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All methods were able to reconstruct the main features of 
the instantaneous pressure fields, including methods that 
reconstruct pressure from a single PIV velocity snapshot. 
Highly accurate reconstructed pressure fields could be 
obtained using LPT approaches in combination with more 
advanced techniques. In general, the use of longer series 
of time-resolved input data, when available, allows more 
accurate pressure field reconstruction. Noise in the input 
data typically reduces the accuracy of the reconstructed 
pressure fields, but none of the techniques proved to be crit-
ically sensitive to the amount of noise added in the present 
test case.

1 Introduction

Fluid pressure is directly related to phenomena like sur-
face loading and sound generation (aeroacoustics) and as 
such is an important quantity in many engineering prob-
lems. While surface pressure can experimentally be deter-
mined with pressure transducers and pressure-sensitive 
paint (PSP), pressure field reconstruction based on particle 
image velocimetry (PIV) and Lagrangian particle tracking 
(LPT) offers a number of unique advantages (van Oudheus-
den 2013). The term LPT instead of PTV is used here to 
signify that Lagrangian information about position, veloc-
ity, and acceleration of individual particles is used in our 
study. Contrary to the more established measurement tech-
niques, PIV/LPT-based pressure field reconstruction does 
not require instrumentation or surface preparation of the 
wind tunnel model. This allows for pressure determination 
in configurations where such modifications are not practi-
cal, e.g., very thin (or membrane-like) airfoils. In more reg-
ular configurations, it avoids the installation of large num-
bers of pressure transducers which is a common practice to 
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obtain reliable surface load distributions. Another unique 
feature of PIV/LPT-based pressure field reconstruction is 
its inherent ability to provide simultaneous velocity and 
pressure data in the full flow field, thus enabling a better 
insight in the relation between fluid dynamics and surface 
loads or sound fields.

Given these beneficial features, there has been a long 
interest in PIV/LPT-based pressure field reconstruction. 
Many studies have addressed different implementations 
of the technique (van Oudheusden 2013). In recent years, 
the technique has become increasingly feasible and appeal-
ing, especially due to the development of (time-resolved) 
volumetric diagnostic capabilities, such as tomographic 
PIV (Elsinga et  al. 2006; Scarano 2013) and Lagrangian 
particle tracking (Schanz et  al. 2016). With the maturing 
of the method, its scale-up from small-size research envi-
ronments is currently receiving attention in collaborative 
European framework programs like ‘AFDAR’ and ‘NIO-
PLEX’. The particular work described in the current paper 
reflects a joint effort by partners in ‘NIOPLEX’ together 
with DLR Göttingen, and to the authors’ knowledge consti-
tutes the first comparative study, in which multiple research 
groups work on the same test case (similar as in the “PIV 
challenges”).

2  Overview of PIV/LPT‑based pressure field 
reconstruction techniques

In PIV/LPT-based pressure field reconstruction, kinematic 
data obtained with PIV/LPT are used to compute the local 
pressure gradient (∇p) using the momentum equation 
(Eq.  1). Pressure is subsequently obtained through spatial 
integration:

where � is the density, � is the kinematic viscosity, and 
D�∕Dt is the material acceleration, which is the accel-
eration of a fluid parcel in a Lagrangian perspective. The 
viscous term (right) can be neglected for sufficiently high 
Reynolds numbers. For incompressible flow, the density 
is a constant. Under compressible flow conditions, it can 
be eliminated as independent variable by combining the 
momentum and energy equations (van Oudheusden et  al. 
2007) (see Sect. 6.1). Note that by time-averaging of Eq. 1, 
mean pressure fields can be obtained from uncorrelated 
velocity fields (Gurka et al. 1999).

The experimental determination of the material accelera-
tion has been subject of extensive research. Different meth-
ods have been proposed. Using two or more PIV velocity 
fields closely separated in time, the material acceleration 
can be determined via a pseudo-Lagrangian formulation 

(1)∇p = −�
D�

Dt
+ �∇2�,

by tracing imaginary fluid particles using a series of veloc-
ity fields (e.g., Liu and Katz 2006), also referred to as 
pseudo-tracking. Alternatively, the material acceleration 
can be estimated via an Eulerian formulation by separately 
determining local temporal and spatial velocity deriva-
tives from the structured velocity measurement grid (e.g., 
Baur and Köngeter 1999). To alleviate the need for time-
resolved velocity data, methods have been proposed that 
employ physical models to calculate the material accelera-
tion from velocity data at a single time instance, e.g., Tay-
lor’s hypothesis approach (de Kat and Ganapathisubramani 
2013; Laskari et al. 2016) and Instantaneous Vortex-in-Cell 
(IVIC, Schneiders et al. 2016).

Alternative to taking velocity fields as a starting point, 
the material acceleration can also be obtained from parti-
cle images, by tracking particle patterns or individual par-
ticles. The first approach is based on correlation analyses 
and includes fluid trajectory correlation (FTC, Lynch and 
Scarano 2013) or fluid trajectory evaluation based on an 
ensemble-averaged cross-correlation (FTEE, Jeon et  al. 
2014). The latter strategy includes the conventional parti-
cle tracking velocimetry (PTV) that relies on relatively low 
particle seeding concentrations (e.g., Malik et al. 1993) as 
well as two more recently proposed advanced approaches 
that avoid this drawback: tomographic-PTV resp. LPT 
(Schröder et  al. 2011; Novara and Scarano 2013) and 
‘Shake-The-Box’ (STB, Schanz et al. 2016). Different tech-
niques exist to reconstruct scattered LPT measurement data 
on a uniform grid, e.g., FlowFit (Gesemann et al. 2016) and 
Vortex-in-Cell+ (Schneiders and Scarano 2016).

In addition, for spatial integration of the pressure gradi-
ent (Eq.  1), different procedures exist: two main methods 
are direct numerical integration along various paths in 
space (e.g., Baur and Köngeter 1999; Liu and Katz 2006) 
and formulation and solving of a Poisson equation (e.g., de 
Kat and van Oudheusden 2012). The two approaches are 
compared in Charonko et al. (2010). Recently, a number of 
novel techniques has been proposed and tested: Tronchin 
et  al. (2015) sequentially integrate different subdomains 
to limit spatial error propagation. Jeon et al. (2015) mini-
mise the difference between measured and reconstructed 
pressure gradients in a least-square sense (Least-square 
method). Huhn et  al. (2016) employ the fast Fourier 
transform (FFT integration). The implementations of the 
techniques mentioned above all require input data on a 
structured grid. To allow for a direct use of scattered meas-
urement data from particle tracking, two recently proposed 
techniques perform spatial integration of scattered data: 
Gesemann et al. (2016) define the pressure field using 3D 
cubic B-splines, the parameters of which are obtained from 
minimizing a cost function (FlowFit2). Neeteson and Rival 
(2015) apply a finite-volume discretisation based on Voro-
noi tessellation.
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The performance of PIV/LPT-based pressure field 
reconstruction is influenced by the characteristics of the 
flow as well as the quality of the measurement data. The 
relative strengths, weaknesses, and dependencies of dif-
ferent approaches in this respect have been addressed in a 
number of comparative performance assessments [see van 
Oudheusden (2013) for a review]. The present study con-
tributes to these efforts using a wide variety of state-of-the-
art velocimetry-based pressure determination techniques 
(see Table  1) to obtain pressure from the same synthetic 
particle-image data. The techniques are classified in PIV-
based techniques, which rely on the velocity data obtained 
with cross-correlation of particle images/volumes, and 
LPT-based techniques, which require tracking of individual 
particles. A further distinction is made between techniques 
which only require velocity data at a single time instance 
only (3 and 4) and techniques that require time-resolved 
input data (all others). All LPT processings for the present 
study are performed using the ‘Shake-The-Box’ algorithm.

