

Delft University of Technology

Composing MDAO symphonies
Graph-based generation and manipulation of large multidisciplinary systems
van Gent, Imco; La Rocca, Gianfranco; Veldhuis, Leo

DOI
10.2514/6.2017-3663
Publication date
2017
Document Version
Accepted author manuscript
Published in
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference

Citation (APA)
van Gent, I., La Rocca, G., & Veldhuis, L. (2017). Composing MDAO symphonies: Graph-based generation
and manipulation of large multidisciplinary systems. In 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference: 5-9 June 2017, Denver, Colorado Article AIAA 2017-3663 American Institute of
Aeronautics and Astronautics Inc. (AIAA). https://doi.org/10.2514/6.2017-3663
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/6.2017-3663
https://doi.org/10.2514/6.2017-3663

This is an Accepted Manuscript of an article published in: 18th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 5-9 June 2017, Denver, Colorado, . ISBN: 978-1-62410-504-3 Available online: https://

arc.aiaa.org/doi/10.2514/6.2017-3663

Composing MDAO symphonies:
graph-based generation and manipulation

of large multidisciplinary systems
Imco van Gent,∗ Gianfranco La Rocca,† and Leo L. M. Veldhuis‡

Delft University of Technology, Kluyverweg 1, 2629 HS, Delft, The Netherlands

This paper proposes a novel methodology and its software implementation, called KAD-MOS
(Knowledge- and graph-based Agile Design for Multidisciplinary Optimization Sys-tem), which aims at

increasing the agility of aircraft design teams that perform collaborative multidisciplinary design
analysis and optimization (MDAO) by means of graph manipula-tion techniques. By agility, the ease and
flexibility to assemble, adapt and adjust MDAO computational systems is intended here, as necessary to

better fit the iterative nature of
the aircraft design process. KADMOS has been developed on the notion that a formal specification of an

MDAO system is required before its actual implementation, especially
to be able to compose large and complex systems in multidisciplinary design teams. This specification

system is under development as part of the EU project AGILE where a new generation of aircraft MDAO
systems is investigated to support collaboration of heteroge-neous teams of experts. KADMOS improves

the agility of the design team in three ways:
1) reducing the set-up time required to compose large and complex MDAO models, 2) enabling the
systematic inspection and debugging of this model, and 3) manipulating the model for automated
creation and reconfiguration of optimization strategies, including the accompanying executable

workflow. This is achieved by means of a graph-based analysis system that combines different existing
advantageous techniques for performing MDAO, such as the use of a single shared data schema

containing a parametric representation of the aircraft, knowledge-based technologies, and simulation
workflow (SWF) software packages. Two MDAO case studies will be presented in the paper. The first

case study is based on
a simple analytical problem, generally used in literature for MDAO benchmarking studies. The

second case study concerns a detailed wing aerostructure design using a collection of wing design
tools. While the simple and compact analytical problem is used in this pa-

per to demonstrate the functionalities of the tool, the wing design case demonstrates the capability of
KADMOS to support quick formulation, (re)configuration, and execution of MDAO workflows using

distributed and heterogeneous sets of analysis tools.

I. Introduction

Past research indicates that MDAO can offer huge benefits in creative design. Boeing Phantom Works
scientists1, 2 estimate that MDAO can offer 8-10% performance gains for innovative aircraft design and even
40-50% gains for designing radically new and undeveloped concepts in the traditional measures of
performance, such as range, speed, payload capacity.3 Despite the high potential gains, MDAO is not as widely
used as one would expect. Both technical and non-technical barriers4–7 are hampering its full exploitation, as
discussed below in this section.

To get a better understanding of the current MDAO challenges it is convenient to refer to Figure 1, where
the different parts of the MDAO-based development process and their relation are illustrated. The
development process in this figure can be roughly cut in two parts. On the left side one has the formulation
phase where the MDAO problem is defined (or provided) and a formal (not executable) model of the MDAO

∗Ph.D. Student, Flight Performance and Propulsion Section, Faculty of Aerospace Engineering, AIAA student member.
†Assistant Professor, Flight Performance and Propulsion Section, Faculty of Aerospace Engineering, AIAA member.
‡Full Professor, Head of Flight Performance and Propulsion Section, Faculty of Aerospace Engineering, AIAA Member.

1 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

system is generated: the formal specification. This specification is the blueprint of the executable workflow,
which is integrated and executed during the execution phase of the MDAO-based development process (right
part of Figure 1) to find the actual optimal design. Hence, the formal specification of the MDAO model
generated in the formulation phase constitutes the neutral representation of the MDAO system, which needs
to be translated into a software-specific execution, as is indicated with the simulation workflow (SWF)
definition block in the figure.

In a realistic design case the optimization is generally performed more than once, because the analysis of
the design that is found after a certain run will provide new insights. These insights will be translated to an
adjustment of the MDAO problem formulation (e.g. change of objective, addition of constraints, etc.) and
a reconfiguration of the MDAO process (e.g. addition, removal, replacement of analysis tools, or change of
optimization strategy). This process of problem adjustment and process reconfiguration is iterated until a
satisfactory design is found (or the project deadline has been reached).

Tool repo /
Knowledge

base

MDAO problem
MDAO process
(inexecutable)

SWF de�nition
(inexecutable)

SWF software
(executable)

MDAOptimized
design

MDAO
architectures

SWF
translators

MDAO model / system

KADMOS

MDAO-based development process

Formulation phase Execution phase

results
in an

is executed
using an

translated
to speci�c
platform

provides
translator to

provides
coordination

strategy for

is solved
according to

provides tools
to analyze

triggers
iterations

Figure 1: Overview of MDAO terminology for the MDAO-based development process used in this paper.
The process can be divided in two phases: formulation (left) and execution (right). The domain of KADMOS
within the development process is indicated by the red box.

One of the most critical technical barriers for MDAO comes from the large (and continuously increasing)
size of typical MDAO problems. In the words of Pate et al.8 the formulation of these problems has become
increasingly complex as the number of analysis tools and design variables included in typical studies has
grown. In this context the problem of determining a feasible data flow between tools to produce a specified
set of system-level outputs is combinatorially challenging. Especially when complex and high fidelity tools
need to be included, the cost and time requirements to integrate the MDAO system can easily approach
the cost and time requirements of creating any of the discipline analyses themselves. A survey9 of MDAO-
oriented research projects, performed at the German Aerospace Center (DLR) and in a European context,
has shown that 60-80% of the project time was used to integrate the numerous tools and set up a first
executable data flow for a required set of system-level outputs.

This integration challenge hinders the exploitation of new tools and the reuse of existing tools, as for every
MDAO problem the tools have to be refitted for a new MDAO workflow. On a higher level the different tools
have to be implemented using one of the available MDAO architectures,10 such as Multidisciplinary Feasible
(MDF) or Individual Discipline Feasible (IDF). The architecture selection has to be done in an early stage
and it is not easy to adjust the architecture once the SWF has been created (a notable exception being an
implementation in OpenMDAO11), although a different architecture might provide benefits in computation
time. Thus, both on the tool level and the architecture level the MDAO-based development process is not
agile enough yet.

A less technical, rather organizational barrier stems from the fact that the current aircraft conceptual and
preliminary design practice at major commercial aircraft developers is geared towards the use of empirical

2 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

models based on tube-and-wing (TAW) jetliners. In addition, the organizations are also set up based on the
developments of past TAW configurations of the previous decades. A major strength of the TAW configu-
ration is that it allows a relatively strong decoupling of different disciplines (aerodynamics, structures, etc.)
and different systems (wing, fuselage, tail, engines). Naturally, collaboration between different disciplines is
required to have a balanced and robust design with the right system couplings, however, this collaboration is
not at the same level as the disciplinary collaboration that is required to perform MDAO. Hence, there is a
big difference in the required level of formal specification between performing ‘manual’ design optimization
and ‘automatic’ design optimization.

One can conclude from both the current design practice and the observations by Pate et al.8 that
implementation of a large MDAO model in a practical design situation is problematic. If used at all, most
MDAO workflows are generally tailor-made to their application, difficult to reconfigure, and not created
using an adequately standardized system and methodology.

This lack of agility versus the potential benefits of the MDAO method with respect to existing design
methods is effectively summarized in Figure 2. Flager and Haymaker12 have performed research into the
design process metrics of both a legacy (current) design method and an MDAO-based process for the design
of a hypersonic vehicle by Boeing.1,2 The main hurdle indicated in Figure 2 is the long set-up time of the
MDAO workflow (14 weeks) compared to the set-up time for the legacy method (6 weeks). The potential
of the MDAO-based process is also clear: once the set-up of the MDAO workflow is complete an enormous
amount of iterations can be performed compared to the legacy method. Furthermore, the MDAO-based
process enforces the whole team to spend more time on Specification and Reasoning (see legend of Figure 2
for a definition of both terms) while less time is spent on Execution and Management, however, these benefits
come with an additional risk as well: in the MDAO design process the Specification phase is longer and this
postpones the moment that one obtains the first results.

This longer specification time is caused by the fact that the MDAO system requires a more formal
specification; to automate the system of disciplinary analyses the connections between those analyses have
to be defined down to the smallest detail before a functioning system can be implemented. In industrial
design situations, where deadlines are strict and risks need to be minimized, the risky postponement of the
first results in combination with the time-consuming formal specification forms a major hurdle. Therefore,
the focus of the system development presented in this paper is on the formulation phase. The goal is to
enable the formal specification of any MDAO problem and process and to include an automated connection
to an executable workflow using SWF software packagesa.

