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A Traction Substation State Estimator for
Integrating Smart Loads in Transportation Grids

Without the Need for Additional Sensors
Ibrahim Diab , Member, IEEE, Gautham Ram Chandra Mouli , Member, IEEE,

and Pavol Bauer , Senior Member, IEEE

Abstract— Public electric transport grids tend to be oversized
and underutilized. Therefore, they can become sustainable
and multi-functional backbones to the city AC grid by
integrating smart grid elements into their infrastructures.
However, integrating smart grid loads and renewables requires
a large array of wirelessly communicating sensors across the
traction substations, the smart grid components, and each vehicle
of the transport fleet. This can be both costly and technically
complex. This paper proposes an analytical state estimator that
can predict vehicle traffic count and spare power capacity under
a traction substation without the use of any additional sensors.
The estimator uses existing, locally available measurements at any
power node on the traction section to inform the decision-making
of the power management scheme at that node. Validating the
results with up to 100000 stochastic test simulations of a verified
traction grid model, up to 76% of the monitored conditions
were detected, with no false positives, and without the need for
additional sensors and wireless communication.

Index Terms— Modeling, power management, smart grids,
state estimators, transportation.

NOMENCLATURE

αn, βn, γn Terms of the general solution for the node
voltage.

1Vreal Real voltage drop without simplifications
(impedance calculation).

1Vn Change in voltage of node n.
ϵR, ϵp Simple and propagated errors from the line

impedance simplification.
0 Product of node power and line impedance.
Î Peak current expected from a node.
λ, l1, L Length fragments use for impedance

calculation.
Rσ Real impedance value between the substation

and the node (no simplification).
φ Normalized position with a paralleled section

(impedance calculation).
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ρ Line impedance in �/m.
A Area of zones used in the cone calculation.
C Count of desired cases used in the cone

calculation.
N Number of nodes present on a section.
p Number of parallel lines (impedance calcula-

tion).
P∗ Desired spare capacity
Pr Rated substation capacity

Pspare

∣∣∣∣
n=1

Spare capacity when the node of interest is the
first node (closest to the substation).

Rσ , Pσ Node states when the node is single (alone).
RM, IM,
VM, PM Measured node states.
t Time.
Vσ , Iσ Expected node states when the node is single

(alone).
VN2F N2front voltage threshold signaling at least

three nodes on the section.
VP* Node voltage threshold for spare capacity P∗.
Vs, Is Substation nominal voltage and substation

supplied current.
VU, VL Upper and lower voltage thresholds (cone).
VZP Voltage at the zero spare capacity line.
vk, v̂ Node velocity and maximum velocity.
Vk,0, Vn,0 Initial voltage value for nodes k (all nodes

but the node of interest n) and for node n,
respectively.

Xk,0 Initial voltage value for nodes k (all nodes but
the node of interest n).

I. INTRODUCTION

A. The Integration of Smart Loads in Transportation
Networks

URBAN electric public transport networks have tremen-
dous potential for providing more smart loads by

integrating these into their infrastructures [1], [2], [3], [4], [5],
[6], [7], [8]. This is because these grids are historically sized
for the worst-case power demand scenarios and can be better
utilized by smart loads and proper power management [9]. The
infrastructure of these grids is made up of sections typically
1-2 km in length, fed by rectifier traction substations. Since
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the accelerating vehicles (tram, trolleybus, etc.) can consume
up to 3-5 times the load of a driving vehicle [1], [6], [7], [10],
[11], [12], [13], the rectifier traction substations are oversized
to cater to the rare possibility of a few unscheduled vehicles
accelerating together under the supply zone of one substation.
On the other hand, vehicle timetabling creates infrequent
vehicle traffic under each traction substation, leaving large
amounts of unused reserved grid capacity.

Many works are already rethinking these transport networks
as multi-functional, active grids by integrating into them
renewable energy sources (RES), storage systems, EV charg-
ers, more sophisticated vehicle fleets (like In-Motion-Charging
trolleybuses), and other smart loads [2], [3], [4], [5], [11], [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27]

B. The Need for a Traction-Grid State Estimator

Despite having an underutilized spare energy capacity,
traction grids can frequently have short periods of power
congestion problems. These moments should be considered
when integrating smart loads such as EV chargers so as not
to violate the traction substation power rating, maximum line
current, or minimum line voltage limitations.

Consequently, tapping into the unused capacity of these
grids requires intelligent power management schemes and
ample information on the traction grid state. These systems
are even more complex because the loads constantly vary
not only in power demand but also in location, which
can affect the line voltage, transmission power losses, and
line currents. Therefore, gathering the necessary grid state
information requires a large array of wireless communication
sensors communicating between themselves, with the traction
substation, and with a local data processor for each grid supply
zone.

Prediction models are, of course, not a new topic. The most
common of these methods is the Kalman Filtering [28], which
is a set of mathematical equations for estimating the state of a
discrete-data controlled process from measurements that are
typically noisy via a recursive computational methodology.
Given its recursive nature, Kalman Filtering is not suited
for estimating the traffic and spare power conditions of a
galvanically isolated transport grid section as each instant of
the system is not dependent (read: predictable) on its previous
iteration. For example, a vehicle can suddenly brake at a
traffic light or exit the substation supply zone, creating a
traffic and power demand situation that is not necessarily
predictable from its previous states. In more mathematical
terms, there is no information to be confidently inferred from
a state derivative. Moreover, Kalman Filters assume linearity
and Gaussian distributions for both the system dynamics and
measurement noise, which is not an assumption that can be
afforded in stochastic traction networks that run with urban
traffic. Finally, the models are typically linear and require large
memory space for storing the covariance matrix.

