness of the granular layer can enhance the performance of tran-
sition zones with weak subgrade.

2.3. DATA-DRIVEN APPROACH
Instead of relying on the hybrid approach to predict track settlement, there is another
research stream that uses a data-driven approach to predict the degradation process of
track geometry. The scope of these studies is not restricted to transition zones charac-
terized by one-dimensional track geometry degradation (settlement), but to quantify the
overall track geometry quality by looking at a set of track geometry parameters, including



2.3. DATA-DRIVEN APPROACH

2

25

longitudinal level, gauge, alignment, cross-level, and twist, as shown in Figure 2.2.
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Cross-level
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Figure 2.2: Schematic representation of track geometry parameters.

Initially, railway tracks are laid with an ideal geometry condition, which is defined by
nominal values. Each geometry parameter is associated with a nominal value. However,
as a result of usage, local deformation and wear lead to deviations from these nominal
values. Once these deviations reach a certain threshold, they become evident as track
defects, alerting the need for maintenance. Among various types of defects, longitudinal
level defects are of primary concern. They act as the main source of excitation in the
train-track system, making them a critical factor in studies that evaluate the quality of
track geometry. This is particularly relevant for studies that predict track settlement at
transition zones, which rely on a combination of mechanistic modeling and empirical
settlement equations, as discussed in the previous section.

Within condition-based maintenance regimes, the modeling of track geometry
degradation relates directly to the process of condition measurement and maintenance
planning. Condition measurement involves regular inspection or sensor-based condi-
tion monitoring, followed by data processing to extract key features that characterize the
track condition. Subsequently, degradation modeling is employed to construct deterio-
ration curves, which analyze patterns of track degradation over time while accounting
for variables such as tonnage and train speed. This process provides valuable insights
into the mechanisms behind the geometry degradation and can also be used to predict
future track conditions. Maintenance optimization strategies are then developed to
ensure optimal intervention planning, ensuring track safety while balancing service
continuity and cost efficiency. Further elaboration on these aspects is provided in the
following sections.

2.3.1. TRACK CONDITION MEASUREMENT AND CHARACTERIZATION
Methods for track geometry measurement generally fall into two categories, namely,
track recording vehicle (TRV) and onboard vehicle dynamics measurements. TRV is a
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mature way of measuring the track geometry. It is a special self-propelled vehicle dedi-
cated to measuring, processing, assessing, and storing track geometry parameters. De-
pending on the measurement techniques, two main principles are distinguished, i.e.,
chord and inertial measuring systems.

(i) The chord method measures the track geometry based on a straight-line chord
reference, where the mid-chord amplitude is taken as the measured output. Ex-
amples can be found in EM120 of Iran [60], [61].

(ii) The inertial method requires an inertial system as a reference, such as carbody, to
measure its relative position with the rail in different dimensions. Examples refer
to STRIX and IMV100 in Sweden [62], [63], GJ-4 in China [64], [65], and UFM120 in
the Netherlands [66].

More recently, research has increasingly focused on monitoring track geometry thr-
ough onboard measurements [67]. A comprehensive review of onboard sensors for track
geometry measurement can be found in [68]. Compared to TRV, this approach is more
cost-efficient and allows for frequent geometry assessments, which facilitates extensive
data analytics on track geometry. Relevant studies in this field can be broadly cate-
gorized into two approaches: model-based and signal-based [67]. Model-based ap-
proaches establish mathematical relationships between input and output signals of a
dynamic system (e.g., [69]–[71]), whereas signal-based approaches involve the use of
signal processing, statistical analysis, and machine learning techniques on system re-
sponse signals to infer conclusions about the input data (e.g., [67], [72], [73]). In these
studies, track geometry parameters are considered as the input signals, while vehicle dy-
namics, measured from the axlebox, bogie, or carbody, represent the system responses.
These measurement locations are depicted in Figure 2.3.

Part of carbody

Axle

Axlebox

Wheel

Bogie frame

Primary suspension

Secondary suspension

Top of rail

Figure 2.3: Main components in a vehicle system and locations of axlebox, bogie, and carbody.

Once gathering the data from measurements, evaluating and making decisions on
each track geometry parameter per unit length is practically difficult as this results in
large volumes of data. Often, track quality index (TQI) is utilized to aggregate various
track geometry parameters with wavelength variations. The change of the TQI values
provides an aggregate-level picture of individual track segments for asset managers to
design interventions, where standard deviation and mean over a defined length and
power spectral density (PSD) are among the standardized TQIs in EN 13848-5 [74].
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Various railroad administrations have tailored their own TQIs to fit the local net-
work characteristics, which can be generally categorized into objective TQI and syn-
thetic/artificial TQI [75]. The former refers to using individual-parameter measurements
to formulate an indicator and addresses a specific aspect of the track geometry quality,
e.g., track roughness index (the US) [76] and Canadian TQI [77]. The latter develops a
mathematical function that describes the track geometry quality by aggregating all the
parameters into one equation, e.g., China railway TQI [64], [78], Q index from ProRail of
the Netherlands, and Sweden TQI [79].

However, they lack consensus in approach, resulting in conflicting inferences on the
track condition [61]. Synthetic TQIs are often dimensionless and lack physical meaning.
Some select specific track geometry parameters while dropping others, or assign subjec-
tive weights of the parameters to the synthetic indexes; also, aggregating track geometry
measurements for an extended length of track may miss exceptions implying safety risk
[75].

In order to address the identified limitations, several researchers have developed ob-
jective TQIs using unsupervised machine learning. In [75], principal component anal-
ysis (PCA) was applied to combine 31 track geometry features into a low-dimensional
form that retained much of the data variability. The resulting three principal compo-
nents were tested better at predicting the defects than the synthetic TQIs. In later work
[80], they extended their approach by utilizing both PCA and T-stochastic neighbor em-
bedding as dimension reduction techniques on the track geometry data. Additionally,
they integrated safety concerns into the TQI to capture track geometry outliers in the
index [81].

Statistical analysis approach has also been used in the development of novel TQIs.
In [82], the correlation between existing and previous values of geometry parameters
was measured by Pearson correlation, where a strong correlation was identified in gauge
and twist, and they were incorporated in TQI development. Similarly, track geometry
data was investigated by statistical distributions [76]. A normal distribution pattern was
found that best fits frequency curves of the geometry parameters, and new TQIs were
developed based on the distribution features. The current deterministic TQIs cannot
capture the inherent uncertainty when classifying the track condition against mainte-
nance thresholds. To address this issue, a stochastic TQI based on a Bayesian framework
was proposed and applied to a 900-km long track line in Iran [61].

2.3.2. PREDICTION OF TRACK GEOMETRY DEGRADATION

After converting raw data to a quantifiable TQI, a mathematical function can be formu-
lated based on the TQI to model the track degradation process and predict its future
state. This information can then inform the maintenance decision-making process.

Initially, settlement is considered to be the controlling degradation factor in the bal-
last tracks, and many researchers developed degradation models describing the ballast
settlement due to its major role in the overall track settlement. The quantitative mod-
eling of degradation for granular and porous materials is extremely complex and sen-
sitive to specific material properties so many settlement relations have been tuned to
fit the particular data either from in-situ or laboratory tests [57]. A detailed review of
these models is presented in [57]. These mathematical formulations are empirical mod-
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els. Compared with the mechanistic models, they are generally easier to handle but lack
physical interpretations. Renewed interests in these models refer to their coupling with
the vehicle-track interaction models for numerical prediction of track settlement at tran-
sition zones, as mentioned in Section 2.2.2.

The significant improvement in track geometry measurement techniques, especially
the onboard measurements, enables access to large volumes of data reflecting the real
track condition, where statistical models have been widely developed and an emerging
research stream applies machine learning tools for predictive analytics of track degra-
dation. Several review articles have been published on statistical modeling of track ge-
ometry degradation. The current review built upon these reviews incorporates the re-
cent literature on machine learning applications and provides a taxonomy based on the
methods and modeling purposes to facilitate the model comparison, which is presented
in Table 2.1.

The field of track geometry degradation modeling includes both statistical and ma-
chine learning models. The latter as a sub-field of computer science refers to the ability
of a system to learn and improve performance from experience, which is widely under-
stood as methods that analyze data, extract patterns, and make predictive analysis from
often rich and unwieldy data. Machine learning has its foundation in statistics, but the
primary difference lies in the volume of data involved [101].

The use of machine learning techniques for track geometry data analytics can be
broadly classified as unsupervised and supervised learning methods. In unsupervised
learning, data is not labeled and response variables are not observed. The motive is to
uncover hidden patterns within the input data, which can then be used to extract objec-
tive TQIs from the track geometry data, as described in Section 2.3.1. Clustering anal-
ysis and dimension reduction are the primary classes of algorithms used in unsuper-
vised learning. On the other hand, supervised learning involves the use of observable
response variables to guide the learning process. It deals with predictive analytics based
on labeled data for both input and response variables. Classification and regression al-
gorithms are the primary groups of algorithms used in supervised learning.

STATISTICAL APPROACH

The first sub-category of statistical approaches involves using deterministic models to
describe track geometry degradation. Regression techniques have been widely used
to establish relationships between track geometry degradation and explanatory vari-
ables, such as time, accumulated tonnage, speed, and subsoil type. These techniques
range from simple linear regression to multivariate regression and exponential regres-
sion. Considering the nonlinear degradation process, the process was divided into nar-
row time slots in [65], [78], and least squares regression was used to approximate the
degradation over each time slot. A repeated substitution was made in the process by us-
ing updated inspection data, resulting in a family of estimated regression equations that
forms a prediction model.

Multiple explanatory variables such as the subsoil type, sleeper type, tonnage, and
engineering structures beneath the track were incorporated in a multivariate regression
model to analyze their effect on the track geometry degradation [66]. Further, a log-
transformed regression model was developed to map the degradation with explanatory
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Table 2.1: Summary of data-driven approaches used for track geometry data analytics.

Approach Subcategory Example models Modeling purposes Reference

Statistical
approach

Deterministic
models

Linear regression,
exponential regression

To simply model track geome-
try degradation with regard to
time/tonnage

[65],
[78],
[83]–
[85]

Multivariate regression,
logistic regression

To establish a relation between
degradation and influencing
factors

[66],
[86]–
[88]

Logistic regression,
survival analysis

To estimate the probability of
occurrence of isolated geome-
try defects

[83]–
[85],
[89]–
[91]

Probabilistic
models

(Continuous) Gamma process,
Wiener process;
(Discrete) Markov chain

- To capture the uncertainty
of track geometry degradation
over time
- To estimate the time period
when (1) the degradation path
hits maintenance thresholds
(continuous) or (2) the condi-
tion state is transferred to the
next state (discrete)

[64],
[92]–
[94]

Hybrid
models

Linear regression coupled with
autoregressive moving average
model;
Bayesian framework coupled
with regression and condi-
tional autoregressive model

To account for spatial correla-
tion of degradation in adjacent
track sections

[84], [85]

Machine
learning
approach

Classification Support vector machine, de-
cision tree, ensemble learn-
ing (e.g., random forest), linear
discriminant analysis, Naïve
Bayes

- To predict the (discretized)
track state for next interven-
tion
- To predict the occurrence of
geometry defects

[67],
[75],
[89],
[95]–
[97]

Regression Decision tree regression, ran-
dom forest regression, support
vector regression, Neural net-
works

To predict the track condition
represented by a continuous
value of TQI

[98], [99]

Neural networks To predict the track condition
considering complex relation-
ships between track degrada-
tion and influencing variables

[98],
[100]

Clustering Hierarchical clustering,
k-means clustering

Group geometry data points
according to their similarity to
evaluate the effect of interven-
tions on track geometry condi-
tion

[99]

Dimension
reduction

Principal component analysis,
T-stochastic neighbor embed-
ding

- Reduce geometry data from
higher-dimensional space to
lower dimensions
- Produce objective TQIs to
characterize the degradation

[75],
[80],
[81],
[89], [99]
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variables, where a survival model characterizing the derailment risk and an optimiza-
tion model for maintenance planning were coupled [86]. Similar approaches have been
applied in [87], [88] with different operating contexts and influencing variables. Some
other studies also adopted linear regression to model the track geometry degradation
path but extended the models to link covariates such as the tamping effect and spatial
dependencies between adjacent track sections to make the models more realistic [83],
[84].

The current synthetic TQIs provide an overall assessment of the track segment condi-
tion, but they may not detect isolated track geometry defects that exceed the set thresh-
olds. Some studies have addressed this limitation by including these defects in the model
development to predict corrective maintenance needs. This has been done using meth-
ods such as logistic regression, survival analysis, and classification algorithms. Classi-
fication algorithms, as a branch of machine learning, will be discussed in the following
section. Logistic regression, a form of regression analysis, is specifically designed to ad-
dress binary classification problems. When the degradation path exceeds the threshold,
it is identified as a geometry defect, allowing the track condition to be categorized into
either normal or defective states. In such scenarios, logistic regression proves to be an
effective technique for addressing this classification problem. Relevant applications of
this method are documented in[83], [84], [89], [90]. Additionally, survival analysis is ex-
tensively used to model the uncertainty in system lifetimes. Within this context, the
Weibull distribution, a prevalent choice in survival analysis, is applied to estimate the
probability of track defects [91].

Track degradation is a stochastic process that is influenced by heterogeneous factors
along the track. Deterministic models that only consider the nominal degradation be-
havior may not be sufficient to develop robust maintenance policies in the presence of
randomness. The second sub-category of statistical approaches uses probabilistic mod-
els to describe the degradation dynamics and incorporate theories from stochastic pro-
cesses, Bayesian inference, and other related fields to account for the inherent uncer-
tainty in the degradation process.

The gamma process is a stochastic process with independent and non-negative gam-
ma distributed increments [102]. This feature makes it well-suited for characterizing
monotonic degradation processes, such as track geometry irregularities that can only
grow without intervention. A gamma process model has been proposed in [93] to de-
scribe the evolution of longitudinal level defects. Based on this model, a cost model was
developed to optimize maintenance. Further, the work was extended by incorporating
alignment into the prediction through the use of a bivariate gamma process [94].

The Wiener process relaxes the monotonicity property, thereby allowing for varia-
tions in the degradation level caused by interventions and measurement errors. The
process starts at zero and it is continuous in time with independent and Gaussian in-
crements. The degradation path of track geometry parameters was formulated through
the Wiener process in [92]. The model parameters were estimated using Bayesian infer-
ence, and the failure time within a maintenance cycle was estimated from the degrada-
tion sampling paths. Rather than treating the degradation process as continuous, the
track condition was classified into four ranks based on Chinese TQI [64]. The deteriora-
tion process was described as Markov chains, where the transition probabilities between
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states incorporated tonnage and line horizontal layout as explanatory variables.
Stochastic process-based models are valuable tools for maintenance decision mak-

ing, as they can predict the track condition within a maintenance cycle. In continuous
processes, the track section is considered defective when the selected TQI exceeds a pre-
defined threshold, calling for intervention. Figure 2.4 shows that the first hitting time
when the degradation path surpasses the threshold can be estimated and its inherent
uncertainty is quantified by a probability distribution. This information contributes to
maintenance knowledge regarding the remaining time before intervention. In discrete
processes, track condition is classified into finite states, each associated with a mainte-
nance decision. However, the limitation of these Markov processes is their basic working
principle, Markovian property, where the future state is only based on the current state,
independent of the past state. Additionally, the complexity of the models may restrict
their applicability when analyzing more track geometry data covering multiple lines or
an entire network.

Intervention level
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Figure 2.4: Schematic representation of a degradation path modeled by a continuous stochastic process (FHT:
first hitting time).

Several researchers have analyzed the temporal variability of the degradation pro-
cess using stochastic processes, but only a few have considered its spatial dependencies
in consecutive track segments. Since neighboring segments with similar structural and
operational features tend to exhibit similar degradation patterns, this type of modeling
requires a hybrid model that combines a regression model with techniques specifically
designed to address spatial variability in regression parameters [84], [85]. Hence, this
type of modeling is classified as a hybrid model in Table 2.1.

MACHINE LEARNING APPROACH

Supervised learning algorithms are mostly applied to predict the track geometry quality,
which can be further categorized into classification and regression problems. The for-
mer is applicable when the output variables are discrete or categorical, while the latter
deals with continuous variables.

Classification is the process of assigning a new instance to a specific category based
on the knowledge acquired from the training of previously observed instances. Consid-
ering the track condition (featured by a TQI) is either within or beyond a threshold, the
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problem is a well-posed binary classification problem [67]. Decision trees and support
vector machines (SVM) have been used to predict the occurrence of defects in this type
of problem. SVM separates data into different classes by transforming them into high-
dimensional space with a kernel function and dividing them with decision boundaries
[67], [89]. The kernel trick makes SVM a unique classifier that can map non-separable
data into high-dimensional space and make it separable [67]. Decision trees, on the
other hand, have better interpretability and representation. It is a rooted tree that splits
a complex decision into several simpler and more interpretable ones [99]. The TQIs serve
as predictors, and the classes to be mapped are target variables, which formulate a top-
down approach to constructing a decision tree.

Initially, SVM was proposed to predict changes in defect amplitude while account-
ing for the effects of track class, traffic volume, and inspection intervals [96]. The model
was trained using irregularities in longitudinal level, cross-level, and dip (the maximum
value of track longitudinal leveling within a certain length). Later in [97], the same types
of defects were considered as inputs, and an ensemble methodology was applied to es-
timate the occurrence of more severe defects. Further in [89], the performance of three
models (random forest, SVM, and logistic regression) was compared for predicting the
defect occurrence based on a record of track geometry defects. A total of 30% of recorded
defects were used as test data, and random forest demonstrated the best prediction per-
formance.

Instead of binary classification, the track condition was divided into four rank states
based on the Chinese TQI and maintenance policy [95]. A tree-augmented naïve Bayes
classifier was developed to predict the state of the track for the next inspection. While
most studies focus on analyzing longitudinal level irregularities measured from TRV, de
Rosa et al. [67] used SVM and decision tree to monitor alignment and cross-level irreg-
ularities from lateral and roll bogie accelerations. During the training phase, they only
utilized data simulated from a multibody simulation, and the trained models were tested
against the onboard measurement.

A few studies have approached the prediction of track geometry quality as a regres-
sion problem. Martey et al. [99] studied a mile of a railway track in the US, where a
renewal was conducted during the analysis period. They combined unsupervised and
supervised learning on TRV data to estimate the effect of geocell installation on the track
geometry condition. Considering track geometry degradation is influenced by hetero-
geneous factors, a neural network model was trained using field data to map the rela-
tionships between the degradation and influencing variables [100]. The influencers in
the model include eight mechanical inputs and four environmental factors, which were
mostly treated as dummy variables. The study showed that neural networks are par-
ticularly useful in learning complex relationships between track conditions and multi-
ple interacting factors related to track design, environment, and operational conditions.
Another example of this approach is provided in [98].

2.3.3. MAINTENANCE INTERVENTION PLANNING

Based on the prediction from degradation modeling, maintenance planning determines
when and where to perform the maintenance over a planning horizon. Tamping is a
widely studied method for correcting track geometry defects. Several optimization prob-
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lems for tamping scheduling have been formulated, such as integer linear programming
[103], [104] and mixed-integer linear/nonlinear programming [105]–[109]. Parameters
to optimize include cost, possession time, the total number of tamping operations over
a planning horizon, and track conditions captured by TQIs. Another important consider-
ation in optimization is to model the effect of tamping on track geometry quality, which
includes changes in degradation level and rate, as tamping is an imperfect maintenance
action.

At transition zones, however, local track geometry issues may not be effectively rec-
tified by tamping. This is shown by Le Pen et al. [12], who found that hanging sleepers
reoccur soon after tamping is applied at a level crossing approach. Later in [63], [110],
the dependency between track geometry quality and longitudinal variations of vertical
stiffness was investigated using field data. Results showed that uneven profiles with high
degradation rates often occur on track sections where there is a combination of high
gradient and low substructure stiffness.

Moreover, the occurrence of track geometry defects was linked to subgrade param-
eters measured by ground penetrating radar (GPR) [111]. GPR is a continuous non-
destructive testing method that measures layer configuration, moisture content, and
fouling condition to provide a detailed picture of the ballast and substructure condi-
tions. The results revealed a significant relationship between high rates of track geome-
try degradation and poor track subsurface conditions. In such cases, tamping may not be
a cost-effective long-term solution, and upgrading the ballast or subgrade layer should
be considered to tackle the problem.

2.4. PERSPECTIVES AND FUTURE DIRECTION
Research on track geometry degradation, while not directly targeted to transition zones,
complements studies in analyzing the track behavior at transition zones. Table 2.2 sum-
marizes a comparison of the two approaches. Mechanistic models focus on micro-level
investigations and rely on first principles to inform the choice of variables and the form
of the model. On the other hand, the data-driven approach scales up to the macro level
and relies on historical data from large-scale network measurements gathered through
TRV or onboard measurements.

Mechanistic models may consider short- and long-term analyses. Short-term per-
formance evaluation is useful in investigating the track responses at various levels and
locations of track components during train passage. They can adapt to different site sit-
uations, and one single model can work out multiple design options through parametric
studies, lending itself to testing various track design solutions to improve track perfor-
mance and reduce maintenance routines. The long-term numerical prediction focuses
on track settlement, mostly embedding an empirical settlement law in an iterative com-
putation procedure. However, the mechanical properties of vehicles and tracks may vary
in time and space, while the settlement equations were extrapolated site specifically and
not based on constitutive laws. They are limited in accounting for the spatial and tempo-
ral variability in degradation, hampering the accurate prediction of the track settlement
and generalization of the results to other sites of interest.

Data-driven models have better predictive capability. Probabilistic models can ac-
count for the uncertainty in the evolution of track degradation; multivariate regression
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Table 2.2: Comparison of mechanistic and data-driven approach.

Mechanistic approach Data-driven approach

Aim - To provide physical interpre-
tations of structural degrada-
tion
- To analyze the impact of sys-
tem characteristics and opera-
tional variables on track degra-
dation
- To improve engineering de-
sign and maintenance mea-
sures at an individual asset level

- To discover complex rela-
tionships between track degra-
dation and influencing factors
(both endogenous and exoge-
nous variables)
- To predict track degradation
for maintenance planning

Required
data/information

- Site-specific measurement
(e.g., accelerometer, deflec-
tometer, geophones, and
digital image correlation)
- Track & vehicle design param-
eters
- Operational characteristics

- Network measurement: track
geometry measurement (TRV
or onboard sensors)
- Maintenance history
- Operational characteristics
- Environmental conditions

Approach - Analytical modeling
- Numerical modeling

- Statistical approach
- Machine learning approach

Applicable context - Mostly transient analysis to
investigate dynamic track re-
sponses under train loading
- Long-term analysis where a
numerical model is coupled
with an empirical model (or a
constitutive model) for settle-
ment prediction

- Long-term analysis for track
geometry defect prediction and
maintenance planning
- Synchronize track measure-
ments to investigate potential
correlation and identify the
root cause of track degradation
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and neural network models can reveal complex relationships between track perfor-
mance and exogenous variables such as the ballast fouling condition and moisture
content in the substructure, which cannot be handled by the mechanistic approach.
However, the prediction accuracy of the data-driven models depends on the quality and
quantity of historical data. These models are blind to physical sources of degradation
and unable to account for internal factors related to the structure itself.

Both types of research contribute to a deeper understanding of the degradation
mechanisms of the railway track. Mechanistic modeling aims to investigate the root
cause within the train-track system, whereas the data-driven approach can reveal the
relationships between degradation and exogenous variables related to operational
characteristics, maintenance history, and environmental conditions that cannot be
addressed by the mechanistic approach. Moreover, it allows for mapping potential
correlations between different types of defects, such as the effect of track geometry
irregularities on the occurrence of rail defects [112], [113], and the effect of substruc-
ture conditions on the development of irregularities [63], [110], [111]. Gaining such
insights provides valuable information for the development of innovative maintenance
techniques or design solutions.

Through the systematic review provided above, the following gaps are identified in
the existing research. There has been extensive research on the degradation mechanisms
of transition zones. However, limited attention has been paid to level crossings and as-
sociated transition zones, aside from a few experimental studies [12], [13]. There are
various ways to carefully design transition zones onto bridges and over culverts to mini-
mize dynamic loading. However, there is a lack of recognized transition designs for level
crossings, which is also confirmed in Le Pen et al. [12]. Level crossings are common ar-
eas where ballasted tracks meet slab tracks (e.g., the use of embedded rail systems in the
crossing). The optimal design for both crossing and transition zones is seldom studied
and synchronized. Also, as level crossings represent jointly used areas by rail and road
traffic, a balanced crossing design is necessary that provides gradual and smooth transi-
tions to both the roadway and highway approaches. The potential problems caused by
the lack of an effective track design at level crossings could be alleviated with an alterna-
tive design solution, where more field experiments and numerical studies dedicated to
the level crossings are suggested.

From a macro perspective, it was found that the mainstream in existing track ge-
ometry data analytics focuses on the degradation of open tracks while neglecting the
localized degradation features in the vicinity of transition zones, which is reflected in
the selection of TQI and the type of maintenance:

(i) TQI: the intervention planning predominantly relies on TQI-based trend analysis,
where the standard deviation of longitudinal level (in wavelength 3–25 m) over a
200-m track segment is a decisive factor. However, the aggregate TQI may not nec-
essarily capture the localized degradation feature or highlight the higher degrada-
tion rates at transition zones, as they typically extend only a few meters or tens
of meters. In practice, level crossings are often inspected through regular manual
checks [114]. Hence, there is a pressing need to translate track geometry data into
specific track features in the vicinity of transition zones to guide local attention
more effectively.
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(ii) Maintenance type: the TQI-based trend analysis is generally used for tamping op-
timization, mostly coupled with a condition recovery model and replacement con-
cern. Tamping is effective in packing the ballast layer but may not help correct
track geometry defects and hanging sleepers at transition zones, where the root
cause may lie at the substructure level.

The question of which interventions to undertake in the vicinity of transition zones
necessitates the proper evaluation of track sub-structure condition, which requires the
synchronized measurement of track layout and stiffness. This brings another important
perspective that the data-driven approach can provide to the management of transition
zones. The data-driven approach allows for synchronizing results from various track
measurements, such as track geometry, GPR, and stiffness measurement, which enables
a proper and comprehensive evaluation of track conditions. This, in turn, informs de-
cisions on the most suitable interventions for specific transition zones. Compared to
site-specific measurements used in mechanistic modeling (see Table 2.2), these mea-
surements can be conducted on a larger scale, such as an entire track line or a small
network, which can therefore account for the spatial and temporal variability in track
degradation.

Specifically, stiffness measurements can reveal potential substructure-related prob-
lems, and GPR provides valuable insights into the layer configuration, moisture content,
and fouling condition of the track. As filtering track geometry data in different wave-
lengths has specific indications about the types of defects, it can be synchronized with
stiffness and GPR measurements to refine the defect diagnosis along the track lines. This
approach is particularly useful for capturing localized degradation features at specific
locations, and interventions specific to the identified issues can be followed, such as
tamping for regular geometry issues, ballast upgrading for ballast fouling, and subgrade
reinforcement to strengthen the weak subgrades.

While existing TQI may not capture the defect-proneness of the track section near
transition zones, hybrid TQI derived from the combined measurement is suggested as
it can ease the track characterization and provide a more precise detection of the poor
track condition for proper maintenance treatment. Feature extraction techniques can
be applied to define TQI: PCA and T-stochastic neighbor embedding have been tested in
mining the track geometry data for the open track, and many other methods are under-
explored.

As wavelength contents of track geometry defects are inherently related to the spe-
cific issues of vehicle-track interaction, full-spectra track geometry filtering is suggested
to be incorporated in the TQI development and degradation modeling in order to avoid
omission of potential types of defects, where most studies only considered the wave-
length range 3–25 m. Besides, the evolution of track geometry irregularities is mainly
investigated in the time domain, application of spectral analysis is not as widely used as
the time-domain methods. Since the spectral analysis reveals frequency components in
the track geometry defects, it provides a better understanding of the vehicle-track inter-
action mechanism, showing great potential to link to the track models.

Further, the hybrid TQI that refines the defect diagnosis can be linked to degrada-
tion modeling and maintenance decision support and extended from the individual as-
set level (a transition zone) to the system level (multiple transition zones). Determin-
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istic models are not recommended in the degradation modeling as this type of model
only captures the nominal degradation dynamics and the resulting maintenance poli-
cies may not be robust enough in the presence of randomness, e.g. the heterogeneity in
asset features, degradation levels, and operating context, considering the large number
of supporting structures (e.g., bridges, level crossings, as introduced in the beginning of
Chapter 1) on a network. Group maintenance for multiple supporting structures with
similar conditions on the network can be added in this context by using optimization
tools. Economic dependence encompassing the set-up cost (sharing) dependence and
operational downtime dependence over multiple assets is embedded as a potential ben-
efit in system-level maintenance decision making.

2.5. CONCLUSIONS
This chapter presents a synthesis of studies related to transition zones in railway tracks.
This includes an assessment of track behavior under moving vehicles and modeling of
track geometry degradation, which is a leading factor contributing to frequent mainte-
nance in these areas. The dynamic behavior of railway tracks at transition zones is typ-
ically assessed through experimental studies and mechanistic modeling, with the latter
approach being the focus of this review. Besides, modeling of track geometry degrada-
tion mainly follows a data-driven approach.

The two categories of studies complement each other in providing insights into dif-
ferent aspects of track degradation. The mechanistic approach involves establishing a
relationship between system characteristics, such as geometric and mechanical prop-
erties, and system response. It aims to investigate the root cause of degradation within
the train-track system and contribute to a fundamental understanding of the underlying
mechanisms at transition zones. The use of data-driven models complements the field
of knowledge by mapping relationships between track degradation and exogenous fac-
tors, such as operational characteristics, maintenance history, and environmental con-
ditions. This approach demonstrates better predictive capability on both spatial and
temporal scales and is useful to inform maintenance decisions.