Figure 2: Comparison of legacy and MDAO design process metrics for the design of a hypersonic vehicle12

The formal specification can be further clarified by considering a well-known analogy to the performance
of MDAO, which was introduced by Cramer:7 symphonic orchestras. Just like with MDAO, a symphonic

aThe SWF software packages used in the AGILE project are provided by two different partners: RCE by the German
Aerospace Center (DLR) and Optimus by Noesis Solutions

3 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

orchestra attempts to provide a music performance (optimal design) by combining a lot of different musicians
(disciplines) using vastly different instruments (disciplinary tools). Usually, the instruments are “integrated”
by a composer (head designer) while the balancing of all musicians is left to the conductor (optimizer). In
this analogy, a key component for music performance in large groups is still missing. Symphonic orchestras
can play very long, complex pieces thanks to a key system in place: music notation. Musical score provides
the formal specification of the symphonies played by orchestras. Clearly, without a proper music notation
system, performing large, complex pieces would be near to impossible. The same holds for large, complex
MDAO problems. If we try to formulate and solve these MDAO problems without a central notation system,
then it is like we try to compose and conduct an orchestra without being allowed to use sheet music.

It is exactly this lack of formal specification in combination with the opportunities it offers to formalize
large, complex MDAO systems that motivated the development of KADMOS, the novel graph-based system
for agile configuration and execution of MDAO frameworks presented in this paper. KADMOS aims at
providing a system composition tool for these MDAO systems, thereby facilitating the formal specification
of the automated design process required for MDAO-based developments. Quantitatively, KADMOS has
reached its goal when the set-up time for an MDAO workflow is reduced significantly, however (and maybe
even more importantly), the goal is especially reached when an MDAO support system is created that
provides enough confidence to perform MDAO-based design in large, heterogeneous teams of experts.

II. Methodology

KADMOS is part of the bigger framework developments in MDAO that is taking place within the EU
project AGILEb. In this project a new generation of aircraft MDAO systems is investigated to support
collaboration of heterogeneous teams of experts. This heterogeneity of the design team is a key assumption
in the methodology. Indeed, based on the vast experience of the consortium members, it is acknowledged
that no complex MDAO model can be fully integrated or understood by a single person or small team,
but only by an heterogeneous team of experts, including discipline specialists, aircraft designers, and MDO
system architects.

A. KADMOS functional requirements

The aim of KADMOS is to enable the formal specification of large, complex MDAO models. To this purpose,
the following three basic functionalities have been identified:

• Formalize: The system should support the formal specification of large, complex MDAO models.
Hence, its methods should be scalable while always storing the full MDAO model down to the smallest
detail. Furthermore, the heterogeneity of the team demands that the system supports a modular
specification approach, such that each individual expert can provide and control its own building
block, without having to understand the full system.

• Inspect: The system should enable different experts in the team (i.e. disciplinary specialists, integra-
tors) to inspect parts of the model that are relevant to them, in order to validate model completeness
and correctness, thereby increasing the level of trust in the model.

• Manipulate: The system should also be able to automatically manipulate the content stored within.
With a fully machine-interpretable implementation of the MDAO problem formulation, computerized
manipulations will reduce the chances of errors or inconsistencies in the model by replacing repetitive
error-prone human tasks. Simple manipulations would be the adjustments of input or output variables
of a disciplinary tool. More advanced manipulations are the automated transformations required to
go from a database of interconnected tools to an executable MDAO workflow according to a certain
MDAO architecture.

The focus of the work presented in this paper is on the formalize and manipulate requirements of the
system and how KADMOS uses graphs to enable this. The inspection requirement is closely related to the
visualization of large MDAO systems, which is the topic of another paper.13 A simple mathematical problem
is used to explain the technical functionalities (Section IV.1), while an aerostructural wing design problem

bAGILE project website: http://www.agile-project.eu/

4 of 23

American Institute of Aeronautics and Astronautics

http://www.agile-project.eu/

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

(Section IV.2) is used to showcase the capability of KADMOS to deal with a complex MDAO system of
industrial relevance.

B. KADMOS key technologies

KADMOS exploits the benefits of four different elements that are currently used or under development in
the MDAO research domain:

• Central data schema

• Knowledge-based technologies

• Graph-based approach

• SWF software packages

The role of these elements will be briefly described in the upcoming sections in order to provide a top-level
overview of KADMOS. The main steps performed by KADMOS in the overall process of setting up an
MDAO system are shown in Figure 3. The figure shows the various graphs generated and manipulated by
KADMOS, based on the input by the various MDAO system stakeholders. Examples based on the Sellar
problem14 are shown in the most right column.

1. Central data schema

The idea of a central data schema is to have a standardized structure available, which can be used to store
and retrieve all data that needs to be passed around in a workflow. The key advantage of having such a
schema is depicted in Figure 4: with a central data schema the number of possible tool interfaces is reduced
to a minimum. A data schema can be defined using different formats. At the moment KADMOS supports
the use of XML-based formats. Main motivation for the support of XML is the use of XML-based Common
Parametric Aircraft Configuration Schema (CPACS)15 in the AGILE project.

Figure 4: Connections between tools with
and without a central data model16

CPACS is an XML schema data definition for a complete
air transportation system that can be used to connect dif-
ferent analysis tools. CPACS was developed by the German
Aerospace Institute (DLR)17 to enable engineers to exchange
information between their tools. It describes the characteristics
of aircraft, rotorcraft, engines, climate impact, fleets and mis-
sion in a structured, hierarchical manner. KADMOS exploits
the fact that every tool in a workflow has to read its input and
writes its output to the same schema. Within AGILE it was
decided to make all disciplinary tools CPACS compatible, i.e.
to map the input and output of each tool to specific nodes in the CPACS structure. Then all the ‘CPAC-
Sized’ tools are collected in a tool repository, see top left cell in Figure 3. Thanks to this arrangement of
the tools a complete interlinked overview can be created by KADMOS in the form of a graph structure, as
shown in the first row of Figure 3. More details on this first KADMOS graph are provided in Section III.A.

2. Knowledge-based technologies

The second element used by KADMOS are so called knowledge-based technologies,18 in particular techniques
for knowledge capture and formalization. These knowledge-based technologies form the starting point of
KADMOS, as the system operates on a knowledge base that is created and maintained by the design
team. A knowledge base is essentially a database, but structured in such a way that one can store and
retrieve information about a design that is normally left implicit. The algorithms in KADMOS can use this
information to make the MDAO set-up process more agile.

As can be seen in the top left of Figure 3, the knowledge base is the first main input for KADMOS. Four
different file types are stored in the KADMOS knowledge base at the moment.

• schema definition: an XML-based definition of the central data schema.

• tool info file: a file storing meta-data of a tool, such as tool provider, license information, fidelity
level, execution time, accuracy, etc.

5 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

MDAO development
process

Associated KADMOS graphs Example (Sellar problem)

Import tools
and connections

Trim and enrich
RCG for

MDAO problem

Impose MDAO
architecture
on problem

Translate to
speci�c SWF

software

Export as
executable
work�ow

Repository Connectivity Graph

Fundamental Problem Graph

MDAO Data Graph

+

MDAO Process Graph

SWF Graph

External
input

Tool repo /
Knowledge

base

MDAO
architectures

SWF
translators

 MDAO
problem

 to solve?

D1

dataschema
G1G2

D2
F1

F2
D3

DOE

IDFMDF
MDA

OpenMDAO

Optimus

RCE

- design variables
- objective
-constraints

D1

D2

F1

G1

G2

CONV
OPT

COOR

A

D1

D2

F1

G1

G2

CONV
OPT

COOR

A

a

A c c

D1 y1 y1 y1 y1

y2 D2 y2 y2 y2

x1

z2

z1

z2

z1
D3

x1

z2

x1

z2

z1

f F1

f F2

g1 G1

g2 G2

a

x1

z2

z1

z2

z1

x1

z2

A c c

D1 y1 y1 y1

y2 D2 y2 y2

f F1

g1 G1

g2 G2

0, 9:
COOR

1: a
2: z10

z20
3: y2c0 4: x1 7: x1

1:
A

4: c 5: c

9: z2∗

z1∗
2, 8 → 3:
OPT

4: z2

z1

5: z2

z1
7: z2

3, 6 → 4:
CONV

4: y2c

4:
D1

5: y1 7: y1 7: y1

9: y2∗ 6: y2
5:
D2

7: y2 7: y2

9: f∗ 8: f
7:
F1

9: g1∗ 8: g1
7:
G1

9: g2∗ 8: g2
7:
G2

Figure 3: Top-level overview of KADMOS and its relation to the MDAO-based development process depicted
in Figure 1 (all visualizations are based on the Sellar problem14 described in Section IV.1)

6 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

• tool input file: an XML file containing only those data elements from the central data schema that
are required to run the disciplinary analysis.

• tool output file: an XML file containing only those data elements from the central data schema that
are written as output by the disciplinary analysis.