Other methods, such as Artificial Neural Networks [29],
are inspired by the structure and function of the human
brain, designed to recognize patterns and relationships in data.
However, these methods are computationally and resource

Fig. 1. The (possible) layers of the grid state estimator presented in this paper.
Both the computational complexity and yet also the grid state information
increase as the user decides to include more layers from bottom to top.

(data) intensive. They also need a comprehensive and well-
distributed set of data for the training, and the overfitting
that can come from this is a consequence of their black-box
approach.

While other methods can be more analytical, such as in
[30], [31], [32], they again are not suited for traction grids
in particular as they struggle with changes to the system (for
example, adding an EV charger or change in bus scheduling),
scalability, and overfitting. There is then a need for a grid state
estimator for traction grids that does not adopt a black-box
approach and is both computationally simple and scalable.

C. The Proposed Grid State Estimator

Conveniently, some information is already available at each
node (vehicle or smart load) because of the smart protection
systems (e.g., measurements of overhead connection point
voltage, current, and node power) and of vehicle live position
sensing (GPS tracking for user apps, for example).

This paper aims to use only the already-available local data
at a power node to estimate the traction substation’s state
and the number of other nodes present on the same traction
grid section. This state estimation can be then used to better
manage and integrate smart loads and renewables into traction
networks and render them more sustainable, better utilized,
and multi-functional.

Figure 1 explains the layers of the grid state estimator
presented in this paper. Both the computational complexity
and yet also the grid state information increase as the user
decides to include more layers from bottom to top.

D. Paper Contributions

The paper offers the following contributions:
1) A traction grid state estimator able to estimate the

number of nodes (traffic) present on a traction grid
supply zone without the need for additional sensors or
wireless communication among them

2) A traction grid state estimator to estimate the instanta-
neous power load demand on a traction substation to
find the spare grid capacity for the power management
of smart grid components in transport grids, without the
need for additional sensors and wireless communication
among them

3) A proposed methodology for estimating the node order
on a traction grid supply zone to detect the presence of
a node between the node of interest and the substation
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without the need for additional sensors and wireless
communication among them

4) A list of proposed applications of the proposed traction
grid state estimator for the power management of smart
loads in traction grids

E. Paper Structure

This paper started by motivating the need for the
proposed traction grid state estimator. Section II explains
the methodology used for testing the sets of equations and
conditions that make up this estimator.

The first of these sets is presented in section III with the
V-sigma condition that allows the detection of the presence of
more than one power-consuming node on the studied supply
zone (for example, more than one vehicle).

Section IV presents the N2-front used to detect the presence
of more than two power-consuming nodes (for example, two
vehicles or a vehicle and an EV charger in operation).

Section V presents the N3-region, which can be used to
detect the presence of more than three nodes and to reason
the node order (which node is closer to the substation).

The node order has an application in Section VI that more
generally details the method for estimating the traction grid
spare capacity.

Then, section VII offers a set of stochastic simulations to
validate the proposed methods in this paper.

Beyond the theoretical investigations in this paper, Sec-
tions VIII and IX propose a number of extensions and power
management applications of this estimator for smart load
integration in traction grids, and finally, section X closes with
conclusions and future works.

II. METHODOLOGY

A. Designed Test Conditions for the Stochastic Simulations
in This Paper: DTC

While the estimator offered in this paper can be extended
to any traction network, the examples and validations given to
the developed theory here will study trolleygrid scenarios for
the sake of an example.

Unless otherwise stated, the examples and validation cases
in this paper use the here-defined Designed Test Conditions
(DTC) based on the trolleygrid of Arnhem, the Netherlands
(explained in [1]). These conditions are:

• A constant traction substation of 700V nominal voltage,
Vs with a rated power capacity, Pr, of 800kW and a
negligible length of the substation feeder cable, connected
at the start of the section

• A standard overhead line of 0.172�/km, paralleled (also
known as equipotential lines) in sets of 2 [1], [10], [11]

• A section of 1200m with nodes (bus, storage, etc.) always
in load mode, between 0 and 300kW

• The maximum operating conditions are defined as a
node drawing 500A and moving at a speed of 15m/s
[1], [2], [10]

Furthermore, the scenarios studied in this paper are presented
with line diagrams, of which the legend is in Figure 2:

• A (green) substation node of known nominal voltage and
position at the start of a traction section

Fig. 2. Legend for the diagrams of the designed scenarios.

Fig. 3. The case of a single node at a known distance from the substation.

• A node of interest (orange) at a known distance and
operating conditions. This is the node that is assumed to
be using the estimator and has measurements of voltage,
power, current, and position

• Other possibly present nodes (dashed circles with a
question mark) at an unknown distance(s). These nodes
can either be at unknown operating conditions (white)
or assumed to be operating at maximum operating
conditions (purple). If a node is already known to be
present on the section, regardless of the information on
its operational condition, it does not have a question mark
in its representation

B. Traction Grid Calculation Model

The numerical simulations used in the examples and
validations of this paper use a peer-reviewed and verified
trolleygrid model detailed in [1], validated with data from the
trolleygrid of Arnhem, the Netherlands. The model is based
on the forward/backward sweep numerical method.

