
 
 

Delft University of Technology

Bifurcations of limit-cycle oscillations of a two degree-of-freedom airfoil caused by
aerodynamic non-linearities

van Rooij, Anouk; Nitzsche, J.; Dwight, Richard

DOI
10.2514/6.2017-1359
Publication date
2017
Document Version
Accepted author manuscript
Published in
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference

Citation (APA)
van Rooij, A., Nitzsche, J., & Dwight, R. (2017). Bifurcations of limit-cycle oscillations of a two degree-of-
freedom airfoil caused by aerodynamic non-linearities. In 58th AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference: Grapevine, Texas, USA Article AIAA 2017-1359 American Institute of
Aeronautics and Astronautics Inc. (AIAA). https://doi.org/10.2514/6.2017-1359
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2514/6.2017-1359
https://doi.org/10.2514/6.2017-1359


Bifurcations of limit-cycle oscillations of a two

degree-of-freedom airfoil caused by aerodynamic

non-linearities

A. C. L. M. van Rooij∗ and J. Nitzsche†

German Aerospace Center (DLR), Institute of Aeroelasticity, 37073 Göttingen, Germany

R. P. Dwight‡

Delft University of Technology, Faculty of Aerospace Engineering, 2629 HS Delft, The Netherlands

Flutter is usually predicted using linearised theory. In reality, flutter is always non-linear
and might already occur below the linearly predicted flutter boundary. Whether this is
the case for limit-cycle oscillations (LCOs) caused by aerodynamic non-linearities is not
known, since these LCOs can only be predicted using expensive wind-tunnel tests or cou-
pled Computational Fluid Dynamics (CFD)-Computational Structural Mechanics (CSM)
simulations. However, it is important to know whether a sufficiently large disturbance can
already cause LCOs below the flutter boundary predicted from linearised theory. Further-
more, since structural properties and the flow conditions will vary, it is necessary to study
the resulting variations of the Hopf bifurcation behaviour of the LCO solutions near the
flutter point. In this work viscous and inviscid transonic flows are considered. The LCO
bifurcation behaviour was found to vary significantly when the uncoupled structural natu-
ral frequency ratio and the location of the elastic axis are changed. When the non-linearity
is relatively weak, a change in the Hopf bifurcation type might result. A Mach number
variation in inviscid flow showed that the effective flutter boundary might significantly
deviate from that predicted using linearised theory. For both the structural parameter
variations and the Mach number variation, LCOs were observed below the linearly pre-
dicted flutter boundary. At the nominal structural parameters, the amplitude-dependent
behaviour of the phase of the lift was found to be responsible for the type of bifurcation of
the LCO solution that occurs. Inspection of the local force distributions at various pitch
amplitudes showed that the motion of the shock wave on the lower surface is responsible
for the behaviour of the phase of the lift and hence for the bifurcation behaviour of the
LCOs observed in this work.

Nomenclature

A generalised aerodynamic force matrix
D damping matrix
K stiffness matrix
M mass matrix
Re Reynolds number
~̂
f complex amplitude vector of the aerodynamic force
~̂x motion vector
~f aerodynamic force vector
~x time-dependent motion vector
b wing span, m
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c chord length, m
cf skin friction coefficient
cp pressure coefficient
h plunge displacement, m
Iα mass moment of inertia (about the elastic axis), kgm2

k reduced frequency
Kh plunge spring stiffness, N/m
Kα torsional spring stiffness, Nm/rad
L lift, N
M Mach number
M moment about the quarter-chord point, Nm
m mass, kg
p complex-valued eigenvalue
p pressure, Pa
q dynamic pressure, Pa
Sα static moment (related to the elastic axis), kgm
T temperature, K
t time, s
U velocity, m/s
xea distance between quarter-chord point and elastic axis, m