The four file types currently defined are used by KADMOS to import the knowledge base and start its
graph-based analysis. Future developments might require the use of additional file types, for example to
include information on tool sensitivities, however, the current file types form a minimal requirement for tool
definition in the knowledge base. Details of the knowledge base, which is a separate class in KADMOS, are
not provided in this paper. More information can be found in the work by Makus.19

3. Graph-based approach

The knowledge-based design process that is supported by KADMOS extends the graph-based approach
proposed by Pate et al.8 The work of Pate et al. was focused on the data connectivity between different
tools, while KADMOS takes the graphs a step further to also include the graphs belonging to the solution
strategy that have both a data and process connectivity aspect (this topic is mentioned, but no algorithms
are shown for automatic determination of the solution strategy by Pate et al.). Furthermore, the graph-based
approach is enriched with additional elements from the AGILE project. The complete approach is visualized
in the third column of the top-level overview of Figure 3. A graph-based approach means that graphs20

are used to store and manipulate data. In KADMOS, graphs are used to store data on the MDAO model
because this format enables the creation, debugging, and manipulation of that same model. A specific form
of graphs, called directed graphs, is used, of which two examples are shown in Figure 5. Directed graphs
consist of nodes and directed edges. In KADMOS, the nodes represent either executable blocks that process
inputs to outputs (i.e. disciplinary tools, optimizers, convergers), or one of the variables from the central data
schema. The nodes representing executable blocks are called ‘function nodes’, while the nodes representing
elements from the data schema are referred to as ‘variables nodes’. A more elaborate description of the
KADMOS graphs is provided in Section III.

variable
nodes

function nodes

output
edges

input
edges

(a) Data graph

function node

process edge

(b) Process graph

Figure 5: Examples of the two KADMOS graph classes (data and process graph) and terminology used for
different components of these graphs

Graph-based analysis has previously been used to analyze MDAO problems, for example to determine the
required derivatives21 or graph partitions for parallel processing.22 To the authors’ knowledge, KADMOS is
the first graph-based package that supports the full chain of the MDAO-based development process going
from disciplinary tools integrated in a knowledge base using a central data model to automatically creating

7 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

distributed executable workflows in SWF packages. Related work was performed by Alexandrov et al.,23,24

Balachandran and Guenov,25 and Hoogreef.26

4. SWF software packages

The open-source SWF software package RCE (Remote Component Environment), developed by the DLR,27

is the only package currently implemented in KADMOS. Support for a second SWF software package will
be included in the future: Optimus by Noesis Solutions. Both these packages are part of the AGILE project.
The ability of KADMOS to script executable SWF for these specific packages is a key element of the system
as recent developments within AGILE for these packages enable the execution of SWFs across distributed
networks. This means that a heterogeneous collection of analysis tools can be executed on servers all over
the world while respecting the intellectual property rights and security measures (i.e. firewalls) of all partners
involved.28 This collaborative software architecture implemented in the SWF packages is one of the AGILE
project developments that KADMOS benefits from.

C. KADMOS’ software architecture

KADMOS is programmed in Python using an object-oriented approach. The UML class diagram of the
system is shown in Figure 6. KADMOS has three main classes:

• KnowledgeBase

• KadmosGraph

• RceWorkflow

The KnowledgeBase class has been developed to import the different files into the knowledge base in
KADMOS. The final output of the KnowledgeBase class is the repository connectivity graph (RCG), which
is the graph where the data connections between the different tools in the repository are stored, see first row
of Figure 3. The RCG is an object belonging to the second main class of KADMOS: KadmosGraph.

Graph objects in KADMOS can belong to different classes, but all of them are a subclass of KadmosGraph.
KadmosGraph is itself a subclass of the nx.DiGraph class, meaning that the open-source NetworkX29 (nx)
package is the main graph package used to create and manipulate graphs. nx.DiGraph is the directed graph
object from NetworkX and forms the basis of the KadmosGraph class and its subclasses. The subclasses of
KadmosGraph correspond to the different graph objects shown in Figure 3, which are further discussed in
Section III. Each of these graph objects contain the specific graph manipulation algorithms to go from one
graph type to the other (e.g. RepositoryConnectivityGraph to FundamentalProblemGraph as indicated in
Figures 6 and 3). These algorithms are not explained in detail here, but will be shown in more detail in the
Sellar case study in section IV.1.

The RceGraph in the bottom right of Figure 6 is still a directed graph object in KADMOS. This graph
object is translated into an executable RCE workflow using the RceWorkflow class, as is visualized in the
two last rows of Figure 3. This translation has been programmed such that any RceGraph object can be
directly translated into the workflow file, provided that the graph object only contains nodes that are known
to the system. Hence, any adjustments to the MDAO process and SWF can be done inside KADMOS using
its graph manipulation algorithms, without having to adjust anything in the SWF software. This approach
gives the user more flexibility in the adjustment of analysis tools or MDAO architectures, since the full
graphs will be processed automatically after changes at any position in the development process.

A final package worth mentioning is used in the KadmosGraph class by the create xdsm() method. This
method uses an extended version of the XDSMwriter30,c. Combining this writer with KADMOS enables a
fully automated creation of visualizations for the different KADMOS graphs. These visualizations are shown
in the fourth column of Figure 3. The XDSMs created by these methods are static PDF files, however, a
dynamic visualization using is also supported by KADMOS, though not presented in this paper.13

In conclusion, the software architecture of KADMOS depicted in the UML class diagram in Figure 6
provides a continuous flow that runs from the KnowledgeBase class to the RceWorkflow class. This flow
matches the MDAO-based development process shown in Figures 1 and 3. The KADMOS package has been
published open source under the Apache License 2.0.d

cThe XDSM writer is available at: http://mdolab.engin.umich.edu/content/xdsm-overview
dKADMOS is available at: https://bitbucket.org/imcovangent/kadmos

8 of 23

American Institute of Aeronautics and Astronautics

http://mdolab.engin.umich.edu/content/xdsm-overview
https://bitbucket.org/imcovangent/kadmos

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

nx.DiGraph

KadmosGraph

kb_path : String
name : String

find_all_nodes ()
print_graph ()
...

RepositoryConnectivityGraph

name : String

get_fpg_based_on_sinks ()
get_fpg_based_on_function_nodes ()
... FundamentalProblemGraph

name : String
problem_formulation : Dictionary

get_mdg ()
get_mpg ()
...

MdaoDataGraph

name : String
mdao_architecture : String
coupling_decomposition_type : String

connect_converger ()
connect_optimizer ()
get_rce_graph ()
...

KnowledgeBase

knowledge_base_path : String
xsd_schema_file : String
ignore_files : List
...

get_kb_graphs ()
get_rcg ()
...

assignedRCG, 1

provides FPG, 1..*

provides
MDG, 1..*

assignedKnowledgeBase
1

node : String
edge : Tuple

add_node ()
add_edge ()
...

MdaoProcessGraph

name : String
mdao_architecture : String
coupling_decomposition_type : String

add_sequential_process ()
add_parallel_process ()
get_rce_graph ()
...

provides MPG, 1..*

RceGraph

name : String
rce_working_directory : String

create_rce_wf ()
write_rce_wf_file ()
...

RceWorkflow

key : String
value : OrderedDict

add_rce_node ()
add_rce_connections ()
add_dynamic_input ()
add_static_input ()
add_label ()
add_bendpoint ()
export_to_wf_file ()
...

provides RceGraph, 1..*

collections.OrderedDict

key : String
value : any

popitem ()
pop ()
...

provides RceWorkflow, 1

DataGraph

kb_path : String
name : String

get_adjacency_matrix ()
split_variables ()
...

ProcessGraph

kb_path : String
name : String

add_process_edge ()
add_converger_step ()
...

 legend

KADMOS class

External class

Figure 6: UML class diagram of KADMOS (blue) including its dependence on external Python classes
(green). The flow of different graph classes in the bottom matches the MDAO-based development process
shown in Figure 3

.

9 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

III. KADMOS graphs

In this section a more detailed description of the different KADMOS graphs is provided. This is done
to offer insight into how the graphs should be defined in order to support the full process from a collection
of tools in a knowledge base to an automatically created executable workflow. For the sake of brevity, only
key elements of the different graphs are discussed here. The key graph to be defined in the system is the
fundamental problem graph (FPG). This graph defines the MDAO problem that needs to be solved and
should be crafted using a combination of the designer’s knowledge of the problem and available tools, and
the graph manipulation methods provided by KADMOS. Ultimately, the FPG should be defined such that
the KADMOS graph manipulation algorithms that impose an MDAO architecture10 on the graph (see third
row in Figure 3) can operate on it, while at the same time provide enough operational flexibility to adjust
the problem formulation. In KADMOS, different MDAO architectures are available, such as MDF and IDF.
More on the MDAO architectures will be described in Section III.C.

As is shown in Figure 5, two different classes of directed graphs are created by KADMOS. A graph that
connects function nodes with variable nodes to indicate I/O relations is called a ‘data graph’ (Figure 5a). The
second graph class is the ‘process graph’ (Figure 5b): these type of graphs only contain function nodes and
are used to store the process of node execution. The following graph types belong to the MDAO development
process depicted in Figure 3:

• Data graphs:

– Repository Connectivity Graph (RCG): Using the repository with CPACSized analysis tools
in the knowledge base, a directed graph can be created that links all the I/Os of different analyses.
Such a graph would represent all the information present in the knowledge base. It is worth noting
that the RCG shown in Figure 3 can be visualized using the data flow aspect of the eXtended
Design Structure Matrix (XDSM)30 for relatively small problems (see last column of the figure),
however, realistic aircraft design tools could use and produce data concerning hundreds of ele-
ments from the central data schema. This information would still be stored in the RCG, though
visualizing it is much more challenging and a topic specifically addressed in another paper.13 For
convenience, the relatively small Sellar problem14 is used in Section IV to illustrate the working
principles of KADMOS.