Unlike bridges and culverts, the optimal design for level crossings and associated
transition zones is seldom studied and synchronized. Besides, as a regular intervention,
tamping may not help solve the local defects at transition zones, where ballast upgrad-
ing or other measures are alternatives to testing and comparing. This necessitates the
synchronized measurement and refined diagnosis of the track issues, especially at the
substructure level. Hybrid TQI derived from the combined measurement is suggested.
This can be linked with maintenance decision support to ease and optimize the manage-
ment process. Relevant techniques that can be used in this process are also elaborated.
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3
MECHANICS-BASED DESIGN

OPTIMIZATION FOR LEVEL

CROSSINGS

This chapter presents a surrogate-based simulation methodology to search for an opti-
mal combination of parameters relevant to the geometry and elasticity of track structures.
Specifically, this methodology integrates FE modeling with surrogate-assisted optimiza-
tion: (i) the FE model is developed to characterize the dynamic behavior of a level crossing
under a moving vehicle; (ii) the optimization problem is formulated by incorporating the
expensive FE simulations into an adaptive surrogate modeling scheme. This integration
facilitates an efficient exploration of the track design space (thereby reducing the compu-
tational cost), and a reasonable balance can be achieved between solution quality and
computational effort.

The proposed methodology is applied to a Dutch railway case. The results indicate a sig-
nificant improvement in performance indicators relevant to wheel-rail contact forces and
energy dissipation in the ballast layer when compared to a reference design. The solution
has great potential to achieve a more desirable vehicle–track interaction and improve the
connecting performance between level crossings and transitions. While the methodology
is demonstrated on a level crossing case, it is generic and can be applied to other railway
structures, which also contributes to improvements in current track design practices.

Parts of this chapter have been published verbatim in Engineering Structures, 282, 115740 (2023) [1].
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3.1. INTRODUCTION
As introduced in Chapter 1, transition zones often exhibit non-consistent track configu-
rations (e.g., connections between ballast track and slab track) and variations in geotech-
nical foundations (e.g., embankment to a bridge). The first type is typically encountered
in many level crossings, where a slab track, e.g., embedded rail system (ERS), is placed
in the crossing area, and the ballast track forms the adjacent sections (see Figure 3.1).

Transition zone

Level crossing zone

Transition zone

Figure 3.1: An example level crossing with embedded rail system [2].

In ERS, the ballast and sleepers are replaced by concrete slabs with channels, where
the rails are placed and fixated by an elastic poured compound. The slabs provide an
obstacle-free surface with the road pavement for crossing traffic. The elastic compound
provides homogeneous continual support to the rail, differing from periodic sleeper sup-
port in the traditional ballast track. With design benefits such as noise reduction and
savings in construction height and weight [3], ERS also has wide applications in bridges,
tunnels, and tramlines [4]–[6].

Despite the design advantages, the use of ERS in these areas presents structural dis-
continuities with adjacent ballast tracks. The discontinuities lead to the amplification of
stresses and strains when trains pass by, resulting in the accumulation of differential set-
tlements over time. In practice, due to the interaction with road traffic, several degrada-
tion problems specific to ERS-based level crossings are experienced by asset managers,
including debonding of the elastic compound and rail corrosion [2], [7], as shown in Fig-
ure 3.2. They suggest that rail corrosion is related to degradation in track geometry. The
differential settlement leads to an additional amplification of dynamic responses when
trains pass over the level crossings, causing the rail to bend and the elastic compound
to debond. The gap created by the debonding can then allow water, road debris, and
de-icing salt to penetrate, making the steel rail more vulnerable to corrosion [2], [7].

Another concern is the potential disruption in maintenance operations that may oc-
cur at the interface between crossing and transition zones. Due to the minimum con-
tinuous depth of ballast required for tamping, it is difficult to apply maintenance right
up to and over the interface. As a result, some sleepers and underlying ballast are never
mechanically maintained, which can lead to hanging sleepers and further exacerbates
the degradation [8].

To alleviate the track issues while considering the maintenance constraint at the in-
terface, an improved design or maintenance solution is needed for level crossings. Al-
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Figure 3.2: Reduced profiles in rail foot caused by corrosion [2].

though there has been extensive research on the degradation mechanisms of transition
zones in railway tracks, as discussed in Chapter 2, limited attention has been paid to
the level crossings and associated transitions, aside from a few experimental studies [8],
[9]. Optimal design solutions for crossing and transition areas, especially for the ERS
type, have not been explored in the literature. This motivates the aim of the current
chapter, which is to develop a design optimization methodology for this type of railway
structure in order to minimize the dynamic amplification and improve the connecting
performance between crossing and transition zones.

The novelty of the current chapter is twofold. Firstly, an FE model is developed to
characterize the dynamic behavior of the ERS-type level crossings. To simulate VTI, a co-
simulation approach is proposed by combining the capabilities of COMSOL and MAT-
LAB. Secondly, based on this mechanistic model, an optimization problem is formulated
with the aim of minimizing the dynamic amplification caused by the structural discon-
tinuity, where the FE simulations are incorporated into an adaptive surrogate model-
ing scheme. This integrative methodology allows for efficient exploration of the design
space while achieving a reasonable balance between solution quality and computational
effort.

Several response quantities that capture the dynamic amplification of the track are
proposed and compared as design criteria/objectives, which are transient responses
generated from the FE model. Those showing higher solution quality and sensitivity
to parametric variation are selected to formulate a multi-objective optimization (MOO)
problem, which is solved by embedding an achievement scalarizing function (ASF) in
the surrogate modeling scheme. The optimized design solutions are obtained by mini-
mizing the proposed objectives. It is considered that if the transition zones are designed
to reduce the transient responses (the amplitude) of the vehicle–track system, the risk of
potential track degradation can also be reduced. This may further reduce maintenance
needs and the consequent impact on system life-cycle cost and network performance.

This chapter is organized as follows. Section 3.2 presents four building blocks in the
proposed methodology, including a method of simulating the vehicle–track coupling
dynamics, formulation of a general optimization problem for the level crossings (i.e.,
definition of design variable, objectives, and mathematical formulation), a surrogate-
assisted optimization scheme, and a method of integration. Section 3.3 presents numer-
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ical examples to demonstrate the applicability of the proposed procedure. Section 3.4
discusses the quality of obtained solutions and effectiveness of the proposed objectives,
using a reference design as a benchmark. Section 3.5 concludes this chapter with some
final remarks.

3.2. METHODOLOGY

3.2.1. MODELING OF VEHICLE–TRACK INTERACTION (VTI) DYNAMICS
The interaction between vehicle and track dynamics is critical, particularly in transition
zones. Track discontinuities lead to undesirable wheel-rail interactions, which in turn
amplify the responses of both the track and the vehicle. By accounting for the coupled
dynamics of these systems, it is possible to capture variations in the vertical momentum
of the moving vehicle and the consequent impact on track vibrations. To this end, a VTI
model is developed to simulate the dynamic response of a level crossing under a pass-
ing vehicle. Figure 3.3 shows a schematic representation of the model, which is used as
a basis for design alternatives comparison and is represented in a parametric way for
optimization purposes. It consists of two subsystems, a vehicle modeled by multibody
simulation and a track structure modeled by the FE method. The two subsystems are
coupled through wheel-rail contact to formulate an integrated time-dependent system.
The model characterizes the vertical dynamics of the vehicle-track system since it is typ-
ically pronounced in transition zones [10]. Symmetrical load distribution is assumed
between the rails, where half of the track is considered in dynamic simulations.

Concrete slab

Rail

Sleepers

Fasteners 

+ railpads

Ballast 

+ foundation

Track

Foundation

Elastic compound + Rail strip

Concrete slab

Level crossing (with embedded rail system)Transition zone (with ballast track) Transition zone (with ballast track)

Vehicle

Wheel-rail contact

Carbody

Secondary suspension

Bogie

Primary suspension

Wheelset

Figure 3.3: Illustration of the vehicle-track interaction model.

VEHICLE MODEL

The vehicle system is represented by a quarter-car model traveling at a constant speed
v , as shown in Figure 3.3. It is treated as a multibody system including a carbody, bo-
gie frame, and wheelset. The wheelset is connected to the bogie through the primary
suspension, and the carbody and bogie are linked through the secondary suspension.
Note that more advanced vehicle systems, i.e., a full-car system or a series of cars, can
be implemented. Here, as the focus is to examine the surrogate-assisted optimization in
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the level crossing design, a vehicle system with three DOFs is considered in the coupling
dynamics with the track.

The equations of motion of the vehicle model can be written as

Mv Üv +Cv U̇v +Kv Uv = Fv , (3.1)

where Mv ,Cv , and Kv denote, respectively, the mass, damping, and stiffness matrices of
the vehicle. Uv ,U̇v , and Üv denote, respectively, the displacement, velocity, and acceler-
ation vectors of the vehicle. Fv is the force vector applied on the vehicle, which contains
gravity loads and the wheel-rail contact force. The expression of the system matrices de-
pends on what vehicle DOFs are considered in the simulation. For the current 3-DOF
vehicle system, the corresponding system matrices are given by

Mv = diag
[
mc mb mw

]
, (3.2)

Cv =
 cs2 −cs2 0
−cs2 cs2 + cs1 −cs1

0 −cs1 cs1

 , (3.3)

Kv =
 ks2 −ks2 0
−ks2 ks2 +ks1 −ks1

0 −ks1 ks1

 , (3.4)

where mc , mb , and mw denote the mass of the carbody, bogie, and wheelset. cs1 and
cs2 represent damping properties of the primary and secondary suspension; ks1 and ks2

denote stiffness of the corresponding suspension systems.

TRACK MODEL

The track model consists of an ERS-based level crossing in the middle and transition
zones on both sides in the ballast track form. The ballast track is represented by a two-
layer discretely supported model; see Figure 3.3. It consists of one rail meshed by Euler-
Bernoulli beam elements, railpads as Kelvin-Voight (KV) elements, sleepers as mass el-
ements, and underlying ballast and foundation collectively as the KV elements. Each
rail element has two nodes with 2 DOFs, vertical translation and rotation, at each node.
The KV element consists of one linear spring and one linear damper placed in parallel,
which is commonly used to represent viscoelastic materials in railway structures, such
as railpads and ballast layer (e.g., [11]).

The embedded track comprises a rail, fastening, concrete slabs, and a foundation
layer. Figure 3.4 presents a simplified ERS cross-section. The fastening is typically an
elastic poured compound bonding the rail and a resilient rubber strip under the rail-
base to provide track elasticity and constrain the vertical rail deflection. Space-saving
components can be used, and PVC tubes are for cable installation.

Previous works such as [12] analyzed the dynamic behavior of the embedded track,
where a model with two beams (rail and slab) is compared against a more advanced
model that accounts for the lateral flexibility of the slab, i.e., two beams (rails) and a flex-
ible plate (slab). The comparison was made in terms of wave propagation and dynamic



3

52 3. MECHANICS-BASED DESIGN OPTIMIZATION FOR LEVEL CROSSINGS

Incl  1:40

Wedge 

Plastic tube

Rail strip

Elastic compound
UIC 54

Concrete channel

Tube holder

Track gauge

Figure 3.4: Schematic representation of the ERS cross-section.

responses (e.g., vertical displacement of the rail and stresses in the concrete slab). Re-
sults showed that the former model can be employed for a quick and sufficiently accurate
assessment of the dynamic behavior of the embedded track. The current work therefore
adopts the simplified version, where the rail and slab are modeled by the Euler-Bernoulli
beam elements, connected by parallel KV elements as the rail fastening and supported
by viscoelastic (Winkler-type) foundation.

The equations of motion of the track model can be expressed as

Mt Üt +Ct U̇t +Kt Ut = Ft , (3.5)

where Mt ,Ct , and Kt denote, respectively, the mass, damping, and stiffness matrices of
the track structure. Ut , U̇t , and Üt denote, respectively, the displacement, velocity, and
acceleration vectors of the track. Ft is the force vector applied on the track by the running
train.

COUPLING OF VEHICLE AND TRACK MODEL

Numerical simulations of the VTI dynamics are generally solved by two types of com-
putational methods. One treats the vehicle and track structure as a unified system and
formulates coupled system matrices, e.g., [13], [14]. The other separates the two sub-
systems and solves individual equations of motion based on an iterative procedure, e.g.,
[15]. This thesis adopts the former method that couples the vehicle and track to form an
integrated time-dependent system. It results in a global system of equations that can be
solved in a direct manner without the need for an iterative procedure.

Combining the equations of motion for the vehicle, Eq. (3.1), and track, Eq. (3.5), the
unified formulation results in the following global system equations of motion.

Mg Üg +Cg U̇g +Kg Ug = Fg , (3.6a)

where Mg , Cg , and Kg denote, respectively, the mass, damping, and stiffness matrices
of the global integrated system. Ug ,U̇g , and Üg are the displacement, velocity, and ac-
celeration vectors of the global system, respectively. Fg is the global force vector. Their
expressions are given by
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Mg =
[

Mv 0
0 Mt

]
, Cg =

[
Cv 0
0 Ct

]
, Kg =

[
Kv v Kv t

Kt v Kt t

]
, Ug =

[
Uv

Ut

]
, Fg =

[
Fv t

Ft v

]
. (3.6b)

The wheel-rail contact is modeled by Hertz contact theory. The contact stiffness kw

is linearized and calculated by kw = 3
2G P 1/3, where P is the static wheel axle load and G

represents a contact constant [16]. As the wheel-rail contact is modeled by a Hertzian
spring kw , the vehicle and track are coupled through the stiffness matrices only, which
is indicated through the entries of Kg in Eq. (3.6b). Kg is time-variant since the position
of the train changes with time. The detailed formulation is given below.

(a) Kv v is the vehicle stiffness matrix and can be expressed as

Kv v = Kv +Kv
′, (3.7)

where Kv is the stiffness matrix of the vehicle itself, as shown in Eq. (3.4). Kv
′ is the

stiffness matrix of the vehicle induced by the wheel-rail contact. For the current
3-DOF vehicle, it is written as

Kv
′ = diag

[
0 0 kw

]
. (3.8)

(b) Kt t is the track overall stiffness matrix and is written as

Kt t = Kt +Kt
′, (3.9)

with

Kt
′ = kw ·NT ·N , (3.10)

where Kt represents the stiffness matrix of the track itself; Kt
′ is related to the rail

displacement under the wheel, representing a portion of the track stiffness matrix
induced by the vehicle. N is a location vector that defines the correspondence be-
tween the vehicle position and rail element in contact. For one wheel-rail contact
point, the vector N is given by

N = [
0 ... 0 N1 j N2 j N3 j N4 j 0 ... 0

]′
n×1, (3.11a)

with n denoting the total number of DOFs of the track structure. The non-zero
entries of N represent the rail element in contact with the wheel, where Hermitian
shape functions for the Euler-Bernoulli beam are applied. By letting ξ j ∈ [0, l j ] be
the local coordinate of rail element j with length l j , the non-zero entries of N can
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be expressed as

N1 j
(
ξ j

)= 1−3

(
ξ j

l j

)2

+2

(
ξ j

l j

)3

, (3.11b)

N2 j
(
ξ j

)= ξ j

(
1− ξ j

l j

)3

, (3.11c)

N3 j
(
ξ j

)= 3

(
ξ j

l j

)2

−2

(
ξ j

l j

)3

, (3.11d)

N4 j
(
ξ j

)= ξ2
j

l j

(
ξ j

l j
−1

)
. (3.11e)

(c) Kt v and Kv t are coupling matrices induced by the wheel-rail interaction and given
by

Kt v = [
0 0 −kw N

]
n×3 , Kv t = Kv t

′. (3.12)

At the right-hand side of Eq. (3.6a), the global force vector Fg is formulated by two
load vectors, i.e., Fv t and Ft v . Fv t is the load vector of the vehicle and is given by

Fv t = Fv g +Fvr , (3.13)

with Fv g denoting the load vector induced by the vehicle gravity and Fvr being the load
vector induced by the track geometry irregularity. They can be calculated by

Fv g = [
mc g mb g mw g

]′
, Fvr =

[
0 0 kw r (x)

]′
, (3.14)

where g is gravitational acceleration, i.e., 9.8 m/s2. r (x) denotes the track irregularity in
vertical profile, which is location specific.

Ft v is the load vector of the track and is written as

Ft v =−kw r (x) ·N. (3.15)

3.2.2. FORMULATION OF AN OPTIMIZATION PROBLEM
A common guideline for improving the transition performance is to smooth the variation
in vertical track stiffness, which is also specified in EN 16432-2 [17]. According to this
principle, various countermeasures in transition zones have been developed to mitigate
the degradation, as discussed in Chapter 2. Likewise, the design principle in this chapter
is to obtain a gradual change of stiffness in the track, where relevant response quantities
defined to capture the local dynamic amplification are optimized or minimized.

DEFINITION OF DESIGN VARIABLES

A reference design that follows a typical Dutch practice in level crossings is defined as
a benchmark to assess the optimized design solutions. The parameter values and the
justification for the chosen values are given in Section 3.3.1. In the crossing area with
ERS, an alternative to the reference design is to install another type of rail strip (herein
referred to as Type II rail strip). The rail strip is a resilient component fitting between
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the underside of the rail and slab channel, as depicted in Figure 3.4. The component
provides elasticity to the structure, improves the load distribution, and controls the rail
deflection. It has predefined stiffness properties that can be chosen to meet specific
system requirements.

For the ballast track in transition zones, the vertical track stiffness is influenced by the
flexural stiffness of the rail and supporting stiffness contributed from track components
below the rail, such as sleepers and ballast bed. The contribution from the substructure
is also significant to the vertical track stiffness, especially in soft soil regions [18], [19].
Modifying the stiffness of rail, sleepers, and ballast can cause problems in track stabil-
ity and resistance [20]. An adequate solution is to introduce elastic components in the
track structure, such as railpads, under sleeper pads, and under ballast mats. The railpad
stiffness is the main characteristic parameter of these elements and comes with a wide
range of values [20]. Stiff pads such as standard Dutch pads FC9 reduce rail deflection
and vibration, while soft pads can mitigate the damage in sleepers and reduce vibration
in sleepers and ballast.

Moreover, sleeper parameters such as size, spacing, and material type have a con-
siderable effect on track dynamic behavior, where effort has been made to evaluate the
variation of these parameters on transition performance, e.g., [10], [21]–[23]. Referring
to the Dutch practice, two types of concrete sleepers are considered in the design space,
i.e., a commonly used NS90 sleeper and the other option with larger weight and stabil-
ity (herein referred to as strengthened sleepers). The strengthened type is mainly used in
tight curves or in connection with level crossings, switches, and other structures to en-
sure gradual track stiffness changes. According to Prorail (Dutch railways) system speci-
fications, at least 5 to 8 strengthened sleepers should be placed next to the ERS-type level
crossings. And the sleeper bay right next to the concrete slab should be reduced to 0.4 m
(for comparison, the standard sleeper spacing is 0.6 m). However, questions remain in
approach zones regarding the optimal number of strengthened sleepers being installed
next to the junction and the distances between the centers of those neighboring sleepers.

The above design parameters are considered influential to the dynamic performance
of the level crossings. In this chapter, they are collected as four major types of design
variables in formulating optimization problems, which are displayed in Table 3.1.

Table 3.1: Types of track design variables, x.

Track type Component Variables

Ballast Railpad Stiffness, (xr i , i = 1,2, ...)

Sleeper Number of strengthened sleeper, (xn )

Sleeper spacing, (xs j , j = 1,2, ...)

ERS Rail strip Length of placing Type II strip, (xl )

ASSESSMENT CRITERIA OF TRACK PERFORMANCE

Track degradation is generally reflected at two levels: the one related to the wheel-rail in-
terface and the other concerning the supporting elements below the rail, such as sleepers
and ballast layer.
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At the wheel-rail interface, undesirable contact degrades both rail and wheel profiles,
and the contact properties influence the rate of degradation [24]. Track degradation at
the contact level is often manifested in rail defects, such as rail corrugation and rolling
contact fatigue, which represent short-wave components of track irregularities. These
defects can significantly affect the magnitude of wheel-rail interaction forces and are
therefore relevant to driving safety and vehicle stability [25].

At the lower supporting level, the ballast layer and underlying substructure are im-
portant contributors to the deterioration in track geometry. Due to the sliding and break-
age of granular particles, the ballast layer presents a progressive deformation with the
passage of trains. The layers below the ballast can also experience plastic deformations
due to consolidation and cyclic loading, which further contributes to the development of
accumulated settlement. However, the slab track in level crossings is designed for mini-
mal settlement, resulting in a differential settlement between the two forms of track.

Based on these typical features, bi-level criteria are defined to evaluate the sensitivity
of a track design to expected levels of performance. The first-level criteria are relevant to
wheel-rail contact and are assessed based on the magnitude of dynamic contact forces.
A larger magnitude of wheel-rail vertical forces F indicates more dynamic amplifica-
tion in the track structure induced by the passing vehicle, and consequently, reducing
the amount of F represents damage mitigation at the wheel-rail contact and reduction
in potential rail defects. The second-level measure concerns the damage to the ballast
layer, as it is a significant contributor to track geometry degradation. The mechanical
energy dissipated in the track ballast is selected as an indicator to assess the sensitivity
of a track design to the expected damage in the substructure, which is proposed in [22]
and further elaborated in [26], [27]. For one wheel passage, the energy dissipated by the
ballast damping in the i th sleeper support is given by [22],

Ei =
∫ ∞

−∞
cb,i v2

s,i (t ) d t (3.16)

where cb,i is the ballast damping under the i th sleeper; vs,i (t ) is the velocity response
of the i th sleeper in the time domain. The higher the energy dissipated into the sub-
structure, the stronger the degradation that can be expected. Accordingly, reducing the
amount of energy dissipated in the ballast layer represents an important aim for damage
reduction in the ballast and therefore in overall track geometry.

The response quantities, i.e., F and E , are generated from VTI dynamic simulations
and presented in time series. To better capture the features embedded in the responses,
the simulation data are further processed by two statistical metrics, i.e., the root mean
square (r ms) and maximum-to-minimum (max) value. The former captures the aver-
age dynamic amplification over the influenced track section. The latter represents the
full range of response variability in the influenced area. The evaluation of the metrics
results in four design objectives, i.e., Fr ms ,Fmax ,Er ms and Emax , which are treated as
dynamic benchmarks for track design comparison and parametric optimization.

As previously mentioned, the ballast and substructure are modeled by the KV ele-
ments. The damping parameter of the ballast layer is considered constant, referring to
characteristics of the typical Dutch track, as elaborated in Section 3.3.1. Although this
representation can describe the elastic resistance and damping provided by the layers
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supporting the sleepers during train passage, more accurate quantification of energy
dissipation in these layers requires a 3D representation that accounts for track-soil in-
teractions and nonlinear material behavior. However, the primary focus of this chapter
is on parametric optimization. The energy dissipation (Eq. 3.16) is used to quantify the
susceptibility of a track design to expected degradation, where the assessment of the
effect of parametric variations on the dissipated energy is relative, aiming to compare
different track design solutions. Therefore, it is considered sufficient given the aim of
the current work.

THE OPTIMIZATION PROBLEM

The design variables listed in Table 3.1 are collected in a design vector x = [
xr i , xn , xs j , xl

]′
with i , j ∈N, which can be varied according to the problem setting. For instance, in the
case of three railpads (i = 3) and four sleeper spacings ( j = 4), it yields a 3+1+4+1 = 9
dimensional optimization problem. To minimize the dynamic amplification at the
ballast-to-ERS transition, a general single-objective optimization problem can be
formalized in the following form.

min
x

f (x)

s.t. xr i ∈R : x l
r i ≤ xr i ≤ xu

r i , i ∈N,

xn ∈Z : 0 ≤ xn ≤ xu
n ,

xs j ∈R : x l
s j ≤ xs j ≤ xu

s j , j ∈N,

xl ∈R : 0 ≤ xl ≤ xu
l ,

(3.17)

where the superscripts l and u represent the lower and upper bound of each design vari-
able, respectively; f (x) is an objective function defined by each of the performance crite-
ria described in the previous section. It represents a true function that maps a given in-
put design vector x and a function value f (x) calculated from the vehicle-track dynamic
simulation.

The bi-level objectives, i.e., F and E , are expected to be conflicting since certain de-
sign variables inherently have opposite effects on the objectives. For instance, stiff rail-
pads can reduce noise and vibration from wheel-rail contact, but soft pads can lower
the effect of loads transmitted to underlayers, thereby reducing vibration in sleepers and
ballast particles [20]. For this reason, it is necessary to simultaneously minimize the
objectives, which can be achieved by formulating an MOO problem to search for the
optimal compromise solution.

Statistical metrics (i.e., r ms and max) used to evaluate the dynamic responses are
compared based on the results obtained from single objective problems. Those showing
higher solution quality and sensitivity to parametric variation are chosen for the MOO
problem formulation.

Without loss of generality, a multi-objective optimization problem with k (≥ 2) ob-
jective functions can be expressed as

min
x

F(x) = {
f1 (x) , ..., fk (x)

}
,

s.t. x ∈Ω,
(3.18)
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where fi (x) is the i th objective and F :Ω→Λmaps the design variables (x) to the vector
(y = [

y1, ..., yk
]
) in the objective function spaceΛ.

As introduced in Chapter 1, surrogate-based optimization uses surrogate model(s) to
perform optimization tasks. When dealing with multiple objectives in surrogate-based
optimization, the most common approach is to build a separate surrogate for each ob-
jective function. However, this method is time-consuming as it requires training multi-
ple surrogates [28]. An alternative method is to use an ASF to convert the multi-objective
problem into a single-objective problem. A single surrogate can then be built on the
scalarizing function, which is applied to search for optimal solutions. The ASFs, intro-
duced by [29], map k objective functions to a scalar, which represents the a priori pref-
erence articulation in multi-objective optimization problems. Certain properties of the
ASFs guarantee Pareto optimality of the solutions obtained from a scalarizing problem
(See [30] for a detailed description). This approach reduces the computational complex-
ity as only one surrogate is built and one infilling criterion (see Section 3.2.3) is used in
the optimization workflow.

Given the simplicity and computational efficiency, the ASF-based mono surrogate
approach is adopted to deal with the expensive MOO problem. Specifically, the (con-
flicting) objectives selected from the single-objective simulation round are scalarized
into one global function by an ASF of augmented Chebyshev type in a form [31],

g
(
x, fT )= max

i∈{1,...,k}

{
κi

(
fi (x)− f r

i

)}+ρ ∑
i∈{1,...,k}

κi
(

fi (x)− f r
i

)
, (3.19)

where fi (i = 1, ...,k) are performance objectives selected from the single-objective opti-
mization problems; ρ > 0 is an arbitrary small parameter and fT = [

f r
1 , ..., f r

k

]
is a vector

that defines a reference point. κi are non-negative normalization coefficients. The idea
of this function is to minimize the deviations from the reference objective, and any rea-
sonable or desired point in the objective space specified by the decision maker can be
considered as a reference objective [32]. The second term of the function guarantees
that all the objectives play a role, not only the one more deviated from the reference
value. Through the scalarization, a multi-objective problem aimed at minimizing track
dynamic amplification is formulated. This involves minimizing the objective function
defined in Eq. (3.19), subject to the constraints defined in Eq. (3.17).

3.2.3. SURROGATE-ASSISTED OPTIMIZATION

A SURROGATE MODEL: RADIAL BASIS FUNCTION INTERPOLATION

Various types of surrogate models have been applied to support engineering tasks, such
as Kriging [11], [33], radial basis function [34], and neural networks [35], [36]. In the
railway field, Kriging models have been trained to approximate the relationship between
track parameters and frequency response function features [11], and neural networks
have been used to predict responses of a vehicle-bridge system [35], [36], which are all
developed based on FE numerical simulations.

Surrogate models can be either interpolating or non-interpolating, and parametric
or nonparametric [37]. In the current VTI model, each simulation run is determinis-
tic. While training a surrogate for such mechanical problems, it is often reasonable to
assume the true objective function can be evaluated precisely or with a minor approxi-
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mation error at sampled input points [38]. For this purpose, radial basis function (RBF)
interpolation is employed to approximate the solutions of the VTI simulation, given its
powerful convergence properties and easily adjustable smoothness [39]. Specifically, a
cubic RBF interpolation is used as it has shown a competitive performance profile com-
pared to other surrogates in [37].

An RBF interpolant is defined as

f̂ (x) =
n∑

k=1
λkφ (∥x−xk∥)+p (x) , (3.20)

where in the first term, xk ,k = 1, ...,n, denotes the points that have been evaluated by the
true objective function; ∥·∥ is the Euclidean norm; λk ∈R,k = 1, ...,n are coefficients; φ (·)
is a radial basis function and many function forms are available as described in [40]. The
cubic RBF interpolant uses the cubic function φ (r ) = r 3 (where r = ∥x−xk∥).

The second term in Eq. (3.20) represents a polynomial tail whose order depends on
the chosen RBF [41]. The general form is defined as p (x) =∑m

l=1βl pl (x), with m denoting
the order of the basis pl (·) and βl as the coefficients. For the cubic RBF, it should be at
least a linear polynomial, and it becomes p (x) = a + bT x with coefficients a ∈ R and

b = [
b1, ...,bd

]T ∈ R [42]. The coefficients λk , a and b are determined by solving the
following linear system of equations[

Φ P
PT 0

][
λ

β

]
=

[
f̂
0

]
, (3.21)

whereΦkv =φ (∥xk −xv∥) , k, v = 1, ...,n, and

P =


xT

1 1
xT

2 1
...

...
xT

n 1

 , λ=


λ1

λ2
...
λn

 , β=


b1

b2
...

bd

a

 , f̂ =


f̂ (x1)
f̂ (x2)

...
f̂ (xn)

 . (3.22)

The matrix in Eq. (3.21) is invertible if and only if rank(P) = d +1 [39], [41].

AN EFFICIENT INFILLING SCHEME

Once a surrogate model is built, optimal solutions can be searched using surrogate func-
tion values. The original function f (x) in Eq. (3.17) is replaced by a surrogate model f̂ (x),
which shifts the problem to minimize the function f̂ (x). However, the estimated func-
tion values (i.e., f̂ (x)) obtained from exploring the surrogate are subject to the model
accuracy. Strategies are required that improve the surrogate model accuracy while guid-
ing the search to promising areas of the design space [34]. This type of strategy typically
balances exploration and exploitation. Exploration samples the regions far from any
optimum searched before, thereby having high uncertainty. Exploitation concerns the
search in local (promising) areas with the hope of improving the current optimum.

The key idea of such strategies is to pick the next function evaluation point based on
the surrogate predictions and a measure of the error in this model [40]. It is essentially
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a way of refining the surrogate model while guiding the search towards the optimum
within a relatively limited number of function evaluations (i.e., to keep the total com-
putational time manageable). The process of adding the next evaluation point based on
this ‘strategic’ sampling is the so-called infilling scheme. The chosen point for the next
function evaluation generally refers to the infilling or adaptive point, and the measures
to determine the point are known as infilling criteria (also acquisition or merit functions).