III. THE N >1 CONDITION

A. Case of a Single Node on the Section (N=1)

Assume a node of interest alone on the section, at a known
distance from the substation, that can be expressed by an
overhead impedance of Rσ (Figure 3). The substation voltage
is Vs. Since the work in [1] has already verified that the line
impedance can be assumed as purely resistive in steady-state
calculations, it can be said that:

Vσ = Vs − Rσ Iσ = Vs − Rσ

Pσ

Vσ

(1)

where Vσ , Iσ , and Pσ are the voltage, current, and power of
the single node, respectively. Which, when multiplied by Vσ ,
produces a quadratic equation, the solution of which is

Vσ =
Vs +

√
V 2

s − 4Rσ Pσ

2
(2)

This equation serves as a general definition of Vσ as the
voltage at a node of interest when it is -or would have been-
alone on a section. This definition can also be written as

Vσ
1
=

Vs +
√

V 2
s − 40σ

2
(3)

where 0σ is defined as

0σ
1
= Rσ Pσ (4)
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Fig. 4. Nomenclature of the variables used in the analysis of the error caused
in the voltage calculation by the equivalent parallel impedance assumption.

This alternative form is useful for later derivations in this paper
when re-arranging Eq.3 so that 0σ can be written in terms of
the grid parameters as:

0σ = Vσ (Vs − Vσ ) (5)

B. The Nodal Voltage Estimation Error Caused by the
Equivalent Impedance Approach to Parallel Lines

It is important at this stage to re-visit an implicit assumption
made at the beginning in calculating the equivalent overhead
line impedance, Rσ , by using a lumped impedance of the
overhead feed and return line and the parallel overhead lines.
The parallel lines (also called equipotential lines) are the
paralleling of the sets of overhead feed and return cables to
reduce the overall impedance by creating more paths for the
current. The work in [1] flags the potential error from the
lumped calculation approach and invites further investigation
of it here.

Assume a trolleygrid section with p parallel lines, connected
every λ meter (see Figure 4). The line resistance per unit
length is ρ in �/m. A power-consuming node is alone on the
section and at a position l1 between two consecutive parallel
lines after a distance L of an integer multiple of paralleled
portions. In simpler words, the node is at L + l1 meters from
the substation. The substation is at voltage Vs, and the node
is drawing a current Iσ .

For better readability in the following derivations, define the
normalized bus position within a paralleled section, φ, as:

φ
1
=

l1
λ

(6)

Without the lumped equivalent-impedance assumption, the real
voltage drop, 1Vreal, between the substation and the node is

1Vreal = 2ρ

[
φλ

(
p − φ(p − 1)

p

)
+

L
p

]
· Iσ (7)

And the actual equivalent resistance between the node and the
station, defined here as Rσ , is given accurately by the term:

Rσ = 2ρ

[
φλ

(
p − φ(p − 1)

p

)
+

L
p

]
(8)

Meanwhile, the simplified equivalent resistance between the
station and the node, Rσ , is given by:

Rσ ≈ 2ρ

(
L + l1

p

)
= 2ρ

(
L + φλ

p

)
(9)

The error in the resistance value, ϵR, caused by the
simplification in the resistance can be therefore quantified as:

ϵR
1
= Rσ − Rσ = 2ρ

(
p − 1

p

)
φ(1 − φ)λ (10)

Fig. 5. The voltage computation error, ϵp, as a function of the normalized
bus position within a paralleled section, φ, for a different number of
paralleled lines, p. Each curve looks at a different scenario with L going
from 0 to 1200m, λ from 100 to 300m, and the remaining variables at DTC.

Moreover, the sensitivity of the nodal voltage to the node
impedance value is given by the partial derivative

∂Vσ

∂ R
=

−Pσ√
V 2

s − 4Rσ Pσ

(11)

Thereby, the error, ϵp, inflicted on Vσ by an error in the line
resistance calculation can be quantified by the Propagation of
Errors method [33] as:

ϵp =

∣∣∣∣∂Vσ

∂ R

∣∣∣∣ · ϵR = 2
(

p − 1
p

)
ρλφ(1 − φ)Pσ√

V 2
s − 4Rσ Pσ

(12)

The above Eq.12 provides an estimate of the calculated voltage
error expected as a function of Pσ as most of the terms in
the equation are constant and known for a grid. Of course,
the built infrastructure can sporadically differ from the design
parameters because of constraints such as intersections and
power pole positioning. Consequently, the precise value of
λ - and thereby of φ and L- cannot always be guaranteed
and would be an estimation. Luckily, considering the array of
possible combinations of all the Eq.12 parameters (Figure 5),
the error is predominately contained and under 6V. This allows
the proposition of the “V-sigma condition” presented in the
coming subsection.

C. Application of the Results: The V-Sigma Condition

A key grid state can be derived from the calculation
of Vσ . Per definition, the V-sigma voltage is the voltage
expected when a node is alone on a section. This value can
be calculated, as shown previously, to an accuracy of ϵp.
It follows logically then that if a measured nodal voltage, VM,
were to be outside of this range, the studied node is not alone
on the section, and there is at least one other node.

However, because of the welcomed sharing of braking
energy between nodes, it is advised to shy away from
assuming that a measured nodal voltage, VM, that is (almost)
equal to Vσ implies that the node is alone on the section.
This mathematical coincidence can arise from the fact that
some nodes are supplying power, and thereby masking some
of the expected voltage drop effects of other nodes. Also,
a vehicle/node could be momentarily not drawing power or
close enough to the section feed-in point that it is not causing
an observable voltage drop. This is again a motivation to not
interpret VM ≈ Vσ as a sign that a node is indeed alone on
the section -that is to say:{

N > 1, if VM /∈ [Vσ − ϵp, Vσ [

No information, if otherwise
(13)
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Fig. 6. The case of a node of interest as the first node and at a known
position with only one other node, which is at an unknown position, but at
the maximum operating conditions.