– Fundamental Problem Graph (FPG): Once all the tools in the repository have been con-
nected, the next graph should contain only the variables and tools required to solve the MDAO
problem at hand (actually, it can also be a monodisciplinary optimization or just a convergence
that needs to be implemented). Indeed, the FPG is a subset of the nodes and edges in the RCG.
The translation from RCG to FPG is more elaborately discussed in Section III.B.

– MDAO Data Graph (MDG): The FPG is used by KADMOS to impose an MDAO architecture
on the MDAO model. The adjusted nodes and edges between the function and variable nodes
which are required to impose the architecture form the MDG. Thereby, the MDG contains the
information on how data is interconnected between tools from the repository and newly introduced
MDAO architectural elements like convergers and optimizers. The information stored in the MDG
is exactly what one visualizes with the data flow in an XDSM.

• Process graphs:

– MDAO Process Graph (MPG): As this is a process graph, it does not contain any data
nodes, but merely the executable blocks (disciplinary analysis tools and architectural elements)
and their execution order. The information stored in the MPG is exactly what one visualizes
with the process flow in an XDSM. Therefore, the superposition of the MDG and MPG lead to
an XDSM, as is shown in Figure 3.

– SWF Graph: The combination of MDG and MPG can be translated into a single executable
SWF graph matching the SWF software platform of choice. With the right export functions this
SWF graph can be transformed into a workflow file that can be opened and executed in the SWF
software (currently only RCE is supported by KADMOS).

10 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

In addition to the general description above a more detailed description of the key graph types is provided
in the next sections.

A. Repository connectivity graph

Key elements of the RCG are the unique naming of its nodes and the categorization of the different nodes
based on their connectivity. The unique node naming for variables is performed by translating the leaf
elements of the (XML) data schema into unique strings using a combination of the unique identifiers (UIDs)
and XML XPaths called ‘UXPaths’. This is a crucial step in the creation of the RCG, as the correct coupling
between different tools depends on the consistent naming of the variable nodes.

After the RCG has been created, the different nodes have to be categorized. The two main categories
for KADMOS graph nodes are variable and function. The subcategory of a node can be determined based
on the incoming and outgoing edges of each node (referred to as ‘indegree’ and ‘outdegree’ in graph theory).
Table 1 lists the different subcategories for variable and function nodes.

Table 1: Subcategories of the different graph nodes based on their indegree and outdegree and some illustrated
examples in a graph (below table)

Node category Node subcategory Indegree Outdegree
Example

node

Allowed

in FPG?

variable

hole 0 0 3 no

supplied input 0 1 2 yes

supplied shared input 0 >1 1 yes

output 1 0 9 yes

collision >1 0 8 no

coupling

or

pure circular coupling

1 1

7

5

yes

no

shared coupling

or

shared circular coupling

1 >1

6

-

yes

no

collided coupling

or

collided circular coupling

>1 1

-

4

no

no

collided shared coupling

or

collided shared circular coupling

>1 >1

-

-

no

no

function

hole 0 0 - no

inputless 0 >0 - yes

outputless >0 0 - no

complete >0 >0 A,B,C yes

A
B

C
1
2 4

5
6

9
7

8

3

Example nodes (see fifth column of the table)

Variable nodes with at least one incoming and outgoing edge can always fall within one of two subcat-

11 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

egories, see Table 1. These variables could be circular or non-circular. A variable is denoted circular if it
has at least one pair of incoming and outgoing edges connected to the same function node. Non-circular
variables never have a pair connected to the same function node. In the RCG circularity is allowed, but
since it needs to be resolved in the FPG, circular variables have to be identified accordingly. Once the RCG
is defined, the next step is to transform it into an FPG.

B. Fundamental problem graph

Depending on the size and complexity of the RCG several manipulations might be required to create the
FPG. Before an FPG can be used to impose an MDAO architecture, it has to meet four requirements which
need their respective actions (→):

1. Smallest size possible → node removal and contraction

2. No nodes in invalid subcategories → node/edge removal and node splitting

3. Contain information to impose architecture → add problem formulation and problem role attributes

4. Basic analysis order→ add function nodes order with minimal feedback (or other ordering requirement)

1. FPG requirement 1: Smallest size possible

The size of the FPG can be decreased in several ways. The most straightforward way would be to remove
nodes: either complete functions and their associated inputs and outputs can be deleted, or individual
output nodes of certain functions can be removed if they are deemed irrelevant by the designer for the
MDAO problem at hand.

A second way in which the graph size can be decreased is by function node contraction. If it is known
that a group of function nodes will always have to be executed as a sequential or parallel process, then these
functions can be contracted into one merged function node. This does mean that the algorithm that imposes
the MDAO architecture will consider this contracted function node as a single function again.

2. FPG requirement 2: No nodes in invalid subcategories

B

C
8

B

C

81

82

split

A
4B

A

41B
split 42

Figure 7: Illustration of two node splitting
examples using nodes from Table 1.

The allowed node subcategories in the FPG are listed in the
last column of Table 1. In short: collisions, circularity, and
holes are not allowed in the FPG. If such nodes are present in
the graph they have to be resolved. This can be done in three
different ways: node removal, edge removal, and node splitting.

Node and edge removal are straightforward ways to resolve
collisions. A more complex method is to use node splitting.
Collided or circular nodes might occur naturally in the FPG,
for example, multiple tools might write a value for the wing
span as output (collision), or a tool might use (i.e. input) and
adjust (i.e. output) the wing span if it changes the wing ge-
ometry (circular). However, the KADMOS graph algorithms
which impose the MDAO architecture do not allow these type
of nodes. Therefore these nodes can be split into instances, as
is illustrated in Figure 7. A single node in an invalid subcate-
gory will be split into separate variable node instances. KADMOS contains methods to automatically split
invalid FPG variable nodes based on their connectivity and (for some cases) the analysis order.

3. FPG requirement 3: Contain information to impose architecture

In addition to removal and splitting of nodes, some FPG variable nodes also need to be enriched by speci-
fying the ‘problem role’ attribute. Possible problem role attributes are: design variable, objective variable,
constraint variable, and state variable. At least all the outputs of the graph have to get one of the problem
roles assigned, otherwise they are considered irrelevant outputs for the problem at hand.

12 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

Other information that is required to manipulate the FPG are the MDAO architecture to be imposed,
the preferred decomposition of circular dependencies between functions, and some more detailed settings per
architecture. The possible MDAO architectures in KADMOS are discussed in Section III.C. Decomposition
of the circular dependencies can be done based on Gauss-Seidel or Jacobi convergence (as defined in Martins
and Lambe10).

4. FPG requirement 4: Basic analysis order

The final FPG requirement concerns the basic analysis order. This is not necessarily the same analysis order
defined in the MPG, but it is an input for the MDAO architecture algorithm so that KADMOS can categorize
the different functions in three groups, as depicted in Figure 8: pre-coupling, coupled, and post-coupling
functions. Pre-coupling functions are the first functions in the analysis order that do not have any data fed
back to them, but only forward data (i.e. typically initial geometry and geometry manipulations of the central
data schema). The coupled functions are the group of functions that contain at least one circular dependency
(i.e. an aerodynamic solver and structural analysis of a wing which both depend upon each others output of
loads and wing weight). The post-coupling functions are functions that use the outputs of the pre-coupling
and coupled functions to calculate MDAO model output (i.e. typically objective and constraint functions).
At the moment the basic analysis order has to be specified manually, but it is foreseen that future extensions
of KADMOS will include methods for the automatic determination of the basic analysis order. Though it is
worth noting that in the case studies until now a logical order of the function nodes could always be defined
intuitively.

pre-coupling functions

coupled
functions

post-coupling
functions

B

C

K

F

A

D

E

L

Figure 8: Automatic categorization of the FPG functions based on the basic analysis order: [B, C, K, F, A,
D, E, L].

If a valid FPG has been crafted which meets the four basic requirements, then the subsequent graphs
(see Figure 3) are created fully automatically by KADMOS.

C. MDAO data graph, MDAO problem graph, and simulation workflow graph

Currently, six different MDAO architectures can be imposed on the FPG, namely:

1. Tool chain test: where the tools are simply put all in parallel or sequence simply to test if they all
run as expected. Hence, no convergence or optimization is performed.

2. MDA: where any circular dependencies between coupled tools will be converged for the given inputs.
No optimization is performed with this strategy and tools can either be run in parallel or sequence.
With parallel execution feedforward couplings between coupled functions will also be converged.

3. DOE: where a design of experiments is automatically imposed on the FPG.

4. Optimizer: where a straightforward optimization is performed on the FPG, without solving any
circular dependencies (i.e. this is equal to MDF without the converger nested inside the optimizer).

13 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

5. MDF: where the MDF strategy10 is imposed on the FPG. The converger inside the optimizer can be
set to either Gauss-Seidel (sequential) or Jacobi (parallel) execution of the coupled tools.

6. IDF: where the IDF strategy10 is wrapped around the FPG. All tools are parallelized and an additional
consistency constraint function is added to converge coupling variables.