The adaptive surrogate modeling technique has been applied to many mechanical
systems for various engineering purposes. For example, it has been used for design op-
timization of vehicle crashworthiness [43], aerodynamic shape [34], and wing typology
[44], as well as for reliability analysis of a hydrokinetic turbine blade and a hysteretic
oscillator [45] and for material parameter identification of a specimen bending system
[46]. However, its application in railway structural design requires further exploration.
The technique is well-suited to expensive simulations with a limited budget of function
evaluations, typically ranging from 20 to 200 [47]. Therefore, it is a promising tool to ad-
dress optimization problems in railway track design that involve intensive calculations
of vehicle-track dynamic simulations.

An efficient balancing strategy is developed by Regis and Shoemaker [48], where
an algorithmic framework called Metric Stochastic Response Surface is introduced for
global optimization of expensive functions. The framework executes an adaptive learn-
ing process consisting of the following steps: 1) choosing the adaptive point based on a
merit function from a sequence of random candidate points, and 2) evaluating the true
objective function value of the adaptive point and using it to update the surrogate model.
This process continues iteratively until a stopping criterion is satisfied.

The merit function proposed in [48] is a weighted combination of function values
from the current surrogate (response surface criterion) and distances to previously eval-
uated points (distance criterion). At each iteration, a candidate point setΩc is generated
randomly by adding perturbations to the best point found so far xbest (see [48] for a de-
tailed discussion on the random perturbations). Each candidate point in Ωc is given a
score by evaluating the corresponding merit function and the one with the lowest score
is selected as the adaptive point.

Define xk (k = 1, ...,n) as n previously evaluated points in Ωk and xv
c (v = 1, ..., t ) as t

candidate points inΩc . For each candidate point xv
c , the merit function is expressed as

u
(
xv

c

)=ω f̂
(
xv

c

)− f̂min

f̂max − f̂min
+ (1−ω)

dmax −d
(
xv

c

)
dmax −dmin

, (3.23)

where on the right-hand side, the first term corresponds to the response surface crite-
rion and the second refers to the distance criterion. The parameter ω is a weight with
0 <ω< 1 that balances minimizing the surrogate value (response surface criterion) while
exploring the space to improve the model accuracy (distance criterion). f̂

(
xv

c

)
is the cur-

rent surrogate model evaluated at point xv
c , f̂min = min

(
f̂
(
xv

c

))
and f̂max = max

(
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(
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))
;

d
(
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c

)= min(dkv ) with dkv being the distance from an evaluated point xk to a candidate
point xv

c , dmin = min
(
d

(
xv

c

))
and dmax = max

(
d

(
xv

c

))
.

The Metric Stochastic Response Surface framework in [48] was originally developed
for continuous optimization problems. When dealing with integrality constraints, which
are often encountered in engineering problems, it is necessary to ensure that the points
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generated from random perturbations satisfy these constraints. This is achieved by re-
laxing the integer condition while sampling and then rounding the values of the integer
variables in the obtained points. A similar approach can be found in Müller [41].

To supplement the random perturbations and search for the minimum of the merit
function, a Branch-and-Bound approach can be used in parallel. This approach has
been embedded in other surrogate-based optimization frameworks to deal with mixed-
integer problems [44], [49]. The idea is to enhance exploration of the space. Since the
RBF is a continuous fit, evaluating only the points from the random perturbations (by
rounding the numbers) may miss regions of the space that contain relevant informa-
tion. Therefore, the sampling is supplemented by branching and searching locally in the
RBF function. In this case, the candidate point set Ωc is enhanced by the Branch-and-
Bound approach (in addition to the random perturbations), where the point with the
lowest merit function score is chosen for the next iteration in the sequential enrichment
of the surrogate.

3.2.4. INTEGRATIVE SIMULATION METHODOLOGY
The methodology for optimizing geometric and elastic properties of level crossings in-
volves an integration of the VTI dynamic simulations (Section 3.2.1) and an adaptive
surrogate-based technique (Section 3.2.3). The proposed integrated simulation method-
ology has an iterative procedure, which is illustrated in Figure 3.5 and synthesized as
follows.

First, n distinct sample points of the design vector x are generated from a space-
filling design, such as a Latin hypercube sampling (LHS) (Step A). Subsequently, FE sim-
ulations of vehicle-track dynamics are evaluated at the sampled points, and the corre-
sponding function values are obtained (Step B). Further details regarding Step B are pro-
vided in the following paragraphs. In Part II, the surrogate-based optimization workflow
consists of two phases, namely (i) the surrogate construction and (ii) adaptive learning
phase:

(i) Initially, a surrogate of the objective function is constructed by interpolating a cu-
bic RBF interpolant, given by Eq. (3.20), through the n evaluated points (Step C -
at the first iteration).

(ii) In the adaptive learning phase, the surrogate function is updated (Step C - at suc-
cessive iterations), where the next point of evaluation is selected according to the
merit function, given by Eq. (3.23), from a sequence of random candidate points
(Step D and E).

The solution of this new point is evaluated with the expensive/true function, i.e.,
FE simulations in Step B. This process continues until a stopping criterion is reached
(Step G). Here, the maximum number of function evaluations is selected as the stopping
condition, as emphasized in [41], [50], [51]. In many surrogate-assisted optimization
problems, termination depends more on the computational budget than on a measure
of convergence due to the high computational cost of the function evaluation.

Numerical solutions for VTI models are often developed using FE software or self-
programmed codes. While FE software provides greater flexibility in generating track
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Figure 3.5: Illustrative flowchart of the simulation methodology integrating (a) PART I: FE simulation of vehicle-
track dynamics; and (b) PART II: adaptive surrogate-assisted optimization.

models with complex structural configurations, it lacks the necessary adaptability for
model adjustment and data postprocessing. To address these limitations and ease the
generation of the track model, a combined simulation approach is proposed to model
the vehicle-track coupling dynamics. The approach of using a general FE software COM-
SOL and MATLAB interface has been demonstrated in a baseline case by Shang et al.
[52], where a general beam model subject to a moving vehicle is simulated and verified
by a benchmark case coded in MATLAB. Here the methodology is extended to the case
of level crossings.

Specifically, in Step B (Part I of the integrated methodology), COMSOL is used to
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establish a ballast-ERS transition, which characterizes the track used in a typical heavy-
duty level crossing. The track system matrices Mt ,Ct , and Kt in Eq. (3.5) are generated
in COMSOL and exported to MATLAB through the Livelink interface. The software used
in these steps is highlighted in Figure 3.5. The vehicle system matrices Mv ,Cv , and Kv in
Eq. (3.1) are then formulated and coupled with the extracted track matrices in MATLAB
to form global system matrices (Eq. 3.6b). The resulting coupled equations of motion
(Eq. 3.6a) that govern the vehicle-track dynamics are solved in the time domain using
the Newmark-β integration scheme, where the commonly used combination of β= 1/4
andγ= 1/2 was adopted, providing unconditional stability for linear elastic systems [53].
A fixed time step of 0.001s was chosen for the simulations used in the optimization pro-
cess. Post-processing of the numerical results is carried out in MATLAB and the response
quantities given a parameter set are also generated accordingly.

The simulation approach that couples COMSOL and MATLAB to model the vehicle-
track dynamics is validated against the result in [54], which considers a similar track
form, i.e., a connection between a floating slab track (FST) and a ballast track. In [54],
the floating slabs are modeled in discrete precast sections, and the rails are periodically
supported. The simulation setting for the track and vehicle system is modified according
to the case in [54], including two axles in the simulation for comparison purposes. Figure
3.6 presents the wheel and rail displacement at the contact point when a vehicle moves
from the FST to ballast track, showing that the patterns agree well with those generated
from the reference case (see Figure 3 in [54]). The current simulation results indicate that
the averaged rail and wheel displacement (for both axles) decreases by about 2.8 and
2.7 mm, respectively, when moving from the FST to the ballast track. In the reference
case, 2.8 mm was reported for the change in the rail displacement, and 2.6 mm was for
the wheel displacement. Therefore, it is considered that the current methodology to
simulate the vehicle-track dynamics can be properly used as a basis for track parametric
optimization.

Floating slab track Floating slab trackBallast track Ballast track

Figure 3.6: Wheel and rail displacement of the front axle (a) and rear axle (b) when a vehicle moves from the
FST to ballast track.
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3.3. NUMERICAL STUDY

3.3.1. CHARACTERIZATION OF THE VTI MODEL
Numerical examples are presented in this section to demonstrate the applicability of the
proposed procedure. Vehicle parameters used in the model refer to VIRM trains, which
are double-deck trains operated by NS (Dutch Railways). Table 3.2 lists parameter values
of a full-car system according to VIRM technical parameters. A conversion is made in the
computation to reduce a full car to the current 3-DOF model. Additionally, the vehicle
parameters are further reduced to half following the half track.

Table 3.2: Vehicle parameters.

Parameter Notation Value

Carbody mass mc 56378 kg

Bogie mass mb 3772 kg

Wheelset mass mw 1819 kg

Primary suspension stiffness ks1 2445 kN/m

Secondary suspension stiffness ks2 2227 kN/m

Primary suspension damping cs1 2 kN·s/m

Secondary suspension damping cs2 50.1 kN·s/m

Static wheel load P 100 kN

Contact constant G 5.13×10−8m/N
2
3

Velocity v 140 km/h

Track parameters correspond to characteristics of a typical Dutch track, which are
based on a full-track scale and presented in Table 3.3. The rail properties conform to the
nominal values of UIC54 rail, which are consistent in both track forms. The rail is pinned
at both ends, which implies reflections of the vibration will occur at the ends. However,
the boundary effect can be limited or negligible when the track length is sufficient [14].
To limit the boundary effect, the total track length in the demonstration cases has been
extended to 134 m. This includes a ballast track section (100 m, on the left), an ERS-
based level crossing (12 m, middle), and another ballast track section (22 m, right), as
shown in Figure 3.3.

Sleepers provide periodic rail support in the ballast track. The commonly accepted
spacing between centers of adjacent sleepers is 0.6 m [55], which is considered here with
six rail elements per sleeper bay. Railpads and sleepers refer to Dutch standard compo-
nents in the ballast track, i.e., FC9 4.5-mm cork-rubber pad and NS90 concrete sleeper.
The properties are determined referring to Prorail system specifications and relevant
works [56]–[58].

The embedded track in crossings corresponds to the standard solution for heavy-
duty (ERS-type) level crossings. It consists of several concrete slabs, each with a length
of 6 or 9 m. By combining different slabs, level crossings can be installed with variations
in length. The slab is lowered onto a ditch filled with a mixed granulate and stabilized
sand layer. As the ability to adjust the track geometry after the construction is limited,
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Table 3.3: Track parameters.

Track Type Component Parameter Value

Ballast/ERS Rail (54E1) Young’s modulus 210 GPa

Poisson’s ratio 0.3

Density 7800 kg/m3

Moment of inertia 2.337×10−5 m4

Area of cross section 6.977×10−3 m2

Ballast Railpad (FC9) Stiffness 1120 MN/m

Damping 120 kN·s/m

Sleeper (NS90) Mass 251 kg

Support spacing 0.6 m

Ballast/subgrade Stiffness 45 MN/m

Damping 96 kN·s/m

ERS Elastic compound
incl. rail strip

Stiffness 54 MN/m/m

Damping ratio 0.2

Slab Young’s modulus 31 GPa

Poisson’s ratio 0.3

Density 2500 kg/m3

Width 2.37 m (bottom);
2.23 m (top)

Length 6 m × 2

Height 0.58 m

Subgrade Stiffness 500 MN/m/m

Damping 20 kN·s/m

the requirement for the substructure is generally very high for slab track [57]. To rein-
force the substructure layers, measures such as geogrids and injection mortar should be
applied. Accordingly, in this chapter, a stiff substructure underneath the slabs is applied;
the parameter values are chosen according to [56], which are collected in Table 3.3. The
geometric and mechanical properties of the concrete slab correspond to the actual de-
sign of the ERS-type level crossings. Stiffness and damping properties of elastic fastening
are gathered from product specifications calibrated based on laboratory experiments.

Note that the material properties of the track are different when they are measured
by either quasi-static or dynamic loading tests. Material properties measured by quasi-
static loading tests are commonly referred to as static properties, while those measured
by dynamic loading tests are referred to as dynamic properties [59]. Although most pre-
vious works use static material properties to simulate vehicle-track dynamics [59], which
is also the case in some works of railway design optimization (e.g., [60]), a proper dy-
namic simulation requires dynamic properties as input.

This work considers the effect of dynamic material properties on the vehicle-track
dynamic simulation and chooses specific track component values based on the sugges-
tions concluded from the comparative study in [59]. The most relevant material proper-
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ties to dynamic excitations in the track are the stiffness of elastic elements and the mod-
ulus of elasticity of concrete. The dynamic stiffness of railpads significantly increases the
dynamic impact factor based on the wheel-rail contact force, while the dynamic mod-
ulus of elasticity has a less effect compared with the former [59]. Therefore, dynamic
stiffness values of railpads (FC9) and elastic compounds in ERS are adopted in the sim-
ulation, which are also the main design variables and, therefore, significant in the opti-
mization problems.

It is also worth mentioning that the properties of railpads are temperature and fre-
quency dependent and are also affected by preload and aging [56], [58], [59]. In railway
practice, railpads are commonly simplified as spring and dashpot elements, and con-
stant values are used to describe their viscoelasticity characteristics. This representation
is adopted here, but more advanced models that take into account the sensitivity of rail-
pads to these factors (such as [58]) can be incorporated for a more accurate representa-
tion. However, this would require more computational effort, especially when combined
with simulations that involve vehicle-track interaction dynamics.

3.3.2. CASE STUDY: THE DUTCH LEVEL CROSSING DESIGN

Single-objective optimization problems are formulated for demonstration, where per-
formance criteria, i.e., Fr ms ,Fmax ,Er ms and Emax , are compared as dynamic bench-
marks for track parametric optimization. Each measure is tested against the reference
design (as defined in Table 3.3) to evaluate its effectiveness concerning solution qual-
ity and sensitivity to parametric variation. It is expected that the vehicle velocity highly
influences optimization results as studies have shown that track response and expected
degradation are sensitive to the train speed (e.g., [22], [59]). Here as the main purpose
is to demonstrate the applicability of the integrative simulation approach, the velocity
considered in the examples is defined as 140 km/h, referring to the standard speed of
conventional passenger trains (e.g., VIRM trains) in the Dutch railway lines.

Table 3.4 showcases the variables and corresponding range of definitions used in the
numerical examples. The first type of variable considers the stiffness distribution of rail-
pads placed right next to the level crossing. The case study includes three pads, resulting
in three design variables, xr i , i = 1,2,3. The upper and lower bounds of the variables re-
fer to the scope outlined in [61], where railpads are classified according to their vertical
stiffness kr (in unit: MN/m): very soft (kr = 100), soft (kr = 200), stiff (kr = 400), and very
stiff (kr = 800). The current range of definitions covers the suggested values and also in-
cludes the consideration of the FC9 railpad (used in the reference design; see Table 3.4)
to provide a reasonable design space. The stiffness change affects the railpad damping,
which is scaled linearly with the stiffness values in the search process.

The second type of variable is related to sleeper parameters. The number of strength-
ened sleepers (xn) applied in the transition zone is limited to 20, which forms an approx-
imately 12m-long track section. This length is considered sufficient for the typical length
of a level crossing approach, as it is prescribed to use 5 ∼ 8 strengthened sleepers in the
approach to ERS-type level crossings. Additionally, based on experimental analysis of
bridge approaches, Wang et al. [62] suggested 4.5 m as the upper limit for the length of
the studied transition.

Another variable related to sleepers is spacing (xs j , j = 1,2,3), which concerns the
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Table 3.4: Track design variables and corresponding range of definition.

Track type Component Variables Unit Range of definition

Ballast Railpad Stiffness,
(xr i , i = 1,2,3)

MN/m xr i ∈R : xr i ∈ [50,1200] , i = 1,2,3

Sleeper Number of strengthened
sleeper, (xn)

- xn ∈Z : xn ∈ [0,20]

Sleeper spacing,
(xs j , j = 1,2,3)

- xs j ∈Z : xs j ∈ [3,7] , j = 1,2,3

ERS Rail strip Length of Type II strip,
(xl )

- xl ∈Z : xl ∈ [0,120]

distances between the centers of three adjacent sleepers placed next to the junction.
As previously mentioned, due to insufficient depth of ballast, there is an inherent op-
erational discontinuity of tamping works at the ballast-to-slab connections, which may
lead to a group of sleepers never being mechanically maintained. Apart from the ballast
requirement, tamping machine operability also specifies the distances between sleep-
ers. To avoid further disturbance to the regular tamping works, the number of sleepers is
limited to three in the studied case. As shown in Table 3.4, the range of variables (xs j ) is
adapted to the FE-based simulation environment, where the variables are discrete values
rather than continuous (see Eq. 3.17) to align the optimization with the discretization of
the FE method. The value of xs j implies the number of finite elements, and each repre-
sents a 0.1 m-long rail element. The lower bound (xs j = 3) refers to the smallest sleeper
spacing (0.3 m), and the upper bound (xs j = 7) defines the largest span as 0.7 m.

The last type of variable concerns the length of Type II rail strip (with a stiffness of
42 MN/m/m) in the embedded rail channel. Again the range of definition is adapted to
the FE simulation environment. The lower bound (xl = 0) implies that Type II strip is not
applied in the channel. The upper bound (xl = 120, with each element in a length of 0.1
m) corresponds to the full length (12 m) of the example level crossing, meaning Type II
strip is applied in full.

The general design vector x is reduced to x = [
xr 1, xr 2, xr 3, xn , xs1, xs2, xs3, xl

]′
in the

studied case. In single-objective problems, the general objective function f (x) is defined
by each of the performance measures, i.e., Fr ms (x) ,Fmax (x) ,Er ms (x), and Emax (x).

As previously mentioned, termination depends more upon the computational bud-
get in the surrogate-assisted optimization problems [50], [51]. The case study specifies
a fixed budget of 200 function evaluations in the single objective problems to assess the
effectiveness of the proposed objectives and identify appropriate ones for the follow-up
search process. The statistical metrics, namely, r ms and max values, are compared,
and those showing higher solution quality and sensitivity to the parametric variation are
chosen to formulate the MOO problem. A fixed budget of 400 function evaluations is
assigned to the MOO problem to guarantee that the desired improvement level can be
achieved.

In the multi-objective case, the scalarized global function, Eq. (3.19), contains two
objectives, i.e., fi (i = 1,2). The parameter ρ = 0.05. The normalization vector is calcu-
lated by κi = 1

f max
i − f r

i
( f r

i ≤ fi ≤ f max
i , i = 1,2), with f r

i and f max
i being the reference
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(ideal) point and worst value obtainable for objective i , respectively. The ideal point
defines the desired improvement level for each objective. Objectives are set of equal
importance and the desired level is defined as a 20% improvement from the current ref-
erence design. The worst value, f max

i , is determined according to the results simulated
from the single-objective problems.

3.4. RESULTS AND DISCUSSION

3.4.1. SINGLE-OBJECTIVE OPTIMIZATION

The detailed processes of minimizing force (F )-related and energy (E)-related measures
are presented in Figures 3.7 and 3.8, respectively, where the role of surrogate model-
ing and adaptive learning can be observed. All black triangles and dots represent sam-
ple points. Each point corresponds to a specific design solution x with eight variables

(x = [
xr 1, xr 2, xr 3, xn , xs1, xs2, xs3, xl

]T
), which is evaluated by the objective or true func-

tion (i.e., the FE model). The objective function values shown in Figures 3.7 and 3.8 (the
vertical axes) represent response quantities simulated from the FE model, which is de-
pendent on x (the design alternatives).
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Figure 3.7: Search process of optimizing objective Fmax (a) and Fr ms (b).

In the surrogate construction phase, the first sequence of 20 points is used to build
a cubic RBF, which are indicated by a pink diamond (as the initial point) and 19 black
triangles (the random samples generated from the experimental design (ED)). The pink
diamond, as noted by the legend ‘Initial Samples’ in the figures, represents the point(s)
that is(are) specified beforehand, which in the studied case is the reference design. It
means that all the optimization problems share the same starting point for compari-
son purposes. Besides, the size of the random samples generated in the vicinity of the
starting point is determined referring to Regis and Shoemaker [48]. It highlights the mea-
sure of min(2d ,10) with d being the problem dimensions to start a simulated annealing
algorithm. The studied case has dimensions d = 8, and the sample size is considered
sufficient for the initial surrogate construction.

In the adaptive learning phase, i.e., after evaluation number 20, samples are gen-
erated for surrogate updating and optimum search. Both black dots (‘Adaptive Sam-
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Figure 3.8: Search process of optimizing objective Emax (a) and Er ms (b).

ples’) and triangles (‘Random Samples’) are shown in this phase. The adaptive samples
are those found through random perturbations, and the random samples are searched
by the Branch-and-Bound approach, as discussed in Section 3.2.3. All these points are
evaluated by the FE model, and the thick green line keeps track of the best value found
among all evaluated points. The current problems are formulated as minimization so
that the best value implies the lowest objective function value (i.e., the minimum of the
F - and E -related response quantities).

Specifically, Figure 3.7 (a) shows a noticeable drop in the best value near evaluation
number 50, indicating the search process encounters a markedly better design option.
Then the best point slowly drops in value and becomes stable after evaluation number
130. In Figure 3.7 (b), a rapid change in value is captured at the initial surrogate construc-
tion phase, whereas it shows little improvement afterward. Figure 3.8 (a) shows a trend
similar to Figure 3.7(a), where the search process becomes stable around the evaluation
number 130 ∼ 140.

The solver may get stuck in a local minimum, which is measured by a distance-based
tolerance parameter. In this case, the surrogate will be reset and returned to a new con-
struction phase. While it may seem better to retain the past optimization trajectory in
the next run, Regis and Shoemaker [48] suggested otherwise, based on the computa-
tional experience. This is because the past trajectory may bias the selection of candidate
points towards the previously found optimum. The incumbent value, represented by the
blue cross in the figures, is for tracking the lowest objective function value since the re-
cent surrogate reset. In the process of optimizing the objective Er ms , a surrogate reset
has occurred, which is indicated in Figure 3.8 (b) by a vertical straight line. It means that
the evaluated points are tightly clustered around the best point, and a reset is needed to
avoid getting trapped in the local optimum. For comparison purposes, further function
evaluations are not assigned, where all the single-objective problems presented share
the same starting point and computational budget. Besides, by comparing the scales
of objective values, it can be observed from both figures that the r ms-based values are
less sensitive to changes in parameters, implying the statistical metric r ms may not be a
suitable indicator for optimization purposes.



3

70 3. MECHANICS-BASED DESIGN OPTIMIZATION FOR LEVEL CROSSINGS

Apart from investigating the search process, the solutions of the single-objective op-
timization and reference case are collected in Tables 3.5 and 3.6. Table 3.5 indicates
the force (F )-related measures in general suggest higher railpad stiffness than the en-
ergy (E)-related measures, especially for Fr ms , where the optimized values of variable
xr i , (i = 1,2,3) almost reach the predefined upper bound. This can be explained by
the fact that stiffer railpads contribute to reducing vibration from the wheel-rail contact
(quantified by the F -related measures); however, this may lead to a higher effect of loads
transmitted to underlayers, thereby causing vibration in sleepers and ballast (quantified
by the E-related measures).

Table 3.5: Design solutions from single-objective optimization.

Design variables Reference design Design that optimizes

Fr ms Fmax Er ms Emax

xr 1 [MN/m] 1120 1199 103 59 50

xr 2 [MN/m] 1120 1199 50 62 77

xr 3 [MN/m] 1120 1199 72 50 50

xn 8 0 4 0 1

xs1 [# of 0.1-m FE] 6 5 6 6 7

xs2 [# of 0.1-m FE] 6 7 6 3 5

xs3 [# of 0.1-m FE] 4 4 4 7 4

xl [# of 0.1-m FE] 0 120 0 0 0

Moreover, all solutions indicate a limited number of strengthened sleepers (variable
xn) in the studied transition compared to the reference design. Regarding the spacing
(variable xsi , i = 1,2,3), with the exception of Er ms , all objectives recommend the short-
est distance (xs3) between the structural interface and the adjacent sleeper.

Table 3.6: Objective values in single-objective optimization. Minimum (optimal) values are highlighted for
each optimization problem.

Fr ms [N] Fmax [N] Er ms [N·m] Emax [N·m]

Design that optimizes Fr ms 49491 14683 1.6367 0.7222

Design that optimizes Fmax 49903 6263 1.6153 0.5620

Design that optimizes Er ms 49939 21508 1.5724 0.5575

Design that optimizes Emax 49961 12814 1.6049 0.1388

Reference design 49667 10636 1.6299 0.3676

The optimization process indicates that the full-length application of a Type II rail
strip is the solution to minimizing Fr ms with respect to xl . However, this finding may
be questionable, as the ballast track with FC9 pads was found to be stiffer than the ERS
in the reference case. Applying the softer Type II strip in the ERS may lead to greater
dynamic amplification in the structure. This is supported by the consistent solutions
obtained from optimizing the other objectives, which resulted in xl = 0.
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Table 3.6 presents a comparison of the performance of the optimized designs to the
reference design. As shown in column Fr ms and Er ms , the r ms-based values are less
sensitive to parametric variation, which is consistent with the findings presented in Fig-
ures 3.7 and 3.8. It is worth noting that no single solution exists that can simultaneously
optimize each objective. The conflicting nature of the objectives Fmax and Emax can be
captured from this table. The design that optimizes Fmax (second row) has associated
very large values of Emax . On the contrary, the design that optimizes Emax (fourth row)
has associated very large values of Fmax .

To visually evaluate the performance of r ms and max metrics, Figure 3.9 compares
the performance of designs obtained from optimizing F -related measures (a) and E-
related measures (b), where the data are normalized based on Table 3.6 to account for
different scales used in the objectives. Figure 3.9 (a) shows that optimizing Fmax results
in a reduction of two objective values, i.e., Fmax and Er ms , whereas optimizing Fr ms only
improves itself. Similarly, Figure 3.9 (b) indicates that optimizing Emax can effectively
improve Emax and Er ms without significantly degrading other objectives, as observed in
the case of optimizing Er ms . Based on these results, it can be concluded that the max
metric generally performs better than the other in terms of solution quality and sensitiv-
ity to parameter changes, making it more suitable for parametric optimization purposes.
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Figure 3.9: Comparison of metric r ms and max in terms of solution quality. For representative purposes, the
values are normalized with respect to objective values obtained from single-objective problems.

3.4.2. MULTI-OBJECTIVE OPTIMIZATION

The evaluation of single-objective problems in the previous section suggests that the
metric max outperforms the others in terms of both solution quality and sensitivity to
parametric variation. Figure 3.10 compares the normalized objective values obtained by
minimizing Fmax and Emax . The reference design serves as a benchmark, revealing the
conflicting nature between the two objectives and suggesting the need for simultaneous
optimization.

The scalarized global function (Eq. 3.19) is formulated by two objectives (Fmax and
Emax ). Figure 3.11 shows the process of minimizing the global function. It can be ob-
served that the search process becomes stable after evaluation number 280. In com-
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Figure 3.10: Comparison of objective Fmax and Emax in terms of solution quality (normalized values; see also
Figure 3.9).

parison to single-objective cases, the multi-objective problem is allocated an additional
computational budget of 400 function evaluations. This is because the main purpose
of the single-objective problems is to assess the effectiveness of candidate objectives
and identify appropriate ones for the follow-up search. In contrast, the multi-objective
problem is formulated to search for the optimum while guaranteeing that the desired
improvement level can be achieved.

0 50 100 150 200 250 300 350 400

Iteration

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

F
u

n
c
ti
o

n
 v

a
lu

e

Best Function Value: -0.245732

Best function value

Figure 3.11: Process of simultaneous optimization of Fmax and Emax .

As mentioned in Eq. (3.19), the ideal point f r
i (i = 1,2) represents the desired im-

provement level, which is defined as a 20% improvement from the reference design. This
corresponds to target values of Fmax and Emax of 8508.5 N and 0.2941 N·m, respectively.
Table 3.7 lists the design solutions and corresponding objective values from single- and
multi-objective problems. The optimized function values from the multi-objective prob-
lem (i.e., 5662.6 N for Fmax and 0.1919 N·m for Emax ) are below the targets, indicating
the optimization has reached the desired improvement level. The results show a 46.8%
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(Fmax ) and 47.8% (Emax ) improvement from the reference design, which exceeds the
target improvement. Notably, the value of Fmax is even better than that obtained from
the single-objective problem, demonstrating the complexity and nonlinearity of the ob-
jective function (simulated from the FE model). The solver may get trapped in regions
containing a local optimum, and some searches may provide better solutions, as in the
current multi-objective case.

Table 3.7: Design solutions and objective values for different optimization problems.

Objectives Design vector x Fmax [N] Emax [N·m][
xr 1, xr 2, xr 3, xn , xs1, xs2, xs3, xl

]′
Min Fmax [103,50,72,4,6,6,4,0]′ 6202.5 0.5620

Min Emax [50,77,50,1,7,5,4,0]′ 12814 0.1388

Reference design [1120,1120,1120,8,6,6,4,0]′ 10636 0.3676

MOO (Fmax ,Emax ) [214,155,50,5,6,7,3,0]′ 5662.6 0.1919

Moreover, using fewer strengthened sleepers in the transition, specifically reducing
their number from 8 to 5, is preferable when compared to the reference. This is because
an increased number of strengthened ones can make the ballast track stiffer. However,
the solution still suggests a few numbers, which might be helpful in vibration isolation
for the underlayers (typically the ballast) due to the larger size and improved stability. A
comparison between the multi-objective and reference scenarios can be seen in Figure
3.12, showing a profile of energy dissipation under each sleeper. A total of 20 sleepers
is presented, which corresponds to the upper bound of variable Xn . Sleeper number
1 is the one closest to the structural interface. It can be seen that near the interface,
the energy dissipated in the optimized design is lower than that in the reference case,
indicating an expected reduction in ballast degradation and the consequent impact on
local track geometry.

Optimized design

Reference design

Figure 3.12: Comparison of optimized and reference design in terms of energy dissipation in track substruc-
ture.