3  Description of the test case

The test case consists of the flow over an axisymmetric 
step, which forms a simplified representation of the flow 
over the base of a launcher during its ascent phase. The 
flow over the launcher base gives rise to fluctuating side 

loads on the nozzle. Quantifying these loads is critical 
for the efficient design of nozzles and surrounding struc-
tures. Apart from this relevance to industry, the choice for 
the test case is motivated by its richness in terms of spa-
tial and temporal flow scales and its challenging nature that 
is inherent to high-speed, three-dimensional, separating-
reattaching flows. It should be remarked here that not all 
applied techniques perform optimal for the flow conditions 
under consideration and this test case alone, therefore, does 
not constitute an exhaustive performance assessment of the 
different methods. These limitations should be kept in mind 
when interpreting the results of the study.

To have reference data available against which the pres-
sure results can be validated, the test case is based on a 
numerical simulation. A PIV/LPT experiment is simulated 
by creating synthetic particle images of a virtual meas-
urement volume. Model geometry (see Fig.  1) and flow 
conditions are designed to represent typical experimental 
arrangements in the 27 × 27 cm2 transonic-supersonic wind 
tunnel at the Aerodynamics Laboratory at Delft University 
of Technology.

The model main body has a diameter (D) of 50 mm. The 
afterbody has a diameter (d) of 20 mm (0.4 D), resulting in 
a step height of 15 mm (0.3 D). Wind tunnel walls are omit-
ted in the simulation for simplicity and robustness. The free 
stream flow has a Mach number  (M∞) of 0.7, a total pres-
sure  (pt) of 200 kPa, and a total temperature  (Tt) of 285 K. 

Table 1  Overview of pressure evaluation techniques considered in this study (see Sect. 6 for more detailed descriptions)

No. Abbreviations Velocity measurement Determination of material acceleration Integration of pressure gradient

1a ILAG PIV Pseudo-tracking Least-square method
1b PIV (FTEE)
1c LPT
2 EUL PIV Eulerian approach Poisson solver
3 TH PIV (1 snapshot) Taylor’s hypothesis approach Poisson solver
4 IVIC PIV (1 snapshot) Instantaneous Vortex-in-Cell Poisson solver
5 FFA LPT + FlowFit A FFT integration
6 FFB LPT FlowFit B
7 VIC+ LPT + Vortex-in-Cell-plus Poisson solver
8 VOR LPT Voronoi-based

Fig. 1  Sketch of the geometry; 
diameter D equals 50 mm. 
Filled coloured contours depict 
the mean streamwise velocity in 
the virtual measurement volume 
for the simulated experiment
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Using the isentropic flow relations, this corresponds to a 
free stream pressure of 144,186 Pa, a free stream tempera-
ture of 260 K, and a free stream velocity  (U∞) of 226 m s−1. 
The Reynolds number based on the model main body diam-
eter  (ReD) is 1.3 million. The measurement domain of the 
simulated experiment has a size of 1.2 D × 0.47 D × 0.08 D 
(60 mm × 24 mm × 4 mm, L × H × W) (see Fig. 3).

Synthetic particle images are processed using tomo-
graphic PIV algorithms (Elsinga et  al. 2006) as well as 
with the LPT algorithm ‘Shake-The-Box’ (STB, Schanz 
et  al. 2016). This enables the use of PIV-based pres-
sure determination techniques that require velocity input 
data on a Cartesian grid, as well as LPT-based techniques 
which take scattered data available at particle positions as 
starting point. To be able to assess the impact of measure-
ment noise, processing is performed using both idealized, 
noise-free particle images (clean) as well as particle images 
to which a controlled amount of artificial noise is added 
(noisy).

The test case comprises continuous time-resolved data 
as well as sequences of four subsequent images, from 
here on referred to as multi-pulse data. This distinction is 
motived by considerations with respect to the limitations 
encountered under actual measurement conditions. The 
multi-pulse data can actually be made available for high-
speed flows by using PIV systems with multiple independ-
ent laser and camera systems (e.g., Souverein et al. 2009; 
Schröder et al. 2013; Lynch and Scarano 2014a). Continu-
ous series of time-resolved data on the other hand cannot 
realistically be obtained for the present flow case (i.e., a 
high-speed, subsonic, compressible flow) within the limits 
of current measurement capabilities. For low-speed flows, 
modern high-speed laser and camera equipment do, how-
ever, allow sufficiently high sample rates to perform time-
resolved measurements. It is, therefore, deemed insight-
ful to consider the time-resolved data sets as a means to 

assess pressure extraction capabilities for (low-speed) flow 
conditions.

Figure  2 shows the organisation of the particle images 
and velocity fields with respect to time. The smaller time 
separation of 2 µs is equal to the time separation for PIV 
processing. The larger time separation of 10 µs used in the 
multi-pulse data was found to be suitable as time separation 
for determining the material acceleration based on a pre-
liminary assessment by Blinde et al. (2014).

Table 2 provides an overview of the data sets that com-
prise the test case. The data sets have been distributed to 
different research groups as a blind test case. To re-create 
the situation after an experiment, reference data from the 
numerical simulation were not distributed and kept isolated 
from the researchers that applied the pressure field recon-
struction techniques. For the same reason, different time 
instances have been considered for the ‘clean’ and ‘noisy’ 
cases, i.e., cases without or with artificial noise added to 
the particle images. If the time instances had been the 
same, then the researchers could have easily determined the 
exact noise levels by comparing the two cases. To facilitate 
the sharing of data, only a limited number of time instances 
were considered.

4  Details of simulated experiment

4.1  Zonal detached eddy simulation (ZDES)

A dedicated ZDES simulation (Deck 2005, 2012) is per-
formed building on ample experience with applying ZDES 
to axisymmetric base flows (e.g., Deck and Thorigny 2007; 
Weiss et al. 2009; Weiss and Deck 2011). ZDES is closely 
related to the classical detached eddy simulation (DES). 
The main difference between the two approaches is that 
within ZDES, the user has to select the Reynolds-averaged 

Fig. 2  Time-separation diagrams for consecutive particle images, 4-pulse data (top), and continuous time-resolved data (bottom)
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Navier–Stokes (RANS) and DES domains. The selection 
of the appropriate mode depends on the nature of the flow 
problem. Given that the flow separation is fixed by the 
geometry, a mode I (i.e., DES) has been retained for the 
separated area and a mode 0 (i.e. URANS) for the region 
upstream from the separation occurring at the trailing edge 
of the main body.

Model geometry and flow conditions have been pre-
sented in Sect.  3. The simulation uses a cylindrical grid 
with 17  million points of which 10  million points are 
located in the separated area. The virtual PIV/LPT meas-
urement volume contains close to 300,000 points (see 
Fig.  3). The grid is locally refined at the location of the 
shear layer. Calculations are performed with a time-step 
(ΔtZDES) of 0.5  μs. 5000 snapshots are sampled with a 
time separation 2  μs (Δtsampling), covering a total duration 
of 10  ms. The temporal resolution was designed to meet 

the time separation of the PIV recording. According to the 
Nyquist–Shannon criterion, this sampling allows to resolve 
temporal scales with Strouhal numbers  (StD) from 0.02 to 
55. The output data used for this study consist of velocity, 
density, and pressure values.

Figure  4 shows the mean streamwise velocity, mean 
pressure, as well as the turbulence intensity and the root 
mean square (r.m.s) of the pressure fluctuations in a radial 
plane of the simulated domain. Here, the pressure coeffi-
cient  (Cp) and the turbulence intensity (T.I.) are defined as 
follows:

In these equations, q∞ denotes the freestream dynamic 
pressure, γ denotes the ratio of specific heats, and u′

RMS
, 

v′
RMS

, and w′
RMS

 denote the r.m.s. of the fluctuating velocity 
components in x-, y-, and z-directions, respectively. Results 
have been obtained on the basis 5000 time samples and 
considering all planes in azimuthal direction to improve 
the statistical convergence. The bottom-left figure shows 
the location of the measurement volume for the simulated 
experiment (see dashed box).