IV. THE N > 2 FRONT

A. Study of Two Nodes on a Section (N=2)

Consider a node of interest at an impedance RM from the
substation and drawing a power PM (or, say, current IM), such
as in Figure 6. Notice that the subscript σ is not used as this
no longer concerns the case of a single node and is replaced
by M as an abbreviation for Measurement Node. Additionally,
one node at an impedance R is drawing the maximum allowed
node current of Î . For example, for a trolleybus, Î = 500A,
and for a metro, the value is about 3900A. This is the limit
imposed by the overhead current collector [1], [2].

It follows then from Kirchhoff’s voltage law that:

VM =

{
Vs − R Î − RM IM, if R ≤ RM

Vs − RM( Î + IM), if R ≥ RM
(14)

From this, it is trivial that the second situation would produce
a more severe voltage drop at the node n, and which would be
the maximum deviation from the substation voltage, Vs, since
the current drawn by the other node is its maximal allowable
current. In mathematical terms:

VM,min

∣∣∣∣
N=2

= (Vs − RM Î ) − RM IM (15)

Which is analogous to Eq.1 and leads then to

VM,min

∣∣∣∣
N=2

=
(Vs − RM Î ) +

√
(Vs − RM Î )2 − 4RM PM

2
(16)

B. Application of Results: The N2-Front

An important consequence of Eq.16 is that it quantifies the
lowest measured node voltage that can be observed when a
power-demanding node is present on the section with another
power-demanding node that is at its maximal operational point.
It follows logically then that any observed voltage beyond this
threshold signals the presence of at least three nodes on the
section. This value defines the N2-front or threshold, VN2F, as

VN2F
1
= VM,min

∣∣∣∣
N=2

(17)

In other terms:{
N > 2, if VM < VN2F − ϵp

No information, if otherwise
(18)

Since, under extreme conditions, the N2-front can already be
more than 100V away from Vσ , it is not practical to extend this
methodology to estimate the presence of more than 3 nodes,
as that could unhelpfully contain most of the operating voltage
range. The following section presents a new methodology for
that purpose.

Fig. 7. The case of a node of interest is at a known distance from the
substation, and no other information is known about the possible other node(s).

Fig. 8. The case of a node of interest at a known distance from the substation
together with two other nodes on the section at an unknown position and at
maximum operating conditions.

V. THE N > 3 REGION

Now, assuming there are N load nodes on the section, like
in Figure 7. The nodal voltages and currents can be expressed
by:

V = −RI + Vs (19)

where V and I are the Nx1 vectors of voltages and currents,
respectively, and R is the NxN branch resistance matrix,
similar to the concept of an admittance matrix, and built by
applying Kirchhoff’s voltage law. Vs is an Nx1 vector holding
the substation voltage value. An example of a 3×3 (i.e., N=3)
system is:V1

V2
V3

=−

R1 R1 R1
R1 R1 + R2 R1 + R2
R1 R1 + R2 R1 + R2 + R3

I1
I2
I3

+

Vs
Vs
Vs


(20)

The branch resistance can be understood as the line resistance
per SI unit length, ρ, multiplied by the branch length X.

V = −ρXI + Vs (21)

For the sake of an example in this paper, assume a constant
velocity profile, with a vector velocity v and initial position
X0, the branch length vector can be rewritten so that:

V = −ρ(vt + X0)I + Vs (22)

Taking the derivative with respect to time,

∂V
∂t

=
∂

∂t
(−ρvIt − ρX0I + Vs) (23)

Which can be developed into:

∂V
∂t

= −ρvI − ρvt
∂

∂t
I − ρX0

∂

∂t
I + 0 (24)

A. The Case of ∀k ̸= n at Extreme Operational Conditions
Let the interest be now focused on a specific node, n,

to study the maximum effect on its voltage variation brought
by the extreme velocity and power operational conditions of
all nodes k other than n (i.e., ∀k ̸= n). This is represented in
Figure 8. For the short studied duration, assume that the power
demand, velocity, and node order of node n do not change
significantly during the evaluation period. This complete set
of conditions and assumptions can be summarized as follows:

∂

∂t
Pn ≈ 0 , for the studied duration

∂

∂t
vn ≈ 0 , for the studied duration

Vk(t = 0)
1
= Vk,0, Initial voltage ∀k

ik = Î , ∀k ̸= n
vk = v̂, ∀k ̸= n

(25)
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For the sake of example, below follows a detailed derivation
of Eq. 24 for the case of n = 1.