The optimized sleeper spacing does not change much with the reference design. A
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shorter distance is generally recommended between the structural interface and the first
sleeper to ensure a smooth transition. The last variable indicates that the current Type
I rail strip is preferable to the alternative as the former is stiffer and can balance the
arrangement of track support stiffness between different track forms.

Note that the optimized results are influenced by the default parameter setting (Table
3.4). For instance, the railpad stiffness comes in a wide range of values. The default
setting considers the stiff FC9 type, which makes the ballast track stiffer than the ERS
structure. In this case, the solver guides the search toward the default (i.e., Type I) rail
strip used in the ERS to guarantee a smooth stiffness transition. However, using other
pads in the ballast track may make the ERS structure stiffer than the other, resulting in
different design solutions. For instance, the Type II rail strip may become the preferred
option. The case discussed is for demonstration purposes, and the default parameter
setting refers to the Dutch standard practice.

3.5. CONCLUSIONS
This chapter focuses on the design optimization of level crossings and associated transi-
tion zones. A VTI model is developed to simulate the dynamic behavior of a level cross-
ing, where an embedded rail structure is installed in the crossing with connections to
the conventional ballast track. Based on this, an integrative simulation methodology is
proposed that embeds the VTI model in the adaptive modeling scheme to facilitate the
efficient exploration of the design space. The goal is to optimize the local track perfor-
mance by varying geometric and elastic properties in track structures. The mitigation of
track degradation may further reduce maintenance needs and the consequent impact
on, e.g., system life-cycle cost and network performance.

Four different objectives are proposed to capture the performance of the track struc-
ture, taking into account the wheel-rail contact and lower supporting level. Several opti-
mization problems are formulated accordingly, including single-objective problems for
comparing the effectiveness of the candidate objectives, and the multi-objective prob-
lem to search for the optimal compromise solution. Compared to the reference design,
the optimized solution shows a significant improvement in the most relevant objectives
(46.8% in Fmax and 47.8% in Emax ). Therefore, it can be considered the best-known solu-
tion to support relevant decision-making in track preliminary design. While 400 function
evaluations are assigned to obtain the solution, more computational resources can be al-
located to the proposed methodology to search for (possibly) better solutions. Besides
the final solution from the MOO formulation, evaluating the other solutions is meant to
inform and improve the current design practice for transition zones, especially in areas
using embedded rail structures.
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4
PREFERENCE-BASED DESIGN

OPTIMIZATION FOR LEVEL

CROSSINGS

With the previous chapter focusing on the technical perspective, this chapter moves to a
wider problem-solving context and introduces a design approach to incorporate social
relevance (reflected in multi-stakeholder preferences) into railway track design. This ap-
proach combines FE modeling with preference modeling to optimize the design of transi-
tion zones while considering the objectives of relevant stakeholders. The FE model charac-
terizes the dynamic behavior of the track, providing insights into the expected level of track
degradation and serving as performance measures for design optimization. The prefer-
ence modeling is utilized to incorporate stakeholder preferences into optimization prob-
lems. A case study focused on the optimization of track support stiffness for level crossings
is presented. The results highlight the significant influence of integrating stakeholder pref-
erences on the optimal track design configuration. This allows the level crossing design to
be managed focusing on the best fit for common purpose rather than solely on mechanical
behavior.

Parts of this chapter have been published verbatim in Life-Cycle of Structures and Infrastructure Systems, 949-
956 (2023) [1].
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4.1. INTRODUCTION
Railway infrastructure consists of tracks, signaling systems, power installations, and
other supporting facilities. Beyond these physical assets, it constitutes a technically and
organizationally complex system where the physical components are interconnected
and interact with human entities throughout their operational life [2]. Within such sys-
tems, the overall performance at the system level, including technical, socio-economic,
and environmental aspects, is influenced by the behavior and decisions of various
stakeholders [3]. A good synergy of all system components is therefore necessary to
ensure the proper functioning of the system.

Given the nature of the complex systems, the decisions of railway activities should be
examined in relation to its internal and external environment [2]. In the context of rail-
way design, the internal factor is related to the mechanical behavior of the track struc-
ture, specifically addressing the technical needs. This is typically manifested in the tra-
ditional approach to designing a classic railway track, which emphasizes load-bearing
considerations and track maintainability [4]. The external environment can be synthe-
sized by considering the perspectives of different stakeholders, such as the riding com-
fort of train users and the maintenance effort expected from service providers. Above all,
ensuring the safe operation of rolling stock (i.e., fulfilling the technical requirements) is
the primary objective of rail infrastructure and should be prioritized in all track design
activities. However, while adhering to these technical constraints, rational and optimal
system-level decisions would require the alignment of management objectives from the
stakeholders with engineering systems design.

Let us consider the design of transition zones to highlight the need for an integrated
design approach. As elaborated in Chapter 3, a common strategy to reduce dynamic am-
plification at transition zones is to ensure a gradual change in vertical stiffness along the
track. This can be achieved through various means, for instance, by incorporating elas-
tic elements with varying properties such as the railpads and under sleeper pads. These
elements can effectively modify the track support stiffness and mitigate vibration and
noise [5]. Additionally, the design parameters of sleepers, which distribute vehicle loads
onto the track, have a significant impact on the dynamic behavior of the railway track
[6]. However, these design adjustments may require additional use of track components,
which drives up construction costs. A study by [7] highlights the economic implications
of sleeper spacing. It suggests that a substantial reduction in construction per kilometer,
around 40%, can be achieved by increasing the sleeper spacing to 1 m as compared to
the standard 0.6 m spacing.

Beyond their economic consequences, variations in the parameters of track compo-
nents also influence maintenance routines and the quality of service. A more uniform
distribution of track support stiffness can reduce dynamic impacts, thereby alleviating
track degradation. This further lessens the need for maintenance and reduces the as-
sociated costs, aligning with the management goals of maintenance service providers.
Moreover, the interaction between the track and vehicles means that the level of dynamic
amplification in the railway track also affects the vehicle responses, such as carbody ac-
celerations. These responses are directly linked to passenger comfort, thus influencing
the overall quality of service.

It shows from the above that the variations in track design hold relevance to differ-



4.2. PROBLEM DESCRIPTION

4

83

ent parties. This stresses the need for an integrative approach that accounts for both
technical feasibility and stakeholder preferences at the track design stage. However, the
coordination between engineering and management practices is often insufficient due
to the limited involvement of stakeholders in the design process, which is also empha-
sized in [8]. Traditional design methods for transition zones mainly focus on meeting
technical requirements, where the mitigation measures typically consider mechanical
responses such as wheel-rail contact forces, without adequately addressing their social
implications.

To address this gap, this chapter presents a design approach that integrates engineer-
ing and managerial aspects to model design problems for railway tracks. Since stake-
holder preferences may often conflict (where no single design solution exists that simul-
taneously satisfies all), it becomes necessary for engineers to navigate a space of trade-
offs, where optimization problems are solved to strike a balance between the stake-
holder preferences and the mechanical performance of the track. For this purpose, a
preference-based optimization tool is combined with the FE model developed in Chap-
ter 3. This combination allows for the consideration of a wider variety of design aspects:
the preference-based optimization tool translates vague societal needs into crisp engi-
neering design variable values, while the FE model characterizes the dynamic behavior
of the track under moving vehicles and serves as a basis for parametric optimization.

4.2. PROBLEM DESCRIPTION
Among the stakeholders involved in the lifecycle management of railways, three groups
are particularly relevant: infrastructure managers, train users, and maintenance ser-
vice providers. This consideration stems from the organizational transit in European
railways, i.e., a separate administration between infrastructure and operation [2], [4].
Specifically, in the Netherlands, the primary tasks of infrastructure management include
infrastructure planning, infrastructure maintenance, and capacity management & traf-
fic control [2]. The maintenance part is outsourced through a performance-oriented
maintenance contract (PGO). Maintenance of the entire railway network is divided over
21 geographically defined contract areas, and several recognized maintenance parties
carry out a large part of the small-scale maintenance in these contract areas. For this
reason, infrastructure managers and maintenance service providers are separated in the
following analysis to reflect this situation.

OBJECTIVE 1: CONSTRUCTION COSTS

One of the direct concerns of infrastructure managers is the costs associated with
constructing new or renovated track lines. The construction cost, as defined by [2],
refers to the amount of resources spent on the construction of a railway activity, which
is influenced by various factors, including layout characteristics (mainly the number of
civil engineering structures, switches, and crossings), labor cost, expropriation cost, and
the number of electrical substations. This study specifically addresses transition zones
where the construction costs are linked to the implementation of mitigation measures.
These measures may involve variations in sleeper spacings and the use of alternative
types of railpads and sleepers.
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OBJECTIVE 2: RIDING COMFORT

While operating in a complex track condition (for example, with the curve radius, line
ramp, and track irregularities), trains are exposed to excitation through contact with the
rail. These vibrations are then transmitted from the floor and seats, impacting the com-
fort of passengers. Passenger ride comfort remains a pressing topic as the level of service
quality can influence user preferences for a particular means of transport. Ensuring ride
comfort relies on various factors, such as vehicle operations and conditions of the track
and vehicle. This study focuses on the evaluation of riding comfort influenced by design
variations in transition zones, thus emphasizing the track condition.

The riding comfort is quantified by max-to-min difference of carbody accelerations
induced when a vehicle passes through a transition zone. Lower carbody accelerations
are indicative of a higher expected level of service. The selection of carbody accelera-
tions as the index is based on the vibration transmission path of a vehicle [9]. A running
vehicle is assembled with two levels of suspension systems. The primary suspension sys-
tem mainly influences the running stability of the vehicle [10], and the secondary level
of suspension, which forms a direct connection to the carbody, plays an essential role in
ensuring the ride comfort of the vehicle [9], [11].

Further, as concluded in the preceding chapter, the statistic metric of the max-to-
min difference proves effective in terms of solution quality and sensitivity to parameter
changes. This metric is used for the carbody acceleration response in this chapter. Note
that it is also possible to associate the vibration data (i.e., carbody accelerations) with
human subjective feelings. This can be achieved using methods such as Sperling’s index
[12]. In this chapter, the direct usage of vibration data is considered as an indicator of
comfort levels. The assessment of Sperling’s index will be introduced in the subsequent
chapter.

OBJECTIVE 3: EXPECTED LEVEL OF TRACK DEGRADATION

For maintenance contractors, track degradation is of particular concern because it di-
rectly affects the amount of required maintenance work, the associated costs, and po-
tential penalties due to excessive track possession time. Consequently, their primary
objective is to minimize track degradation issues and maintain track conditions at an
acceptable level. While infrastructure managers share this objective, it is not part of their
direct management goals since maintenance work is outsourced through PGO contracts.
Under these contracts, contractors have the flexibility to plan and carry out maintenance
work within specified timeframes and geographical regions [13].

Track degradation refers to the deviation of the track condition from the ideal state,
occurring at various levels of track structures with different scales. It can range from met-
allurgical defects within the microstructure of the rail to large-scale track settlements [4].
Typically, as discussed in Chapter 1, the degradation in transition zones is manifested
as irregularities in track geometry. Therefore, as the main driver causing the geometry
degradation, this chapter mainly concerns the expected damage to the ballast and un-
derlying layers, which can be linked to the mechanical energy dissipated in these layers,
as elaborated in the previous chapter.

The maximum differential energy dissipation between adjacent sleepers is selected
as an indicator to assess the sensitivity of a track design to the expected damage [14].
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This is computed through Eq. (3.16). The higher the energy dissipated into the ballast
layer, the stronger the expected degradation. Consequently, one of the main objectives
in reducing damage to the overall track geometry condition and saving on maintenance
efforts (and costs) is to minimize the amount of energy dissipated.

OVERVIEW OF DESIGN OBJECTIVES

Table 4.1 provides a summary of the objectives and corresponding performance mea-
sures outlined in the current design problem. The aim is to provide a methodological
basis that integrates socio-technical perspectives with stakeholder preferences into the
decision-making process for railway track design. Starting from this basis, future work
may consist in incorporating additional design perspectives, performance measures, or
specific models capable of addressing more complex track degradation phenomena in
the proposed design method.

Table 4.1: Objectives and performance measures.

Objectives Performance measures Unit

Minimize construction cost, g1(·) Ccap - construction cost €

Maximize riding comfort, g2(·) Amax - max-to-min of carbody acceleration m/s2

Minimize expected long-term degradation,
g3(·)

Emax - max. differential energy dissipation N ·m

4.3. SOLUTION METHOD
Multi-objective optimization is applicable when decisions need to be taken in the pres-
ence of trade-offs between several objectives. The previous chapter has formulated an
MOO problem given the conflicting nature of the force-related and energy-related ob-
jectives. This chapter dives into this topic and focuses on how stakeholder preferences
can be modeled and incorporated into the design process. Details are presented in the
following sections.

4.3.1. OVERVIEW AND RELATED CONCEPTS
The process of solving multi-objective optimization problems is typically divided into
two stages: search and decide [15]. The search stage involves the optimization of objec-
tive functions. The decide stage refers to making decisions about what kind of tradeoffs
are appropriate, which requires the designer to articulate the preferences of stakehold-
ers. These preferences represent the stakeholders’ opinions about points in the objective
space [16].

The classification of multi-objective optimization methods is fundamentally based
on the different strategies used to articulate preferences. In a priori preference articula-
tion, stakeholder preferences are quantified before the search process begins, meaning
the preferences are determined prior to examining the points in the objective space [16].
On the other hand, a posteriori methods impose stakeholder preferences directly onto a
set of points in the objective space, leading to final solutions that align with the stake-
holders’ regions of interest. This set of points in the objective space is commonly referred
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to as the Pareto front. When these points are projected back into the design space, the
corresponding solutions are known as the Pareto optimal solutions, which collectively
form a Pareto optimal set. A more extensive explanation of these terms can be found in
[15]–[17].

Building on this concept, Figure 4.1 presents a mind map that illustrates the prefere-
nce-based design process for railway tracks. The diagram shows potential pathways for
design optimization, which is divided into three main blocks: definition, optimization,
and selection. The definition block formulates a design problem that defines both the
design and objective space. The optimization block refers to the search process, with
various types of optimization techniques available to find optimal solutions. The selec-
tion block focuses on the decision-making process, which links stakeholder preferences
to final solutions.

Selection (path 1)

  Pertinent design solutions

Decision makers’ preferences

Visualization and analysis

One design

solution

  Optimization algorithm

Model formulation

  Objective space definition

1) Technical perspective

 

 

2) Social perspective

Constraint

definition

Selection path 2

Selection path 1

Design space definition

Concrete slab
Track

Level crossing (with embedded rail system)Transition zone (with ballast track)

Vehicle

Wheel-rail contact

Carbody

Secondary suspension

Bogie

Primary suspension

Wheelset

Definition Optimization

Selection (path 2)

Pareto front

Path 1 Path 2

Figure 4.1: Overview of the preference-based design process for railway tracks.

Specifically, in the definition block, the objective space showcases two design per-
spectives: technical and social. These are determined based on the problem definition
in Section 4.2. The social perspective is linked to the objective of minimizing the con-
struction costs, g1(·) in Table 4.1, which is defined by an explicit function and will be
elaborated in Section 4.4. The technical perspective concerns the mechanical perfor-
mance of the railway track, with the aim of maximizing riding comfort (i.e., minimizing
Amax ) and minimizing the expected long-term degradation (i.e., Emax ). These objec-
tives are represented by g2(·) and g3(·), respectively, in Table 4.1. While improving riding
comfort and service quality has social relevance, the corresponding performance mea-
sure is evaluated based on the mechanical responses of the system. Therefore, it falls
within the scope of the technical perspective when formulating optimization problems.
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A computational model is required to evaluate the objective functions g2(·) and g3(·).
This model is designed to characterize the relationship between the design parameters
and dynamic responses of a vehicle-track system. In this context, the FE model devel-
oped in Chapter 3 is applied, and the current design problem can be formulated as

min
x

G(x) = min
x

{
g1 (x) , g2 (x) , g3 (x)

}
,

s.t. x ∈Ω,
(4.1)

where x = [x1, x2, ..., xd ] is a vector containing a list of design parameters defined in d-
dimensional space, e.g., railpad stiffness, sleeper spacing. gi (x) is the i th objective and
G : Ω→ Λ maps the design variables, x, to the vector, y = [

y1, ..., yk
]
, in the objective

function spaceΛ. Here, k = 3 objectives are considered.
The selection block shown in Figure 4.1 presents two general pathways: Path 1 and

Path 2, which respectively represent a priori and a posteriori methods of articulating
preferences. These strategies chosen to handle preferences significantly influence the
design outcomes. Essentially, Path 2 leads to a set of solutions that corresponds to the
idea of Pareto optimality, whereas Path 1 results in a single solution point. This is be-
cause Path 1 incorporates preferences before the optimization process, directing the
search towards the preferred part of the Pareto front. It is worth noting that in this case,
the parameters that define stakeholder preferences can be systematically altered over
repeated runs (i.e., resulting in different problem settings) to explore multiple solutions.
These solutions collectively provide an approximate representation of the Pareto set [18].
However, to highlight the fundamental difference between the a priori and a posteriori
methods (i.e., the number of solutions derived from one problem formulation), this is
not visualized in Figure 4.1.

Various methods can be used to articulate preferences in an a priori manner. For
instance, a single solution can be seen as a compromise solution. This refers to an opti-
mal point where the distance between the solution point and the ideal point (from the
stakeholder’s perspective) is minimized in the objective space [16]. Alternatively, it can
be a synthesized solution sought by aggregating and maximizing the preferences of all
stakeholders. This strategy is demonstrated in the IMAP (Integrative Maximized Aggre-
gated Preference) method, as introduced in [8]. In this chapter, the compromise solution
approach, a standard form of a priori methods, is employed to demonstrate how engi-
neering and managerial aspects are integrated into railway design problems. For other a
priori methods, readers can refer to [8].

The following sections present a solution method for the current multi-objective op-
timization problem. This method involves three key steps that are designed to incor-
porate preference modeling into the search process and to achieve a balanced design
solution for all stakeholders. First, a global criterion method is employed to search for a
compromise solution. Second, a preference handling scheme is integrated into each ob-
jective function, which is elaborated in Section 4.3.2. This allows stakeholders to specify
their preferences in a flexible and intuitive manner, aligning the decision-making pro-
cess more effectively with the desired goals. Finally, in Section 4.3.3, surrogate model-
ing is combined with the preference-based design process to reduce the computational
costs associated with evaluating the objective functions.
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4.3.2. PREFERENCE-BASED DESIGN OPTIMIZATION
The global criterion method aims to minimize a function (i.e., a global criterion) that
measures how close the designer can approach the ideal vector. The ideal vector is de-
fined by G0 = [

g1
(
x0

)
, g2

(
x0

)
, ..., gk

(
x0

)]′
, where gi

(
x0

)
represents the optimal value (by

default, the minimum value) of the i th function achieved at x0. In simpler terms, the
ideal vector gathers the optimum of each objective achieved at the same point, x0 [15].
This forms an ideal or utopia point in the design space. However, achieving this ideal
point is typically unfeasible with conflicting objectives. Therefore, the practical alterna-
tive is to aim for a solution that is as close as possible to this point, i.e., a compromise
solution, as previously discussed.

The closeness to the ideal point can be measured by a family of Lp metrics [15], [19],
which is defined as

Lp (G) =
[

k∑
i=1

∣∣gi
(
x0)− gi (x)

∣∣p

]1/p

, 1 ≤ p ≤∞, (4.2)

where the value of p determines the type of distance. When p = 1, the Lp metric em-
phasizes ‘group utility’, where all deviations from gi

(
x0

)
are equally considered. When

2 ≤ p ≤ ∞, larger deviations are given greater weights in the Lp metric. In particular,
p = 2 indicates the use of the Euclidean norm [16]. When p → ∞, the Lp metric only
considers the largest deviation, which results in ‘individual utility’, i.e., the min-max
method.

There are various ways to incorporate preference information in engineering opti-
mization. Many of them draw from the classical multi-criteria decision analysis liter-
ature [20]. The common methods include using coefficients (or parameters), rankings,
constraints, and preference functions. The weighting scheme and reference points (such
as the ideal point as mentioned earlier) belong to the category of using coefficients.
Rankings can be classified into solution rankings and objective rankings: the former al-
lows the designer to directly express preferences over a set of solutions (e.g., [21], [22]),
whereas the latter focuses on the order of objectives (e.g., [23]). Some also combine the
methods of handling preferences, such as the lexicographic approach that uses objec-
tive rankings and constraints to define preference information in optimization problems
[19]. The reader is referred to [19] for fundamental concepts of preference modeling and
[20] for a systematic review of applications of preference incorporation in evolutionary
optimization.

The focus of this chapter is the method based on preference functions, which in-
volves associating each objective with a preference function. This preference function
can be seen as an individual utility function that provides stakeholders with the flexi-
bility to express their preferences for each objective. The preferences can be related to
concerns or constraints about certain values of an objective. For each objective, stake-
holders are invited to provide a numerical range (or ranges) that represents degrees of
satisfaction. These ranges are determined by the limits (also called preference thresh-
olds [24]) of the corresponding objective values.

Essentially, a preference function transforms objective values into preference scores,
which operate on a dimensionless scale, such as 0 to 100. This transformation effectively
shifts the problem into a preference-based decision-making domain, thereby creating a
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different objective space. From this perspective, the integration of preference functions
also serves as function transformations in Eq. (4.2) to allow for a proper comparison
among multiple objectives (with different measurement units and scales).

The idea of preference functions has evolved into many variant forms over recent
decades. The relevant concepts/methods are desirability functions [25], [26] and physical
programming [27]–[29]. Specifically, physical programming has been applied to many
engineering problems, ranging from structural design (such as aircraft wings, beam and
truss structures [27]) to production planning [30], [31]. In its original form [28], the con-
struction of the preference functions (which are called the class functions in physical
programming literature) is conditioned to the use of gradient-based methods for solving
optimization problems. For this reason, the preference functions are defined as splines
to preserve specific mathematical properties such as derivativity and convexity. Further
in [27], [32], the method is extended to global physical programming to relax the con-
straints on the curvature of preference functions, where piecewise exponential or linear
functions can be used.

In most cases, individual preference functions are aggregated into a measure of
‘group utility’ using various forms, such as summation, exponential, and logarithmic
functions. These aggregated functions are then merged with multi-objective evolution-
ary algorithms to guide the search process to a specific region of the Pareto front to
improve the pertinency of the design solutions (e.g., [29]).

In this chapter, preference functions are introduced to the objective functions within
the framework of the min-max approach (see Eq. (4.2), when p →∞). By implementing
the min-max approach, which focuses on the ‘individual utility’ or the (single) objec-
tive that causes the largest deviation with respect to the reference point, the preference
information (preference scores) of different objectives encoded in this problem formula-
tion is essentially not aggregated. This relaxes the required constraint when constructing
preference functions in global physical programming, where the limits of each prefer-
ence range must present the same image in the preference function for all objectives
involved. Further details of this constraint can be found in [27].

As previously discussed, the min-max approach aims to find a solution that mini-
mizes the maximum deviation between the reference values for the objectives and values
of a potential solution. When preference functions are incorporated into the min-max
approach, all solutions are mapped to preference scores on a specified scale. Consider-
ing a 0-100 scale, the reference values correspond to target values of 100. This mapping
allows stakeholder preferences to be translated into relative deviations from the goal.
Thus, the minimization of the largest deviation can be formalized as

min
x

max
i

{
wi

[
100−Pi

(
gi (x)

)]}
, (4.3)

where Pi (·) is the preference function corresponding to i th objective. It translates gi (x)
to a preference measurement, where preference information is embedded in the func-
tion and used to rank design solutions. wi is the weighting factor associated to i th ob-
jective.
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4.3.3. KRIGING OR GAUSSIAN PROCESS MODELING

As mentioned in Chapter 1, the use of optimization algorithms in railway track design
tends to be computationally demanding due to the complexity of the computational
models. Here, surrogate modeling techniques are integrated into the present design
method to reduce the computational cost. In particular, the responses being approxi-
mated are Emax and Amax , which correspond to the functions g2(·) and g3(·), respec-
tively, in Table 4.1.

The effectiveness of using surrogate models is influenced by various factors, includ-
ing problem types and modeling conditions (such as dimensionality, (non)linearity, and
sample size). Kianifar & Campean [33] systematically compared the performance of sev-
eral surrogate modeling options, including polynomials, radial basis function, and Krig-
ing, across well-defined problem categories. The experiment used two sample sizes: a
small ED size of 10d and a large size of 30d , with d denoting the problem dimension.
The results indicate that the Kriging model with Matérn 5/2 correlation function shows
competing performance among the candidates in terms of accuracy and robustness for
both sample sizes. Kriging is especially useful in capturing the local variability of the
model output [34]. Since the current design approach adopts a fixed ED size, and op-
timal values are usually local phenomena, Kriging is chosen here to better capture the
local characteristics of the computational model. A brief review of Kriging basics is pre-
sented in the following.

Kriging, also known as Gaussian process modeling, is one particular surrogate model
that considers the function to approximate as a realization of a stochastic process [35].
It can be expressed as

M (x) = fT (x)β+Z (x) , (4.4)

where the first term, fT (x)β, is the mean value of M (x), including q arbitrary func-
tions

{
f j ; j = 1, ..., q

}
and the corresponding coefficients

{
β j ; j = 1, ..., q

}
. It represents

the global characteristics (also called the trend) of the model. The second term, Z (x),
captures the local deviations by a Gaussian process with expectation being zero and vari-
ance being σ2.

In the case of scalar output, once training samples X = {
x(1),x(2), ...,x(N )

}T are de-

termined, the corresponding output Y = {
y(1), y(2), ..., y(N )

}T can be obtained by query-
ing the FE model at the sampled points. This process creates a training set, denoted
as Φ = {(

x(ϱ), y(ϱ)
) |ϱ= 1, ..., N

}
, and with this training set, the covariance of Z (x) can be

expressed by

cov
[

Z (x) , Z
(
x′

)]=σ2R
(
x,x′;θ

)
, (4.5)

where R
(
x,x′;θ

)
is the correlation function for any pair of input samples

(
x,x′

)
, whose

hyperparaters are gathered in the vector θ. The choice of the correlation function is
based on assumptions regarding the level of smoothness and regularity of the underlying
model [36]. Here, the Matérn 5/2 correlation function is considered given its accuracy
and robustness as evaluated in [33], which can be defined in the one-dimensional case
as

R
(
x, x ′;θ

)= (
1+p

5

∣∣x −x ′∣∣
θ

+ 5

3

( ∣∣x −x ′∣∣
θ

)2)
exp

[
−p5

∣∣x −x ′∣∣
θ

]
, (4.6)
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where θ represents a scale parameter. When multidimensional problems are considered

(d > 1), the term |x−x′|
θ in Eq. (4.6) is replaced by

[∑d
r=1

(
xr −x′

r
θr

)2
]0.5

and θ becomes a vec-

torθwith corresponding parameters θr (r = 1, ...,d). This follows an ellipsoidal construc-
tion of the multi-dimensional correlation function for Gaussian process models [37].

The training of a Kriging model is based on the set Φ= {(
x(ϱ), y(ϱ)

) |ϱ= 1, ..., N
}
, from

which the generalized least-square estimates of the coefficients β is given by

β̂= (
FT R−1F

)−1
FT R−1Y , (4.7)

and the estimate for the variance σ2 is obtained by

σ̂2 = 1

N

(
Y −F β̂

)T
R−1 (

Y −F β̂
)

, (4.8)

where F = [fT
(
x(1)

)
, ..., fT

(
x(N )

)
]T is the N × q matrix gathering the regression functions

evaluated on the training points X .
Then, the scale parameters in the correlation function, θ, need to be estimated

to fully define a Kriging model. This can be achieved through leave-one-out cross-
validation by solving the following optimization problem [34], [38],

θ̂ = argmin
θ

[
Y T R−1 diag

(
R−1)−2

R−1 Y
]

. (4.9)

Once the model is determined, the Kriging predictor for any given new point x is

assumed to follow a Gaussian distribution M̂ (x) ∼ N
(
µM̂ (x),σ2

M̂
(x)

)
, which is defined

as
µM̂ (x) = fT (x) β̂+ rT (x) R−1 (

Y −Fβ̂
)

,

σ2
M̂

(x) =σ2
(
1− rT (x) R−1 r(x)+uT (x)

(
FT R−1F

)−1
uT (x)

)
,

(4.10)

where u(x) = FT R−1r(x)− f(x), and r (x) = [
R

(
x ,x(1);θ

)
, ...,R

(
x ,x(N );θ

)]T represents the

correlation vector between the point x and the observed points X = {
x(1),x(2), ...,x(N )

}T

[35], [36], [39].
The accuracy and predictive quality of the models can be evaluated by the relative

generalization error [39], εg en , which is given by

εg en = E[(g (x)− ĝ (x))2]

VarY
. (4.11)

4.4. NUMERICAL EXAMPLE
A level crossing design case is selected to demonstrate the application of the proposed
method. This optimization problem is formulated in line with the design principle dis-
cussed in Chapter 3, which aims for a smooth stiffness transition between the connect-
ing ballast track and ERS-based level crossing.

The design variables are listed in Table 4.2, which are collected in a design vector x
(x = [xs , xn , xr 1, xr 2, xr 3, xl ]). The variable xl is specific to the ERS design, while the others
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are related to the ballast track. The rail strips in ERS are elastic components underneath
the rails, similar to the railpads in the ballast track. As mentioned in Chapter 3, two types
of rail strips with predefined stiffness properties have been developed for ERS. The cur-
rent practice in the Netherlands utilizes Type I strip. It is also worth mentioning that the
variables xs and xl are treated as discrete values to align the optimization setting with
the FE discretization. The value implies the number of 0.05m-long finite elements. The
lower bound of xs means 0.5 m, and the upper bound is 0.7 m. This range is consid-
ered reasonable and can maintain structural integrity, according to Ortega et al. [7]. xl

has a lower bound of 0 and upper bound of 6 m, implying that a 6-m level crossing is
considered in the example.

Table 4.2: Definition of design variables.