The mean flow field (top-left figure) shows a shear 
layer that emanates from the corner of the step at 
y/D = 0.3 and grows in downstream direction. The mean 
reattachment of the shear layer occurs at approximately 
x/D = 1.25, which is just outside the virtual PIV meas-
urement volume. Below the shear layer, a recircula-
tion region occurs, where the mean velocity reaches a 
minimum of −0.30 U∞, while the minimum mean pres-
sure  (Cp,min) is −0.23. A high pressure region is present 

(2)Cp =
p − p∞

q∞
=

p

p∞
− 1

1

2
�M2

∞

,

(3)T.I. =

√

1

3

(

(

u�
RMS

)2
+
(

v�
RMS

)2
+
(

w�
RMS

)2
)

∕U∞.

Table 2  Overview of data sets that comprise the test case. ‘Clean’ and ‘Noisy’ refer to the cases without or with artificial noise added to the 
particle images

Type Description

Continuous time-resolved data 
(‘clean’ and ‘noisy’)

Particles images at 42 consecutive time instances
41 velocity snapshots obtained through PIV processing
Velocity and acceleration data obtained through LPT processing at the same 41 time instance as PIV velocity 

fields
4-pulse data (‘clean’ and ‘noisy’) 21 sets of particle images at 4 consecutive time instances

21 sets of 2 consecutive velocity snapshots obtained through PIV processing
Velocity and acceleration data obtained through LPT processing at the middle time instances of the sets of 

particle images/velocities
Velocity statistics Mean and r.m.s. velocity fields based on 5000 snapshots obtained through PIV processing
Camera calibration Calibration images for four virtual cameras
Reference PIV Velocity, density, and pressure data from the numerical simulation interpolated to the PIV grid positions
Reference LPT Velocity, density, and pressure data from the numerical simulation interpolated to the particle positions as 

determined by LPT

Fig. 3  Detail of mesh with sketch of the geometry; filled coloured 
contours depict the mean streamwise velocity in the virtual measure-
ment volume for the simulated experiment
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downstream of the point of mean reattachment, with a 
maximum mean pressure  (Cp,max) of 0.18 at x/D = 1.50. 
The figures on the right show elevated levels of turbu-
lence intensity and pressure fluctuations in the shear 
layer and the reattachment region, with maxima of 
T.I.max  =  0.30 and C�

pRMS,max
= 0.08 located at about 

x/D = 1.0; y/D = 0.2.
Figure  5 depicts a representative realisation of the 

instantaneous streamwise velocity, density, pressure, and 
streamwise material acceleration. Especially, the mate-
rial acceleration field (bottom-right) shows small-scale 
flow structures originating from the corner of the step 
that break down towards the reattachment region which 
is characterised by interactions of flow structures with a 
variety of length scales.

4.2  Calculation of particle tracks

The measurement domain is randomly seeded with par-
ticles, so that the particle images contain 0.05 particles per 
pixel (ppp). The particles are propagated using an explicit, 
fourth-order Runge–Kutta method in combination with spline 
interpolation in time and natural neighbour interpolation in 
space. Three time integration steps are performed per simula-
tion sampling time-step of 2 µs, so that the Courant number 
is smaller than 1 and the Courant–Friedrichs–Lewy (CFL) 
condition is met in the full domain with the exception of a 
thin region in the direct vicinity of the corner of the step. The 
measurement volume is surrounded by a buffer region. After 
each time-step, particles in this region are removed after 
which it is randomly seeded with new particles. The region 
is large enough, so that there are always particles available to 

Fig. 4  Mean streamwise velocity (top-left), mean pressure (bottom-
left), turbulence intensity (top-right), and r.m.s. of normalised pres-
sure fluctuations (bottom-right); top-left figure: black solid line indi-

cates zero mean streamwise velocity; vectors have been subsampled 
for clarity; bottom-left figure: dashed box indicates the measurement 
volume of the simulated experiment

Fig. 5  Instantaneous velocity (top-left), density (top-right), pressure (bottom-left), and streamwise material acceleration (bottom-right)
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flow into the domain and the seeding concentration remains 
constant.

The instantaneous particle velocity is taken equal to the 
instantaneous fluid velocity at the particle position, which 
is a valid approach for the great majority of the flow field, 
where the flow timescales are smaller than the typical seed-
ing particle relaxation time  (τp) of approximately 2 µs (Ragni 
et al. 2010). To assess the numerical errors from integration 
and interpolation, particles are integrated one sample time-
step forward and subsequently backward in time. Comparing 
the resulting position with the original position yields a local 
error estimate of below  10−5 U∞, (<0.0001 voxel displace-
ment). In a second test, targeted at quantifying the errors due 
to interpolation, particle positions are integrated one sam-
ple time-step forward in time using the original simulation 
data and the simulation data subsampled at half the spatial 
and temporal resolution. Comparing the resulting positions 
and assuming the error scales with a factor  2−4 of the spa-
tial and temporal resolution (valid for fourth-order methods) 
yield typical local r.m.s. error estimates of <0.003  U∞ (<0.03 
voxel displacement).

4.3  Generation of synthetic particle images

The settings used for generating the synthetic images are 
chosen to represent typical PIV measurements of high-
speed flows. Particle images are recorded every 2 μs by four 
virtual cameras with a chip size of 1624 × 800 pixels and a 
pixel pitch of 4.4  µm. The three-dimensional particle posi-
tions are projected onto the two-dimensional sensors by per-
spective projection (Hartley and Zimmermann 2003). First, 
the position of points in the measurement volume is defined 
with respect to the coordinate system defined by the camera 
(Eq.  4). Next, the transformed positions are projected onto 
the image plane using a pinhole camera model (Eq. 5):

(4)���� = �(�����.��� − �),

(5)���� =

[

ximg

yimg

]

=
f

zcam

[

xcam
ycam

]

,

where �meas.vol, ����, and ���� denote positions in the coor-
dinate systems of the measurement volume, of the camera, 
and of the image, respectively. � and � are the rotation 
matrix and translation vector of the camera transform (see 
Hartley and Zimmermann 2003), respectively, and f  is the 
axial distance from the camera centre to the image plane.

The four cameras are placed in a cross-configuration 
with yaw and pitch angles of ±30° to achieve a total system 
aperture of 60°, an optimal configuration for tomographic 
reconstruction (Scarano 2013). The cameras are equipped 
with lenses with a focal length of 75 mm and placed at a 
virtual distance of 0.83  m resulting in a magnification 
of 0.12 and a digital resolution of 22.9  voxel  mm−1. The 
resulting particle displacement in the free stream is about 
11 voxels.

Particle images are obtained using a similar approach as 
outlined in Lecordier and Westerweel (2004). The inten-
sity of projected particles is modelled to follow a Gaussian 
distribution; a valid approximation for particles of which 
the geometric projection is smaller than their diffraction 
spot size. Particle images are obtained using 2D Gaussian 
integration. The intensity of each pixel is taken as super-
position of all contributions of particles. This speckle-free 
approximation is valid for source densities  (Ns) below the 
speckle limit of  Ns = 0.30.