∂

∂t
V1 = −ρ(v1i1 + 2v1 Î ) − ρ[v1v1v1]

 ∂
∂t i1
0
0

 t

− ρ[X1,0 X1,0 X1,0]

 ∂
∂t i1
0
0

 (26)

Leading to:

∂

∂t
V1 = −ρv1

P1

V1
− 2ρv1 Î + ρv1t

∂

∂t
(

P1

V1
) + ρX1,0

∂

∂t
(

P1

V1
)

(27)

Finally:

∂

∂t
V1 = −ρv1 P1︸ ︷︷ ︸

α

1
V1

−2ρv1 Î︸ ︷︷ ︸
β

−(−ρv1 P1︸ ︷︷ ︸
α

t −ρX1,0 P1︸ ︷︷ ︸
γ

)
1

V 2
1

∂V1

∂t

(28)

This same derivation can be repeated for any other position of
the node n between 1 and N , giving a differential equation of
the form:

∂

∂t
Vn = α

1
Vn

+ β − (αt + γ )
1

V 2
n

∂Vn

∂t
(29)

For which the general solution for any n is

Vn(t) = (−
γn

2Vn,0
+

Vn,0

2
) +

βn t
2

+

√
4(αn t + γn) + (

γn−Vn,0(βn t+Vn,0)
Vn,0

)2

2
(30)

where the terms αn , βn , and γn are given by:

αn = −ρ

( n∑
k=1

vk

)
· Pn (31)

βn = −ρ Î

( n∑
k=1

(N − k)vk

)
(32)

γn = −ρ

( n∑
k=1

Xk,0

)
· Pn (33)

Yet a more interesting insight is offered by the derivative of
Vn with respect to time:

∂Vn

∂t
=

βn

2
+

∂

∂t


√

4(αn t + γn) + (
γn−Vn,0(βn t+Vn,0)

Vn,0
)2

2


(34)

Which leads to:

∂Vn

∂t

=
βn

2
+

4αn +2β2
n t−2βn(

γn−V 2
n,0

Vn,0
)

4

√
4(αn t+γn)+

(
γn−V 2

n,0
Vn,0

)2

+β2
n t2 − 2βn(

γn−V 2
n,0

Vn,0
)t

(35)

Some simplifications can be made regardless of the transport
system in the study as the values of line resistance per unit
length are at the order of O(10−4) (in SI units), the line
current at, or higher than, O(102), the vehicle velocity at the
order of O(101), the section lengths at the order of O(103),
and the power at the order of O(105) or even higher [1],
[2]. Consequently, O(αn) = O(102), O(βn) = O(100), and
O(γn) = O(104) or O(105) depending on n. The important
consequence is that the derivative can be thereby simplified
to:

∂Vn

∂t
≈

βn

2
+

4αn − 2βn(
γn−V 2

n,0
Vn,0

)

4

√
4γn +

(
γn−V 2

n,0
Vn,0

)2
(36)

where the denominator can be simplified to allow writing

∂Vn

∂t
=

βn

2
+

4αn − 2βn(
γn−V 2

n,0
Vn,0

)

4

√(
γn+V 2

n,0
Vn,0

)2
(37)

Leading to

∂Vn

∂t
=

1
2
βn

(
1 −

γn − V 2
n,0

γn + V 2
n,0

)
+

αn Vn,0

γn + V 2
n,0

(38)

Or ultimately to:

∂Vn

∂t
=

βn V 2
n,0 + αn Vn,0

γn + V 2
n,0

= constant! (39)

The benefit of this equation is that it offers a constant value
benchmark for the rate of change in voltage over a short period
of time at the node of interest n, allowing to re-write the partial
differential as a constant slope equation:

1Vn

1t
=

βn V 2
n,0 + αn Vn,0

γn + V 2
n,0

(for 1t ≤ 10 s) (40)

B. A Comment on the Computation of γn

A concern that can be raised is that the parameter γn
requires knowledge of the original positions of the other load
nodes on the section. While this information is not known,
it is still reassuring that the sensitivity of the multi-variable
Eq.40 with respect to the variable γn , given by

∂

∂γn

1Vn

1t
= −

βn V 2
n,0 + αn Vn,0

(γn + V 2
n,0)

2
(41)

is at the order of O(10−5). Consequently, the propagation of
error from the

∑n
k=1 Xk,0 term, whose elements are the order

of O(103), into Eq. 40, is at the order of O(10−2) or O(10−1).
Fortunately, the error in assuming the original position of

the other nodes ∀k ̸= n can be easily compensated for. One
possible suggestion is to use an averaged approach around the
known Xn,0 term, suggested as

γn = −ρ

( n∑
k=1

Xk,0

)
· Pn ≈ −ρ(

n + 1
2

)Xn,0 · Pn (42)
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Fig. 9. Visual Representation of the N >3 Region for the example in
Section V-C. At any time t, a measured node voltage Vn(t) that falls in the
purple N >3 region indicates that more than three buses are on the studied
section.

It is perhaps worth mentioning again that this is not an
argument against the influence of γn on Eq.40, but rather on
the sensitivity of 1Vn to an error in the approximation of the
initial positions of all nodes k other than n. Indeed, Eq.42 is
not to be understood then as an invitation to ignore the term
γn in Eq.40, but as a validation of the offered simplification.

C. Application of Results: The N > 3 Region

The derivations presented in this section allow, for any
studied node position, velocity, and power, to delimit the
n-lines and the N >3 region of this node.

To explain the meaning and utility of these lines, an example
is presented in Figure 9 for a bus moving from X=1000m from
the substation, away at 10m/s, and drawing 100kW.

Since the presented equations in this section of the paper
consider the worst-case scenarios for the two other nodes on
the studied grid section, any measured node voltage Vn(t) that
falls in the purple N >3 region would signal the presence of
more than 3 nodes on this grid section. The N >3 region is
described mathematically as the region between the minimum
operating voltage of the grid, Vmin,op, and the V3(t) node
voltage described in this section when setting n = 3. The
latter is presented in the figure as the “n = 3 line”.

However, the other nodes could be operating at conditions
more favorable than the worst-case conditions, even up
to regenerative mode. Consequently, the zone between the
maximum operating voltage of the grid, Vmax,op, and the
“n = 3 line” does not offer reliable information on the number
of nodes on the section, and should not be used for this
purpose.