Variables Unit Range of definition Related measures

Sleeper spacing (xs ) - xs ∈Z : xs ∈ [10,14] Amax ,Ccap ,Emax

Number of strengthened sleepers (xn ) - xn ∈Z : xs ∈ [0,15] Amax ,Ccap ,Emax

Railpad stiffness (xr i , i = 1,2,3) MN/m xr i ∈R : xr i ∈ [50,1000] , i = 1...3 Amax ,Emax

Length of Type II rail strip (xl ) - xl ∈Z : xl ∈ [0,120] Amax ,Emax

The track parameters in the FE model are defined based on a typical Dutch level
crossing design. The vehicle parameters specifically correspond to VIRM trains, which
are double-deck trains operated by Dutch Railways. The default parameter setting for
both the track and vehicle aligns with the ones defined in Chapter 3. However, it should
be noted that the design variables considered in this chapter are not consistent with the
variables defined in Chapter 3, as this chapter introduces additional dimensions, i.e.,
social relevance, to the design problem. Therefore, the corresponding FE model needs
to be adapted to accommodate the current problem setting.

Three objectives (see Table 4.1) are defined in the optimization problems. Two Krig-
ing models are developed to approximate Emax and Amax , respectively. Initially, 2000
points of x are generated based on LHS. A relatively large sample size is considered
for two reasons. First, this sample size is further divided into training, validation, and
test sets to evaluate the performance of the model, which requires a sufficient dataset.
Second, according to the benchmark study in [33], increasing the number of sampling
points often improves the accuracy and robustness of modeling techniques, which in-
clude Kriging.

Then, the FE model is queried at these input locations to generate the quantities of
Emax and Amax . The input-output formulates a dataset, which is split randomly into
training, validation, and test sets with the respective percentages of 64%, 16%, and 20%.
The Kriging parameters are tuned based on the leave-one-out cross-validation approach
using the training and validation data. It results in two hyperparameter sets that define
the corresponding Kriging models. For each quantity, ten iterations were performed and
the resulting candidate surrogate models were evaluated against the test set using the
relative generalization error εg en as defined in Eq. 4.11. This evaluation indicates that
the Kriging models predicting Emax and Amax have a relative generalization error of 2%
and 1%, respectively.
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The calculation of the objective Ccap depends on two variables, namely xs and xn .
The variable xs is varied within a 5-m section adjacent to the level crossing. This con-
straint in length is intentionally set to prevent potential interference with the tamping
operations, which is elaborated in Chapter 3. Ortega et al. [7] analyzed the impact of
sleeper spacing (xs ) in terms of construction cost savings. A summary of the cost reduc-
tion with various spacing alternatives was reported compared with the standard spacing
of 0.6 m. This cost relation is considered in this chapter, with the total cost of placing
sleepers at the standard spacing assumed to be €3000. The costs for other spacing alter-
natives are calculated based on the cost ratio provided by Ortega et al. [7]. Besides, the
variable xn refers to the number of strengthened sleepers installed in a transition zone.
It is assumed that the cost ratio between the strengthened and standard type is 1.5, and
the unit cost of using the standard type of sleeper in the transition zone is €400.

4.5. RESULTS AND DISCUSSION
Single-objective optimization problems are first solved. The results are presented in Ta-
ble 4.3. The optimum produced from Alt. 1-3 represents the preferred track design so-
lution for maintenance service providers, train users, and infrastructure managers, re-
spectively. The maximization problems in Alt. 4-6 are solved to gather extremes for each
objective and associate a preference function to each objective in the following multi-
objective problem formulation.

Table 4.3: Design solutions and corresponding objective function values from single-objective optimization.
Optimal values are highlighted for each problem.

Design solutions Objective function values

Design alternatives x = [
xs , xn , xr 1, xr 2, xr 3, xl

]
Emax Amax Ccap

(N ·m) (m/s2) (€)

Alt. 1: Emax minimization x = [13,6,139,179,50,30] 0.1107 0.2300 9967.7

Alt. 2: Amax minimization x = [10,3,74,50,50,0] 0.1814 0.2148 10013

Alt. 3: Ccap minimization x = [14,0,78,78,78,0] 0.2836 0.2529 8562.2

Alt. 4: Emax maximization x = [14,0,885,50,1000,41] 1.3880 0.2332 8562.2

Alt. 5: Amax maximization x = [14,4,50,593,792,84] 0.6909 0.2570 9362.2

Alt. 6: Ccap maximization x = [10,15,78,78,78,0] 0.2160 0.2136 12413

The optimization of Ccap depends on variables xs and xn , as emphasized in the De-
sign Solutions for Alt. 3 & 6. All other variables remain at their default values. The objec-
tive values in Alt. 3 & 6 indicate that there is a conflict between Ccap and the other objec-
tives. Specifically, a design that incorporates larger sleeper spacing and avoids the use of
strengthened sleepers is preferable from a cost perspective. However, such a design does
not contribute to reducing the expected damage in the ballast (Emax ) and maintaining
the level of train service (Amax ).

When comparing solutions from Alt. 1-2 and Alt. 4-5, the first observation is that
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softer railpads (xr i , i = 1,2,3) are generally preferred to reduce dynamic impact in the
vehicle-track system. Particularly in Alt. 1, the optimal value of xr 3 is significantly lower
than those of xr 1 and xr 2. Here, xr 3 denotes the stiffness of the railpad adjacent to the
crossing, the optimal value of which is linked to xl . A value of xl = 30 suggests a 1.5 m-
long Type II (softer) strip in conjunction with a soft railpad (xr 3) in the ballast track. This
combination allows for a more uniform distribution of track support stiffness, thereby
reducing the load effect transmitted to the ballast layer (i.e., reduced Emax ). This ratio-
nale also accounts for the optimal values of the corresponding variables in Alt. 4, which
yields a contradictory outcome. In contrast to Alt. 1, Alt. 2 recommends against the use
of the softer strip in ERS to minimize Amax and improve ride comfort. The reason could
be that Emax focuses on the dynamics in the track underlayers, while Amax pertains to
the upper vehicle dynamics.

In Alt. 3, minimizing the cost (Ccap ) leads to a significant deviation of Emax and Amax

from their minimum values. In contrast, Alt. 1 allows for the minimization of Emax with-
out a considerable impact on Amax . This observation can be attributed to the interaction
between the vehicle and track structure, where Emax and Amax are correlated. It is also
worth noting that the objectives under consideration are influenced by different design
variables: Ccap depends on xs and xn , while the other objectives are influenced by the
entire set of design variables. As a result, while these objectives compete, optimizing one
does not necessarily lead to the extreme values of the others.

In the multi-objective formulation, a linear preference function is assigned for each
objective due to its simplicity and interpretability. To construct a reasonable range for
associating a preference function with an objective, the maximum and minimum of each
objective are considered. For instance, as depicted in Figure 4.2 (a), for maintenance
contractors, a preference score of 0.1 for Emax corresponds to 100, indicating the desired
level, whereas a preference score of 1.4 for Emax corresponds to 0, representing the worst
scenario that should be avoided from the contractor’s perspective. The same applies to
other objectives as presented in Figure 4.2 (b)-(c).

The preference curves in Figure 4.2 (a)-(c) also display the optimal objective values
obtained using the minmax method, with equal weights assigned. The preference scores
are nearly equal, around 82, with Emax = 0.3398, Amax = 0.2192, and Ccap = 9207. This
illustrates the rationale behind the min-max paradigm: the method seeks to find a bal-
anced solution that satisfies all stakeholders.

The design solutions and their corresponding objective function values from single-
and multi-objective optimization are summarized in Table 4.4. The design solutions
indicate that the soft railpads and strips (xr i , xl ; i = 1,2,3) are recommended at the
junction between the level crossing and transition zone, according to both the single-
objective and multi-objective problems. However, compared to the single-objective
problems, the multi-objective formulation integrating stakeholder preferences affects
the solution for sleeper parameters (xs and xn), as highlighted in the Design Solutions
section. This is because these variables directly influence the objective Ccap , which is in
conflict with the other objectives.
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(a) (b)

(c) (d)

Figure 4.2: Design solutions from multi-objective design optimization: preference curve for objective (a) Emax ,
(b) Amax , and (c) Ccap including the optimum obtained from the preference-based min-max method.

Table 4.4: Design solutions and objective function values for different optimization problems. Optimal objec-
tive values are highlighted.

Design solutions Objective function values

Optimization method x = [
xs , xn , xr 1, xr 2, xr 3, xl

]
Emax Amax Ccap

(N ·m) (m/s2) (€)

Emax minimization x = [13,6,139,179,50,30] 0.1107 0.2300 9967.7

Amax minimization x = [10,3,74,50,50,0] 0.1814 0.2148 10013

Ccap minimization x = [14,0,78,78,78,0] 0.2836 0.2529 8562.2

MOO (Emax , Amax , Ccap ) x = [11,0,89,50,50,53] 0.3398 0.2192 9207

4.6. CONCLUSIONS
Effective service life management of railway assets requires aligning the preferences and
requirements of various stakeholders into the engineering design process. For this pur-
pose, this chapter presents a design approach that integrates engineering and manage-
rial aspects to model design problems for railway tracks. This approach enables a more
comprehensive evaluation of alternatives for railway track design, considering both the
technical and social relevance.

Three representative stakeholder groups and their corresponding interests are de-
fined, which are relevant to rail asset feasibility (technics), affordability, and serviceabil-
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ity. These perspectives are translated to performance measures, which are then used to
formulate design optimization problems. The solution method integrates FE modeling,
Kriging, and preference functions to find an optimal design configuration that balances
stakeholder preferences and actual track performance within a reasonable amount of
time. To demonstrate the application of the design approach, a case study on level cross-
ing design is provided. The design solutions obtained demonstrate relevance with re-
spect to stakeholder preferences and expected long-term track performance. It shows
that the current design approach allows the track design to be managed focusing on best
fit for common purpose rather than on mechanical behavior only.

REFERENCES
[1] Y. Shang, R. Binnekamp, and A. Wolfert, “Multi-stakeholder service life design for

rail level crossings”, in Life-Cycle of Structures and Infrastructure Systems, CRC
Press, 2023, pp. 949–956.

[2] V. Profillidis, Railway planning, management, and engineering. Taylor & Francis,
2022.

[3] W. Chen, F. Ahmed, Y. Cui, Z. Sha, and N. Contractor, “Data-driven preference
modelling in engineering systems design”, in Handbook of Engineering Systems
Design, Springer, 2022, pp. 1–34.

[4] M. J. Steenbergen, “Physics of railroad degradation: The role of a varying dynamic
stiffness and transition radiation processes”, Computers & Structures, vol. 124,
pp. 102–111, 2013.

[5] M. Sol-Sánchez, F. Moreno-Navarro, and M. C. Rubio-Gámez, “The use of elastic
elements in railway tracks: A state of the art review”, Construction and building
materials, vol. 75, pp. 293–305, 2015.

[6] R. Sañudo, M. Cerrada, B. Alonso, and L. dell’Olio, “Analysis of the influence of
support positions in transition zones. A numerical analysis”, Construction and
Building Materials, vol. 145, pp. 207–217, 2017.

[7] R. S. Ortega, J. Pombo, S. Ricci, and M. Miranda, “The importance of sleepers
spacing in railways”, Construction and Building Materials, vol. 300, p. 124 326,
2021.

[8] A. R. M. Wolfert, Open Design Systems. IOS Press, 2023.

[9] Y. Peng, J. Zhou, C. Fan, et al., “A review of passenger ride comfort in railway:
Assessment and improvement method”, Transportation Safety and Environment,
vol. 4, no. 2, tdac016, 2022.

[10] F. Ripamonti and A. Chiarabaglio, “A smart solution for improving ride comfort
in high-speed railway vehicles”, Journal of Vibration and Control, vol. 25, no. 13,
pp. 1958–1973, 2019.

[11] N. Wu, J. Zeng, and Y. Wang, “Effect of wheel-rail wear and suspension system
failure on vehicle dynamic performance”, Journal of Vibration and Shock, vol. 34,
no. 5, pp. 82–87, 2015.



REFERENCES

4

97

[12] E. Sperling and C. Betzhold, “Beitrag zur beurteilung des fahrkomforts in
schienenfahrzeugen (contribution to the assessment of ride comfort in rail
vehicles)”, Glaser’s Annals, vol. 80, pp. 314–320, 1956.

[13] B. Buurman, K. Gkiotsalitis, and E. Van Berkum, “Railway maintenance reserva-
tion scheduling considering detouring delays and maintenance demand”, Jour-
nal of Rail Transport Planning & Management, vol. 25, p. 100 359, 2023.

[14] M. Sadri, T. Lu, and M. Steenbergen, “Railway track degradation: The contribu-
tion of a spatially variant support stiffness-local variation”, Journal of Sound and
Vibration, vol. 455, pp. 203–220, 2019.

[15] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multi-
objective optimization methodologies for engineering applications”, Computers
& Mathematics with Applications, vol. 63, no. 5, pp. 912–942, 2012.

[16] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for
engineering”, Structural and multidisciplinary optimization, vol. 26, pp. 369–395,
2004.

[17] R. H. Stewart, T. S. Palmer, and B. DuPont, “A survey of multi-objective opti-
mization methods and their applications for nuclear scientists and engineers”,
Progress in Nuclear Energy, vol. 138, p. 103 830, 2021.

[18] K.-H. Chang, Design theory and methods using CAD/CAE: The computer aided en-
gineering design series. Academic Press, 2014.

[19] S. Greco, J. Figueira, and M. Ehrgott, Multiple criteria decision analysis. Springer,
2016, vol. 37.

[20] S. Bechikh, M. Kessentini, L. B. Said, and K. Ghédira, “Preference incorporation
in evolutionary multiobjective optimization: A survey of the state-of-the-art”, in
Advances in Computers, vol. 98, Elsevier, 2015, pp. 141–207.

[21] R. Battiti and A. Passerini, “Brain–computer evolutionary multiobjective opti-
mization: A genetic algorithm adapting to the decision maker”, IEEE Transactions
on Evolutionary Computation, vol. 14, no. 5, pp. 671–687, 2010.

[22] J. W. Fowler, E. S. Gel, M. M. Köksalan, P. Korhonen, J. L. Marquis, and J. Wal-
lenius, “Interactive evolutionary multi-objective optimization for quasi-concave
preference functions”, European Journal of Operational Research, vol. 206, no. 2,
pp. 417–425, 2010.

[23] L. Rachmawati and D. Srinivasan, “Incorporating the notion of relative impor-
tance of objectives in evolutionary multiobjective optimization”, IEEE Transac-
tions on Evolutionary Computation, vol. 14, no. 4, pp. 530–546, 2010.

[24] P. N. Kodikara, B. Perera, and M. Kularathna, “Stakeholder preference elicitation
and modelling in multi-criteria decision analysis–A case study on urban water
supply”, European Journal of Operational Research, vol. 206, no. 1, pp. 209–220,
2010.

[25] T. Wagner and H. Trautmann, “Integration of preferences in hypervolume-based
multiobjective evolutionary algorithms by means of desirability functions”, IEEE
Transactions on Evolutionary Computation, vol. 14, no. 5, pp. 688–701, 2010.



4

98 4. PREFERENCE-BASED DESIGN OPTIMIZATION FOR LEVEL CROSSINGS

[26] N. R. Costa, J. Lourenço, and Z. L. Pereira, “Desirability function approach: A re-
view and performance evaluation in adverse conditions”, Chemometrics and In-
telligent Laboratory Systems, vol. 107, no. 2, pp. 234–244, 2011.

[27] J. Sanchis, M. A. Martínez, X. Blasco, and G. Reynoso-Meza, “Modelling prefer-
ences in multi-objective engineering design”, Engineering Applications of Artifi-
cial Intelligence, vol. 23, no. 8, pp. 1255–1264, 2010.

[28] A. Messac, C. Sukam, and E. Melachrinoudis, “Mathematical and pragmatic per-
spectives of physical programming”, AIAA journal, vol. 39, no. 5, pp. 885–893,
2001.

[29] G. Reynoso-Meza, J. Sanchis, X. Blasco, and S. Garcia-Nieto, “Physical program-
ming for preference driven evolutionary multi-objective optimization”, Applied
Soft Computing, vol. 24, pp. 341–362, 2014.

[30] X. Lai, M. Xie, and K.-C. Tan, “QFD optimization using linear physical program-
ming”, Engineering optimization, vol. 38, no. 5, pp. 593–607, 2006.

[31] A. Messac, M. P. Martinez, and T. W. Simpson, “Effective product family design
using physical programming”, Engineering Optimization, vol. 34, no. 3, pp. 245–
261, 2002.

[32] J. Sanchis, M. Martinez, and X. Blasco, “Multi-objective engineering design using
preferences”, Engineering Optimization, vol. 40, no. 3, pp. 253–269, 2008.

[33] M. R. Kianifar and F. Campean, “Performance evaluation of metamodelling
methods for engineering problems: Towards a practitioner guide”, Structural
and Multidisciplinary Optimization, vol. 61, no. 1, pp. 159–186, 2020.

[34] R. Schobi, B. Sudret, and J. Wiart, “Polynomial-chaos-based Kriging”, Interna-
tional Journal for Uncertainty Quantification, vol. 5, no. 2, 2015.

[35] M. Moustapha, B. Sudret, J.-M. Bourinet, and B. Guillaume, “Quantile-based op-
timization under uncertainties using adaptive Kriging surrogate models”, Struc-
tural and multidisciplinary optimization, vol. 54, pp. 1403–1421, 2016.

[36] H. M. Kroetz, M. Moustapha, A. T. Beck, and B. Sudret, “A two-level kriging-based
approach with active learning for solving time-variant risk optimization prob-
lems”, Reliability Engineering & System Safety, vol. 203, p. 107 033, 2020.

[37] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning.
MIT press Cambridge, MA, 2006, vol. 2.

[38] F. Bachoc, “Cross validation and maximum likelihood estimations of hyper-
parameters of Gaussian processes with model misspecification”, Computational
Statistics & Data Analysis, vol. 66, pp. 55–69, 2013.

[39] C. Lataniotis, D. Wicaksono, S. Marelli, and B. Sudret, “UQLab user manual – Krig-
ing (Gaussian process modeling)”, Chair of Risk, Safety and Uncertainty Quantifi-
cation, ETH Zurich, Switzerland, Tech. Rep., 2021, Report # UQLab-V1.4-105.



5
EXTREME-ORIENTED SENSITIVITY

METHOD FOR RELIABILITY-BASED

DESIGN

This chapter introduces a novel sensitivity method that focuses on the part of the output
space that yields failure, that is, extreme values (either maximum or minimum) and val-
ues near design thresholds. These quantities are highly relevant to reliability-based prob-
lems such as reliability-based design optimization. The present method allows engineers
to perform sensitivity analysis near system limit states and visualize the relevance of in-
put factors to different design criteria (or objectives) and corresponding thresholds. The
polynomial chaos expansion is used to approximate the model output and alleviate the
computational cost in sensitivity analysis, which features sparsity and adaptivity to en-
hance efficiency.

To validate the accuracy and efficiency of the method, an analytical example and a truss
structure are first examined. Then, the method is applied to a dynamic train-track-bridge
system. Results show that the relevance of input factors varies significantly across dif-
ferent design criteria. This highlights the importance of exploring the design space near
limit states before formulating reliability-based design optimization problems for high-
dimensional models. By providing valuable insights into this particular space, the method
assists engineers in identifying the most influential design variables (that align with the
intended objectives), thereby guiding the formulation of reliability-based optimization
problems.

Parts of this chapter have been published verbatim in Reliability Engineering & System Safety, 243, 109818
(2024) [1].
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5.1. INTRODUCTION
Sensitivity analysis refers to the investigation of how changes in input factors affect the
model output. It is primarily used to i) identify factors whose accuracy is critical to the
quality of the output (factor prioritization [2]), ii) fix unimportant factors to reduce the
model complexity (factor fixing [2]), and iii) identify regions of the input space that lead
to undesirable outcomes, such as system failure. This is particularly important for en-
gineering structures that demand a high level of reliability. Based on the factor space
of interest, sensitivity methods can be divided into local and global approaches [3], [4].
The former measures the impact of variations in input factors near their nominal values,
whereas the latter examines the sensitivity of the model output to input factors over their
entire domain of variation.

Various global sensitivity methods have been proposed, including variance-based
methods (e.g., the Sobol method [5] and the Fourier amplitude sensitivity (FAST) method
[6]), regression-based methods (e.g., standardized regression coefficient [2]), moment-
independent methods (e.g., Borgonovo indices [7]), and many others. Of interest herein
is the variance-based approach, which leverages the functional decomposition of the
variance measuring the contribution of each factor or their combinations to the out-
put variance. Sobol’s indices [5] and related total-effect indices [8] are commonly used
variance-based measures. These measures can be computed through sampling-based
methods [9]–[11] or surrogate models [12]–[15]. The sampling-based methods can come
at a significant computational cost due to the large number of function evaluations re-
quired, which may render the methods infeasible for computationally demanding mod-
els.

Surrogate models have received much attention for the computation of variance-
based measures due to their potential to alleviate computational costs. Specifically, PCE
and its variants have been used to derive Sobol’s indices through post-processing of
model coefficients. This approach is originally shown in [12], using the coefficients of
generalized PCE [16], which is extended using sparse PCE [13], [17]–[19] and partial least
squares-driven PCE (PLS-PCE) [15] to deal with high-dimensional problems. Further-
more, advances have been made to account for the dependence in input factors [20],
generalized modeling of both aleatory and epistemic uncertainty in input factors [21],
and derivative-based sensitivity measures for efficient screening of unimportant fac-
tors [22]. These studies have demonstrated PCE to be a versatile and efficient tool for
sensitivity analysis (SA).

Variance-based sensitivity measures seek to evaluate the influence of input factors
on the variance of a quantity of interest (QoI). Most often, the QoI refers to the average
value of the model output, as used in the Sobol indices and their extensions (e.g., [20],
[21]). To clarify, let g (·) be a generic black box representation of a model, which has a set
of input factors X = X1, X2, ..., Xd ∈ Rd and a scalar output Y such that Y = g (X ). The
first-order Sobol index with respect to Xi is obtained by

I Sobol
i = VarXi

(
EX∼i (Y |Xi )

)
Var(Y )

, (5.1)

where Var(Y ) is the unconditional variance of Y , and EX∼i (Y |Xi ) is the mean of Y when
Xi is fixed. By construction, the Sobol-related indices aim to capture the mean behavior
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of the systems, which may not be sufficient for sensitivity evaluation of safety-critical
structures such as railway tracks.

To address this issue, this chapter focuses on the extreme values of the structural
response. Extreme values are the maximum and minimum levels the model output can
achieve. Response refers to the output of a model that characterizes the structural behav-
ior, which can be either static or dynamic. The condition of a structure can be described
by a group of limit states, each associated with design criteria (or indicators) and thresh-
olds. Failure occurs if the response quantity exceeds a given threshold.

This concept is closely linked to reliability analysis, making reliability-oriented sen-
sitivity analysis (ROSA) the natural way to perform SA for safety-critical structures [23].
ROSA is concerned with evaluating the sensitivity of the output of reliability analysis to
the model inputs, where the part of the output space that yields failure is of interest. Ap-
proaches dedicated to reliability-oriented sensitivities can also be categorized according
to the scope, i.e., local [24], [25] versus global sensitivity measures [26]–[28]. These stud-
ies aim to identify critical input factors with more potential to reduce the probability of
failure, instead of quantifying the influence of input factors on output extreme values. In
parallel, some work directs sensitivity evaluation to quantile-based [29] and high-order
measures (e.g., skewness and kurtosis decomposition [30], [31]), which may provide an
indication about input factors that drive the output towards its extreme values. However,
they do not directly address SA near output extreme values.

Limited research has focused on sensitivity methods for extreme values. Wong
et al. [32] compute extremum sensitivities by constraining the input distribution to
regions leading to the output extremum. They use Monte Carlo filtering to model the
conditional distribution, which is a sampling-based approach that partitions model
realizations within or outside targeted regions in the input space. Another approach
is optimization-based [3]. It involves discretizing an input factor within its range and
searching for the output extremum at each discrete point by fixing the target factor
while perturbing the rest (the so-called A-1AT - all minus one at a time), which poses
an optimization problem at each point. Then, a curve can be defined by the extreme
values computed from all discrete points, and the variation of this curve is evaluated to
quantify the main effect of the target factor on the output extreme values.

This chapter presents a new sensitivity method called the threshold-based sensitivity
method. This method allows for evaluating the model sensitivity near system limit states
by generalizing the optimization-based sensitivity method [3] to a wider range of tar-
geted portions of the output space, specifically from extreme values to thresholds. The
threshold-based method offers flexibility by allowing the evaluation of multiple decision
thresholds in SA. It also enables visualizing the structural performance (failure or non-
failure) around limit states in the input space, highlighting critical regions of the input
space that may lead to system failure under a given threshold. In addition, the perfor-
mance of PCE is investigated in the context of extreme-oriented SA. While the use of
PCE for Sobol’s indices has been relatively well-studied, research on its effectiveness in
extreme-based cases remains scarce. Therefore, the performance of PCE is compared
with other commonly used surrogate models, such as Kriging and polynomial chaos-
Kriging (PCK), to provide insights into its suitability for these types of analyses.

The applicability of the present method is examined in vehicle-track systems, which
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are safety-critical and of high relevance to reliability-based design (cf. [33]–[35]). Sen-
sitivity evaluation centered on the extremes can provide valuable insights for decision-
making in the design and management of such systems. In most cases, the sensitivity
of vehicle/structure responses to input factors is assessed using the sampling method,
known as One At a Time (OAT) analysis. OAT implies SA is approached by perturbing one
single factor at each time, while the rest are fixed in a given value. This method is compu-
tationally efficient and well-suited for SA of vehicle-track interaction problems since the
models involved can easily become computationally intensive. However, it may not pro-
vide reliable results when nonlinear terms are present in the model [4], [36], [37], which
in the vehicle-track models can be connected to the nonlinearity in wheel-rail contact
[38], [39], pad [40], [41], and ballast behavior [41], [42].

A few studies have applied global sensitivity methods to evaluate vehicle-track sys-
tems. Xu et al. [43] evaluate a nonlinear vehicle-track model to identify the factors dom-
inating the system dynamics, with special attention on track irregularities. Later, Wan et
al. [36] performed a dynamic global SA in a time-varying train-track-bridge system, com-
paring a Kriging-based approach against a Monte Carlo simulation scheme. Recently,
sensitivity and uncertainty analyses were performed in tandem [44], [45] to analyze the
uncertainty propagation in a train-track-bridge system and identify factors that are most
responsible for the response uncertainty. However, these studies only directed sensitiv-
ity analyses to the average system response using the Sobol method, while overlooking
the part of the output space that yields failure.

This chapter is organized as follows. Section 5.2 presents the PCE-based sensitivity
method for extreme problems, including the A-1AT sensitivity method with two formula-
tions (Section 5.2.1), the basics of PCE (Section 5.2.2), and the extension to the threshold-
based sensitivity method (Section 5.2.3). The methodology is verified in an analytical
function and a truss structure (Section 5.3) and further applied to a dynamic train-track-
bridge system to demonstrate its applicability (Section 5.4). Section 5.5 discusses the
sensitivity results along with evaluating the predictive performance of PCE and the im-
pact of design thresholds on the sensitivity results. Final remarks and future research
lines are drawn in Section 5.6.

5.2. METHODOLOGY

5.2.1. EXTREME-ORIENTED SENSITIVITY METHOD
In this section, the A-1AT sensitivity method with two strategies to formulate the ex-
treme problems are presented: the original problem formulation in [3] is first provided
for readability, followed by its extension to threshold-based SA.

A-1AT UPON THE OUTPUT EXTREMA

Let us consider a system whose behavior is described by g (·), where a set of input factors
X = {X1, X2, ..., Xd } ∈Rd yields a scalar output Y such that

Y = g (X ) . (5.2)

Each input factor is defined within an interval Xi ∈ [
X l

i , X u
i

]
. First, when a factor

Xi is fixed at a specific point x0
i , the model defined in Eq. (5.2) can reach an extreme
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value (either maximum or minimum) by varying the remaining factors within their cor-
responding intervals. This extreme value represents an output extremum of the reduced
(i.e., d −1) dimensional space, which can be denoted as Ȳi . Then, when considering the
entire range of the factor Xi , one can determine a curve formed by the output extrema
of the d −1 dimensional space. The sensitivity of this curve at point x0

i can be defined in
terms of finite differences, i.e.,

SE xt
i

(
x0

i ; X∼i
)≃ ∆Ȳi

(
x0

i , X∼i
)

∆xi
, x0

i ∈
[

X l
i , X u

i

]
, ∀Xi . (5.3)

The procedure of evaluating the sensitivity of Ȳi to Xi (Eq. 5.3) is provided in the follow-
ing steps.

Step a. Discretize the factor Xi in ni points within its range
[

X l
i , X u

i

]
; denote each discrete

point of Xi by xi , j , j = 1, ...,ni .

Step b. For a discrete point xi , j , the extreme value of Eq. (5.2) is obtained by fixing Xi at
xi , j while varying the remaining factors X∼i in their corresponding intervals. This
poses an optimization problem for each discrete value of Xi , which is defined by

min
X∈[Xl,Xu]

g (X)

s.t. Xi =
{

xi , j
}

, j = 1, ...,ni ,

X∼i ∈
[

Xl
∼i ,Xu

∼i

]
.

(5.4)

Step c. Save the optimal (i.e., extreme) value at each discrete value of Xi .

Step d. Once the optimal value is determined for all discrete values of Xi , the curve formed
by the output extrema of the d −1 dimensional space, Ȳi , can be determined and
the sensitivity of the curve is calculated according to Eq. (5.3).

Specifically, in Step a, different types of discretization can be selected for the input
factors, such as equal-, log-, or randomly spaced discretization. The degrees of dis-
cretization, meaning the number of discrete points, can also vary for each input factor.
Since the optimal search is defined for a specific factor (Xi ) at a time, the search process
is independent of the discretization strategy for the remaining non-fixed factors (X∼i ).
The reader is referred to [3] for further details about the discretization process.

The optimization problem in Eq. (5.4) can be solved using either gradient-based
methods or (meta)heuristics. As the method is optimization-based and the interest here
is either the maximum or minimum, the term optimal value also refers to extreme value
in Steps c and d. It is also worth noting that the minimum value is considered by default
to conform to the standard form of defining an optimization problem, as shown in Eq.
(5.4). A maximization problem can be treated by negating the objective function g (X).
This is frequently encountered in structural engineering problems where the maximum
value holds significance for structural reliability.