Two sets of images are generated: a set of idealized 
particle images (Fig. 6, left) and another set of noisy par-
ticle images (Fig.  6, right). The idealized images contain 
particles with a peak intensity of 512 counts and a dif-
fraction spot size of 2 pixels, resulting in a source density 
 (Ns) of 0.16. The intensity of the background is zero. The 
noisy particle images contain particles with a nominal 
peak intensity of 342 counts and a diffraction spot size of 
2.5 pixels, resulting in a source density  (Ns) of 0.25. For 
the noisy case, the seeding is modelled to consist of  TiO2 
particles with a primary crystal size of 55  nm which are 
known to form agglomerates with a mean size of about 
400 nm (Schrijer et al. 2006). Here, we randomly generate 
particle diameters from a Gaussian distribution with mean 
of 400 nm and a standard deviation of 100 nm. The distri-
bution is truncated at two standard deviations, to eliminate 

Fig. 6  Extracts of a particle 
image; clean (left) and noisy 
(right). In this example, the 
extracts depict the same region 
at the same time instance
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extremely small and large particles. The peak intensity is 
modelled to vary with the 4th-power of the physical par-
ticle diameter (Adrian and Yao 1985), resulting in particle 
peak intensities range from 21 to 1731 counts. The particle 
diameter and peak intensity is attributed to a particle once 
and does not change through time or per camera. Two noise 
sources are added: shot noise and thermal noise. Shot noise 
is dependent on the pixel intensity and is implemented, so 
that for every pixel, the intensity is a random realisation 
from a Poisson distribution with mean that is equal to the 
intensity of the noise-free image. Thermal noise is inde-
pendent of the intensity and is generated as random reali-
sations from a Poisson distribution with a mean value of 
170 counts. Mean thermal noise is subtracted before further 
processing.

Despite efforts to make the synthetic experimental data 
representative of realistic experiments, they remain of unre-
alistically high quality in the sense that they benefits from 
an optimal seeding distribution, optimal camera viewing 
angles, uniform illumination intensity, an aberration-free 
optical projection model, a CCD fill ratio of one, absence 
of any unwanted light reflections, and non-uniform refrac-
tion due to density variations of the flow. The time-resolved 
data and multi-pulse data both have been given similar 
characteristics in the present study. In reality, however, 
time-resolved measurements typically have different char-
acteristics, in particular a lower image quality due to the 
relatively small light budget of high-speed lasers and the 
relatively large pixel size of high-speed cameras.

4.4  Tomographic PIV processing

Particle images have been processed using tomographic 
PIV algorithms available in the LaVision 8.2 software. 
The FTEE algorithm was applied using Institut PPRIME 
in-house codes. The virtual cameras are calibrated in a 
two-step approach that mimics the typical procedure in an 
experiment. In step one, a geometric calibration is obtained 
using images of a virtual calibration plate that is designed 
to mimic images of typical geometric calibration plates 
used in experiments. More specifically, the plate consists of 
a black background with a grid-like pattern of 3-pixel wide 
points with a spacing of 0.1 D. The virtual calibration plate 
is placed in three different positions (at the centre of the 
thin volume as well as at its edges of the volume). In step 
two, volume self-calibration (Wieneke 2008) is performed 
using actual particle images.

Reconstructed volumes are obtained using seven itera-
tions of the fast MART algorithm after initialisation with 
a uniform value of 1.0. A 3 × 3 × 3 Gaussian smoothing is 
applied after each iteration, excluding the final iteration. 
The computational efficiency is increased by not updating 
voxels with intensities below 0.005 counts (Atkinson and 

Soria 2009). Based on the intensity distribution in z-direc-
tion, the procedure was found to result in signal-to-noise 
ratios (SNR) of about >100 and 12 for the clean and noisy 
cases, respectively.

Cross-correlation is performed using iterative multi-grid 
volume deformation (VODIM based on Scarano and Rieth-
muller 2000), symmetric block direct correlation (Discetti 
and Astarita 2012), and Gaussian window weighting (Disc-
etti et al. 2013). Vector fields from intermediate correlation 
steps are enhanced for the next iteration by removing spuri-
ous vectors, identified by universal outlier detection (West-
erweel and Scarano 2005), replacing them using linear 
interpolation and by Gaussian smoothing of the velocity 
field. The final three iterations are performed with an inter-
rogation window size of 32 voxels at 75% overlap, result-
ing in a vector spacing of 0.35 mm (8 voxels) and a meas-
urement grid of 171 × 67 × 11 vectors. Assuming a round 
window with a diameter of 32 voxels, each final (round) 
window contains about 7 particles. No post-processing was 
applied to the result of the final iteration.

Cross-correlation analysis is performed using 2 consecu-
tive particle volumes as well as using 9 consecutive vol-
umes with fluid trajectory evaluation based on an ensem-
ble-averaged cross-correlation (FTEE, Jeon et  al. 2014). 
Here, the FTEE algorithm was implemented to fit a second-
order polynomial over 7 consecutive snapshots.

4.5  LPT processing (‘Shake‑The‑Box’)

For the LPT processing, particle paths are determined 
using the ‘Shake-The-Box’ algorithm (STB, Schanz et  al. 
2016). An adapted version of the STB strategy (Novara 
et al. 2016a, b) has been applied to the multi-pulse data. All 
cases were processed using DLR in-house codes.

For the initiation phase of STB, the particle distribution 
in the first four images is determined using Iterative Particle 
Reconstruction (IPR, Wieneke 2013). Four normal trian-
gulation iterations are performed (m = 4), followed by two 
triangulation iterations (n = 2) using a reduced set of three 
cameras. Seven so-called shake iterations are executed after 
each triangulation (k = 7). The allowed triangulation error 
is 0.7 pixel in the clean case and 1.1 pixel in the noisy case. 
The intensity threshold for particle identification is set to 
100 counts and 40 counts, respectively. Tracks are searched 
in the resulting particle distributions for the four time-steps, 
using a predictor field obtained by particle space correla-
tion (PSC, Novara et  al. 2016b) evaluation. For the time-
resolved cases, from the fifth time-step on this predictor is 
completely replaced by predictions based on already identi-
fied particle tracks and the number of triangulation itera-
tions is reduced (m = 3, n = 2, k = 7). Three passes of STB 
are conducted going forwards and backwards in time to 
extend any non-identified parts of already detected tracks 
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and to find any previously overlooked tracks. For each ref-
erence particle, a search area having 1 px radius is located 
at the peak position; if at least one particle tracked by STB 
is found within the search area, the particle is considered 
as detected. In the end, the algorithm finds over 99% of 
all available particle tracks for the clean case and around 
96% for the noisy case. A third-order B-spline function is 
fit through the resulting particle tracks to reduce noise and 
to obtain Lagrangian velocity and acceleration as deriva-
tives of a continuous function. The cut-off frequency of the 
spline fit is determined using the spectral distribution of the 
unfitted tracks, like a Wiener filter used for particle position 
prediction (Gesemann et al. 2016).

Concerning the multi-pulse data, an iterative STB 
approach strategy is applied (Novara et  al. 2016a), where 
the sequential application of IPR (m = 4, n = 2, k = 5) and 
tracking allows to progressively increase the number of 
reconstructed tracks. The allowed triangulation error is 0.6 
pixel and 1.1 pixel for the clean and noisy cases, respec-
tively. The intensity threshold for particle identification 
is set to 20 counts for the clean case, while an adaptive 
threshold is adopted for the noisy case where the threshold 
value is progressively reduced for each of the STB itera-
tions. Three STB iterations are applied for the clean case 
and four for the noisy case. Approximately, 99% and 88% 
of the real four-pulse particle tracks are successfully identi-
fied by STB for the clean and noisy cases, respectively. As 
for the time-resolved case, a third-order B-spline function 
is fit through the resulting particle tracks. A more detailed 
description of the processing method is provided by Novara 
et al. (2016b); an experimental investigation of a transonic 
jet in air at Mach 0.9 by means of a multi-pulse acquisi-
tion system and STB has been presented by Manovski et al. 
(2016).

5  Velocity error assessment

5.1  PIV velocity error

Error estimates are obtained by assessing the difference 
between PIV velocity fields and ZDES simulation data 
interpolated to the PIV grid points. The mean difference 
represents the bias error and the standard deviation of the 
difference represents the random error. Error quantities are 
expressed in voxels displacement, where 1 voxel displace-
ment corresponds to 0.1 U∞. Bias errors were found to be 
smaller than 0.1 voxel throughout the measurement volume 
with the exception of a small thin region at the location of 
the shear layer in the direct vicinity of the step.