Subscripts

∞ freestream condition
f flutter condition
LCO limit-cycle oscillation condition

Conventions

| | magnitude
¯ mean value

Symbols

α pitch angle, ◦

δ amplification rate
∆α pitch amplitude, ◦

ω angular frequency, rad/s
ωh uncoupled natural plunge frequency, rad/s
ωα uncoupled natural pitch frequency, rad/s
φhα phase difference between pitch and plunge, ◦

φLh phase of the lift w.r.t. the plunging motion, ◦

φMα phase of the moment w.r.t. the pitching motion, ◦

ρ density, kg/m3

θhα complex amplitude ratio
θLh complex-valued ratio of the first harmonic of the lift to that of the plunging motion, N/rad
θMα complex-valued ratio of the first harmonic of the moment to that of the pitching motion, Nm/rad

I. Introduction

Aeroelastic limit-cycle oscillations (LCOs) are caused by non-linearities in either the flow around an object
or by non-linearities in the structure of the object, or a combination of both. In contrast to unbounded flutter,
which can be predicted using a linearised analysis, the amplitude of an LCO remains constant. Hence, these
limit-cycle oscillations cannot be predicted by a linearised method. This means that a linearised method
might fail to predict flutter onset correctly if limit-cycle oscillations would already occur below flutter onset.
Therefore, it is necessary to know if LCOs can indeed exist below the linear flutter point and at which flow
conditions they exist or which structural properties are required for LCOs to exist.

Structural non-linearities are relatively easy to analyse. However, to investigate the aerodynamic sources
of non-linearities extensive wind-tunnel tests or numerical codes capable of representing these non-linearities
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are required. Nowadays, fluid-structure interaction coupling with the aerodynamic flow represented by a
Computational Fluid Dynamics (CFD) code are used to analyse limit-cycle oscillations. However, these
simulations are computationally expensive and cannot be used for extensive parameter studies. Further-
more, unstable LCOs as well as multiple nested LCOs cannot be found directly from coupled fluid-structure
interaction simulations. Therefore, the well-known p-k method, used in classical (linear) flutter analysis, has
been extended for the prediction of limit-cycle oscillations, see van Rooij et al.1–3 This method allows one
to extensively study the Hopf bifurcation behaviour of limit-cycle oscillation solutions, due to the reduced
computational time once the aerodynamic response is known as a function of the frequencies, amplitudes
and phase differences of the degrees of freedom. Figure 1 shows a sketch of the LCO amplitude as a function
of the airspeed (after Dowell et al.4). Two types of bifurcations of the LCO amplitude can be distinguished;
supercritical and subcritical bifurcations, also called benign and detrimental LCOs, respectively. In case
of a supercritical bifurcation, LCOs only exist at airspeeds larger than the (linearised) flutter speed. De-
pending on the strength of the non-linearity, the slope of the bifurcation diagram is either large (when the
non-linearity is weak) or small (when the non-linearity is strong). In case of a subcritical bifurcation, LCOs
would already exist at speeds below the (linearised) flutter speed U∞f

. Hence, they are referred to as detri-
mental. The arrows in Figure 1 indicate that for the subcritical bifurcation, the lower branch (dashed red
line) consists of unstable LCOs, whereas the upper branch consists of stable LCOs.
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Figure 1. Sketch of LCO bifurcation behaviour (after Dowell et al.4)

Studies of the bifurcation behaviour of LCO solutions caused by aerodynamic non-linearities are rare5–12

and to the author’s knowledge, only two of these studies have found subcritical bifurcations. Kholodar et
al.6, 7 have found subcritical bifurcations of the NACA64A010A airfoil in inviscid flow using the harmonic
balance (HB) method, whereas Balajewicz and Dowell12 observed subcritical bifurcation behaviour for the
NACA0012 airfoil in inviscid flow (also using the HB method). Furthermore, Kholodar et al.6, 7 are, to
the author’s knowledge, the only researchers that systematically studied the effect of Mach number and
structural parameter variations. They observed that there is a high sensitivity of the LCO behaviour with
respect to Mach number and uncoupled natural structural frequency ratio, especially in the transonic regime.
The mass ratio had a less significant impact on the LCO bifurcation behaviour. However, Kholodar et al.6, 7