In the event that reliable information is available for a
particular grid zone (e.g., historically knowing that there would
never be more than 3 nodes on this section), then the n-lines
could offer information on the position of the studied node
with respect to the two other nodes. For example, consider
that the studied node is that of stationary storage, and historical
information guarantees the presence of only two vehicles on
this section at this time. It can follow that a measured node
voltage falling between lines n = 1 and n = 2 signals to
the storage system that there is at least one of the vehicles
between it and the substation. This information is very useful

Fig. 10. The case when the node of interest (orange) is the first load node
and at a known, close distance to the substation (green). No other information
is known about the other node(s).

when estimating the load demand on the section, as explained
in the coming section of this paper.

VI. APPROXIMATION OF THE SPARE TRACTION
SUBSTATION POWER CAPACITY

Revisiting the equation for a single bus, an approximation
can be extended for the case of two or more buses by lumping
the effect of other loads on the section and their position into
a grid 0 factor, namely 0G, and introducing it as a disturbance
to the bus 0σ factor as follows:

VM =
Vs +

√
V 2

s − 4(0σ + 0G)

2
(43)

where VM is the measured node voltage. Re-arranging the
above equation,

0G = VM(Vs − VM) − 0σ (44)

Or finally

0G = (Vσ − VM)(Vσ + VM − Vs) (45)

Equation 45 can then be extended to allow an approximation
of the grid support (from a storage system, for example) to be
added, 0a, to reach the voltage level of Vσ :

VM =
Vs +

√
V 2

s − 4(0σ +

aim is ≈0︷ ︸︸ ︷
0G + 0a)

2
(46)

Yet more generally, this approach can offer insight into the
spare grid capacity or the needed grid support to reach a
desired voltage V ∗ which is not necessarily Vσ . This is useful
if, for example, a traction-grid-connected EV charger needs to
estimate the available power it can draw while staying above
a minimum voltage threshold.

VM =
Vs +

√
V 2

s − 4(0σ + 0G + 0a)

2
(47)

whereby 0a can be expressed as:

0a = −(V ∗
− VM)(V ∗

+ VM − Vs) (48)

A powerful application of this derivation is the ability to
estimate the total power demand on a traction substation.
While this seems like a straightforward solution, it is important
to remember that the 0 parameter is a product of power and
impedance, and further work is required to attempt to decouple
the power information from the 0 variable. This decoupling
work is presented in the following subsections, looking at the
three possible scenarios of the position of the studied node n
in relation to the substation and the other power nodes.
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Fig. 11. The case when one node possibly exists between the node of interest
(orange) and the substation (green).

A. The Case of n=1
For the case when the node of interest is the closest to the

substation, an accurate estimation of the substation demand is
obtained by setting V ∗ to the value of Vs. In such a scenario,
the voltage drop between the substation and the first node
is 0 (=Vs − Vs), meaning that no current flows between the
substation and node 1, as if the node itself is supplying all the
loads on the section had its voltage been Vs.

The effectiveness of this method can be validated by
recognizing the similarity between this case and the mere
presence of an equivalent feeder cable before node 1. Indeed,
node 1 has all the information needed about the substation
current demand caused by the other nodes as it experiences a
voltage drop caused by this aggregated demand.

It can be said of this system that the state of every node is
not separately observable by node 1; however, their lumped
effect is perfectly observed. This allows the reader to avoid
the approximation of Eq.45 and to return to an extension of
Eq. 1 for calculating the spare substation capacity as:

Pr = Pspare

∣∣∣∣
n=1

+ Vs · Is

∣∣∣∣
n=1

(49)

Or, ultimately:

Pspare

∣∣∣∣
n=1

= Pr − Vs
(Vs − VM)

Rσ

(50)

Since it follows logically from Ohm’s law that if n = 1, then
the substation current, Is, is observed fully through the voltage
drop between the substation voltage and the measured voltage
of the first node over the resistance that separates them.

This is particularly interesting when, for example, the
storage is placed near the traction substation or when a bus
with on-board storage sees that it is sufficiently close to
the substation. The threshold for this closeness is a design
question of a statistical nature, which is a function of the
total section length and the average section traffic. This is
then an application-specific design decision to be made by the
stakeholders.

B. The Case of n ̸= 1
The case n ̸= 1 means at least one node exists on the section

between the substation and the node of interest. Thereby,
setting V ∗ to the value of Vs would not produce the same
“blocking out” effect as previously attained.

It could be worth mentioning for the interested reader that
this case becomes synonymous with the case of a bilaterally
connected substation described in [5] (the case of two traction
substations feeding one section), with our interest node being
a virtual bilateral substation.

In any case, it can be argued then that if V ∗ is set to
the value of Vs, the power share between the substations is
obtained from simple circuit analysis as the ratio of the branch
impedances between the load node and the two substations.
Unfortunately, the position of the load node is unknown, and
as a consequence, neither is this ratio of impedances.

Fig. 12. Stochastic distribution of the spare trolleybus traction substation
capacity as a function of the measured node voltage for 100000 grid
simulations of (a) 2 load nodes and (b) 4 load nodes. The two plots have
the same upper-envelope slope and are mostly populated by data above the
(green) 100 kW line.