Figure  7 shows the r.m.s. errors of the veloc-
ity fields obtained with the clean (left) and noisy 
(right) particle images. The depicted errors relate to 

single-pair cross-correlation. The smallest errors occur in 
the freestream, where the typical error is <0.1 voxel, and 
in the recirculation region. In most of the domain, the error 
is <0.5 voxel. The largest errors can be found in the shear 
layer and the reattachment region. The error quantities 
found are within the typical range of uncertainties of tomo-
graphic PIV reported for similar flows (Lynch and Scarano 
2014a, b; Blinde et al. 2015). Comparison of the clean and 
noisy cases shows that the typical impact of noise is about 
0.05 voxel. The use of the multi-frame PIV processing 
algorithm FTEE was found to reduce overall error levels by 
10 and 20% for the clean and noisy cases, respectively (see 
overview in Sect. 5.3).

5.2  STB velocity error

The STB velocity error is calculated as the difference 
between the STB velocity values at the particle positions 
and the ZDES simulation data interpolated to the parti-
cle position and instance. Error statistics are subsequently 
obtained for spatial bins with a similar size as the PIV 
vector spacing. Figure 8 shows the r.m.s error on basis of 
5000 time-resolved STB results. Whereas STB works with 
physical units and does not involve the concept of a voxel, 
the STB velocity error has been rescaled to be expressed in 
terms of voxel displacement to facilitate comparison with 
PIV results.

Errors in velocity values obtained from the clean particle 
images (left figures) are of a similar magnitude as the error 
estimate for the particle integration procedure, suggesting 
an almost perfect reconstruction. For all other cases, the 
error typically stays below 0.05 voxel. Larger errors occur 
at the in- and outflow where not all tracks are immediately 
identified and the particle tracks can benefit less from the 
information from adjacent time instances. Similar features 
as for the PIV results can be observed, but error levels are 
an order of a magnitude smaller (note the different scale). 
Errors for the multi-pulse STB approach are typically 
0–0.01 voxel higher (see overview in Sect. 5.3).

5.3  Comparison of velocity errors

To further characterise and compare the performance of 
difference methods, Table 3 provides an overview of rele-
vant error values. Columns for ‘Freestream’ and ‘Reattach-
ment region’ represent typical r.m.s. error values in those 
regions. Column ‘Global’ provides the r.m.s. error value for 
the full measurement domain. FTEE results consist of only 
29 snapshots per case and no complete error assessment 
could be carried out due to lack of statistical convergence. 
Global velocity error for FTEE results has been obtained 
by first determining the relative improvement with respect 
to standard cross-correlation for the snapshots considered 
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and subsequently scaling the global velocity error resulting 
from standard cross-correlation.

The table shows large differences in the observed error 
levels for PIV and STB, e.g., for the noisy case, there is 
almost a factor 10 difference in the reattachment region. 
The lower error levels of STB compared to PIV are con-
sistent with Schanz et al. (2016), who attributed the lower 
errors from STB to a combination of the absence of ghost 
particles in the three-dimensional reconstruction, improved 
particle position accuracy in STB with respect to the posi-
tion error of the correlation peak in PIV, lack of spatial 
filtering due to windowing in the PIV analysis, and better 
temporal coherence.

For the present experiment, the impact of ghost particles 
can be considered small compared to that of the other error 
sources. This is evidenced by the high signal-to-noise ratios 
of the tomographic reconstructions resulting from a combi-
nation of optimal camera viewing angles and relatively high 
image quality. Only marginal improvements could, there-
fore, be achieved with the advanced tomographic recon-
struction methods sequential motion-tracking enhanced 
MART ((S)MTE, Novara et  al. 2010; Lynch and Scarano 

2015). The impact of the random error in the measured par-
ticle displacement can be estimated from the improvements 
achieved by the FTEE algorithm which allows reducing the 
contribution of the random error by considering multiple 
snapshots. The improvement is more pronounced for the 
noisy case, since higher noise in the particle images leads 
to higher random position errors in the locations of the cor-
relation peak.

Finally, Fig.  9 quantifies the impact of spatial filter-
ing by showing the difference between the streamwise 
velocity from the simulation data interpolated to PIV 
grid points and a spatially filtered velocity field. Whereas 
the spatial filtering associated with PIV depends on the 
specific implementation of the PIV processing as well 
as the properties of the velocity field (see Schrijer and 
Scarano 2008; Theunissen 2012), here, it was approxi-
mated by a moving average filter; a widely accepted 
simplification. The filter is implemented by taking the 
average velocity of all particles (interpolated from the 
simulation data) within a specified radial distance from 
the PIV grid points. In taking the average, a Gaussian 
weighting function was used, implemented similarly as 

Fig. 7  Centre-plane r.m.s error of velocity components, expressed in voxels displacement obtained by single-pair PIV processing of the clean 
(left) and noisy (right) particle images; streamwise (top), wall-normal (middle), and out-of-plane (bottom) direction
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in the applied PIV processing (LaVision 2015). Figure 9 
shows the result for a kernel size of 32 voxels, equivalent 
to the interrogation window size used in the present PIV 
processing.

Comparison with Fig.  7 shows that spatial filtering, 
indeed, makes a major contribution to the total error in 
the shear layer and reattachment region, e.g., for the clean 
case, the impact from filtering in the reattachment region 
is about 0.25 voxel displacement versus a total error of 
about 0.35 voxel.

Fig. 8  Centre-plane r.m.s. error of velocity components, expressed in 
voxels displacement obtained by STB processing of the clean (right) 
and noisy (left) particle images; streamwise (top), wall-normal (mid-

dle), and out-of-plane (bottom) directions. Note the difference in scale 
with respect to Fig. 7

Table 3  Overview of r.m.s. 
errors in streamwise velocity for 
different methods and regions 
of the flow

Processing Velocity error (vox. displacement)

Freestream Reattachment region Global

Clean Noisy Clean Noisy Clean Noisy

PIV (standard cross-corr.) 0.03 0.05 0.35 0.40 0.23 0.27
PIV (FTEE) – – – – 0.21 0.21
STB (time-resolved) <0.01 0.02 0.02 0.05 0.01 0.04
STB (multi-pulse) <0.01 0.02 0.02 0.05 0.02 0.04

Fig. 9  Estimated contribution of spatial filtering associated with PIV 
to total error
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6  Descriptions of applied pressure evaluation 
techniques

6.1  Flow modelling assumptions

All methods rely on the momentum equation (Eq.  1) to 
determine the pressure gradient from the material accelera-
tion. To account for compressibility effects, the momentum 
equation is rewritten to eliminate density as independent 
variable, under the assumption of inviscid and adiabatic 
flow (Eq. (6); van Oudheusden et al. 2007). The isentropic 
pressure ratio (Eq.  7) at the top of the domain is used as 
Dirichlet boundary condition for the spatial integration of 
the pressure gradient or to normalise the result of the inte-
gration procedure:

The approximation of inviscid flow is motivated by 
the high Reynolds number. Using the simulation data, 
the value of the viscous term and its impact on the recon-
structed pressure fields was, indeed, found to be at least two 
orders of magnitude smaller than that of the acceleration 
term (see Eq. 1). Figure 10 (top) shows the r.m.s. difference 
between adiabatic and reference temperature (top-left) and 
between pressure from isentropic relations and reference 
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pressure. The bottom figures show that the impact of using 
these flow modelling assumptions in the reconstruction of 
the pressure field is an order of magnitude smaller than the 
magnitude of the pressure fluctuations present in the flow 
(compare Fig. 4). The pressure fields used to perform the 
impact analysis were calculated similarly to the Eulerian 
approach described in Sect. 6.2 using simulation data inter-
polated to the PIV grid points as input data.

6.2  PIV‑based techniques

The following four techniques reconstruct pressure fields 
from velocity data on a Cartesian grid, as obtained by 
PIV. The Eulerian approach (EUL) and (iterative) pseudo-
Lagrangian approach (ILAG) require at least two subse-
quent snapshots as input data for determining the material 
acceleration (multi-snapshot approaches). Taylor’s hypoth-
esis approach (TH) and the instantaneous Vortex-in-Cell 
method (IVIC) require only a single velocity snapshot as 
input data (single-snapshot approaches).