Further, the following importance measure [3] is defined to rank the input factors
according to their contribution to the total variance introduced by the individual factors
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to the output extreme values,

I E xt
i = VarXi

(
Ȳ |xi

)∑
i VarXi

(
Ȳ |xi

) , (5.5)

where VarXi

(
Ȳ |xi

)
represents the variance of the output extreme values associated with

factor Xi .
∑

i VarXi

(
Ȳ |xi

)
represents the total variance introduced by the individual fac-

tors to the output extreme values.
As mentioned earlier, the input factors can be discretized either uniformly or non-

uniformly. If non-uniform discretization is used, the variance in Eq. (5.5) must be re-
placed by the weighted variance, i.e.,

VarXi

(
Ȳ |xi

)= ni∑
j=1

w j∑ni
j=1 w j

(
Ȳi , j − µ̄

)2
, µ̄=

ni∑
j=1

w j∑ni
j=1 w j

Ȳi , j , (5.6)

where Ȳi , j is the output extremum at the discrete point xi , j , and the weight w j is given
by

w j = 1

2

(
xi , j+1 −xi , j−1

)
, ∀ j ∈ [2,ni −1], (5.7)

with w1 = 1
2

(
xi ,2 −xi ,1

)
and wni = 1

2

(
xi ,ni −xi ,ni−1

)
for the first and last points of the

discretized factor.

A-1AT UPON THE DEVIATION BETWEEN THE OUTPUT AND GIVEN THRESHOLD

A limit state refers to a state of impending failure, beyond which a structure can no longer
perform its intended function satisfactorily, in terms of either safety or serviceability.
The basic idea of the limit-state design approach is to identify all possible modes of fail-
ure (i.e., limit states) and determine acceptable levels of safety against the occurrence of
each limit state [46]. From this, one limit state function can be evaluated by

Gk (X) = g (X)− tk (5.8)

where Gk (X) denotes the limit state function of a structure; g (X) describes the actual per-
formance of the structure measured by a design criterion, and tk (k = 1, ...,κ) represents
the kth allowable level (i.e., the threshold) of the corresponding criterion, e.g., maximum
allowable displacement of a beam. κ denotes the number of decision thresholds consid-
ered for a single criterion.

The sign of Gk (X) determines the structural reliability state, which is defined as

• failing state if Gk (X) > 0;

• reliable state if Gk (X) < 0;

• limit state if Gk (X) = 0.

The structure needs to be checked for all groups of limit states to ensure sufficient
margins between the actual structural behavior and given threshold. However, the deter-
mination of the structural state can be significantly affected by the attitudes of decision-
makers towards the threshold levels. For example, ride comfort is relevant to structural
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serviceability, which is associated with a group of evaluation indices and rating scales
(i.e., thresholds) [47]. The demand for traveling quality is however very subjective, and
the decision on which rating scale to be included in the design process can influence the
outcomes significantly, which may also affect the SA result.

To address this issue, one can frame the preferences of the decision-makers into mul-
tiple decision thresholds. This allows for evaluating the sensitivity of the model output to
each input factor at different levels. To achieve this, the extreme problem is reformulated
by modifying Step b in this section as follows.

min
X∈[Xl,Xu]

∆ (X) = min
X∈[Xl,Xu]

(
g (X)− tk

)2

s.t. Xi =
{

xi , j
}

, j = 1, ...,ni ,

X∼i ∈
[

Xl
∼i ,Xu

∼i

]
,

(5.9)

where∆ (X) represents the squared deviation of the model output from a given threshold,
that is, ∆ (X) = [Gk (X)]2.

Recall that for a single design criterion, the output space is defined by Y = g (X), the
present sensitivity method essentially requires two basic steps: (1) identify the surface of
interest in Y , and (2) analyze the sensitivity of that surface. In the first step, the surface
can be characterized either by the output extrema through optimization (Eq. 5.4) or by
being related to a given threshold (Eq. 5.9). If the surface related to a threshold is of inter-
est, the idea is to search for the model output that approaches the reference threshold,
and the goal is to identify which input factors are critical in reaching that threshold, i.e.,
the limit state of the structure. This process, which allows for the analysis of the sensitiv-
ity of the surface around the given threshold, is referred to as threshold-based sensitivity.

An illustrative example of threshold-based sensitivity is shown in Figure 5.1. The
figure depicts how changes in a single input factor X ∈ [

X l , X u
]

affect the threshold-
based response (calculated from Eq. 5.9) near three different design thresholds (tk ,k =
1,2,3). Specifically, t1 is easy to reach, t2 is a middle level, and t3 is extremely hard to
achieve. These thresholds correspond to Scenario 1, 2, and 3, respectively. The verti-
cal axis (Ỹ k ) represents the threshold-based response, which is denoted by a solid line
for each threshold level (the dotted line with the same color). The value of Ỹ k varies
depending on whether the maximum output exceeds the corresponding threshold. In
other words, it poses a binary classification problem, where (1) for solid lines that fall
below the corresponding threshold, the value of Ỹ k represents the actual maximum
output of a system, indicating a reliable state; (2) When a solid line remains stable at
a given threshold, it suggests that the maximum output has either reached or exceeded
the threshold, indicating the limit or failing state of the system. In such cases, the value
of Ỹ k is determined by the threshold value.

Note that the term response is used in the context of threshold-based SA, specifically
referring to the threshold-based response, instead of the output used in the general con-
text of SA. This distinction is made because the threshold-based response is not exactly
equivalent to the model output. Its value depends on whether the system reaches the
failure threshold. Therefore, in this chapter, the term response is used in two specific
contexts: (1) in structural engineering problems where it refers to the reaction or be-
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Figure 5.1: Illustrative example of threshold-based sensitivity. The figure shows three scenarios: Scenario 1
(red lines) with threshold t1 (dotted) and threshold-based response Ỹ 1 (solid); Scenario 2 (blue lines) with
threshold t2 (dotted) and threshold-based response Ỹ 2 (solid); and Scenario 3 (green lines) with threshold t3
(dotted) and threshold-based response Ỹ 3 (solid). In each scenario, the region above or below the correspond-
ing threshold indicates the failure or non-failure domain, respectively. Ỹ 2 is equal to Ỹ 3 when X ∈ [X l , Xt2),
as they both represent the maximum output within this range, which is independent of the threshold values.
Note: the figure is only illustrative. See Section 5.5.3 for a detailed analysis of a large-scale numerical example.

havior of a structure to the input it receives, either static or dynamic, as mentioned in
Section 5.1, and (2) in threshold-based SA where the term threshold-based response is
introduced to visualize the impact of input factors on the model output near the thresh-
olds, which is elaborated in the following.

As shown in Figure 5.1, in Scenario 1, the value of Ỹ 1 (the red solid line) is constant
at the level of t1, indicating that the current threshold t1 can always be reached for the
factor X over its range of definition,

[
X l , X u

]
. Therefore, X is not a critical factor that

would impede reaching the threshold at t1. In Scenario 2, the response surface lies below
t2 when X ∈ [X l , X t2). This suggests that ensuring X ∈ [X l , X t2) can create a safe margin
between the maximum output (the blue solid line) and the threshold (the blue dotted
line). However, when X ∈ [X t2, X u], the limit state is (reached or) exceeded, resulting
in (impending) system failure. Therefore, X is critical in reaching the threshold t2 over
its entire range of definition

[
X l , X u

]
. Herein, one can see that the threshold-based SA

allows engineers to visualize how the input factors affect the model output near the limit
states, indicating areas of the input space that may lead to undesirable outcomes, such as
system failure. This knowledge can be useful in decision-making and risk management
for the design and maintenance of engineering structures.

If the threshold is sufficiently large at t3, the value of Ỹ 3 is determined by the max-
imum output of the system (the green solid line). Varying X ∈ [

X l , X u
]

will not alter
the system reliability state, as there will be sufficient margins between the maximum
and t3. Note that in this case, the problem is equivalent to maximizing g (X), and vice
versa. This corresponds exactly to the original formulation in Eq. (5.4). The threshold-
based sensitivity calculated through Eq. (5.9) essentially represents an alternative way of
describing the extreme problems, while it extends the original setting by taking the limit
state concept into account and is flexible to allow for assessing multiple decision-making
scenarios, as measured by multi-thresholds, in SA.

An overview of the extreme-based and threshold-based formulation is provided in
Figure 5.2 to compare the calculation procedures and application contexts. To summa-
rize, both formulations require discretizing the input factors as the first step, and the
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discretization strategy remains consistent. However, they differ in terms of the target
portion of the output space (Step 2), formulation of the optimization problem (Step 3),
and the way the calculation results are post-processed (Step 4). The extreme-based for-
mulation is mainly used to quantify and visualize the main effects of the input factors on
the extreme values of the output. On the other hand, threshold-based sensitivity focuses
on visualizing the impact of altering an individual input factor over a specified threshold
by introducing the threshold-based response. This formulation clearly indicates the sys-
tem reliability state around limit states in the input space, highlighting critical regions
that may lead to system failure under a given threshold. This knowledge can be lever-
aged to support analyses centered around system reliability, such as RBDO. Also, the
evaluation results obtained from both formulations complement each other, providing
valuable insight into the contribution of the input factors across different regions of the
output space.

Step 2

Choose a target portion of output space

1    Output extrema

2    Output near thresholds

Obtain output extreme values of the

d-1 dimensional space by solving Eq. (5.4)
Obtain threshold-based responses

by solving Eq. (5.9)

1  2  

Calculate importance measures

by Eq. (5.5) and plot input discrete values

with the corresponding output extrema

Plot input discrete values with

corresponding threshold-based responses

and indicate the reference threshold

Step 3

Solve optimization problems for input discrete values

Step 4

Post-processing of results

Step 1

Discretize input factors

Figure 5.2: Overview of the extreme-based (Path 1) and threshold-based (Path 2) formulation.
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5.2.2. POLYNOMIAL CHAOS EXPANSIONS (PCE)
Let us recall the mapping g (·) in Eq. (5.2) to describe the behavior of a system. Assume
that there is uncertainty associated with the input vector X, which can be described by
a random vector with joint probability distribution function (PDF) f X (x) and marginal
PDFs fXi (xi ) , i = 1, ...,d . The components of X are considered independent, which is the
case for the models in the present study. Consequently, the model output Y is also a
random variable that can be approximated using PCE [17], [48] such that

g (X) ≈ ĝ (X) =
∑
α∈A

cαΨα(X), (5.10)

where ĝ (X) denotes the PCE approximation; A is a set of multi-indices α = {α1, ...,αd },
c = {cα, α ∈A } are polynomial coefficients to be computed, and Ψ = {Ψα,α ∈A } are
multivariate polynomials that are orthogonal with respect to f X (x). In other words, PCE
aims to provide an approximation of the model output by expressing it as a sum of or-
thogonal polynomials. These polynomials are systematically chosen based on the prob-
ability distributions of the input variables of the model. The result is a series where each
term is a product of a polynomial function and a coefficient, which together represent
how changes in the inputs affect the output. This approach is particularly useful in SA
for quantifying how uncertainty in the inputs influences the model output, facilitating a
deeper understanding of the model behavior under uncertainty.

The independence of input variables allows for constructing the multivariate poly-
nomials as the tensor product of univariate orthonormal polynomials with respect to
fXi (xi ), i.e.,

Ψα (X) =
d∏

i=1
Ψαi (Xi ) , (5.11)

where Ψαi (Xi ) is a polynomial of degree αi in the i th input variable. The expansion is
originally formulated with standard Gaussian random variables with Hermite polyno-
mials [49]. It was later extended into a broader framework known as the generalized
PCE [16] to employ basis functions from the Askey scheme of orthogonal polynomials
with their underlying random variables. For example, Legendre polynomials can be as-
sociated with uniform random variables, and Laguerre polynomials correspond to the
Gamma distribution. If other types of random variables appear in the input vector X, it
is possible to perform an isoprobabilistic transform such that the generalized PCE can
be applied to this variable [48], [50].

For computational purposes, the PCE in Eq. (5.10) has to be truncated, where the
polynomials {Ψα,α ∈A } are generally retained with total degree up to p such that

A d ,p =
{
α ∈Nd : ∥α∥1 =

d∑
i=1

αi ≤ p

}
, cardA d ,p ≡ P =

(
d +p

p

)
, (5.12)

where ∥α∥1 denotes the degree of the multi-indices α; card A d ,p represents the num-
ber of multi-indices (i.e., the number of coefficients in the PCE). The coefficient vector
cα can be determined through regression approaches [13], [48]. However, considering
the size of the basis (card A d ,p ) in Eq. (5.12), the computational effort in the regression
method grows dramatically with the size of d or p, which makes the full PCE intractable
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in the high-dimensional problems (e.g., d ≥ 10 or p ≥ 10) [48]. Ref. [51] also highlighted
this property limits the application of PCE in the field of vehicle-track interaction prob-
lems.

This limitation was addressed by a hyperbolic truncation scheme [48], which defines

a new set A
d ,p
q of multi-indices as

A
d ,p
q =

{
α ∈Nd : ∥α∥q =

(
d∑

i=1
α

q
i

)1/q

≤ p

}
. (5.13)

The multi-indices are determined based on q
(
0 < q < 1

)
[48]. For q = 1, the hy-

perbolic truncation corresponds to the standard total-degree truncation degree in Eq.
(5.12), where the polynomials of maximum total degree of p are retained. When q < 1,
the truncation penalizes high-degree terms with many interacting variables, while favor-
ing the main effects and low-order interactions. The reasoning behind this truncation
scheme is that when there are multi-variables, the system is likely to depend primarily
on the main effects and low-order interactions, which is known as the sparsity-of-effects
principle [52]. The reader is referred to [48] for further details.

Apart from the hyperbolic truncation scheme, an adaptive algorithm [48] contributes
further to an efficient procedure for the selection of polynomials. The algorithm is based
on least angle regression (LAR) that iteratively enhances the polynomials under con-
struction. In brief, it provides a collection of polynomial chaos (PC) representations (sur-

rogates) in such a way that terms in A
d ,p
q are added one by one, and at each iteration,

the surrogate under construction is given an error estimate ε. By defining ε∗ = min(ε),
one stops the algorithm if ε∗ is less than the preset target error εt g t . The PC representa-
tion with ε∗ is eventually retained, associated with the optimal subset A ∗. It is said to be
sparse since it contains a reduced number of terms in A ∗ compared to a full representa-
tion in Eq. (5.10).

Once LAR provides a selected set of terms at each iteration, the coefficients of the
related PC representation and the corresponding ε can be computed by ordinary least
squares (OLS) regression, which follows the so-called hybrid LAR proposed in [53].

Let
{

x(1), ...,x(N )
}

denote a set of N input realizations from an ED, and
{

y(1), ..., y(N )
}

be
the corresponding model evaluations, i.e.,

{
y(ϱ) = g

(
x(ϱ)

)
,ϱ= 1, ..., N

}
. The PC approxi-

mation is calculated by Eq. (5.10), where the coefficients c are chosen by minimizing the
mean-square error between the exact value and its PC approximation, i.e.,

c = arg min
c∈RcardA

E

[(
g (X)−

∑
α∈A

cαΨα(X)

)2]
, (5.14)

where E is the mathematical expectation. The solution of Eq. (5.14) can be obtained
based on the OLS estimates [54],

ĉ = (
ATA

)−1
ATY, (5.15)

where A is a data matrix of size N ×P and its general entry is defined by

Aϱ j =Ψα j

(
x(ϱ)

)
, ϱ= 1, ..., N ; j = 0, ...,P −1. (5.16)
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The accuracy of each PC representation in the LAR is evaluated by the relative leave-
one-out error estimate, denoted by ε as mentioned above. Let ĝ(−ϱ) be the surrogate
model that is constructed from ED while removing the ϱth observation. The leave-one-
out error is defined as

εLOO = 1

N

N∑
ϱ=1

[
g (x(ϱ))− ĝ(−ϱ)(x(ϱ))

]2 , (5.17)

where g (x(ϱ) and ĝ(−ϱ)(x(ϱ)) represents the model evaluation at x(ϱ), and its prediction
from ĝ(−ϱ), respectively.

Then the relative leave-one-out error can be given by

ε= εLOO

VarY
, (5.18)

where VarY denotes the empirical variance of the output Y , calculated by

VarY = 1

N −1

N∑
ϱ=1

(g (x(ϱ))−µY )2, µY = 1

N

N∑
ϱ=1

g (x(ϱ)). (5.19)

In case an independent dataset is available next to the training and validation set
(used to construct surrogate models), the relative generalization error, εg en , is a measure
commonly used to quantify the accuracy and predictive quality of the surrogate models,
which is defined in the previous chapter, Eq. (4.11).

5.2.3. THRESHOLD-BASED SENSITIVITY ANALYSIS USING PCE
The proposed method seeks to efficiently evaluate the model sensitivity to the input fac-
tors under different design thresholds. The computation process is presented in Algo-
rithm 1, which consists of two main procedures: construction of PCE (Procedure 1) and
threshold-based sensitivity evaluation (Procedure 2).

Procedure 1 mainly follows the techniques proposed in [48], as elaborated in Sec-
tion 5.2.2. To enhance readability, the algorithmic framework for constructing the PCE
is presented here. Procedure 1 starts with selecting values of the algorithm parameters
(line 1). It chooses an ED (e.g., LHS) and evaluates the model output at the correspond-
ing sampled points (line 2-3). The least angle regression is applied to select the optimal
set of the polynomial basis A ∗, which requires an iterative procedure (line 4-12) in the
following:

Initially, a candidate set of p-order (p = 1) polynomials is determined by the hyper-

bolic truncation scheme, i.e., the set A
d ,p
q defined by q-norm according to Eq. (5.13)

(line 5). The LAR is applied to A
d ,p
q to select the optimal set A (p) with the lowest error

ε(p) according to Eq. (5.17) (line 6). Then, ε(p) is checked against the target error εt g t . If
ε(p) < εt g t , it stops the iterative process (line 9). Otherwise p = p +1 (line 10), and repeat
the process (line 4-12). The optimal set A ∗ is eventually retained, associated with the
lowest error ε∗ (line 8). The corresponding coefficients are determined by OLS estima-
tors (line 13). The final PCE (ĝ ) can be determined (line 14). Note that it is possible for
the error ε(p) to increase from a certain order p, which can be attributed to overfitting. To



5.2. METHODOLOGY

5

111

Algorithm 1: PCE-based simulation scheme for threshold-based sensitivity
analysis

Input: PDFs of input factors ( fXi (xi ) , i = 1, ...,d)
Output: Threshold-based response (Ỹ k

i , j )

Procedure 1 Construct a PC approximation of the response for a design criterion
1 εt g t , pmax , q, N ← Preset the algorithm parameters

2

{
x(ϱ),ϱ= 1, ..., N

}
← Read statistic inputs X with specified fXi (xi ); select

an ED with sample size N

3

{
y(ϱ),ϱ= 1, ..., N

}
← Collect the model evaluations

4 for p = 1 → pmax do

5 A
d ,p
q ← Gather a candidate set of p-order polynomials

6 A (p),ε(p) ← Apply LAR to the candidate set A
d ,p
q

7 if ε(p) < εt g t then
8 A ∗ =A (p), ε∗ = ε(p)

9 break
10 else p = p +1
11 end if
12 end for
13 c ← Compute the coefficients associated with A ∗ according to Eq. (5.14)
14 ĝ ← Retain the final PC approximation with A ∗,c,ε∗ according to Eq.

(5.10)
End procedure 1
Procedure 2 Evaluate the threshold-based sensitivity on ĝ

15 tk ,ni ,κ← Preset the algorithm parameters

16 X l
i , X u

i ← Define bounds for each input factor Xi according to fXi (xi )

17 xi , j ← Discretize Xi in ni points within
[

X l
i , X u

i

]
18 for j = 1 → ni , k = 1 → κ do

19 χ̄k ← Minimize (
(
ĝ − tk

)2 , Xi =
{

xi , j
}

, X∼i ∈
[

X l
∼i , X u

∼i

]
) according to

Eq. (5.9)
20 Ỹ k

i , j ← Collect χ̄k

21 end for
End procedure 2

ensure proper convergence of the algorithm, an early stop criterion is introduced. This
criterion terminates the process if the error ε(p) increases for at least two subsequent it-
erations (ε(p) ≥ ε(p−1) ≥ ε(p−2)). For further details, the reader is referred to [48]. For the
implementation of this algorithm, the target error εt g t is set equal to 0 to minimize the
error in the attained PCE models.

Procedure 2 evaluates the threshold-based sensitivity (Section 5.2.1) on ĝ . It also be-
gins by presetting the parameter values (line 15). Then, for non-uniformly distributed
input factors, the lower (respectively upper) bound of Xi is determined by the 1st per-
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centile (respectively 99th percentile) of the corresponding fXi (xi ) (line 16). Xi is then
discretized within these bounds into ni points (line 17), as detailed in Section 5.2.1. For
each discrete value of Xi and threshold level tk , the squared deviation is minimized by
fixing Xi at xi , j while varying the remaining factors X∼i in their corresponding interval
(line 18&19). Finally, save the threshold-based response, Ỹ k

i , j , for all the points ni of Xi

and thresholds tk ,k = 1, ...,κ (line 20).
It is worth noting that the sensitivity method, whether in the extreme-based or the

threshold-based formulation, is independent of the probability distribution of input fac-
tors. This is because the sensitivity is evaluated based on the discretization of the input
factors, as emphasized in [3]. However, in the proposed simulation scheme, the proba-
bility distribution is required as input because the PCE models are developed based on
this information.

In terms of computational efficiency, the original A-A1T method requires solving op-
timization problems in the order of O {n ×d}, where n is the average number of discrete
points in input factors and d is the total number of input factors. When multiple design
criteria are present (denote the number of criteria by Nc ), the number of optimizations
increases to O {n ×d ×Nc }. Let Na be the average function calls required by solving one
optimization problem. Then, the total function evaluations required by the original A-
A1T will be O {n ×d ×Nc ×Na}.

On the other hand, the present surrogate-based method requires N evaluations of
the original model to construct the surrogate models, which is independent of Nc since
responses are generally returned from a single call. For structural models built from
the FE analysis (which is the common case in dynamic simulations of vehicle-structure
interaction), the computational time of a single run ranges from a few minutes to hours,
depending on the complexity of the model. By comparison, the sparse adaptive PCE is
faster to build and evaluate, and as the original model becomes more complex, the use
of PCE has the potential for more computational gains in this context.

5.3. VERIFICATION

5.3.1. EXAMPLE 1: TWO-DIMENSIONAL ANALYTICAL FUNCTION
This section demonstrates the concept of output extreme surfaces of the d − 1 dimen-
sional space (Section 5.2.1) and validates the use of PCE for the extreme-based sensitiv-
ity method through an analytical function. The six-hump camel function is chosen be-
cause it involves only two input factors, allowing for visualization. Figure 5.3 illustrates
the global nonlinear behavior of this function, which is defined as

f (X1, X2) = (4−2.1X 2
1 + X 4

1

3
)X 2

1 +X1X2 + (−4+4X 2
2 )X 2

2 , (5.20)

with X1 defined in the interval [−2,2] and X2 defined in [−1,1].
Figure 5.4 depicts the output extreme surfaces ( f̄min and f̄max) of the six-hump camel

function when fixing each factor, one at a time. The estimated importance measures are
also displayed for each factor. A sample size N = 100 is considered given the limited
dimension of the problem. The extreme surfaces evaluated from the true function are
shown to compare the accuracy of PCE, Kriging, and PCK. It can be observed that both
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Figure 5.3: Visualization of the six-hump camel function.

PCE and PCK effectively capture the global shape of the function and accurately repre-
sent the minimal surfaces ( f̄min). However, they fail to identify the minimum point in
the maximum surface ( f̄max) for X2. Despite this, their estimated importance measures
remain close to the true measures. In contrast, Kriging has limitations in approximating
the global behavior of the function, resulting in a large deviation between the estimated
and true importance measures, especially for the maximum surfaces ( f̄max). Note that
the extreme surfaces are obtained by discretizing each factor at a time, with ni = 50.
Therefore, the surfaces may not appear smooth.

5.3.2. EXAMPLE 2: TRUSS STRUCTURE
The second example concerns a truss structure shown in Figure 5.5. It consists of 23
bars, and the upper section is subjected to six vertical loads. This particular structure
has been studied in many works (e.g., [50], [53], [55]) for different purposes, where SA
has been performed using the Sobol method and not in the extreme case. This exam-
ple is investigated here to further verify the PCE-based approach against the original
method [3]. Note that the threshold-based SA is not examined here as the aim is to test
whether the PCE models are feasible to approximate the output of interest and compute
sensitivity measures (Eq. 5.5), in terms of both efficiency and accuracy.

Ten random variables (d = 10) are considered in this example, including the applied
loads (Pm , m = 1, ...,6); Young’s modulus and cross sections of the horizontal and diag-
onal elements (respectively denoted by E1 and A1 for the horizontal; E2 and A2 for the
diagonal bars). Accordingly, the input vector is defined as X = [E1,E2, A1, A2,P1, ...,P6]′.
Table 5.1 provides the range of definition and the number of discrete points ni for each
factor Xi . For input factors with large ranges, the discrete points are distributed using
a log scale. This choice is based on the suggestion in [3] where, compared to the linear
and random discretization methods, using the log-spaced discretization for factors with
large ranges ensures the robustness of the importance measures with a relatively small
number of ni .
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Figure 5.4: Output extreme (minimum f̄min and maximum f̄max) surfaces of the six-hump camel function for
each factor.

Table 5.1: Truss structure: definition range and discretization of the input factors.

Variable Data proposed by [55] Range Discretization

Distribution Mean Stdv. [P0.01,P0.99]

E1,E2 (Pa) Lognormal 2.10×1011 2.10×1010 [1.54×1011,2.84×1011] 50 points (log spaced)

A1 (m2) Lognormal 2.0×10−3 2.0×10−4 [0.0015,0.0027] 50 points (equally spaced)

A2 (m2) Lognormal 1.0×10−3 1.0×10−4 [0.0007,0.0014] 50 points (equally spaced)

Pm (m = 1...6) (N) Gumbel 5.0×104 7.5×103 [26475,64677] 50 points (log spaced)

The quantity of interest is the midspan deflectionω (counted positively downwards).
It is obtained by evaluating an FE model (denoted by g tr uss ) using the Matlab code [56],
i.e., ω= g tr uss (X).

PCE models (ĝ tr uss ) are constructed to approximate the value of ω based on X.
The random vector X is transformed into a standard Gaussian distributed vector (i.e.,
a change of scale in terms of the units or magnitude of the input) to use Hermite
polynomials [49] in constructing the PCE model in the form [48], [50],

ξi =Φ−1 (
FXi (xi )

)
, i = 1, ...,10, (5.21)

whereΦ is the standard Gaussian cumulative distribution function (CDF) and FXi (xi ) is
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Figure 5.5: Truss structure with 23 members [55].

the CDF of Xi . This results in the following PCE model according to Eq. (5.10),

ω≈ ĝ tr uss (ξ) =
∑
α∈A

cαΨα(ξ). (5.22)

Latin hypercube sampling is used to generate the experimental design. A sample
size of N = 1000 is considered as the base scenario, and the influence of different sample
sizes is evaluated subsequently. The FE model is queried at the sampled points to gen-
erate the corresponding response ω. The input-output pairs formulate a dataset that is
randomly divided into training, validation, and test sets with the respective percentage
of 64%, 16%, and 20%, where five iterations were performed, resulting in five candidate
PCE models.

All PCE models are constructed by varying the q-norm from 0.5 to 1 and the maxi-
mum degree p from 3 to 15. The model performance is evaluated based on the test set
using εg en (Eq. 4.11), where the model with the smallest εg en yields 2.54×10−7 for pre-
dicting ω. The optimal degree p is 9 and q-norm is 0.5, associated with ε = 1.15×10−7.
This model includes 181 polynomial basis elements, while the size of basis elements for
q = 0.5 and p = 9 is 571, i.e., without applying the LAR algorithm, and the size of full ba-
sis elements can be 92378 for q = 1 and the same p, i.e., the maximum possible number
of polynomial basis elements without any sparsity constraints for a polynomial degree
p = 9.

Two functions, g tr uss and ĝ tr uss , are applied to the A-1AT method (Section 5.2.1).
The importance measures I E xt

i to each factor Xi are reported in Table 5.2. It can be ob-

served that I E xt
i returned from the PCE model ĝ tr uss agree well with those calculated

from directly calling the FE model g tr uss (the reference). The reference case also shows
differences with the result in [50]. This is because [50] employs the Sobol method, which
measures the impact of input factors based on the average value of the midspan deflec-
tion.

The number of function calls to the FE model is also tracked for both methods. As
mentioned earlier, an optimization problem is present (Eq. 5.4) for each discrete point
of Xi to search for the output extremum. In this example, the Matlab algorithm ‘pat-
ternsearch’ [57] has been used. The average number of model runs per optimization
Na was about 165, and the average number of discrete points n for input factors was
50. Therefore, the reference method (direct calls of g tr uss ) requires 82242 (= n ×d ×Na)
times of function calls, which took 42.5 min on a desktop with an 8-core CPU and 16
GB of RAM. In contrast, the PCE-based method needs N = 1000 function evaluations to
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Table 5.2: Truss structure: comparison of importance measures calculated from the PCE (ĝ tr uss ) and actual
FE model evaluation (g tr uss ) when N = 1000.

Variable Importance measure I E xt
i

Reference PCE-based
E1 0.3952 0.3965
A1 0.3703 0.3706
P3 0.0652 0.0652
P4 0.0652 0.0649
P5 0.0314 0.0315
P2 0.0314 0.0310
A2 0.0180 0.0177
E2 0.0154 0.0149
P6 0.0040 0.0038
P1 0.0040 0.0038

Function calls 82242 1000

construct and validate the surrogate model. The evaluation of ĝ tr uss in SA took 5.5 min
with the same computing condition.

The importance measures are also evaluated using different sample sizes (N ) and
surrogate models (PCE, Kriging, and PCK), as shown in Figures 5.6 and 5.7. In the al-
ternative surrogate models, an ordinary Kriging model with a Matérn 5/2 correlation
function is applied. PCK considers a sequential formulation [58] where the set of poly-
nomials and Kriging are determined sequentially. The LAR algorithm (Section 5.2.2) is
applied to select the optimal set of polynomials, varying the maximum degree p from 3
to 15. This set of polynomials is then used as the trend of a Kriging model with a Gaus-
sian correlation function, which is further calibrated using maximum likelihood. For
sensitivity evaluation, the model training is repeated five times for each approach, and
the one with the lowest εg en is chosen.

The comparison of the sample size and surrogate models is presented in Figure 5.6.
It can be observed that Kriging shows the largest deviation from the true values across
all the sample cases. PCE and PCK demonstrate comparable performance, with PCE
showing better results especially when the sample size is small.