Table 2: Lists of possible architecture roles for function (left)
and variable nodes (right)

Function nodes Variable nodes

coordinator initial guess coupling variable

optimizer final coupling variable

converger coupling copy variable

DOE initial guess design variable

pre-coupling analysis final design variable

pre-iterator analysis final output variable

post-iterator analysis consistency constraint value

coupled analysis DOE input sample list

post-coupling analysis DOE output sample list

consistency constraint function

The algorithms for the MDG and MPG
creation are further discussed in the Sel-
lar problem use case (Section IV.1). The
MDG contains the information on how data
is interconnected between tools and newly
introduced MDAO architectural elements
like convergers and optimizers. Similar to
the problem role attribute in the FPG, the
MDG nodes can get ‘architecture role’ at-
tributes. The possible attributes are listed
in Table 2. The architecture roles for func-
tion nodes are also applicable for the MPG,
since the MPG does not contain any data
nodes, but merely the executable blocks
(analysis tools and architectural elements)
and in which order they should be executed.
In essence, the information stored in the
MDG and MPG represents a neutral specification of the execution process that should be implemented
in a specific software platform.

Hence, referring back to the symphonic orchestra analogy from Section I: using graphs as music no-
tation system, the MDG and MPG are the sheet music of our symphony which has been created by the
designer/composer using KADMOS as his composition tool. Actually playing the symphony would require
to translate the neutral specification into a workflow file that can be opened and executed in the SWF
platform, as indicated in the bottom of Figure 3 and discussed in the introduction of this section.

The KADMOS graph definitions and algorithms have been tested on multiple use cases within the AGILE
project. In this paper one illustrative use case is presented (the Sellar problem in Section IV.1) and one
realistic aircraft design case (the wing design problem in Section IV.2).

IV. Results

Although KADMOS is still under development, the first research goal has been achieved: to test the ability
of using a graph-based approach to go from a repository of disciplinary tools to an executable workflow using
different MDAO architectures for the same MDAO problem. This capability has first been developed and
tested using the Sellar problem and is presented in Section IV.1. The next case study has demonstrated the
scalability of the KADMOS algorithms by going through the same chain for a larger repository. This wing
design case study is briefly described in Section IV.2.

1. Proof-of-concept: Sellar problem

The Sellar problem14 is a small, analytical MDAO problem that consists of five different analysis tools:

D1 ⇒ y1 = c · (z21 + x1 + z2 − 0.2 · y2)

D2 ⇒ y2 = c · (√y1 + z1 + z2)

F1 ⇒ f = x2
1 + z2 + y1 + e−y2

G1 ⇒ g1 =
y1

3.16
− 1

G2 ⇒ g2 = 1− y2
24.0

14 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

To illustrate the different KADMOS graphs three additional tools are added in the knowledge base:

A ⇒ c = f(a)

D3 ⇒ x1 = f(y1)

⇒ z1 = f(y2)

⇒ z2 = f(y1, y2)

F2 ⇒ f = f(x1, z1, z2)

The directed graph that connects the tools and variables is shown in Figure 10b. Following the central
data schema approach described in Section II.B.1 a small XML schema is defined for the case study. The
full schema is depicted in Figure 9a. In Figure 9b, one can see which I/O files need to be defined in the
knowledge base to connect the D1 tool to the central schema. Similar files are created for the other tools.

data_schema
 variables
 x1
 z1
 z2

 analyses
 y1
 y2
 g1
 g2
 f

 settings
 a
 c

(a) Data schema for the Sellar
problem

data_schema
 variables
 x1
 z1
 z2
 analyses
 y2
 settings
 c

data_schema
 analyses
 y1

D1

D1x1

z1

z2

y1

y2

connect to
data schema

input �le output �le

c

(b) Connecting tool D1 to the central data schema

Figure 9: Central data schema for the Sellar problem and illustration of the required I/O files to connect
the D1 tool to the central data schema in (a)

An RCG can now be created for the eight tools in the knowledge base. If all the variable nodes are
contracted, then the resulting RCG is as depicted in Figure 10a. The full connection details can be inspected
using a data flow XDSM, as is shown in Figure 10c. In the XDSM one can see the complete repository.
Coupling variables are shown at off-diagonal positions between tools, and the top row and most-left column
show respectively the MDAO model input and output variables (in white parallelograms).

The FPG can now be determined by applying one of KADMOS’ graph manipulations. In this case
two tools need to be removed: D3 and F2. The algorithm automatically removes the tools including its
connections to the data schema. If any variable nodes are left unconnected, these are also removed from the
graph. Removing D3 and F2 leads to the FPG and associated data flow XDSM depicted in Figure 11. As
can be seen in the data flow XDSM, multiple model inputs (x1, z1, z2) have been created by removing the
tools, three coupling variables are left (c, y1, y2), and the three model outputs remain (f , g1, g2). Before the
solution strategy can be imposed on the FPG, variables with a specific role (e.g. design variables, objective
value, constraint values) need to be indicated, as was described in Section III.B.3. At this point the MDAO
problem description has to be formalized by the design team. In case of the Sellar problem the optimization

15 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

F1G1

data
schemaG2

D2

F2

D3D1

A

(a) Top-level RCG

D1x1

z1

z2

y1

y2 c

f

G1

G2

D2

F1

F2

D3

g1
g2

Aa

(b) RCG

a

A c c

D1 y1 y1 y1 y1

y2 D2 y2 y2 y2

x1

z2

z1

z2

z1
D3

x1

z2

x1

z2

z1

f F1

f F2

g1 G1

g2 G2

(c) Data flow XDSM

Figure 10: Three different views of the same RCG for the Sellar case: (a) top-level with contracted data
schema, (b) full graph, and (c) data flow XDSM

problem to be solved can be defined as:

minimize f

with respect to: z1, z2

subject to: g1 ≤ 0

g2 ≤ 0

Note that, contrary to the original Sellar problem, x1 has been kept as a constant to have the effect of
including a disciplinary parameter in the solution strategy. Thus the following ‘problem role’ attributes have
to be set in KADMOS for the MDAO problem stated above, see also Figure 11b:

• design variables: z1, z2

• objective variable: f

• constraint variables: g1, g2

In addition to the role attribute, the variable’s upper and lower bounds can also be defined for the design
variables and constraint values in KADMOS. If these are not defined, they can also still be set in the SWF
software package before running the workflow.

With the complete FPG in place a solution strategy of choice can be imposed on it. Of the strategies
listed in Section C, the MDF strategy with a Gauss-Seidel coupling decomposition approach will be explained
in more detail to give an idea on how the KADMOS graph algorithms operate.

The two graphs required to define an MDAO model are shown in Figures 12a and 12b: the MDG and
the MPG. The superposition of these two graphs using the XDSM notation is depicted in Figure 12c. The
data flow in the XDSM (indicated by thick grey lines) is equal to the information stored in the MDG, while
the process flow in the XDSM (indicated by thin black lines and numbering in the blocks) is stored in the
MPG. So how does KADMOS get from the FPG to these two graphs?

In case of an MDF with Gauss-Seidel decomposition, the algorithm for MDG determination operates as
follows:

16 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

F1G1

data
schemaG2

D2
D1

A

(a) Top-level FPG

D1x1

z1

z2

y1

y2 c

f

G1

G2

D2

F1

g1
g2

Aa

constraint
variables

design
variables

objective
variable

(b) FPG

a

x1

z2

z1

z2

z1

x1

z2

A c c

D1 y1 y1 y1

y2 D2 y2 y2

f F1

g1 G1

g2 G2

(c) Data flow XDSM

Figure 11: Three different views of the same FPG for the Sellar case: (a) top-level with contracted data
schema, (b) full graph including problem role attributes, and (c) data flow XDSM

MDG algorithm for MDF with Gauss-Seidel decomposition (see Figure 12 for final XDSM)

1. Automatically categorize FPG function nodes as shown in Figure 8.

2. Check FPG on validity of nodes, edges, and problem formulation.

3. Copy the FPG as a starting point for the MDG.

4. Add MDAO architectural nodes: coordinator (COOR), optimizer (OPT), and converger (CONV).

5. Find the variable nodes with a problem role attribute.

6. Connect the converger block (CONV) to the coupled functions (green blocks in XDSM).

a: Remove feedback coupling between coupled functions.

b: Connect feedback coupling to the converger (see ‘6: y2’ in the XDSM).

c: Add and connect a copy variable for each feedback coupling (see ‘4: y2c’ in the XDSM).

d: Add an initial guess of the copy variable and connect it to the COOR and CONV blocks

(see ‘3: y2c0’ in the XDSM).

e: Add final coupling value variables between the coupled functions and the coordinator

(see ‘9: y1∗’ and ‘9: y2∗’ in the XDSM).

7. Connect optimizer (OPT) to the rest of the workflow:

a: Connect design variables as output of the Optimizer (see ‘4: z2 z1’ in the XDSM).

b: Add initial guesses of the design variables and connect them to the coordinator (COOR) and

optimizer (OPT) blocks (see ‘2: z10 z20’ in the XDSM).

c: Connect the objective and constraint variables from the post-coupling functions F1, G1, and G2

as input to the optimizer (see ‘8: f ’ in the XDSM).

d: Add final objective and constraint value variables between the post-coupling functions and

the coordinator (see ‘9: f∗’ and ‘9: g1∗’ in the XDSM).