6.2.1  Iterative least-square pseudo-tracking (ILAG)

In the pseudo-tracking approach, imaginary particles, ini-
tially located at the grid points, are tracked forward and 
backward in time using a series of PIV velocity fields (Liu 
and Katz 2006). Particle paths are determined by integra-
tion of the particle velocity which is obtained through 
linear spatial and temporal interpolation. The material 
acceleration is obtained from a first-order least-square 
fit through the velocity values at the positions of the 

Fig. 10  R.m.s. difference between adiabatic and reference tempera-
ture (top-left); and between pressure from isentropic relations and 
reference pressure (top-right); impact of using adiabatic temperature 

instead of reference temperature (bottom-left); impact of using pres-
sure from isentropic relations instead of reference pressure as bound-
ary condition at top wall (bottom-right)
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imaginary particles, disregarding any particle positions 
outside the domain. For time-resolved PIV, it could also be 
estimated with the FTEE algorithm (Jeon et al. 2014). The 
material acceleration is used to obtain a better estimate of 
the imaginary particle track in a next iteration. The tem-
poral length of each trajectory is 9 time-steps for the case 
of time-resolved input data and 2 time-steps for the case 
of multi-pulse input data. To compensate the excluded 
outward fluid motion at the volume boundary and to pre-
vent corresponding decrement of the dynamic range, the 
temporal trajectory length is extended toward the opposite 
side. The spatial integration of the pressure gradient is con-
ducted using staggered grid by minimisation of a cost func-
tion. Neumann boundary conditions are imposed implicitly. 
A Dirichlet boundary condition with a value of zero is pre-
scribed in a single grid point. In a next step, the solution is 
offset using the isentropic pressure ratio (see Eq.  7) sam-
pled over a region selected based on the Frobenius norm 
of the material acceleration tensor. A detailed description 
of the present implementation can be found in (Jeon et al. 
2015). The method is implemented using velocity fields 
from single-pair cross-correlation analyses, FTEE velocity 
data, as well as STB input data. In case of the latter, the 
temporal length is 2 time-steps for both the cases of time-
resolved and multi-pulse input.

6.2.2  Eulerian approach (EUL)

The material acceleration is evaluated in a stationary ref-
erence frame as being composed of temporal and spa-
tial velocity derivatives (see Baur and Köngeter 1999). In 
the present implementation, these derivatives are evalu-
ated using the second-order finite difference discretization 
except at the boundaries where the first-order discretization 
is used instead. The logarithmic of the pressure gradient is 
integrated by first taking the divergence of Eq. (6) to obtain 
a Poisson equation (see de Kat and van Oudheusden 2012). 
Neumann boundary conditions are imposed on all sides 
except for the top surface of the domain, where the pressure 
as obtained from the isentropic flow relations is prescribed 
as Dirichlet boundary condition (see Eq. 7). The problem 
is discretised using a second-order finite difference scheme 
and the resulting linear system is subsequently solved for 
pressure. The method is implemented using pairs of snap-
shots with a time separation of 10 μs both for the multi-
pulse and the time resolved case.

6.2.3  Taylor’s hypothesis approach (TH)

Taylor’s hypothesis consists of the assumption that advec-
tion due to turbulent circulation is small and that ‘frozen’ 
turbulence, therefore, advects with the flow. Adopting 
Taylor’s hypothesis enables the estimation of the material 

acceleration from a single velocity snapshot. The choice 
of convection velocity is crucial for the accuracy of this 
method and is taken here as the mean velocity, averaged in 
z-direction. A detailed description of the implementation 
of this approach for pressure determination can be found in 
de Kat and Ganapathisubramani (2013) and Laskari et  al. 
(2016). The subsequent integration of the pressure gradi-
ent is performed similarly as for the Eulerian approach 
described above.

6.2.4  Instantaneous Vortex-in-Cell (IVIC)

In the IVIC method, the material acceleration is approxi-
mated from a single snapshot by application of the vorti-
city transport equation to the velocity measurement at a 
single time instant. In summary, the method first evaluates 
the vorticity temporal derivative by solution of the inviscid, 
incompressible vorticity transport equation. In a next step, 
the velocity temporal derivative is calculated by solution of 
a Poisson equation and then used to construct the material 
acceleration. A more detailed description of the approach 
can be found in Schneiders et  al. (2016). The subsequent 
integration of the pressure gradient is performed similarly 
as for the Eulerian approach described above.

6.3  LPT‑based techniques

The following four techniques reconstruct pressure fields 
from acceleration data along particle tracks. FlowFit A and 
VIC + first interpolate acceleration data to a Cartesian grid 
and subsequently solve the momentum equation for pres-
sure. FlowFit B and Voronoi-based integration directly 
determine pressure fields from the sparse acceleration data.

6.3.1  FlowFit A (FFA)

The acceleration data obtained at the particle positions are 
interpolated to a Cartesian grid by ‘FlowFit’; an iterative 
optimization approach that generates a quadratic B-splines 
representation of the acceleration field, using spline coef-
ficients from minimizing a cost function that enforces 
smoothness and penalizes the curl of acceleration (Gese-
mann et al. 2016). Integration is performed in Fourier space 
(Huhn et al. 2016). A constant pressure offset is added to 
the solution to yield the absolute pressure field.

6.3.2  FlowFit B (FFB)

Flowfit B represents the scalar pressure field as 3D cubic 
B-spline function and estimates its parameters by defining 
a cost function that is minimized on the basis of a weighted 
sum of:
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•	 Squared distances between “fitted” and “measured” 
pressure gradients at all particle positions.

•	 Squared distances between “fitted” and isentropic pres-
sure at the top of the domain.

•	 Squared curvatures of the pressure function as a form of 
Tikhonov regularization.

The resulting linear least-squares problem is solved iter-
atively. After this reconstruction, the B-spline curve is sam-
pled at the desired points. Due to doubts about the impact 
of compressibility effects in the subsonic compressible 
flow, for both FFA and FFB, it was decided not to impose 
zero-divergence of the velocity field and thus not to take 
advantage of a non-linear regularization approach, in con-
trast to the VIC+ method. The full version of the FlowFit 
algorithm, however, does include a complete non-linear 
Navier–Stokes regularization (similar to VIC+) and is 
described in Gesemann et al. (2016).

6.3.3  Vortex-in-Cell+ (VIC+)

VIC+ reconstructs instantaneous velocity and its material 
derivative on a regular grid using both the instantaneous 
velocity and material acceleration evaluated from Lagran-
gian particle trajectory measurements. The technique fol-
lows an iterative procedure that minimizes a cost function 
and penalizes deviations from the instantaneous veloc-
ity and material acceleration measurement. A detailed 
description of the approach can be found in Schneiders and 
Scarano (2016). The subsequent integration of the pressure 
gradient is performed via a Poisson equation (see Eulerian 
approach). Pressure gradients are prescribed as Neumann 
boundary conditions used on all sides of the domain. In a 
next step, the solution is normalised by setting the mean 
pressure ratio at the top plane equal to the mean isentropic 
pressure ratio [see Eq. (7)].

6.3.4  Voronoi-based pressure integration (VOR)

A Lagrangian finite-volume method is utilized to spatially 
integrate Eq.  (6) to obtain pressure values at the particle 
positions provided by STB. First, a Lagrangian network 
is constructed on the particle field (Neeteson and Rival 
2015; Neeteson et  al. 2016), so that the pressure may be 
extracted directly in the Lagrangian frame. Next, Eq.  (6) 
is discretized to the Lagrangian network using a finite-vol-
ume method. Neumann boundary conditions are enforced 
implicitly at all sides excluding the top where a Dirichlet 
boundary condition is enforced by prescribing the isen-
tropic pressure ratio (see Eq. 7). The resulting problem is 
expressed in a system of linear equations, which is solved 
for pressure.