The analysis is replicated to account for the uncertainties in experimental designs.
Figure 5.7 shows the relative errors of the sensitivity measures over 20 trials. For small
sample sizes (N = 100 or 400), PCE demonstrates the best overall performance in terms
of both mean and variation of the errors, while PCK shows the largest variation of the
errors when N = 100, especially for factors P1 and P6 that have a negligible effect on the
model output. However, as the sample size N increases (N = 700 or 1000), PCK shows
a slight improvement over PCE, as indicated by lower mean and variation of the errors.
This difference can be attributed to the fact that PCK is more prone to overfitting when
dealing with small ED sizes [58]. On the other hand, Kriging shows considerable bias
in the mean of the errors across all the sample sizes, and no clear improvement in its
performance is observed as the sample size increases.

Further, Figure 5.8 compares the importance measures using different levels of dis-
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Figure 5.6: Importance measure of each input factor using true function evaluations (True), PCE, PCK, and
Kriging model.

cretization. The results demonstrate the robustness of the importance measures across
different cases and indicate that the default size of ni = 50 is sufficient for the current
analysis. For a more detailed discussion of the discretization aspect, the reader is re-
ferred to [3].

5.4. APPLICATION TO A TRAIN-TRACK-BRIDGE SYSTEM

5.4.1. MODELING OF TRAIN-TRACK-BRIDGE DYNAMICS

As a typical example of vehicle-structure interaction problems, the vibration of the train-
track-bridge (TTB) system is a fundamental concern in railway engineering, frequently
used to evaluate running safety, riding comfort, and performance of railway tracks and
bridges. Here, the applicability of the proposed method is demonstrated using a coupled
TTB model [59]. The model is FE-based and is implemented in Matlab. It is capable of
simulating the vertical dynamic interaction between the subsystems, namely the train,
track, and bridge. A schematic representation of the model is depicted in Figure 5.9,
where an articulated train is shown traveling over a ballast bridge at a specific speed.
Equations of motion are defined for each subsystem, and their features are summarized
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Figure 5.7: Accuracy of the importance measure of each input factor using PCE, PCK, and Kriging model. The
bar heights show the mean and error bars represent ±1 standard deviation over 20 trials.

below.

The train is represented by a succession of individual vehicles, with each vehicle
consisting of one carbody, two bogie frames, and four wheelsets, treated as rigid bo-
gies. Each bogie is connected to two wheelsets through the primary suspension, and
the main body rests on two bogies via the secondary suspension. Both vertical and ro-
tational movements of the carbody (respectively, zc and θc ) and bogies (respectively,
zbi and θbi , i = 1,2) are considered. A rigid contact is assumed between the rail and
wheelsets. This results in 6 DOFs for each vehicle of the train and the displacement vec-
tor of a vehicle can be denoted as uv = [zc ,θc , zb1,θb1, zb2,θb2]′.

The railway track concerns a ballast track structure that includes a combination of
components, i.e., rail, pads, sleepers, ballast, and subgrade. The rail is modeled as an
Euler-Bernoulli beam, with each element having 4 DOFs in terms of vertical and ro-
tational motions. The remaining components are represented as layers of masses and
viscoelastic supports, which is a conventional simplification for modeling the dynamic
behavior of railway tracks [60]. The model used here is a three-layer track model. This
is recommended by UIC (International Union of Railways) [61] that specifies design re-
quirements for railway bridges with regard to train-track-bridge interaction phenomena,
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 ni = 10

Figure 5.8: Importance measure of the truss structure for different degrees of discretization.

as stressed in [62]. Depending on the particular bridge configuration, a bridge structure
can be accurately modeled by finite elements of solid, shell, and beam. For simplicity
and without loss of generality, this demonstration considers a simply supported bridge
meshed with Euler-Bernoulli beam elements.

Each subsystem is defined by a set of equations of motion, and their coupling can be
formulated in the following general matrix form [63],

Mg Üg +Cg U̇g +Kg Ug = Fg (5.23a)

where Mg , Cg , and Kg denote, respectively, the mass, damping, and stiffness matrices
of the global system. Ug ,U̇g , and Üg are the displacement, velocity, and acceleration
vectors of the global system, respectively. Fg is the global force vector. Their expressions
are given by

Mg =
Mv 0 0

0 Mt 0
0 0 Mb

 , Cg =
 Cv Cv t 0

Ct v Ct Ctb

0 Cbt Cb

 ,

Kg =
 Kv Kv t 0

Kt v Kt Ktb

0 Kbt Kb

 , Ug =
Uv

Ut

Ub

 , Fg =
Fv

Ft

Fb

 .

(5.23b)

where the subscripts v , t , and b denote respectively the train, track, and bridge subsys-
tems.

The coupled equations of motion, Eq. (5.23a), is solved by direct numerical integra-
tion with the Newmark-β method to obtain the dynamic responses of the subsystems
[59], corresponding to the design criteria considered in SA.
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Figure 5.9: Schematic representation of a train-track-bridge model.

5.4.2. CHARACTERISTICS OF INPUT FACTORS AND DESIGN CRITERIA

The variability space of input factors is defined to perform SA. This includes determining
parameters (that are subject to small deviations and thereby being treated as determin-
istic) and variables (that may have relevant non-deterministic properties that can lead
to a significant change in model response) in the TTB system. This case study consid-
ers the variability in factors related to the structural resistance and excitation source.
The former is relevant to the train, track, and bridge, while the excitation source focuses
on the effect of track geometry irregularities on the TTB dynamics. Table 5.3 provides
an overview of the random variables defined in the TTB system, along with their corre-
sponding probability distributions.

Trains exhibit significant variability in terms of their dimensions and properties, e.g.,
Eurostar [67], Manchester benchmark [68], VIRM trains [69], Koploper ICM and ICR car-
riage [70]. The ranges of variation for the properties of train catalogs are location specific
and have to be estimated according to the operating context in which the analysis is tak-
ing place. For demonstration purposes, the Manchester benchmark model is considered
here with variations in factors including the carbody mass (mc ), primary suspension
stiffness (k1), and secondary suspension stiffness (k2) (see Table 5.3). These are selected
according to [36], given the fact that the mass of vehicles varies depending on the oc-
cupancy rate of passengers and that the suspension stiffness shows variability during its
service life. The rest of the properties are treated as constants according to the bench-
mark model [68], as presented in Table 5.4. In the simulation, three successive vehicles
are considered.

Regarding the track structure, the variability of supporting components, namely, the
railpad, sleeper, and ballast, is high. The railpad and sleeper are often associated with a
wide range of design alternatives, while the ballast properties are very likely to change
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Table 5.3: Input random variables. Note: the fourth and fifth columns depend on the distribution type. For
Gaussian or lognormal distributed random variables, mean values and coefficient of variation (CV) are used.
For uniformly distributed variables, minimum and maximum values are used.

Variable Unit Distribution Mean or Min. CV or Max. Reference

Train random variables

Carbody mass factor - Lognormal 1 0.15 [36]

Primary suspension stiffness factor - Lognormal 1 0.1 [36]

Secondary suspension stiffness factor - Lognormal 1 0.1 [36]

Track random variables

Railpad stiffness (kp ) N/m Uniform 1e8 1.5e9 [64]

Railpad damping (cp ) N · s/m Uniform 1e4 7e4 [64]

Sleeper mass (ms ) kg Uniform 220 325 [35]

Ballast density (ρba) kg/m3 Uniform 1500 2100 [35]

Ballast elastic modulus (Eba) N/m2 Uniform 8e7 1.6e8 [35]

Ballast depth (hba) m Uniform 0.3 0.6 [35]

Ballast load distribution angle (αba) ◦ Uniform 15 35 [35]

Ballast damping (cba) N · s/m Uniform 4e4 2.8e5 [64]

Irregularity amplitude (Ir r ) 10−7 rad ·m Uniform 4.032 10.80 [65]

Bridge random variables

Concrete density weight (µ) kg/m Gaussian 69000 4% [35], [66]

Concrete elastic modulus (E) N/m2 Gaussian 35e9 8% [35], [66]

Structural damping ratio (c) % Gaussian 2 0.3 stdv. [35], [44]

Second moment of area (I ) m4 Gaussian 51.3 5% [45]

Table 5.4: Vehicle parameters.

Parameter Notation Value

Carbody mass mc 32000 kg

Bogie mass mb 2615 kg

Wheelset mass mw 1813 kg

Primary suspension stiffness k1 1220 kN/m

Secondary suspension stiffness k2 430 kN/m

Primary suspension damping c1 4 kN·s/m

Secondary suspension damping c2 20 kN·s/m

Distance between centers of car and bogie Lc 9.5 m

Distance between centers of bogie and wheel Lb 1.28 m

Full length of vehicle Lv 25 m

Velocity v 140 km/h

due to geometry issues and maintenance works. Therefore, they are more appropriately
described by bounding limits [71], i.e., uniform distributions shown in Table 5.3.

It is worth mentioning that for the ballast, it is not straightforward to find equivalent
properties to capture its behavior using the multi-layer track model (e.g., the present
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three-layer model). To this end, Zhai et al. [65], [72] proposed a ballast model to analyze
its vibration based on a hypothesis that the load transmission from the sleepers to the
ballast follows approximately a cone distribution. This model defines a function map-
ping between the input factors relevant to the ballast material properties and the output
regarding the equivalent parameter values for the ballast block used in the multi-layer
track model (see Figure 5.9). It has been validated against a field measurement [72] and
applied to relevant works (e.g., [35], [73]). For details of the mathematical formulation,
the reader is referred to [65], [72].

As shown in Table 5.3, the variability in ballast properties is considered, including
the density (ρba), elastic modulus (Eba), depth (hba), and load distribution angle (αba),
which are specified according to [35]. Then, the above ballast model is applied to de-
termine the equivalent parameter values for the ballast, namely, the vibrating mass of
ballast under a sleeper support (mba) and the corresponding support stiffness kba (see
Figure 5.9). The viscous damping coefficient cba is considered as a constant in [72].
Here, it is treated as a random variable referring to [35], [44] to cover the variability in
energy dissipation mechanisms. Besides, the ballast model also includes dimensions of
the sleeper support such as the sleeper spacing, Ls , to determine mba and kba . Since
the dimensions are normally better defined in design specifications, they are treated as
constants according to [72].

The rail is modeled as Euler-Bernoulli beam elements, whose behavior is defined by
the elastic modulus (Er ), moment of inertia (Ir ), and mass per unit length (µr ), as pre-
sented in Figure 5.9. Compared with the ballast, the properties of the steel rail are rela-
tively easy to determine from nominal design values, and the subgrade properties (ksb

and csb) are also better defined according to the required bearing capacity. These prop-
erties are therefore considered deterministic and the corresponding values are referred
to [72].

The properties of railway bridges are case-specific, and it is challenging to find a set
of properties that can be applied to describe large catalogs of bridge structures in gen-
eral. Herein, a 50 m long concrete bridge is considered, which refers to a specific case
reported in [74]. The reference work [74] also suggested the default parameter setting for
the bridge in the adopted TTB model [59]. Consequently, the total track length modeled
in the simulation is 110 m, including a 30-m approach, the 50-m bridge itself, and an
additional 30-m track section following the bridge. The mean values of bridge proper-
ties are first determined according to the selected case. Then, Gaussian distributions are
assigned to describe the variability of these properties, as reported in Table 5.3.

Track irregularities are deviations from the ideal track geometry that can significantly
affect the dynamic behavior of trains and structures. It is therefore essential to account
for their effect in the dynamic analysis of such systems. Random track irregularities are
often characterized by PSD functions, which describe the severity of track irregularities
as a function of the spatial frequencyΩ= 1/λ, where λ represents the wavelength in me-
ters. Various PSD functions have been developed by different railway authorities. Given
its extensive use in the field of railway engineering, the German track spectrum for the
vertical track profile is adopted with the PSD function defined as (e.g., [65]),
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Sv (Ω) = AvΩ
2
c(

Ω2 +Ω2
r
)(
Ω2 +Ω2

c
) , (5.24)

where the unit of Sv (Ω) is m2/rad/m; Ω is the spatial frequency; Ωr and Ωc are cut-off
frequencies, set to 0.0206 and 0.8246 rad/m, respectively. The magnitude of Av (unit:
m2 · rad/m) quantifies the track quality and varies between 4.032×10−7 and 1.08×10−6

to represents respectively the limit for low disturbance and high disturbance of track
irregularities. Here, the track quality is represented by a uniformly distributed random
variable within the range. The function considers wavelengths ranging from 3 to 150 m
(referring to EN 13848-5 [75] ranges D1-D3). To perform time-domain analyses, track
irregularity profiles are generated from Eq. (5.24) using inverse fast Fourier transforms
[76]. The random seed is fixed for each run to maintain consistency across simulations
and to specifically analyze the effect of track geometry quality on the TTB system.

The performance of the TTB system is controlled by four design criteria, namely
Sperling index (Wz ), vertical rail displacement (Ur ), vertical sleeper acceleration (As ),
and vertical deck deflection (Ud ), where the dynamic response of each subsystem is
accounted for to capture the overall level of vibration in the system. Of interest for
the present SA are the maximum values of the responses, which are relevant to the ex-
ceedance of a limit state, i.e., the occurrence of ‘system failure’, and therefore reflect the
most unfavorable condition of the system. While the remaining response quantities can
be obtained directly from the dynamic simulation, Wz is a synthetic index calculated
based on the carbody acceleration. This index measures the level of riding comfort and
details are provided below.

Trains are exposed to excitation from contact with the rail while running in the com-
plex operating environment, which is transmitted from the floor and seats to affect the
riding comfort of passengers. Comfort is a subjective feeling, and, because of this, sub-
stantial efforts have been made to transform vibration data (either from simulations or
measurements) into objective indices and associate the indices with subjective feelings
[47]. The severity of human exposure to the vibration environment is generally quanti-
fied by the weighted acceleration [77], in which the weighting function is incorporated
into the acceleration amplitude to reproduce the sensitive frequency range and reso-
nance strength of the human body. Sperling’s method (Wz index) [78] is one of the most
common methods for assessing passenger comfort on trains (e.g., [77], [79]).

In its original form, the Sperling index (for a certain frequency) is calculated as [78],

Wz = 0.896

(
A3

f
F

(
f
))1/10

, (5.25a)

where A is the acceleration amplitude (unit: m/s2); f denotes the corresponding fre-
quency (unit: Hz). F ( f ) is a frequency weighting function to represent the human per-
ception of the frequency range. Usually, a weighting function B( f ) is introduced, and Eq.
(5.25a) can be rewritten as

Wz =
(

A3B( f )3)1/10 =
(

AB
(

f
)3

)1/10
, (5.25b)

where AB
(

f
)

denotes the weighted acceleration at a certain frequency f .
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Considering the discrete signals in a whole spectrum, the total Sperling index can be
derived as [77],

Wz =
(

N−1∑
k=0

(AB (k))3

)1/10

, (5.26)

where N denotes the number of sample points in the considered spectrum.
Since the present model is based on time-domain analyses, the method in [77] is ap-

plied to convert the calculation process of Wz from the frequency domain to the time
domain. Note that there are several different methods to determine Wz , and the index
values are inconsistent due to differences in the algorithms used, sampling time, and fre-
quency sample interval. To circumvent this issue, Deng et al. [77] proposed the following
generalized form of Eq. (5.26),

Wz,m =
(

N−1∑
k=0

(AB (k))m

)0.3/m

, (5.27)

where m = 2 or 3, i.e., the second or third powers of the acceleration. A consistency check
was made between time-domain and frequency-domain analyses over different sample
times. It was found the results are stable only when the calculation of Wz,m is carried out
at m = 2 [77]. This leads to the following equivalent calculation of Wz in the time domain
[77],

Wz =
√√√√N−1∑

k=0
(AB (k))2

0.3

=
 1

N

√√√√N−1∑
n=0

(aB (n))2

0.3

, (5.28)

where aB (n) denotes the weighted time-domain acceleration sequence. It is determined
by a time-domain acceleration sequence and the corresponding weighting function. The
former is generated from the current model, and the weighting function H(s) for the
time-domain response at the time instance s is derived according to Parseval’s theorem,
which is given by [77],

H(s) = 0.59(0.0063s2 +0.2200s)

1.4836×10−4s3 +0.0070s2 +0.2488s +1
. (5.29)

5.5. RESULTS AND DISCUSSION

5.5.1. PCE REPRESENTATIONS OF THE MODEL OUTPUT
As the first part of the methodology, PCE models are constructed to approximate the
model output. This is implemented using the uncertainty quantification toolbox UQLab

[80]. Following the workflow in Section 5.3, an experimental design
{

x(ϱ),ϱ= 1, ..., N
}

with a fixed size of N = 3000 is generated using LHS. The choice of a relatively large
sample size aims to ensure the accuracy of the surrogate models, as SA is performed
around extreme values that may be omitted by global sampling approaches conducted
in a single step. When the ED is fixed (or not adaptive), the LHS technique has been
preferred in reliability applications due to its global representation of the input space
[81]. This aligns with the goal of surrogate modeling in this chapter, which is to develop
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a globally accurate surrogate model to approximate the original function and enable the
measurement of each input factor’s effect on the output.

The TTB model is queried at the sampled points to obtain the response quantities{
y(ϱ),ϱ= 1, ...,3000

}
. For a specific sample ϱ, the response vector is defined by y =

{Wz ,Ur , As ,Ud }′. The sample data is split randomly into training, validation, and test
sets with the respective percentage of 64%, 16%, and 20%, where for each design cri-
terion, ten iterations were performed and the resulting candidate surrogate models are
evaluated based on the test set using εg en (Eq. 4.11). Figure 5.10 compares the PCE pre-
dictions with the actual model evaluations at the test set, and εg en obtained from the
optimal PC approximation is indicated for each criterion.

(a) (b)

(c) (d)

Figure 5.10: Comparison of PCE with the actual model evaluation at the test set: (a) Sperling index Wz ; (b)
vertical rail displacement Ur (unit: m); (c) vertical sleeper acceleration As (unit: m/s2); and (d) vertical deck
deflection Ud (unit: m).

The PCE models are developed by varying the q-norm from 0.5 to 1 and the maxi-
mum degree p from 3 to 15. The one yielding the smallest εg en to predict Wz comprises
371 polynomial basis elements, with p = 15 and q = 0.5. By comparison, for the same
p, the size of full basis elements is 9081 when q = 0.5 and around 1.55×108 when q = 1.
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The index of sparsity, defined in [48] as the ratio of the number of elements in the sparse
representation to the full size of elements for the same p and q , is 371/9081 ≈ 0.041.
The small ratio indicates the computational gain that the sparse PCE can bring to the
sensitivity analysis, compared with the full PC representation.

The optimal sparse PCE for predicting Ur consists of 136 basis elements, with p = 15
and q = 0.5. It has an index of sparsity of 136/9081 ≈ 0.015. As for the response As

and Ud , the optimal PCE includes 223 and 442 elements, respectively, with the same
p and q as in the model for approximating Ur . The corresponding index of sparsity is
223/9081 ≈ 0.025 for As and 442/9081 ≈ 0.049 for Ud .

Additionally, the accuracy and efficiency of PCE are compared with the Kriging and
PCK models, which are presented in Table 5.5. The training of Kriging and PCK follows
the same methodology as described in Section 5.3. Ten independent runs are carried out
for each surrogate, and the one with the lowest relative generalization error εg en is cho-
sen for further comparison. Results from Table 5.5 indicate that PCE outperforms the
other approaches in terms of εLOO and function evaluation time. PCK performs slightly
better than PCE (with the same order of accuracy) for the relative generalization error
εg en of two response indicators (Wz and Ud ). Furthermore, PCE demonstrates signif-
icant computational efficiency compared to these approaches, which is advantageous
for conducting sensitivity analyses of large-scale engineering systems.

Table 5.5: Train-track-bridge system: comparing the performance of surrogate models to approximate Sperling
index Wz , vertical rail displacement Ur (unit: m), vertical sleeper acceleration As (unit: m/s2), and vertical
deck deflection Ud (unit: m). Minimum values are highlighted for each index (εLOO , εg en and average function
evaluation time). The time refers to a single evaluation of the function.

Response Surrogate Minimum εLOO Minimum εg en Average function evaluation time (s)

Wz PCE 7.13×10−6 2.92×10−5 0.0044

Kriging 5.00×10−4 5.09×10−4 0.1904

PCK 9.17×10−6 2.73×10−5 0.2168

Ur PCE 5.93×10−3 6.98×10−3 0.0039

Kriging 1.77×10−2 1.42×10−2 0.2037

PCK 7.18×10−3 9.17×10−3 0.2141

As PCE 1.74×10−3 3.06×10−3 0.0044

Kriging 5.62×10−3 5.92×10−3 0.1804

PCK 2.18×10−3 3.38×10−3 0.2003

Ud PCE 1.44×10−5 4.51×10−5 0.0074

Kriging 1.55×10−3 4.22×10−4 0.1967

PCK 1.59×10−5 3.77×10−5 0.2513

Note that the performance of surrogate models depends on various factors, such as
the shape and complexity of the function being approximated, the ED size, and the sam-
pling strategies employed (e.g., [82]–[84]). This chapter employs the PCE approach in the
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proposed sensitivity method, which allows us to efficiently capture the global stochastic
behavior of the system [58], [81] and measure the effect of input factors on the output.
The results from the truss example demonstrate that PCE performs particularly well with
limited ED sizes, which is advantageous when dealing with expensive models. However,
it should be noted that PCE is most effective for functions that can be well-approximated
by global smooth polynomials. In two engineering problems, it was observed that PCE
outperformed Kriging. Kriging is generally suitable for managing local variability of the
output [58]. This suggests that the functions involved show global smoothness rather
than (highly) local nonlinearity, thereby contributing to the better performance of PCE.

As mentioned earlier, this chapter uses LHS with a fixed ED to provide a global de-
scription of the input space. Instead of sampling the ED at once, it is possible to apply
adaptive or sequential sampling techniques to refine sampling in specific regions of in-
terest. This approach allows for a more efficient allocation of computational resources,
balancing the exploration and exploitation of the input space while constructing the sur-
rogate model. Note that in this case, the sampling is more focused on achieving accuracy
in the proximity of specific regions, depending on the degree of exploitation, rather than
aiming for a globally accurate surrogate model throughout the entire domain, which is
more exploration-based. The choice of sampling methods can depend on function com-
plexities. For functions with highly local nonlinearity, where the extremes are usually lo-
cal phenomena, a balance of exploration and exploitation of the input space would be
necessary. Considering that the functions in the current engineering problems demon-
strate global smoothness, LHS, which captures the global description of the ED, is con-
sidered suitable here.

5.5.2. RANKING OF INPUT FACTORS

The PCE models developed in Section 5.5.1 are employed to assess and rank the impact
of input factors on the variability of extreme responses. This evaluation is performed on
the original SA formulation presented in Section 5.2.1. The input factors are discretized
using an equal number of points. Similar to the discretization strategy discussed in Sec-
tion 5.3, a log-spaced discretization method is applied for factors with ranges exceeding
103. After evaluating various discretization options, ni = 100 is chosen for each factor
to balance the computational cost and the accuracy of sensitivity index values, which
is applied to all design criteria to ensure consistency in the comparison. Given that the
optimization of the function is performed at each point, the number of required opti-
mization problems is 1600 for a single criterion and 6400 if all criteria are considered.

For additional information, a comparison of the importance measures for criterion
Ur using different discrete points is provided in Figure 5.11. For smaller discrete points
(ni = 10 or 20), the importance measures provide a consistent ranking for factors that
collectively account for more than 99.58% of the variability of extreme Ur . Some devi-
ations in rankings are observed for factors cba and k1, Ir r and k2, with their individual
contributions to the response variability being at most 0.23% (factor cba when ni = 10).
From ni = 50 onwards, the rankings become stable for all the factors considered, indi-
cating that the default size of ni = 100 is sufficient for the current analysis of the TTB
system.

Further, the importance measures (see Eq. 5.5) of the input factors are compared



5

128 5. EXTREME-ORIENTED SENSITIVITY METHOD FOR RELIABILITY-BASED DESIGN

m c E I h b a k p E b a � b a c b a k 1 � m s c p � b a c I r r k 2
0 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

Se
ns

itiv
ity 

ind
ex

I n p u t  f a c t o r s

 n i  =  2 0 0
 n i  =  1 5 0
 n i  =  1 0 0
 n i  =  5 0
 n i  =  2 0
 n i  =  1 0

Figure 5.11: Importance measure of Ur for different degrees of discretization.

across responses Wz , Ur , As , and Ud , which are presented in Figure 5.12. The indices are
first presented in descending order for Wz . Then, different rankings regarding the rele-
vance of the factors are observed for the remaining criteria. The variability in carbody
mass (mc ) shows high relevance to all the criteria considered, indicating that the loading
magnitude plays a significant role in the vibration of the TTB system.

Specifically, the factors relevant to the vehicle (mc and k2) and track geometry quality
(Ir r ) contribute to most of the variability (about 99.47%) in the maximal Wz . Employing
the condition I E xt

i < 0.01 to sort out unimportant factors allows one to consider 13 out
of 16 input factors as unimportant when the design focus lies on the critical riding con-
dition that passengers may experience. This implies that those factors could be given
a deterministic value to reduce the model complexity without essentially affecting the
extreme response Wz . On the other hand, the above three factors are deserving of fur-
ther analysis or measurement to assign the appropriate values in the model for a more
accurate representation of the riding quality condition.

At the wheel-rail interface, more input factors are involved that have non-negligible
effects on the variability of maximal vertical deflection of the rail (Ur ). These are mc ,
E , I , hba , kp , Eba , and αba , with the first two being dominant and accounting for about
76.60% of variability in maximal Ur . The accuracy of these factors is of high relevance
to the quality of the extreme response Ur , which should be carefully defined if the rail
deflection is of concern in the design process.

For underlayers of the track structure, the variability of the maximal vertical sleeper
acceleration (As ) is significantly influenced by mc and kp (about 87.55%). Apart from
mc , the effect of the railpad stiffness kp can be explained by the fact that the railpads
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Figure 5.12: Comparison of sensitivity index of each input factor in terms of Wz , Ur , As , and Ud .

are elastic components introduced to the track structure. Stiff pads contribute to a re-
duction in noise and vibration from wheel-rail contact, while soft pads allow for a lower
effect of loads transmitted to underlayers and therefore mitigate damage and vibrations
to the sleepers and ballast [69], [85]. This indicates if the designer focuses on the criti-
cal condition of the supporting layers (for example, in the case of transition zones to the
railway bridges [86] where issues with settlement often exist), the values of mc and kp

should be chosen with careful consideration in the modeling process, especially for kp

since it often comes with a wide range of values and is also influenced by the frequency
and environmental factors such as temperature, preload, and aging [40]. If possible, a
more advanced model that captures the effect of those factors on the railpad properties
should be employed for a more accurate representation of the railpad behavior.

It can also be observed from Figure 5.12 that ms , as the only property relevant to the
sleeper in the modeling, plays a minor role (about 2.83%) in the variability of maximum
sleeper accelerations. Despite the common use of mass elements to represent sleepers
in railway structures (e.g. [60]), it may be inferred that, in the adopted TTB model, the
sleeper modeling might be over-simplified if the condition of track supporting layers is
of particular concern. Instead, beams or solids are alternatives to improve the modeling
of sleepers. This highlights the value of using SA based on extremes to validate models.

Track ballast provides a supporting layer to the sleepers, and it becomes reasonable
that the ballast properties (ρba ,Eba ,hba ,αba , and cba) play a relatively important role
in the sleeper response As . However, in Figure 5.12, the sensitivity indices of those fac-
tors with regard to As are more spread out with the individual importance measure no
greater than 5%. This distributed effect may be attributed to the ballast model [65], [72]
adopted in the dynamic analysis (see Section 5.4.2), where the five ballast properties
were aggregated into two equivalent parameters (mba and kba) that were actually used
in the dynamic simulation. It may become clear when measuring the total effect of the
ballast properties, which account for 9.10% of the variability in maximal As .
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The maximum deck deflection shows the highest sensitivity to the carbody mass (mc )
and bridge properties (E , I ,µ and c), which jointly accounts for almost all of the response
variability (about 99.99%). Specifically, factors E and I contribute about 52.51% of the
variability, which is physically reasonable, given the importance of E I in beam deflec-
tion. Therefore, it is important to carefully define these factors before performing dy-
namic analysis if the goal is to evaluate the bridge response.

Note that train speed is not considered a variable in the current SA. It is fixed in its
given value since the present work aims at evaluating the impact of input factors with
high variability on the extreme dynamic response, while the operational speed of the
trains is normally predefined with less uncertainty. The Kelvin foundation adopted in
the TTB model implies a limitation of the train speed to subcritical velocities. For speeds
that are above the critical velocity [87], dynamic amplification effects of the response
can be observed. This can cause significant changes in the extreme response surface
and therefore affects the result of SA.

5.5.3. IMPACT OF DESIGN THRESHOLDS

The threshold-based sensitivity analysis (Section 5.2.3) is applied in the TTB case. Figure
5.13 shows the threshold-based sleeper acceleration (Ãk

s ) for each fixed factor, consider-
ing all input factors for demonstration purposes. Figure 5.14 presents the threshold-
based response for the remaining criteria, specifically focusing on the most significant
input factors to maintain brevity.

In Figure 5.13, the thresholds are defined referring to [88], where sleeper accelera-
tions for the plain line are observed in the range of ±2g (g = 9.8m/s2, gravitational ac-
celeration). Accordingly, the thresholds of 1.5g ,2g , and 2.5g m/s2 are determined for
Scenarios 1, 2, and 3, respectively.

When As = 1.5g m/s2, it can be seen that only mc and kp cause changes in the re-
sponse curves (the solid red lines in the corresponding subplots), implying their critical
contributions to the exceedance of the current limit state. Guaranteeing either mc <
27500 kg or kp < 140 MN/m, the unfavorable system condition can be avoided. Note
that a combination of other insignificant factors may also influence the system reliabil-
ity state. The current SA aims at quantifying the univariate effect of input factors on the
model response near the limit states, while the joint effect will require further analysis.