8. Connect any remaining input and output nodes to the coordinator (see ‘4: x1’ in the XDSM).

17 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

In case of the MDF architecture, the MPG is determined as results of the following manipulations:

MPG algorithm for MDF with Gauss-Seidel decomposition (see Figure 12 for final XDSM)

1. Automatically categorize FPG function nodes as shown in Figure 8.

2. Check FPG on validity of nodes, edges, and problem formulation.

3. Start with an empty directed graph object of the MdaoProcessGraph class.

3. Add the function nodes from the FPG and the architectural nodes (COOR, OPT, CONV).

4. Group pre-coupling functions in those that come before one of the design variables (pre-design-

functions) and those that come after one of the design variables (post-design-functions).

5. Set process step to 0 and assign step number 0 to COOR block (see top-left corner).

6. Add a sequential process from the COOR block to the OPT block via the pre-design-functions

(0: COOR → 1: A → 2: OPT).

7. Add a sequential process from the OPT block to the CONV block via the post-design-functions

(2: OPT → 3: CONV).

8. Add an iterative sequential process from the CONV block through the coupled functions back to

the CONV block (3: CONV → 4: D1 → 5: D2 → 6: CONV).

9. Add a parallel process from the CONV block to the OPT block via the post-coupling functions

(6: CONV → (7: F1, 7: G1, 7: G2) → 8: OPT)

10. Add a process step from the OPT block back to the COOR block (8: OPT → 9: COOR).

Similar algorithms have been written for the other MDAO architectures, as listed in Section III.C. In
KADMOS, the different algorithmic steps have been modularized into methods such as add optimizer()

and add sequential process() so that each MDAO architecture can reuse them. The resulting graphs
using the MDF strategy are shown in Figure 12. As is already hinted by the fact that the superposition
of the MDG and MPG graphs contain the information stored in the XDSM, KADMOS provides a full and
detailed specification of the MDAO model to be executed with these two graphs.

Note also that the graph-based methods increase agility on the formal specification of the MDAO problem
and model. If the design team would need to change anything in the tool definitions (e.g. extra inputs) or the
MDAO problem formulation (e.g. x1 becomes a design variable instead of a parameter), then these things
can be changed by adjusting just a couple of coded lines in the Python script using the KADMOS package or
changing some of the files in the knowledge base. After such adjustments all changes will be automatically
processed in all other steps of the MDAO-based development process by rerunning the Python script.

After the formal specification provided by the MDG and MPG the next step in the development process
will have to become SWF specific. In this case the capability of KADMOS to write an executable workflow
for RCE is shown. KADMOS’ method get rce graph() can simply be used to translate the combination
of MDG and MPG into an RCE-specific graph. Subsequently, this graph representation is exported to a
JSON-based RCE workflow file. These two steps are shown in Figure 13, but are not explained in further
detail here. Thanks to this export function of KADMOS, the MDAO symphony that has been composed
can now also be played!

All solution strategies have been tested rigorously and proven to provide the same optimization results as
presented in other papers using the Sellar problem.14,31 However, it is not so much the results (or even the
performance) of the optimization process that is of interest here, but rather the successful implementation
of a system that can support the formal specification of an MDAO model from disciplinary tools in a
knowledge base to executable workflows in a SWF software package. Thanks to the formal specification
provided by KADMOS the set-up of distributed executable workflows, such as the one shown on the right
side of Figure 13, becomes a matter of minutes instead of hours. The system implementation will make the
design team more agile in the set-up and execution of MDAO problems, as is shown in the second case study
in the next section.

2. Wing design

The wing design study is a case study that considers the use of CPACS-compatible aircraft design tools
for KADMOS. In this study several in-house wing design tools from the Delft University of Technology

18 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

F1G1

data
schemaG2

D2
D1

A

CONV

COOR

OPT

(a) Top-level MDG

D1

D2

F1

G1

G2

CONV
OPT

COOR

A

(b) Top-level MPG

0, 9:
COOR

1: a
2: z10

z20
3: y2c0 4: x1 7: x1

1:
A

4: c 5: c

9: z2∗

z1∗
2, 8 → 3:
OPT

4: z2

z1

5: z2

z1
7: z2

3, 6 → 4:
CONV

4: y2c

4:
D1

5: y1 7: y1 7: y1

9: y2∗ 6: y2
5:
D2

7: y2 7: y2

9: f∗ 8: f
7:
F1

9: g1∗ 8: g1
7:
G1

9: g2∗ 8: g2
7:
G2

(c) XDSM

Figure 12: Formal specification of the MDF with Gauss-Seidel convergence architecture for the Sellar case:
(a) and (b) MDG and MPG with contracted data schema, and (c) superimposed MDG and MPG in XDSM

D1

D2

F1

G1

G2

CONV
OPT

COOR

A

(a) RCE graph

(b) Screenshot of the executable RCE workflow

Figure 13: Two different instances of the RCE-specific implementation of the formal specification depicted
in Figure 12: (a) RCE graph and (b) RCE workflow file for the Sellar case

19 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

are used to assess the use of the CPACS as a central data schema. In-house design tools are used as they
are more convenient to quickly test the system, instead of being dependent on the execution of third-party
tools. However, a more heterogeneous tool repository would not change anything on the KADMOS side of
the process, as it would only impact the additional elements required for collaborative workflows which are
created after the formal specification provided by KADMOS, see also Section II.B.4. The results of this case
study are summarized in Figure 14. There are 29 tools in the repository, such as those to initialize a CPACS
aircraft geometry, to morph the wing based on design variables, and to perform disciplinary analyses such as
quasi-3D aerodynamic wing analysis with Q3D32 and wing mass estimation using EMWET.33 The MDAO
problem concerns the optimization of a wing by adjusting its airfoil shapes at three sections (root, kink,
tip) and its planform (root chord length, taper, dihedral, and twist) of an existing aircraft to minimize the
maximum take-off weight for a single design mission.

The wing design case provides a proof-of-concept concerning the scalability of KADMOS, as well as the
handling of a complex data schema like CPACS. The results of the study are summarized in Figure 14,
where the full RCG (>28000 nodes) is shown in the top. Using the RCG an FPG is constructed that can
be used to impose many different architectures. For different architectures, one would only have to change
the assigned problem role attributes in the FPG (e.g. a tool chain test only uses state variables, while the
MDF requires design variables, contraints, and an objective). KADMOS then automatically determines the
MDG and MPG for each architecture, as visualized by the XDSMs in the figure. Finally, the accompanying
RCE workflows can also be created and executed (not shown in the figure). These workflows, which involve
hundreds of connections between the different execution blocks, are a tedious and time-consuming task to
create manually. In addition, the manual creation of these complex workflows is prone to human error,
but using KADMOS’ formal specification they can now be created fully automatically within a time span
which is an order of magnitude lower (minutes instead of hours). In conclusion, the wing design case has
proven that KADMOS is the MDAO symphony composition tool that can make design teams more agile
than before.

V. Conclusions and future work

The current status of a graph-based MDAO system called KADMOS has been presented. The system
is under development within the EU project AGILE. Analysis of the current system led to the following
conclusions:

• KADMOS is able to fully support the formulation phase of the MDAO-based development process
shown in Figure 1 from tool definition to executable distributed workflows for a classical MDAO
problem.

• KADMOS can automate a lot of steps that currently have to be performed manually when defining
the MDAO model, such as checking of inputs, outputs, and tool couplings.

• KADMOS can provide a formal specification of the MDAO model using two graphs: the MDAO data
graph and the MDAO process graph. The superposition of these graphs would result in an XDSM.

• The formal specification of the MDAO model is currently a cumbersome task and should be supported
by software tools like KADMOS as MDAO problems grow in size and complexity.

• The formal specification of the MDAO model enables the automatic creation of executable, collabora-
tive workflows, thereby bringing the required time to set-up such workflows down an order of magnitude
(from hours to minutes).

• KADMOS has successfully been tested for scalability and CPACS compatibility using a wing design
optimization problem of industrial relevance.

In conclusion, KADMOS has shown the possibility for design teams to become more agile when com-
posing MDAO symphonies, as well as the ability to actually play the symphony with the orchestra. Future
developments will aim at extending the ability to compose and play larger and more complex pieces. These
developments will focus on three different aspects of the system:

20 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

2 inputs 2 inputs 2 inputs 2 inputs 2 inputs 2 inputs 2 inputs 36 inputs 4 inputs 4 inputs 3 inputs 3 inputs 3 inputs 2 inputs 8 inputs 8 inputs 8 inputs 7 inputs 12 inputs 6 inputs 26 inputs 22 inputs 26 inputs 22 inputs 153 inputs 3 inputs 3 inputs 4 inputs 5 inputs

34 outputs HANGAR[AGILE DC1 WP6 wing startpoint] 3 connections 118 connections 118 connections 118 connections 118 connections 118 connections 118 connections 134 connections 120 connections 121 connections 115 connections 174 connections 6 connections 155 connections 157 connections 155 connections 157 connections 138 connections 4 connections 1 connection 1 connection 1 connection

1105 outputs HANGAR[AGILE DC1 L0 MDA] 1 connection 118 connections 118 connections 118 connections 118 connections 118 connections 118 connections 134 connections 116 connections 116 connections 119 connections 167 connections 2 connections 1088 connections 1090 connections 1088 connections 1090 connections 135 connections 1 connection 1 connection 2 connections 1 connection

10 outputs HANGAR[AGILE DC1 L0 wing] 3 connections 108 connections 108 connections 108 connections 108 connections 108 connections 108 connections 124 connections 110 connections 111 connections 105 connections 164 connections 6 connections 165 connections 167 connections 165 connections 167 connections 143 connections 4 connections 1 connection 1 connection 1 connection