7  Pressure results

The reconstructed pressure fields are compared to reference 
pressure field from the simulation data and to each other. 
All reconstructed pressure fields are given for the same grid 
size as the PIV velocity data, i.e., 171 × 67 × 11 data points, 
with the exception of VOR which is based on 165 × 61 × 6 
data points. For the time-resolved case, 36 snapshots are 
considered with exception of ILAG applied to FTEE veloc-
ity input data for which only 29 pressure snapshots are 
available. The result for the multi-pulse case consists of 21 
time instances.

7.1  Pressure from PIV‑based techniques

Figures 11 and 12 show the (reconstructed) pressure fields 
and their errors calculated from PIV time-resolved and 
multi-pulse input data, respectively. All results pertain 
to the noisy case. The results for the clean case are very 
similar and have, therefore, been omitted for brevity. Ref-
erence pressure from the simulation data is shown in the 
top-left figure. Each other row corresponds to a different 
technique. Left figures show a sample of the instantane-
ous (reconstructed) pressure fields in the centre-plane, with 
the corresponding instantaneous errors in the centre fig-
ures. Right figures show the r.m.s. errors from all available 
time-steps and all planes in z-direction. As the error of the 
reconstructed pressure fields generally increase towards the 
outer planes, this approach increases the r.m.s. error level 
with respect to the error at centre z-plane. The overall com-
parison is however not affected. The reference pressure is 
provided for the same time instance as that of ILAG and 
EUL, which is 5 µs later than the depicted time instance for 
TH and IVIC.

The left figures show that all methods are able to recon-
struct the general features of the reference pressure field. 
The centre and right figures show that all reconstructed 
pressure fields have the highest error in the shear layer and 
reattachment region where the smallest temporal and spa-
tial flow scales occur and the precision of the PIV measure-
ment is poorest (see Fig. 7).

Overall, the most accurate reconstructed pressure 
fields are obtained with ILAG (compare right figures). 
For the case of time-resolved input data, the use of more 
accurate FTEE velocity data (see Sect. 5.3) significantly 
improves the quality of the reconstructed pressure field 
with respect to standard PIV cross-correlation. Investi-
gation of the time-resolved sequence of instantaneous 
results shows highly fluctuating error fields for the Eule-
rian approach (EUL), whereas the error field for ILAG 
evolves more gradually over time. This is attributed to 
the better use of temporal information by ILAG, which 
in the present implementation for the time-resolved fits 
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a second-order polynomial over 9 consecutive veloc-
ity fields. The temporal velocity derivative in the cur-
rent Eulerian approach on the other hand is based on the 

difference between two velocity fields, a procedure that is 
known to be sensitive to any velocity measurement noise.

For the case of the multi-pulse input data, the dif-
ference between the results of ILAG and EUL is less 

Fig. 11  Results and errors from applying PIV-based pressure field 
reconstruction techniques to time-resolved input data. (Recon-
structed) instantaneous pressure fields in the centre-plane (left col-

umn), instantaneous error in the centre-plane (centre column), and 
r.m.s. errors for all z-planes (right column)



 Exp Fluids (2017) 58:33

1 3

33 Page 16 of 23

pronounced as both only use two velocity snapshots. 
Here, the slightly lower overall error levels of ILAG may 
speculatively be attributed to a number of possible causes 
including the filtering effect of making a polynomial fit, 
better numerical treatment of regions near the domain 
boundary, and a more suitable time separation between 
velocity fields. Further comparison shows that the r.m.s. 
errors for ILAG are relatively high in the top-right of the 
domain. This is attributed to difference in the boundary 
condition for pressure integration as contrary to the other 
methods, as the present implementation of ILAG does 

not prescribe a pressure ratio at the downstream part of 
the top boundary.

The single-snapshot approaches (TH and IVIC) can be 
seen to produce less precise reconstructed pressure fields 
than the multi-snapshots approaches (ILAG and EUL); an 
expected result as EUL and ILAG use more temporal infor-
mation. Nevertheless, in the light of practical difficulties in 
obtaining multi-pulse data in high-speed flows, it is encour-
aging that from this assessment, it appears to be quite fea-
sible to reconstruct the main pressure field features from a 
single velocity snapshot.

Fig. 12  Results and errors from applying PIV-based pressure field reconstruction techniques to multi-pulse input data. (Reconstructed) instan-
taneous pressure fields in the centre-plane (left column), instantaneous error in the centre-plane (centre column), and r.m.s. errors for all z-planes
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Comparison of the single-snapshot approaches (TH 
and IVIC) shows that IVIC better captures the smaller 
flow structures in the upstream part of the shear layer (for 
x/D < 0.3). In the rest of the domain, TH performs better. 
The performance of TH here is surprisingly good as it was 
designed to work for convective flows and the underlying 
assumption of advection of ‘frozen’ turbulent structures is 
invalid for shear layers and separated flows. The errors of 
IVIC in the downstream region are likely due to the dif-
ficulty in defining a suitable boundary condition for the 
velocity temporal derivative in this region, which is inher-
ent to the method and a known sensitive aspect of its imple-
mentation for thin-volume tomographic PIV.

In Sect.  5.3, it was shown that the velocity error from 
PIV for a large part is due to the inherent spatial filtering. 
To assess the contribution of spatial filtering to the pressure 
error, Fig.  13 shows the difference between the reference 
pressure solution and a spatially filtered solution, obtained 
using a similar approach as outlined in Sect. 5.3. The figure 
shows that for pressure, contrary to the situation for veloc-
ity, the contribution of filtering to the total error is rela-
tively small.

7.2  Pressure from LPT‑based techniques

Figures 14 and 15 show the (reconstructed) pressure fields 
and their errors for LPT time-resolved and multi-pulse 
noisy input data, respectively. Note that the scaling of the 
instantaneous error (centre figures) has been adapted with 
respect to Sect. 7.1 to better visualize the error distribution. 
The scaling of r.m.s. error fields (right figures) remains 
unchanged to facilitate direct comparison with the PIV-
based techniques.

The left figures show that all LPT-based techniques 
are able to reconstruct the general features of the refer-
ence pressure field and that, moreover, most methods pro-
vide similar results, especially for the time-resolved data 
(Fig. 14). Errors for the time-resolved input data are lower 
than for the multi-pulse input data, which is attributed 
to lower accuracy of the particle tracks in the latter case. 

Comparison of results of the different techniques shows 
that the results for FlowFit A and FlowFit B are very 
similar and VIC+ yields the most accurate reconstructed 
pressure fields. Errors for the Voronoi-based integration 
approach (VOR) are significantly higher than for the other 
methods.

7.3  Reconstruction of pressure length scales

The reconstruction of the pressure length scales present in 
the flow is analysed by considering spatial spectra along 
horizontal gridlines (see Fig.  16). The ZDES simulation 
data are first interpolated to the same grid points as used 
for the pressure results. Spectra are obtained by applying 
the FFT algorithm after using the symmetric straight line 
approach as outlined in Foucaut et al. (2004) and without 
any windowing function, similarly to the approach used in 
Liu and Katz (2013). The wavelength is scaled by the inter-
rogation window size used in the PIV correlation analysis, 
which is equal to four times the grid spacing. Statistical con-
vergence has been improved by averaging the spectra from 
all time instances and from 40 horizontal gridlines between 
the afterbody and the shear layer (0.03 > y/D > 0.30). The 
spectra are shown for frequencies up to the Nyquest fre-
quency based on the interrogation window size: 2λ = WS.