This brings the analysis back to a 0 value where,
at best, an estimate can be offered for the product of the
branch resistance and power of a node, but the information
cannot be decoupled into the two parameters. However,
some information can be inferred from a stochastic analysis.
Figure 12 shows the stochastic distribution of the spare
trolleybus traction substation capacity (= Pr − Vs · Is) as a
function of the measured node voltage for 100000 stochastic
grid simulations. Figure 12a shows the case of 2 load nodes,
while Figure 12b studies 4 load nodes. Both figures look at
simulations under the DTC of this paper. In both figures, the
measured node is at the end of the line, at 1200m, to look at
the worst-case scenario in terms of grid state observability
(previously addressed in section IV). The measured node
power demand is randomly selected between 0 and 200 kW.
The first observation from Figure 12 is the existence of a linear
upper envelope. The slope of this line can be shown, in fact,
to be described by Eq.50. This follows logically, as the linear
Eq.50 describes the least-conservative, most-observant state
estimation, and all other possible grid states would, in reality,
have a lower spare grid capacity.

C. Application: Power Cones

This section proposes one possible methodology for
estimating the grid spare capacity using the spare-capacity
cones introduced above. The derivations are conducted for a
full-cone geometry but should be adapted to the specific total
node number, N , expected at a section.

The cones of Figure 12 can be approximated by Figure 13,
for a measured node voltage VM that is bound by an upper limit
VU and a lower limit VL. These limits are a case-specific design
choice and particularly useful when the estimation is not done
continuously, for example, by a traction-grid-connected EV
charger that only estimates the grid state every 5 seconds. Such
limits would thereby consider the possible zone of voltages
that the estimator can see when it “wakes up” at the next
estimation step. The cone crosses the zero spare capacity line
at the voltage VZP, defined by setting Eq.50 equal to zero:

VZP
1
= Vs −

Pr Rσ

Vs
(51)

This is the most conservative voltage level at which there is
no spare capacity left as it translates to the scenario where
the measured node and its caused line transmission losses
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Fig. 13. The cone suggested in this paper.

consume the substation capacity completely. The simulations
of Figure 12 show that this extreme scenario is never reached
in practice, as most values are above the 100kW (green) line.

Consider now a desired spare capacity level, P∗. Define CTZ
as the number of possibilities (blue dots of Figure 12) in the
trapezoid formed by the VL line, VU line, the upper envelope,
and the P∗ line (blue trapezoid in Figure 13). CR is defined
as the number of dots in the rectangle formed by the VL line,
VU line, the P∗ line, and the zero spare capacity line (pink
rectangle in Figure 13). In case the voltage associated with
P∗, namely VP*, is higher than VL, then it is more accurate to
speak of a CTR count of the cases inside the triangle formed
by the VP* line, VU line, the upper-envelope of the cone, and
the P∗ line, together with CR,VP* as the number of cases in
the rectangle formed with VP*.

It can be proposed then that the probability of having at
least a P∗ amount of spare traction substation capacity when
seeing a node voltage of VM is

p(P ≥ P∗) =


CTZ

CTZ + CR
, if VP* < VL

CTR

CTR + CR,VP*
, if VP* ≥ VL

(52)

The difference between figures 12a and 12b shows how the
higher traffic substations tend to populate their cones more
evenly, while the lower traffic substations have a more dense
distribution. If preferred, then, for the high-traffic substations,
the probability can be easily (albeit less accurately) by a ratio
of areas of the geometric entities previously defined. If ATZ
is the area of the blue trapezoid,

ATZ =

[
Pr −

V 2
s

Rσ

+
Vs

2Rσ

(VU + VL) − P∗

]
(VU − VL) (53)

and ATR is the area of the VP* triangle,

ATR =
1
2

[
Pr −

Vs

Rσ

(Vs − VU) − P∗

]
(VU − VP*) (54)

and AR is the area of the pink rectangle,

AR = P∗
· (VU − VL) (55)

and AR,VP* is the area of the VP* rectangle,

AR,VP* = P∗
· (VU − VP*) (56)

Then it can be said that, for high-traffic substations,

p(P ≥ P∗)

∣∣∣∣
N ≫ 1

≈


ATZ

ATZ + AR
, if VP* < VL

ATR

ATR + AR,VP*
, if VP* ≥ VL

(57)

Fig. 14. Results of 10000 stochastic simulation tests of the Vσ condition
introduced in Eq.13 with up to N = 4 nodes. As expected, triggering
VM /∈ [Vσ − ϵp, Vσ [ always correctly notifies of the presence of more than
1 node, while VM ∈ [Vσ − ϵp, Vσ [ does not offer information.

Fig. 15. Results of 10000 stochastic simulation tests of the Vσ condition
introduced in Eq.18 with up to N = 4 nodes. As expected, triggering
VM < VN2F − ϵp always correctly notifies of the presence of more than
2 nodes, while otherwise, no information can be deduced.

VII. VALIDATION OF THE PROPOSED METHODS THROUGH
STOCHASTIC SIMULATIONS

A. V-Sigma Concept

Figure 14 shows the results of 10000 stochastic simulation
tests of the Vσ condition introduced in Eq.13 with up to
N = 4 nodes. The simulation parameters are according to
the DTC of this paper, with ϵp set as 6V according to the
outcome of Figure 5.

As expected, every VM /∈ [Vσ −ϵp, Vσ [ correctly signals the
presence of more than 1 node, as there are no cases when this
occurs while N = 1. Meanwhile, VM ∈ [Vσ −ϵp, Vσ [ does not
offer information on the number of nodes as there are times
when it is flagged for any N between 1 and 4.

The performance of this method (desired number of flags
over total cases) is then 74%, with no false flags (false
positive).