did not analyse the LCO bifurcation behaviour and its corresponding source (the aerodynamic forces) in
detail. Why does a certain bifurcation behaviour establish itself? And can this behaviour be correlated with
the behaviour of the flow and/or the structure? Furthermore, the two previous studies mentioned here only
considered inviscid flow, but what happens in viscous flow, when the aerodynamic non-linearity is expected
to be much stronger due the presence of and/or the interaction with the boundary layer? Can subcritical
bifurcations of the LCO amplitude also exist in viscous transonic flow?
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Hence, this paper studies the LCO bifurcation behaviour of a two degree-of-freedom (DoF) airfoil in
both inviscid and viscous transonic flow. It will be investigated whether limit-cycle oscillations can already
occur below the flutter boundary predicted from linearised theory, i.e. whether subcritical bifurcations of
the LCO amplitude can exist, by varying several properties of the (linear) structural model, as well as the
Mach number in inviscid flow. Especially in viscous flow where the non-linearity is expected to be larger
than in inviscid flow due to the interaction of the shock-waves and the boundary layer. Furthermore, the
relation between the aerodynamic forces and the bifurcation behaviour is studied in order to establish the
local and global sources of the amplitude limitation.

This paper will first shortly address the computational method used, i.e. the amplitude-dependent p-k
method and the CFD simulations necessary. Then the results of three separates studies will be shown in
Section III. First, the effects of variations of two parameters of the structural model on the bifurcation
behaviour in both viscous and inviscid transonic flow will be shown. Then, the Mach number is varied in
inviscid flow. The effect of this variation on the flutter and LCO behaviour is shown in Section B. Finally,
the response surface is analysed and compared to the bifurcation behaviour in Section C and conclusions are
drawn in Section IV.

II. Computational Method

To study limit-cycle oscillations of a two degree-of-freedom airfoil system, the amplitude-dependent p-k
method (ADePK) as presented by van Rooij et al.2, 3 is used. A short overview of this method is given here,
more details can be found in van Rooij et al.2, 3 Figure 2 shows the two-degree-of-freedom airfoil system
without structural damping.

Figure 2. Sketch of the model with two degrees of freedom

The equations of motion of this system are given by:

[

m Sα

Sα Iα

]

︸ ︷︷ ︸

M

[

ḧ

α̈

]

︸︷︷︸

~̈x

+

[

Kh 0

0 Kα

]

︸ ︷︷ ︸

K

[

h

α

]

︸︷︷︸

~x

=

[

−L

M + xea ·L

]

︸ ︷︷ ︸

~f

. (1)

Here m is the mass, Iα the mass moment of inertia, Sα the static moment, Kα the torsional stiffness, L the
aerodynamic lift, M the moment about the quarter-chord point, and M + xea ·L the aerodynamic moment
about the elastic axis, where xea is the distance between the quarter-chord point and the elastic axis (positive
aft). The plunge displacement and the pitch angle are represented by h and α, respectively.

In the amplitude-dependent p-k method, the equations of motion are transformed into the frequency
domain by assuming a first-harmonic sinusoidal solution (as in the conventional p-k method developed by

Hassig13). Hence, a solution of the form ~x = ~̂xept, with p = δ+ iω the eigenvalue, and ~̂x the complex-valued
motion vector, is assumed. The symbols δ and ω denote the amplification rate and the angular frequency,
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respectively. Inserting this assumed solution into the equations of motion (1), leads to:

p2M~̂x+K~̂x =
~̂
f
(

k, ~̂x
)

, (2)

where k denotes the reduced frequency given by: k = ωc/U∞. The complex-valued motion vector is defined
as:

~̂x =

[

θhα · c

1

]

·∆α,

where θhα is the complex-valued amplitude ratio, c the chord length of the airfoil and ∆α the pitch amplitude.
The magnitude and phase angle of the complex-valued amplitude ratio θhα are given by |θhα| and φhα,
respectively.