The spectra for the PIV-based pressure field reconstruc-
tions (left figure) show that ILAG, EUL, and IVIC all 
reconstruct the reference pressure spectrum for large-scale 
pressure fluctuations (WS/λ < 0.2). In addition, the spectra 
for ILAG, EUL, and IVIC are very similar for WS/λ < 0.35. 
The spectrum for Taylor’s hypothesis in this spectral band 
is much lower. This discrepancy is to be expected as the 
hypothesis does not hold for large-scale structures. For 
wavelengths WS/λ > 0.35, the spectra for ILAG, EUL, and 
TH all lie below the reference spectrum, indicating that 
these approaches do not fully reconstruct small-scale fluc-
tuations. Comparison of the results for ILAG show that the 
use of FTEE input data brings its spectrum closer to the ref-
erence spectrum suggesting better reconstruction of small-
space structures. The spectrum for the Eulerian approach 
(EUL) much better follows the reference spectrum than 
those of the other approaches, despite its r.m.s. error being 
similar to ILAG (compare Fig. 11).

The spectra for the LPT-based pressure field reconstruc-
tions (right figure) show that all tested approaches follow 
the reference pressure spectrum for WS/λ < 0.2. For smaller 
wavelengths, FFA, FFB, and VIC+ better reconstruct the 
reference spectrum than ILAG and VOR. All methods at 
some point cross the reference spectrum indicating a spec-
tral noise floor. The noise floor for VOR is relatively high 
and that of VIC+ is the lowest, which is consistent with 
earlier observations of the error levels (compare Figs. 14, 
15).

Fig. 13  Estimated contribution of spatial filtering associated with 
PIV to total error
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Comparing PIV- and LPT-based approaches shows 
that both allow reconstruction of the spectrum for large-
scale pressure fluctuations. The LPT-based approach, 

however, better reconstructs the spectrum for small-scale 
fluctuations. Contrary to the LPT-based approaches, the 
PIV-based approaches do not exhibit a clear noise floor. It 

Fig. 14  Results and errors from applying LPT-based pressure field 
reconstruction techniques to time-resolved input data. (Recon-
structed) instantaneous pressure fields in the centre-plane (left col-

umn), instantaneous error in the centre-plane (centre column), and 
r.m.s. errors for all z-planes (right column)
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is speculated that the spatial filtering of the velocity field 
due to the PIV processing also leads to filtering of small-
scale noise in the reconstructed pressure fields.

7.4  Global pressure error

To further quantify and compare the performance of differ-
ent methods, the global pressure errors (�global

RMS
) is obtained 

Fig. 15  Results and errors from applying LPT-based pressure field 
reconstruction techniques to multi-pulse input data. (Reconstructed) 
instantaneous pressure fields in the centre-plane (left column), instan-

taneous error in the centre-plane (centre column), and r.m.s. errors for 
all z-planes (right column)
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by taking the r.m.s. error for all gridpoints  (Np) at all time 
instances  (Nt):

Table 4 shows the resulting errors for all cases consid-
ered. The methods have been ordered per input data and for 
increasing errors. The global error for FTEE + ILAG has 
been scaled as described in Sect. 5.3.

Errors for the noisy case can be seen to be slightly 
higher than for the clean case. Where this is not the case, 
this is attributed to a lack of statistical convergence. The 
results for the clean and noisy case follow a similar trend 
which suggests that none of the methods is critically sensi-
tive to the amount of noise added in this test case. LPT-
based approaches result in significantly lower error levels 
than the PIV-based approaches. This is in line with the 

(8)�
global

RMS
=

√

√

√

√

√

1

NtNp

Nt
∑

i=1

Np
∑

j=1

(

(Cp)i,j − (Cp,ref)i,j

)2

.

lower velocity errors from STB compared to PIV for the 
present test case (see Sect. 5.3). Another indication that the 
lower errors are driven by the better input data is that the 
ILAG approach performs much better when using LPT data 
than when using PIV data.

To put the magnitude of the error levels in perspective, it 
is useful to note that the error in the table is expressed 
in  0.01 Cp which is equivalent to a percentage of the 
freestream dynamic pressure. Furthermore, with the global 
level of pressure fluctuations ((C�

p
)
global

RMS
) being 4% of the 

local dynamic pressure (see Eq.  9), it follows that a 1% 
error level in the table corresponds to 25% of the global 
pressure fluctuations. The limited number of snapshots 
does not allow to make a meaningful decomposition of this 
error into a bias and random part:

(9)

(C�
p
)
global

RMS
=

√

1

NtNp

∑Nt

i=1

∑Np

j=1

(

(Cp,ref)i,j − (Cp,ref,mean)j

)2

i,j
= 0.04.

Fig. 16  Spatial spectra of pressure fluctuations along 40 horizontal lines between the afterbody and the shear layer (0.03 > y/D > 0.30) for PIV-
based pressure field reconstructions (left) and LPT-based pressure field reconstructions (right)

Table 4  Global pressure errors 
for all noisy and clean, time-
resolved (TR), and multi-pulse 
(MP) input data

Pressure field 
reconstruction

Source of input data Global pressure error  (10−2)

TR, clean TR, noisy MP, clean MP, noise

VIC+ LPT 0.68 0.63 0.71 1.02
FFA LPT 0.71 0.74 0.82 1.07
FFB LPT 0.72 0.76 0.86 1.10
ILAG LPT 0.88 0.89 0.99 1.23
VOR LPT 1.71 1.63 3.57 2.35
ILAG PIV (FTEE) 1.45 1.33 – –
ILAG PIV 1.43 1.69 1.67 2.10
EUL PIV 1.52 2.09 1.80 2.11
TH PIV (1 snapshot) 2.23 2.54 2.66 2.78
IVIC PIV (1 snapshot) 3.44 2.99 3.34 3.39



Exp Fluids (2017) 58:33 

1 3

Page 21 of 23 33

8  Conclusions

A test case for PIV-based and LPT-based pressure evalu-
ation techniques has been developed by constructing a 
simulated experiment from ZDES simulation data. Impor-
tant experimental error sources are replicated by simulat-
ing the entire measurement chain. To enable an assessment 
of the impact of measurement noise, the test case includes 
both cases with and without added artificial noise. The test 
case includes multi-pulse data (4 particle images; 2 veloc-
ity snapshots), which is representative of the acceleration 
measurement procedure available in high-speed flows, 
as well as longer series of continuous time-resolved data, 
which can realistically only be obtained for low-speed 
flows. Both tomographic PIV algorithms and the STB algo-
rithm have been applied to enable the testing of both PIV- 
and LPT-based pressure determination procedures.

A variety of state-of-the-art pressure determination tech-
niques has been applied to a single test case consisting of 
a high-speed, subsonic compressible flow over an axisym-
metric step. The working principles as well as the imple-
mentation of these techniques have been described. Using 
the test case, the techniques have been assessed in terms of 
their capability to reconstruct the reference pressure field as 
well as the impact of noise in the input data and the benefit 
of using time-resolved data. This led to the following main 
conclusions

1. A range of suitable methods exists that can reconstruct 
instantaneous pressure fields from PIV/LPT input data. 
The main features of the pressure fields can be recon-
structed from a single PIV velocity snapshot while 
highly accurate pressure fields can be reconstructed 
using STB in combination with more advanced tech-
niques.

2. For the present input data, the LPT-based techniques 
produce more accurate pressure fields than the PIV-
based approaches in terms of magnitude as well as 
length scales. This difference in performance is attrib-
uted to a combination of higher spatial resolution of 
the input data and better use of time information in the 
data sets.

3. The use of longer series of time-resolved input data 
allows more accurate reconstructed pressure fields. 
Nevertheless, in light of practical difficulties in obtain-
ing multi-pulse data for high-speed flows, it is encour-
aging that it appears to be possible to reconstruct the 
main features of the reference pressure field already 
from a single velocity field.

4. Noise in the input data typically reduces the accuracy 
of the reconstructed pressure fields, but none of the 
methods proved to be critically sensitive to the amount 
of noise that was added in the present test case.

Given these conclusions on the availability and per-
formance of PIV/LPT-based pressure field reconstruc-
tion algorithms and their dependence on the availability 
of suitable experimental data, future advances are best 
attained through demonstration through experiments and 
further development of experimental capabilities.
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