4236 outputs HANGAR[Boxwing AGILE Hangar] 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 2 connections 2 connections 2 connections 2 connections

15109 outputs HANGAR[D150 AGILE Hangar] 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 2 connections 2 connections 2 connections 2 connections

2303 outputs HANGAR[NASA CRM AGILE Hangar] 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 2 connections 2 connections 2 connections 2 connections

3631 outputs HANGAR[ATR72 AGILE Hangar] 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection 2 connections 2 connections 2 connections 2 connections

1074 outputs INITIATOR 107 connections 107 connections 107 connections 107 connections 107 connections 107 connections 107 connections 105 connections 105 connections 108 connections 116 connections 2 connections 1138 connections 1139 connections 1138 connections 1139 connections 185 connections 1 connection 1 connection 2 connections 1 connection

SCAM[wing taper morph] 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections 6 connections

2 connections SCAM[wing sweep morph] 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections

2 connections 2 connections SCAM[wing dihedral morph] 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections

3 connections 3 connections 3 connections SCAM[wing root chord morph] 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections 3 connections

2 connections 2 connections 2 connections 2 connections SCAM[wing length morph] 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections 2 connections

GACA[mainWingRefArea] 1 connection 1 connection 1 connection 1 connection 1 connection 1 connection

1 output GACA[mainWingFuelTankVol] 1 connection

2 outputs Q3D[VDE] 2 connections

4 outputs Q3D[FLC] 126 connections

Q3D[APM] 6 connections 6 connections 6 connections 6 connections

1 output EMWET 1 connection

1 output SMFA 1 connection 1 connection

104 outputs PHALANX[Full Lookup]

104 outputs PHALANX[Full Simple]

67 outputs PHALANX[Symmetric Lookup]

67 outputs PHALANX[Symmetric Simple]

3 outputs PROTEUS

4 outputs 1 connection 1 connection 2 connections 1 connection 1 connection 1 connection 1 connection 1 connection MTOW 1 connection 1 connection

2 outputs OBJ

2 outputs CNSTRNT[wingLoading]

2 outputs CNSTRNT[fuelTankVolume]

2 inputs 28 inputs 9 inputs 20 inputs 14 inputs 3 inputs 3 inputs 8 inputs

HANGAR[AGILE DC1 WP6 wing startpoint] 103 connections 119 connections 161 connections 107 connections 2 connections

SCAM-merged[5modes] 15 connections 15 connections 15 connections

GACA-merged[2modes] 1 connection 2 connections

Q3D[FLC]-EMWET–seq 1 connection

Q3D[VDE]-SMFA–seq 1 connection 1 connection

2 connections 1 connection MTOW 1 connection 1 connection

1 output OBJ

2 outputs CNSTRNT-merged[2modes]

RCG (29 function nodes, 28 167 variable nodes, 37 509 data edges)

FPG (8 function nodes, 281 variable nodes, 829 data edges)

0, 7:
COOR

1: 2 inputs 2: 9 inputs 3: 22 inputs 4: 15 inputs 5: 3 inputs 6: 3 inputs 6: 8 inputs

1:
HANGAR[AGILE DC1 WP6 wing startpoint] 2: 134 connections 3: 176 connections 4: 122 connections 5: 2 connections

2:
GACA-merged[2modes] 4: 1 connection 6: 2 connections

3:
Q3D[FLC]-EMWET–seq 5: 1 connection

4:
Q3D[VDE]-SMFA–seq 5: 1 connection 6: 1 connection

5:
MTOW

6: 1 connection 6: 1 connection

7: 1 output
6:

OBJ

7: 2 outputs
6:

CNSTRNT-merged[2modes]

0, 9:
COOR

1: 2 inputs 2: 9 inputs 3: 2 inputs 4: 20 inputs 5: 14 inputs 6: 3 inputs 8: 3 inputs 8: 8 inputs

1:
HANGAR[AGILE DC1 WP6 wing startpoint] 2: 134 connections 4: 176 connections 5: 122 connections 6: 2 connections

2:
GACA-merged[2modes] 5: 1 connection 8: 2 connections

3, 7 → 4:
CONV

4: 2 connections 5: 1 connection

4:
Q3D[FLC]-EMWET–seq 6: 1 connection

5:
Q3D[VDE]-SMFA–seq 6: 1 connection 8: 1 connection

9: 2 outputs 7: 2 connections
6:

MTOW
8: 1 connection 8: 1 connection

9: 1 output
8:

OBJ

9: 2 outputs
8:

CNSTRNT-merged[2modes]

0, 10:
COOR

1: 2 inputs 2: 7 inputs 3: 21 inputs 4: 9 inputs 5: 4 inputs 6: 20 inputs 6: 14 inputs 6: 3 inputs 8: 3 inputs 8: 8 inputs

1:
HANGAR[AGILE DC1 WP6 wing startpoint] 3: 103 connections 4: 119 connections 6: 161 connections 6: 107 connections 6: 2 connections

10: 3 outputs
2, 9 → 3:
DOE

3: 7 connections

3:
SCAM-merged[5modes] 4: 15 connections 6: 15 connections 6: 15 connections

4:
GACA-merged[2modes] 6: 1 connection 8: 2 connections

5, 7 → 6:
CONV

6: 2 connections 6: 1 connection 6: 2 connections

7: 1 connection
6:

Q3D[FLC]-EMWET–seq

7: 1 connection
6:

Q3D[VDE]-SMFA–seq 8: 1 connection

7: 2 connections
6:

MTOW
8: 1 connection 8: 1 connection

9: 1 connection
8:

OBJ

9: 2 connections
8:

CNSTRNT-merged[2modes]

0, 12:
COOR

1: 2 inputs 2: 7 inputs 3: 21 inputs 4: 9 inputs 5: 2 inputs 6: 20 inputs 7: 14 inputs 8: 3 inputs 10: 3 inputs 10: 8 inputs

1:
HANGAR[AGILE DC1 WP6 wing startpoint] 3: 103 connections 4: 119 connections 6: 161 connections 7: 107 connections 8: 2 connections

12: 7 outputs
2, 11 → 3:

OPT
3: 7 connections

3:
SCAM-merged[5modes] 4: 15 connections 6: 15 connections 7: 15 connections

4:
GACA-merged[2modes] 7: 1 connection 10: 2 connections

5, 9 → 6:
CONV

6: 2 connections 7: 1 connection

6:
Q3D[FLC]-EMWET–seq 8: 1 connection

7:
Q3D[VDE]-SMFA–seq 8: 1 connection 10: 1 connection

12: 2 outputs 9: 2 connections
8:

MTOW
10: 1 connection 10: 1 connection

12: 1 output 11: 1 connection
10:
OBJ

12: 2 outputs 11: 2 connections
10:

CNSTRNT-merged[2modes]

0, 10:
COOR

1: 2 inputs 2: 7 inputs 3: 21 inputs 4: 9 inputs 5: 4 inputs 6: 20 inputs 6: 14 inputs 6: 3 inputs 8: 3 inputs 8: 8 inputs

1:
HANGAR[AGILE DC1 WP6 wing startpoint] 3: 103 connections 4: 119 connections 6: 161 connections 6: 107 connections 6: 2 connections

10: 7 outputs
2, 9 → 3:
OPT

3: 7 connections

3:
SCAM-merged[5modes] 4: 15 connections 6: 15 connections 6: 15 connections

4:
GACA-merged[2modes] 6: 1 connection 8: 2 connections

5, 7 → 6:
CONV

6: 2 connections 6: 1 connection 6: 2 connections

10: 1 output 7: 1 connection
6:

Q3D[FLC]-EMWET–seq

10: 1 output 7: 1 connection
6:

Q3D[VDE]-SMFA–seq 8: 1 connection

10: 2 outputs 7: 2 connections
6:

MTOW
8: 1 connection 8: 1 connection

10: 1 output 9: 1 connection
8:

OBJ

10: 2 outputs 9: 2 connections
8:

CNSTRNT-merged[2modes]

0, 8:
COOR

1: 2 inputs 2: 11 inputs 3: 21 inputs 4: 9 inputs 5: 20 inputs 5: 14 inputs 5: 3 inputs 6: 3 inputs 6: 8 inputs

1:
HANGAR[AGILE DC1 WP6 wing startpoint] 3: 103 connections 4: 119 connections 5: 161 connections 5: 107 connections 5: 2 connections

8: 7 outputs
2, 7 → 3:
OPT

3: 7 connections 5: 2 connections 5: 1 connection 5: 2 connections 6: 4 connections

3:
SCAM-merged[5modes] 4: 15 connections 5: 15 connections 5: 15 connections

4:
GACA-merged[2modes] 5: 1 connection 6: 2 connections

8: 1 output
5:

Q3D[FLC]-EMWET–seq 6: 1 connection

8: 1 output
5:

Q3D[VDE]-SMFA–seq 6: 1 connection 6: 1 connection

8: 2 outputs
5:

MTOW
6: 1 connection 6: 1 connection 6: 2 connections

8: 1 output 7: 1 connection
6:

OBJ

8: 2 outputs 7: 2 connections
6:

CNSTRNT-merged[2modes]

7: 4 connections
6:
Gc

Tool chain test MDA (Gauss-Seidel)

DOE (Jacobi) MDF (Gauss-Seidel)

MDF (Jacobi) IDF

Figure 14: Summary of the wing design case: for a large repository of design tools (top) a relatively small
FPG is crafted to solve a specific MDAO problem (middle) on which different MDAO architectures can be
imposed automatically (bottom)

21 of 23

American Institute of Aeronautics and Astronautics

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

• Extension of the current graph manipulation algorithms to include more complex MDAO architectures
(e.g. BLISS, CSSO, CO, etc.) and to enable the definition of user-defined architectures using the
modularized methods.