B. N2-Front

Figure 15 shows the results of 10000 stochastic simulation
tests of the VN2F condition introduced in Eq.18 with up to
N = 4 nodes. The simulation parameters are according to the
DTC of this paper, with ϵp set as 6V according to the outcome
of Figure 5.

As expected, triggering VM < VN2F − ϵp always correctly
notifies of the presence of more than 2 nodes, while otherwise,
no information can be deduced The performance of this
method (desired number of flags over total cases) is then 37%,
with no false positives. It is therefore advised to use it only
in conjunction with other methods.
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TABLE I
RESULTS OF 10000 STOCHASTIC SIMULATION TESTS OF THE
N > 3 REGION INTRODUCED IN FIGURE 9 AND EQ.39. THE
GREATLY SIMPLIFIED EQ. 39 DETECTS 76% OF THE CASES

OF THE PRESENCE OF MORE THAN THREE NODES,
AT THE COST OF 2% IN FALSE POSITIVES

C. N3-Region

To test the “N3-region” hypothesis for the N > 3 case,
10000 stochastic simulations of 10 seconds were run with
up to N = 5 nodes placed on a section under the DTC of
this paper. The power ramp-up is taken as a random number
between 0 and 25kW, with an upper cap per node at 300kW.
The parallel line error adopted, ϵp, is again of 6V. The greatly
simplified Eq. 39 detects 76% of the cases of the presence of
more than three nodes, at the cost of 2% in false positives,
as seen in Table I.

VIII. SUGGESTED EXTENSIONS OF
THE GRID ESTIMATOR

A. Addressing Other Traction Section Architectures:
Timetables

The derivations in this paper were presented for the most
common cases of a substation feed-in at the start of the section,
rather than the cases when a feed-in point can be connected
somewhere along the section. Having all the nodes on the
same side of the section offers the necessary observability
to the node of interest through the voltage drops and the
non-linearity in the current demand, which is key for these
derivations. Another possibility is that one substation could
be feeding 2 sections (or rarely, more).

One suggestion is to include the vehicle timetable -and
expected delays- in the estimation of the spare power capacity.
In future work, this estimator can be extended that uses the
grid dynamics as input to new estimation methods.

B. Addressing Other Uncertainties: Heuristics

Another extension of the estimator can rely on heuristic
approaches to the grid behavior. Heuristics are calculated
guesses derived from previous experiences. Examples of such
methods could be:

• Expecting a low spare power capacity in the moments
after a sharp rise in line voltage: An acceleration will be
coming after this regenerative braking

• Expecting that the node count has gone from N to N −1
after a stepwise rise in voltage: A node has left the section
(and from N to N + 1 after a stepwise drop)

• Expecting a lower certainty in the cones calculations as
the line voltage rises slowly: A node is moving closer to
the substation, and the effect of its presence will soon be
masked from other nodes

C. Addressing Uncertainties in Incomplete Measurements

The collected local data at a power node may be incomplete
due to some uncontrollable factors. It would be interesting
then to expand this estimator in the future, taking into account
uncertainties in the inputs.

Some works already exist on this topic in the literature,
such as Latent Factor Analysis. For instance, The work in
[34] proposes an alternating-direction-method of multipliers
(ADMM)-based symmetric non-negative latent factor analysis
(ASNL) model for correctly representing the symmetry
and efficiently handling the incomplete data of large-scale
undirected weighted networks. Additionally, the work in
[35] proposes an efficient latent factor analysis model by a
momentum-incorporated parallel stochastic gradient descent-
based learning scheme, while [36] proposes a prediction-
sampling-based multilayer-structured latent factor (PMLF)
model for performing highly accurate representation learning
on a high-dimensional and incomplete (HDI) matrix.

IX. EXAMPLES OF APPLICATIONS OF
THE SUGGESTED ESTIMATOR

• Stationary Storage Systems: Can benefit from the
estimator spare capacity calculations to know when to
charge/discharge

• Stationary Storage Systems with distributed renewables:
As above, but can also better plan the charge/discharge
to increase the direct utilization of AC-side connected
renewable energy systems. When renewables are on the
DC side, the estimator can already pick-up on the excess
energy via the voltage rises.

• Overhead-line-connected EV chargers: Can benefit from
the estimator spare capacity calculations to know when
to charge -or discharge if with V2G

• In-Motion-Charging buses: IMC buses are a new
generation of buses that are a hybrid between trolleys
(catenary supply) and battery electric buses (battery
supply). They typically move under the catenary while
charging with a fixed value of up to 240 kW, depending
on the city, but most cities only charge conservatively as
low as 100 kW. IMC buses can benefit from the estimator
spare capacity calculations to know how much is available
for it to charge at any given moment rather than a fixed
value per year per city. It can also use the node number
estimation to hold back if it detects the presence of
another IMC bus on the section. This can significantly
support the electrification of bus lines without the need
for additional grid infrastructure by better utilizing the
spare grid capacity.

X. CONCLUSION

This paper presented an extensive set of equations and
conditions to help estimate the number of load nodes and
spare grid capacity in traction substations. The methods do
not require any additional sensors to be installed, which
would be otherwise expensive and required to communicate
reliably with each other. Up to 76% of the monitored cases
were detected when validating the results with 10000 to
100000 stochastic test simulations of a verified and validated
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trolleygrid model, with all but one case accurately showing
zero false positives (2% in the other case). Finally, some
application examples were offered for the implementation of
this estimator for the integration of smart grid components into
traction grids, making them more sustainable, efficient, and
able to electrify more fleets without the need for additional
infrastructure.
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