In Scenario 2 (As = 2g m/s2), more input factors influence whether the reliable state
of the system can be attained, i.e., mc , kp , ms , Eba , hba , αba , and cba . Compared with
Scenario 1, mc or kp can take the value in a larger range without taking the risk of ‘failure’,
since the design threshold is less restrictive. However, when As = 2.5g m/s2, the maxi-
mal response is always below the threshold. In this case, none of the input factors are
considered important, as none of the combinations of the factors taking values in their
definition range will cause ‘failure’. From this, it is highlighted that the chosen threshold
has a substantial impact on the contribution of input factors (whether critical or not) to
the variability of the extreme model response.

Figure 5.14 shows the threshold-based response of the remaining criteria, focusing
on the factors that contribute to substantial changes in these curves. In Figure 5.14 (a),
the limits for Wz are defined according to rating scales of the Sperling index and the
response variability space from the ED (see Figure 5.10 (a)). Wz < 1 classifies the riding
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Figure 5.13: Threshold-based response surface of As for each fixed factor. Scenario 1 (red lines) with threshold

As = 1.5g m/s2 (dotted) and threshold-based response Ãs
1 (solid); Scenario 2 (blue lines) with threshold As =

2g m/s2 (dotted) and threshold-based response Ãs
2 (solid); and Scenario 3 (green lines) with threshold As =

2.5g m/s2 (dotted) and threshold-based response Ãs
3 (solid). In each scenario, the region above or below the

corresponding threshold indicates the failure or non-failure domain, respectively. This also applies to Figure
5.14.

condition as ‘Just noticeable’; 1 < Wz < 2 means ‘Clearly noticeable’. Wz = 1.56 defined
for Scenario 2 refers to the nominal value of the limit in [89]. In Figure 5.14 (b), the
limits for Ur are defined referring to [89], where a range between 0.00102 and 0.0025m is
considered for the vertical rail deflection. Accordingly, the thresholds of 0.0015,0.0020,
and 0.0025 m are determined for Scenarios 1, 2, and 3, respectively.

In Figure 5.14 (c), the thresholds for Scenarios 1 and 2 are determined based on the
response variability space obtained from the ED (see Figure 5.10 (d)). The threshold
defined for Scenario 3 refers to EN 1990 [90], which specifies the maximum permissible
vertical deflection for railway bridges based on factors such as the number of spans, span
length, train speed, and bridge configuration. For the current bridge case, Ud = 0.058 m
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Figure 5.14: Threshold-based response surface of (a) Wz , (b) Ur , and (c) Ud with regard to the most significant
factors.

is derived and defined as the decision threshold for Scenario 3.
Firstly, it is observed from Figure 5.14 that in Scenario 1 (the red lines), the response

surfaces consistently align with the corresponding thresholds for all the criteria. This
indicates that the design thresholds of these criteria can always be attained by a critical
combination of the variables, where none of the variables play an impeding role.

In Scenarios 2 and 3, deviations occur in the considered criteria. As shown in Figure
5.14 (a), the response surfaces in Scenario 2 (the blue solid lines) coincide with those
simulated in Scenario 3 (the green solid lines), and the maximum response values con-
sistently fall below the threshold for Scenario 2 (Wz = 1.56). This implies that varying
any factor within its range will not alter the system reliability state, as there are sufficient
margins between the actual extreme model response and the given threshold.

However, Figure 5.14 (b) demonstrates the significant influence of mc in determin-
ing the system reliability states (Ur = 0.0020 m and Ur = 0.0025 m). This observation
aligns with the sensitivity index shown in Figure 5.12, where mc alone accounts for about
65.13% variability of the maximum Ur . Besides, in Scenario 3, despite slight fluctuations
caused by numerical simulations, it is observed that the response curves of factors E and
I intersect with the threshold Ur = 0.0025 m, indicating their relevance in reaching the
corresponding reliability state.

In terms of the criterion Ud , the dominant factors indicated in Figure 5.14 (c) align
with those shown in Figure 5.14 (b). Specifically, in Scenario 2, varying the values in the
range mc < 37000 kg, E > 3.12× 1010 N/m2, or I > 50 m4 can guarantee the maximum
Ud below this threshold. In Scenario 3, there are always sufficient margins between the



5.6. CONCLUSIONS

5

133

maximum Ud and given threshold Ud = 0.058 m, suggesting that all the factors can be
considered as non-critical.

5.6. CONCLUSIONS
Sensitivity analysis provides an understanding of how a given model responds to
changes in its input factors, which allows for prioritizing the factors, reducing the model
dimensionality, calibrating the model, and evaluating the consistency between the
model input and output. Different types of methods have been developed for SA, where
the Sobol method is possibly the most prevalent form of global sensitivity method in
engineering applications. However, this method focuses on the average behavior of
the systems, which may not be sufficient for safety-critical structures where often limit
states and the corresponding extreme values of the response are of particular concern.

This chapter focuses on the extreme response that a structure can potentially expe-
rience. The ‘extreme’ can be interpreted as either the maximum (or minimum) [3] or the
response near a limit state (i.e., the threshold-based response). When a threshold is large
enough, the threshold-based response implies the maximum value of the response, and
vice versa. Therefore, the threshold-based response can be considered a generalized ex-
treme response. For this, an efficient method is proposed to evaluate the sensitivity of
the extreme model response to input factors, which extends the work [3] by incorporat-
ing the limit state design considerations in the formulation of extreme problems, i.e., the
so-called threshold-based sensitivity method.

Further, since the sensitivity method is optimization-based, which requires itera-
tively maximizing (or minimizing) the model to search for the extreme model response,
the computational cost involved in SA may become unaffordable in dealing with com-
putationally intensive models. To address this issue, the random model output is repre-
sented by PCE, in which the original expensive model is replaced by an approximation
that is faster to evaluate.

The method is applied to a dynamic train-track-bridge system. The sensitivity of the
maximum dynamic response is assessed while accounting for the existence of track ir-
regularities and uncertainty in the factors of the train, track, and bridge. Four design
criteria are defined to capture the overall level of vibration of the system. The result sug-
gests the high relevance of loading magnitude to all the criteria considered. However, it
also highlights that the relevance of input parameters can vary significantly across differ-
ent design criteria. This observation underscores the importance of exploring the design
space near limit states before formulating RBDO problems for high-dimensional mod-
els. By providing valuable insights into this particular space, the present method allows
for selecting appropriate design variables that align with the intended objectives, where
the dimensionality of the space is significantly reduced, thereby informing the definition
of reliability-based optimization problems.
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6
CONCLUSIONS AND FUTURE

DIRECTIONS

All models are wrong,
but some are useful.

George E. P. Box

This research is concerned with the degradation problems that are frequently en-
countered at transition zones in railway tracks. This issue has been known for a long
time, and the underlying degradation mechanism has been extensively studied in pre-
vious work. Typically, the investigations into these specific track areas involve (i) estab-
lishing field experiments to gain insight into the local track behavior, both transient and
long-term, and (ii) developing mechanistic models to analyze the dynamic behavior of
the track under moving vehicles.

The model development is often followed by assessing the efficacy of design counter-
measures on the studied sites. This typically involves a parametric study to analyze how
changes in the properties of track components, or the countermeasure itself, affect the
track performance. The performance is assessed through vehicle-track responses, such
as rail displacement, wheel-rail force, and energy dissipation within the substructure.
In most cases, parameters of interest are tested for an arbitrary range of values, with a
single or two variables studied at a time while the remaining variables are fixed. While
this approach facilitates understanding of the track behavior and the effects of param-
eter variations, it may overlook the potential interactions between variables and their
consequential impact on overall track responses. As a result, this straightforward ap-
proach may not necessarily lead to an optimal design, implying that the intended track
performance could only see partial improvements.

Parametric optimization provides a structured approach to improving the perfor-
mance of engineering systems, which is the focus of this research. Considering the typ-
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ical model characteristics used for analyzing the dynamic behavior of the track in tran-
sition zones, the goal of this research lies in the development of dedicated modeling
approaches to optimize the design of transition zones while addressing three main chal-
lenges. These include CH-1. improving the computational efficiency of the optimization
process, CH-2. embedding multiple design aspects, and CH-3. dealing with complexi-
ties arising from uncertainties and high-dimensional cases.

This thesis delivers four main research outcomes, which are illustrated in Figure 1.3
(revisited below for readability) and detailed in Section 1.4. The subsequent section
provides key findings and observations that emerged during the development process,
which are organized according to their corresponding chapters for coherence and read-
ability.

To develop dedicated modeling

approaches to optimize the design

of transition zones

Goal

Challenges

(i) Improvement in

computational efficiency 

Objectives

(i) To develop a vehicle-track model

Contributions/Outcomes

(ii) Embedment of 

multiple design aspects

(iii) Handling uncertainties

& high-dimensional cases

(iii) To develop a screening tool for 

reliability-based design

(ii) To formulate & solve optimization

problems with multiple design objectives

A sensitivity method focusing on system limit

states & corresponding design thresholds 

A design approach integrating engineering & 

managerial aspects in railway track design 

A simulation methodology integrating the FE

model & an adaptive surrogate modeling scheme 

An FE-based co-simulation approach for solving

vehicle-track dynamic interaction problems

Figure 6.1: Mind map of the thesis.

6.1. MAIN FINDINGS

CONCLUSIONS FROM LITERATURE RESEARCH (CHAPTER 2)
The thesis commences by providing a comprehensive review of studies related to tran-
sition zones in the railway track. This review bridges two distinct fields of research,
namely, dynamic analysis of track behavior under moving vehicles and modeling of track
geometry degradation. The main findings are summarized in the following.

• These two research streams essentially adopt different modeling approaches and
analyze at different scales. The dynamic behavior of the track at transition zones
is mainly evaluated using mechanistic modeling, which focuses on micro-level
investigations and relies on first principles to build a model. On the other hand,
modeling of track geometry degradation is generally led by a data-driven ap-
proach. This approach operates on a macro scale, following a sequential process
that starts with condition measurement to degradation modeling, and finally to
maintenance decision support.

• Two aspects can be distinguished in the mechanistic models, including short-term
performance evaluation and long-term settlement prediction. The short-term
analysis aims for a deeper understanding of the physical mechanisms driving
the degradation of the track in the vicinity of transition zones. The contributors
that are frequently reported and analyzed in existing studies are variations in
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mechanical properties (typically stiffness variations) and unloaded differential
settlement.

A key observation to note is that both factors contribute to degradation at transi-
tion zones, but the primary cause is not consistently clear and can be case-specific.
Some studies have evaluated the impact of both contributors and concluded that
differential settlement tends to be more critical than stiffness variations, where
an uneven settlement profile (either assumed or measured) is often the way of
incorporating differential settlement into the track models. However, a compre-
hensive assessment of settlement should ideally include a representation of the
viscoelastic-plastic behavior of the substructure layers. Without this, comparisons
made by simply imposing uneven profiles may not yield valid conclusions.

• The long-term analysis requires an iterative procedure that couples the transient
dynamic analysis with an empirical settlement equation. It is worth noting that
this approach has certain limitations, where many of the empirical equations are
extrapolated from specific sites and lack a foundation in constitutive properties.
This may hamper the ability to generalize the results to other sites of interest and
thus the accurate prediction of track settlement across different sites. Despite this,
the method is advantageous for railway track design. It allows for the compari-
son of the effectiveness of various countermeasures aimed at reducing differential
settlement at transition zones. This is because the empirical equations inherently
account for long-term effects, which mainly depend on the number of loading cy-
cles and or load magnitude.

• Data-driven models demonstrate better predictive capability on both spatial and
temporal scales, but the accuracy depends on the quality and quantity of historical
data. Unlike the mechanistic approach, which seeks to investigate the root cause
of degradation within the train-track system and contribute to a fundamental un-
derstanding of the underlying mechanisms at transition zones, data-driven mod-
els extend the field of knowledge by mapping relationships between track degra-
dation and exogenous factors. These factors include operational characteristics,
maintenance history, and environmental conditions. Additionally, the data-driven
approach can also establish statistical correlations with other types of track de-
fects.

From this, it can be concluded that the two categories of studies, while different
in their methodologies, complement each other in providing insights into differ-
ent aspects of track degradation. This points to the need for synchronized mod-
eling approaches and measurements for refined diagnosis of track conditions and
proper selection (including development) of maintenance techniques and design
solutions, thereby effectively mitigating degradation issues at transition zones.

METHODOLOGY FOR IMPROVING MECHANICAL PERFORMANCE (CHAPTER 3)
Significant attention is given to addressing challenge CH-1 during the model develop-
ment process. The implementation of the proposed methodology in level crossing de-
sign results in the following key findings.
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• Design solutions obtained from the single-objective optimization problems show
that force (F )-related design criteria in general suggest higher railpad stiffness than
the energy (E)-related criteria. This can be explained by the fact that stiffer rail-
pads contribute to reducing vibration from the wheel-rail contact, which is quan-
tified by the F -related measures. However, this may lead to a higher effect of loads
transmitted to underlayers, thereby causing vibration in sleepers and ballast, as
quantified by the E-related measures. Further, the minimal distance (reaching the
lower bound of the corresponding design variable) is generally preferred between
the structural interface and the adjacent sleeper.

• The choice of design criteria (as objective functions) is not always obvious.
The performance of two statistic metrics (i.e., the root mean square (r ms) and
maximum-to-minimum (max) value) is compared when solving single-objective
optimization problems. Results show that the max metric generally performs
better in terms of solution quality and sensitivity to parameter changes, making
it more suitable for parametric optimization purposes. From this, it can be con-
cluded that it is necessary to experiment with different objectives, which should
be part of the design exploration process.

• Observations from solving single-objective problems reveal the conflicting nature
of the objectives Fmax and Emax . This suggests the need for a multi-objective for-
mulation.

In addition, a comparison of the optimized objective function values in single-
objective and multi-objective cases was carried out. It was found that the Fmax

value in MOO surpassed the value obtained from the single-objective problem.
This result indicates the complexity and nonlinearity of the current objective func-
tion, which is simulated from the FE model. The solver can potentially get trapped
in regions with a local optimum, and in some instances, certain formulations of
objective functions, like the one used in the current multi-objective case (Eq. 3.19),
can yield better results.

• The previous remark sheds light on the selection of surrogate models in applica-
tions that involve vehicle-track dynamic simulations. This choice varies depend-
ing on how surrogate models participate in the optimization process. Essentially,
there are two ways to leverage the computational efficiency of surrogate models
in optimization. The first method involves substituting the original model with
the surrogate throughout the entire optimization process, as shown in Steps A-D
in Figure 1.2. The second method incorporates the surrogate as just one compo-
nent of the overall optimization process, where the solver interrogates between
the surrogate and the original model. To achieve this, an additional sub-step D’ is
introduced in the workflow, as seen in Figure 1.2.

For the first method to be employed effectively, an accurate surrogate in the entire
design space would be required. This becomes particularly important when deal-
ing with functions that exhibit nonlinear behavior, such as the one found in cur-
rent vehicle-track dynamic simulations. In these cases, surrogates that can better
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capture nonlinearities are more suitable, such as Kriging for handling local non-
linearities, and PCE for global nonlinearities.

The proposed methodology in this chapter adopts RBF as the surrogate model.
RBF has been chosen due to its relative simplicity and computational efficiency.
There might be concerns regarding the accuracy of RBF within this particular con-
text. However, it is worth noting that the second method (with step D’) is consid-
ered here, and the primary role of RBF is to guide the search towards promising
areas in the design space that may contain optimal values of the objective func-
tion. It is not intended to replace the original model. Therefore, this surrogate is
not necessarily to be accurate in the entire design space.

• The solution obtained from the multi-objective case shows a notable improve-
ment in the most relevant objectives (46.8% in Fmax and 47.8% in Emax ), com-
pared to the reference design. This is achieved with a predefined maximum num-
ber of function evaluations, set at 400.

The duration of an optimization process is based on the number of function eval-
uations. In surrogate-assisted optimization problems, termination depends more
upon the computational budget. Strictly speaking, this stopping criterion does
not guarantee convergence to an optimum, either local or global. However, this
is not to suggest that the surrogate-assisted methods are not useful. In practi-
cal engineering problems, finding improved solutions is often desirable regard-
less of whether or not they are strictly optimal. Here, the design solution from
the multi-objective case can be considered the best-known solution to support
decision-making in track preliminary design. While 400 function evaluations have
been assigned to obtain the solution, additional computational resources can be
allocated to the proposed methodology to search for potentially better solutions.

• The proposed methodology is focused on the formulation of surrogate-based
adaptive modeling in railway track design. It is demonstrated through a simplified
vehicle-track model, with the potential to incorporate more complex models in
terms of track configurations, structural elements, and track-soil coupling effects.
While a single simulation run of these models may require more computational
resources, the total computational costs of the entire optimization process, used
for repetitive calls of function evaluations, are expected to result in significant
savings. The reason is that the current methodology requires fewer function
evaluations than the common optimization methods used in the field of railway
engineering, such as genetic algorithms.

METHODOLOGY COVERING SOCIO-TECHNICAL RELEVANCE (CHAPTER 4)
This chapter focuses on addressing challenge CH-2, emphasizing the importance of in-
tegrating engineering and management practices in the design process of railway tracks.
The following points highlight the main observations from the development and imple-
mentation of the proposed design approach in the level crossing case.

• Design solutions obtained from both single- and multi-objective problems indi-
cate that softer railpads (in the ballast track) and strips (in the embedded rail sys-
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tem) are recommended at the junction between the level crossing and transition
zone.

However, the single- and multi-objective cases show a large deviation in terms of
optimal solutions for sleeper parameters (xs and xn). This is because these vari-
ables directly impact the objective of construction costs (Ccap ), which conflicts
with the other objectives (Emax and Amax ).

• Comparative analysis of optimized objective values across different single- and
multi-objective cases reveal that the objective Amax shows limited sensitivity to
parametric variations. This could potentially be attributed to the omission of track
geometry irregularities within the simulation, despite these irregularities being a
significant source of disturbance to the carbody accelerations (Amax ). The con-
sideration here is that if a prescribed track geometry were incorporated as input in
the vehicle-track simulation, the design variables would be optimized to that spe-
cific irregularity profile. However, the goal here is to design a transition zone that
mitigates the impact of stiffness variations, i.e., focusing on the initiation phase of
degradation.

• Energy dissipation in the substructure (Emax ) is used to quantify the suscepti-
bility of a track design to the expected degradation. This assessment is relative,
serving as a tool to compare various track design solutions under the effect of
parametric variations. However, it is worth noting that for absolute quantifica-
tion of long-term degradation, a 3D representation is required, one that accounts
for the complex behavior of ballast and interaction between the track and soil.
The proposed design method is generic and can be adapted to incorporate these
specifics. However, modeling such details would significantly increase compu-
tational costs. Therefore, a tradeoff between solution quality and computational
affordability would be necessary in the design exploration process.

• This chapter lays out a methodological basis to incorporate socio-technical per-
spectives with stakeholder preferences into the decision-making process of rail-
way track design. It formulates optimization problems by synthesizing three de-
sign objectives that are relevant to infrastructure managers, train users, and main-
tenance service providers. The objective functions embody design intents that
provide a basis for design improvement. As more data becomes available, design
perspectives can be extended to include more specific economic implications. It
also allows for the consideration of environmental effects, such as carbon emis-
sions in production. Based on the design specifications and physical limitations,
these aspects can be addressed either as individual objectives and constraints, or
integrated into both functions.

EXTREME-ORIENTED SENSITIVITY ANALYSIS (CHAPTER 5)
This chapter focuses on addressing challenge CH-3 through the development of a
sensitivity method. This method is designed to focus on the part of the output space
that yields failure, making it closely aligned with the formulation of reliability-based
design optimization. Some insights gained from the development and application of
the method are discussed in the following.
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• Literature review has pointed out an important aspect of sensitivity analysis in the
context of vehicle-track models. The most commonly used approach for study-
ing these models has been the local sensitivity analysis, often referred to as ‘One
At a Time’ analysis, as mentioned in Chapter 5. However, this approach may not
provide reliable results when the model contains nonlinear terms. These nonlin-
earities can be associated with factors such as wheel-rail contact, and the behavior
of railpads and ballast. It is therefore necessary to carefully consider these factors
while conducting sensitivity analyses in vehicle-track models.

• The threshold-based sensitivity method is applied to a train-track-bridge system.
This is because the ultimate and serviceability limit states of railway bridges are
clearly defined for design purposes in EN 1990 [1] and supporting literature. Four
design criteria are defined to capture the overall level of vibration of the system.
The sensitivity of the maximum dynamic response (of each design criterion) is as-
sessed while accounting for the existence of track irregularities and uncertainty in
the factors of the train, track, and bridge. The result suggests the high relevance of
loading magnitude to all the criteria considered.

However, the relevance of input parameters can vary significantly across different
design criteria. This highlights the importance of exploring the design space near
limit states before formulating reliability-based optimization problems for high-
dimensional models.

• From the case study, it is highlighted that the chosen threshold has a substantial
impact on the contribution of input factors to response variability. For this reason,
the thresholds that determine the system limit states should be carefully defined
in both sensitivity analysis and engineering optimization.

• The current sensitivity method can be used either as a standalone process or can
be integrated with surrogate modeling to alleviate computational costs in sensi-
tivity evaluation. Here, PCE is incorporated into the methodology. The random
model output is represented through a PC approximation which substitutes the
original model with an approximation that is faster to evaluate.

While implementing the method into several examples, it was found that the per-
formance of surrogate models depends on various factors, such as the shape and
complexity of the function being approximated, the ED size, and the sampling
strategies employed. The PCE approach allows us to efficiently capture the global
stochastic behavior of the system and measure the effect of input factors on the
output. The results from the truss example demonstrate that PCE performs par-
ticularly well with limited ED sizes, which is advantageous when dealing with ex-
pensive models.

However, it should be noted that PCE is most effective for functions that can be
well-approximated by global smooth polynomials. In two engineering problems,
it was observed that PCE outperformed Kriging. Kriging is generally suitable for
managing the local variability of the output. This suggests that the functions in-
volved show global smoothness rather than (highly) local nonlinearity, thereby
contributing to the better performance of PCE.
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6.2. LIMITATIONS AND FUTURE DIRECTIONS
Based on the conclusions of this research, the following section outlines the limitations
and provides recommendations for future work.

STIFFNESS VARIATIONS AND DIFFERENTIAL SETTLEMENTS

The stiffness variation and differential settlement are the main causes that lead to the
degradation in transition zones. The methodologies proposed in this research are pri-
marily designed to address the first cause - variations in track support stiffness. The goal
is to smooth these variations along the railway line, thereby mitigating the impact they
have on track degradation.

The differential settlement can be viewed from two perspectives: (i) the static change
or (ii) the development process.

(i) The static change represents the resulting irregularities in track geometry from the
settlement mechanism in the ballast and underlying layers. As presented in Eqs.
3.14 and 3.15, the current vehicle-track model can incorporate these irregularities
in the simulation. Such irregularities can be inferred from track geometry mea-
surements or simulated from predefined power spectral densities provided by rel-
evant railway authorities.

However, it should be noted that the condition of track geometry is location spe-
cific. Given this concern, the transition zone has been designed without irregu-
larities in track geometry, approximately representing the situation when a line is
open to traffic. As previously mentioned, the underlying idea is that if a prescribed
track geometry were incorporated as input in the vehicle-track simulation, the de-
sign variables would be optimized to that specific irregularity profile.

While the present focus lies on the development of the design methodology, future
applications can adapt the track geometry condition to match the specific appli-
cation context.

(ii) The development process introduces temporal aspects that include dynamic and
static forces, as well as cyclic loading and their interactions. A comprehensive un-
derstanding of these factors is critical for accurate modeling of settlement mecha-
nisms within the track structure, particularly in the ballast and soil layers. Further-
more, integrating models that account for track-soil interactions and the nonlinear
behavior of the ballast represents a promising direction for future research.

On the other hand, incorporating such detailed models entails additional com-
putational costs. This consideration is particularly relevant for the proposed
surrogate-based methodology, which is expected to achieve more significant
computational savings. This is because the duration of optimization is deter-
mined by the number of function evaluations, and the current methodology
requires fewer function evaluations compared to the optimization methods
commonly employed in railway engineering (e.g., GA).

An additional concern when introducing these detailed models is to clarify the
design principle before implementing the proposed methodology. This principle



6.2. LIMITATIONS AND FUTURE DIRECTIONS

6

149

should specify whether the aim is to mitigate the impact caused by stiffness vari-
ations, differential settlements, or both. For instance, when tracks are laid on soft
soils, it becomes necessary to address the effects of differential settlements within
the design process. This requires a comprehensive analysis of both static and dy-
namic aspects. Such an approach not only aids in mitigating transient dynamic
impacts but also ensures that the track design is robust against the long-term set-
tlement effects.

SIMPLIFICATION OF THE VEHICLE-TRACK MODEL

The current vehicle-track model has certain limitations, the first of which ties back to the
previous remark. The ballast and underlying substructure are modeled by the Kelvin-
Voight elements, assuming a constant damping parameter. Although this representa-
tion can describe the elastic resistance and damping provided by the layers supporting
the sleepers during train passage, more accurate quantification of energy dissipation in
these layers requires a 3D representation that accounts for track-soil interactions and
nonlinear material behavior.

It might also be advantageous to use a 3D model for the embedded rail system. This
system provides homogeneous and continual rail support, which can be distinguished
from conventional ballast tracks. This configuration allows for a more even distribution
of wheel loads, which further influences the vehicle-track dynamics in all three dimen-
sions. Moreover, implementing trackside measurements is considered necessary to gain
more insight into the dynamic amplification phenomenon that arises from the structural
discontinuity between the ballast track and the embedded rail system. This also holds
relevance for field validation of the co-simulation approach and for assessing the design
outcomes derived from case studies.

In the demonstration cases, it is assumed that the vehicle remains in contact with the
rail, following the VTI dynamics simulation approach in [2]. For future research lines, it
is advised to incorporate more refined representations of the wheel-rail contact mech-
anisms and to address potential instances of the pitch motion of bogies (and the upper
carbody) in the dynamic simulations. These refinements are particularly relevant to the
consequences of differential settlements at transition zones, as visualized in [3].

While implementing the Newmark-β integration scheme, a fixed time step of 0.001s
was chosen for the simulations used in the optimization process. It can be beneficial to
implement adaptive time-stepping techniques, where the time step is adjusted dynam-
ically based on the system behavior or design alternatives during the simulation (and
optimization). This allows for finer resolution in regions where more detail is needed
(e.g., high-frequency content) while optimizing both accuracy and computational effi-
ciency.

The development of the vehicle-track model raises a concern regarding the bench-
mark studies to evaluate the models that simulate dynamic vehicle-track interactions at
transition zones. Although many researchers are dedicated to developing increasingly
complex numerical models in this field, there seems to be a lack of benchmark work that
coordinates efforts and allows for comparison between different model formulations.

These models primarily focus on understanding the underlying mechanisms. How-
ever, as demonstrated by this research, they are also fundamental for other engineering
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tasks, such as design optimization, sensitivity analysis, reliability analysis, and uncer-
tainty quantification. It is therefore recommended to conduct relevant benchmark stud-
ies. Previous research on switches and crossings [4], [5] highlights the potential benefits
of such analyses. The benchmark studies would not only further the development of
vehicle-track models for transition zones but also benefit the broader research commu-
nity and practical engineering applications.

VALIDATION OF DESIGN SOLUTIONS

A post-optimality study is necessary to validate and interpret the design outcomes from
case studies. This can be done by evaluating the final design solution(s) in higher fidelity
models or by field experiments. At the same time, the effect of the stopping criterion, the
maximum number of function evaluations, on the quality of the solutions can be further
investigated.

The optimization problems formulated in this research are based on information
gathered from existing literature and system specifications (e.g., the embedded rail sys-
tem). For future applications or extensions of the proposed methods to specific tran-
sition zones, data collection efforts are directed to geotechnical information (e.g., the
presence of soft soils under the tracks), specifications of track components, and cost
information (both for construction and maintenance; if such data is not available, ref-
erences from similar projects can also be useful). This data collection process would re-
quire collaboration among researchers, infrastructure managers, system providers, and
maintenance contractors.

In addition, this research applies the min-max approach to accommodate stake-
holder preferences in railway design problems. This approach, a classical form of a
priori methods, is chosen to lay a methodological basis for integrating socio-technical
perspectives (reflected in multi-stakeholder preferences) into railway track design. This
approach focuses on the ‘individual utility’ or the single objective causing the largest
deviation from the ideal point (in this context, the preference score of 100). Each stake-
holder is treated individually, resulting in a design solution where all stakeholders are
equally distant from the score of 100, thus achieving a compromise solution.

As a way forward, the current solution method can be extended with other preference
handling methods, such as the IMAP method in [6] that focuses on the ‘group utility’.
This method aggregates preferences, interlinking all stakeholders and maximizing their
group-wise preferences in the decision-making process. It is worth noting that the de-
sign outcomes may vary when using different preference handling schemes. This neces-
sitates presenting those outcomes (i.e., the design alternatives) back to the stakeholders
for validation and selection of the final design that best meets their requirements and is
also technically feasible.

SENSITIVITY ANALYSIS AND SURROGATE MODELING

The case studies of sensitivity analysis use Latin Hypercube sampling with a fixed ED
to provide a global description of the input space. Instead of sampling the ED at once,
it is possible to apply adaptive or sequential sampling techniques to refine sampling in
specific regions of interest. This approach allows for a more efficient allocation of com-
putational resources, balancing the exploration and exploitation of the input space while
constructing the surrogate model. Note that in this case, the sampling is more focused
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on achieving accuracy in the proximity of specific regions, depending on the degree of
exploitation, rather than aiming for a globally accurate surrogate model throughout the
entire domain, which is more exploration-based. This choice of sampling methods can
depend on function complexities. For functions with highly local nonlinearity, where the
extremes are usually local phenomena, a balance of exploration and exploitation of the
input space would be necessary.

The current sensitivity method is generic and can be extended to accommodate dif-
ferent surrogate models. By using PCE, the focus is limited to functions that can be
well-approximated by global smooth polynomials. Future work would be required to
explore alternative approaches to handle functions with highly local non-smoothness or
nonlinearity. For example, more involved versions of PCE, such as Stochastic Spectral
Embedding, can be explored to fit the PCE in subdomains and capture local nonlin-
earities. Another extension of the method involves conducting a benchmark study to
investigate the connection among function properties (dimensionality and complexity),
types of surrogate models (and solvers), the ED size, and sampling schemes.

In addition to this, the present method examines the univariate effect of input fac-
tors on the extreme or threshold-based response, where the components of the input
vector are independent. A potential avenue for future work could be to incorporate the
dependence between input factors into the sensitivity analysis.
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