• Definition of an import and export file standard to support exchangeability of the KADMOS graphs
with other MDAO developments, e.g. the exported file could be opened by platforms like RCE and
Optimus to assemble the executable workflow inside the SWF platform instead of having KADMOS
provide the SWF-specific files. The work on this standard has recently been initiated in AGILE and
it is called CMDOWS (Common MDO Workflow Schema)34,e.

• Testing of KADMOS in future MDAO design studies that will be performed in the final year of AGILE
(June 2017-2018).

The goal is to make KADMOS a publicly available MDAO support system, so that other MDAO projects
can also benefit from its capabilities in the future.

Acknowledgments

The research presented in this paper has been performed in the framework of the AGILE project (Aircraft
3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts) and has received
funding from the European Union Horizon 2020 Programme (H2020-MG-2014-2015) under grant agreement
n◦ 636202. The authors are grateful to the partners of the AGILE consortium for their contribution and
feedback.

References

1Bowcutt, K. G., “A perspective on the future of aerospace vehicle design,” 12th AIAA International Space Planes and
Hypersonic Systems and Technologies, Norfolk, VA, AIAA Paper , No. 2003-6957, 2003.

2Vandenbrande, J. H., Grandine, T. A., and Hogan, T., “The search for the perfect body: Shape control for multidisci-
plinary design optimization,” 44th AIAA Aerospace Science Meeting and Exhibit, Reno, NV , No. 2006-928, 2006.

3La Rocca, G., Knowledge based engineering techniques to support aircraft design and optimization, Delft University of
Technology, 2011.

4Agte, J., De Weck, O., Sobieszczanski-Sobieski, J., Arendsen, P., Morris, A., and Spieck, M., “MDO: assessment and
direction for advancement - an opinion of one international group,” Structural and Multidisciplinary Optimization, Vol. 40, No.
1-6, 2010, pp. 17–33.

5Belie, R., “Non-technical barriers to multidisciplinary optimisation in the aerospace industry,” 9th AIAA/ISSMO Sym-
posium of Multidisciplinary Analysis and Optimisation, 2002, pp. 4–6.

6Shahpar, S., “Challenges to overcome for routine usage of automatic optimisation in the propulsion industry,” Aeronautical
Journal , Vol. 115, No. 1172, 2011, pp. 615.

7Simpson, T. W. and Martins, J. R. R. A., “Multidisciplinary design optimization for complex engineered systems: report
from a national science foundation workshop,” Journal of Mechanical Design, Vol. 133, No. 10, 2011, pp. 101002.

8Pate, D. J., Gray, J., and German, B. J., “A graph theoretic approach to problem formulation for multidisciplinary design
analysis and optimization,” Structural and Multidisciplinary Optimization, Vol. 49, No. 5, 2014, pp. 743–760.

9Ciampa, P. D. and Nagel, B., “Towards the 3rd generation MDO collaboration environment,” 30th Congress of the
International Council of the Aeronautical Sciences, 2016.

10Martins, J. R. R. A. and Lambe, A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,” AIAA
Journal , Vol. 51, No. 9, 2013, pp. 2049–2075.

11Gray, J., Moore, K. T., Hearn, T. A., and Naylor, B. A., “A standard platform for testing and comparison of MDAO
architectures,” 8th AIAA multidisciplinary design optimization specialist conference (MDO), Honolulu, 2012, pp. 1–26.

12Flager, F. and Haymaker, J., “A comparison of multidisciplinary design, analysis and optimization processes in the
building construction and aerospace industries,” 24th international conference on information technology in construction,
2007, pp. 625–630.

13van Gent, I., Aigner, B., La Rocca, G., Stumpf, E., and Veldhuis, L. L. M., “Using graph-based algorithms and data-driven
documents for formulation and visualization of large MDO systems,” 6th CEAS Air and Space Conference, 2017.

14Sellar, R. S., Batill, S. M., and Renaud, J. E., “Response surface based, concurrent subspace optimization for multidis-
ciplinary system design,” AIAA paper , Vol. 714, 1996, pp. 1996.

15Nagel, B., Böhnke, D., Gollnick, V., Schmollgruber, P., Rizzi, A., La Rocca, G., and Alonso, J. J., “Communication in
aircraft design: Can we establish a common language?” 28th International Congress Of The Aeronautical Sciences, Brisbane,
2012.

16DLR website, “CPACS – A Common Language for Aircraft Design,” May 2016.

eCMDOWS is publicly available at: http://cmdows-repo.agile-project.eu

22 of 23

American Institute of Aeronautics and Astronautics

http://cmdows-repo.agile-project.eu

18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
5-9 June 2017, Denver, Colorado, USA

17Böhnke, D., Nagel, B., and Gollnick, V., “An approach to multi-fidelity in conceptual aircraft design in distributed design
environments,” Aerospace Conference, 2011 IEEE , IEEE, 2011, pp. 1–10.

18Milton, N. R., Knowledge technologies, Vol. 3, Polimetrica S.a.s., 2008.
19Makus, A., Development of a knowledge-enabled tool repository to support automated generation of multidisciplinary

design optimization workflows, Master’s thesis, Delft University of Technology, 2017.
20Diestel, R., “Graph theory,” Graduate Texts in Mathematics, Vol. 173, 2010.
21Gray, J., Hearn, T. A., Moore, K. T., Hwang, J. T., Martins, J. R. R. A., and Ning, A., “Automatic Evaluation of Mul-

tidisciplinary Derivatives Using a Graph-Based Problem Formulation in OpenMDAO,” Proceedings of the 15th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Atlanta, GA, 2014.

22Lu, Z. and Martins, J. R. R. A., “Graph partitioning-based coordination methods for large-scale multidisciplinary design
optimization problems,” ISSMO multidisciplinary analysis optimization conference, Indianapolis, 2012, pp. 1–13.

23Alexandrov, N. M. and Lewis, R. M., “Reconfigurability in MDO problem synthesis, part 1,” Proceedings of the 10th
AIAA/ISSMO multidisciplinary analysis and optimization conference, AIAA paper , Vol. 4307, 2004.

24Alexandrov, N. M. and Lewis, R. M., “Reconfigurability in MDO problem synthesis, part 2,” Proceedings of the 10th
AIAA/ISSMO multidisciplinary analysis and optimization conference, AIAA paper , Vol. 4307, 2004.

25Balachandran, L. and Guenov, M., “Object-Oriented Framework for Computational Workflows in Air-Vehicle Conceptual
Design,” 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO) and Aircraft Noise and Emissions
Reduction Symposium (ANERS), 2009, p. 7117.

26Hoogreef, M. F. M., Advise, Formalize and Integrate MDO Architectures - A Methodology and Implementation, Ph.D.
thesis, Delft University of Technology, 2017 (to be published).

27Seider, D., Fischer, P. M., Litz, M., Schreiber, A., and Gerndt, A., “Open source software framework for applications in
aeronautics and space,” Aerospace Conference, IEEE, 2012, pp. 1–11.

28Baalbergen, E., Kos, J., and Lammen, W., “Collaborative multi-partner modelling & simulation processes to improve
aeronautical product design,” 4th CEAS Air & Space Conference, 2013.

29Hagberg, A., Schult, D., and Swart, P., NetworkX Reference - Release 1.11 , January 2016.
30Lambe, A. B. and Martins, J. R. R. A., “Extensions to the design structure matrix for the description of multidisciplinary

design, analysis, and optimization processes,” Structural and Multidisciplinary Optimization, Vol. 46, No. 2, 2012, pp. 273–284.
31Perez, R. E., Liu, H. H. T., and Behdinan, K., “Evaluation of multidisciplinary optimization approaches for aircraft

conceptual design,” AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, NY , 2004.
32Mariens, J., Elham, A., and van Tooren, M. J. L., “Quasi-Three-Dimensional Aerodynamic Solver for Multidisciplinary

Design Optimization of Lifting Surfaces,” Journal of Aircraft , Vol. 51, No. 2, 2014, pp. 547–558.
33Elham, A. and van Tooren, M. J. L., “Beyond Quasi-Analytical Methods for Preliminary Structural Sizing and Weight

Estimation of Lifting Surfaces,” 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
2015, p. 0399.

34van Gent, I., Hoogreef, M. F. M., and La Rocca, G., “CMDOWS: A Proposed New Standard to Formalize and Exchange
MDO Systems,” 6th CEAS Air and Space Conference, 2017.

23 of 23

American Institute of Aeronautics and Astronautics

	Introduction
	Methodology
	KADMOS functional requirements
	KADMOS key technologies
	Central data schema
	Knowledge-based technologies
	Graph-based approach
	SWF software packages

	KADMOS' software architecture

	KADMOS graphs
	Repository connectivity graph
	Fundamental problem graph
	FPG requirement 1: Smallest size possible
	FPG requirement 2: No nodes in invalid subcategories
	FPG requirement 3: Contain information to impose architecture
	FPG requirement 4: Basic analysis order

	MDAO data graph, MDAO problem graph, and simulation workflow graph

	Results
	Proof-of-concept: Sellar problem
	Wing design

	Conclusions and future work