The aerodynamic forces are represented by a first harmonic sinusoidal motion as well: ~f =
~̂
fept, where,

as in the conventional p-k method,
~̂
f is only a function of k and not of p. However, in contrast to the

linearised case, the aerodynamic forces cannot be represented by a generalised aerodynamic force (GAF)

matrix A (k) times ~̂x (i.e.
~̂
f 6= A~̂x), due to the non-linear dependency of the aerodynamic forces on all mode

shape parameters (ω, ∆α, and the complex-valued amplitude ratio θhα). Therefore, the relations between
the aerodynamic forces (complex aerodynamic lift and moment) and the mode shape parameters need to be
established in the form of a so-called response surface, which is constructed a-priori using harmonic forced
motion CFD simulations. The aerodynamic forces are then computed by interpolation on this response
surface during the iterations of the amplitude-dependent p-k method solver. Since there are more unknowns
(3, i.e. p, ∆α, and θhα) than equations (2, i.e. (1)), the equations of motion are solved at a pre-set pitch
amplitude ∆α. By solving the equations of motion for various pre-set amplitudes, the amplitude at which
the amplification rate δ equals zero can be found. This is the LCO amplitude. Furthermore, the stability
of the LCO can be determined from the slope of the δ-∆α-diagram. Hence, from ADePK both stable and
unstable LCOs can be found. The other LCO mode shape parameters follow from (2). Further details on
the amplitude-dependent p-k method can be found in van Rooij et al.2, 3

The response surfaces for the complex-valued aerodynamic lift and moment are generated using CFD
simulations with a finite-volume, cell-vertex-based, unstructured, compressible solver for both the Reynolds-
Averaged Navier-Stokes (RANS) and the Euler equations. The DLR-TAU CFD-code14 has been used in
this work. Both viscous and inviscid CFD computations have been performed. For spatial discretisation a
2nd-order central scheme15 is used. Temporal discretisation is realised by dual time stepping,16 where in
order to integrate in physical time, the implicit 2nd-order accurate Backward Differencing Formula (BDF2)
integration scheme has been used. At each physical time step, the governing equations are integrated
explicitly by adding a so-called pseudo time derivative. The Menter SST turbulence model17 has been used
for the RANS simulations.

The unstructured mesh used for the inviscid CFD simulations has 10369 points. This mesh was investi-
gated to be sufficiently fine to give mesh independent results. For the viscous flow computations a structured
mesh with 65888 points was used. The non-dimensional first cell height of this mesh was estimated to be
0.75. This mesh was also found to give mesh independent results.1

The supercritical NLR7301 airfoil is used to study LCO behaviour in this work, since it has already been
subject of numerous experimental18–22 and numerical investigations5, 23–32 regarding limit-cycle oscillations.
Table 1 shows the flow conditions at which the viscous and inviscid simulations have been performed. Note
that the Mach number has been varied for the inviscid flow simulations.

Parameter Euler RANS

M∞ 0.55-0.8 0.75

ᾱ 0◦ 0.7◦

Re - 2 · 106

T∞ 273.15 K 273.15 K

p∞ 101325 Pa -

Table 1. Flow conditions for the CFD simulations
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The structural properties of the wind-tunnel model of Dietz et al.21 are used for the investigations in
this work (with zero structural damping). These structural parameters were used as the nominal structural
parameters, see Table 2. In Section 1, Kh and xea will be varied independently. Note that the nominal
location of the elastic axis is at the quarter-chord point.

Structural parameter Value Units

Wing span b 1.0 m

Chord length c 0.3 m

Mass m 26.268 kg

Mass moment of inertia (about the elastic axis) Iα 0.079 kgm2

Torsional spring stiffness Kα 6.646 ·103 Nm/rad

Plunge spring stiffness Kh 1.078 ·106 N/m

Static moment (related to EA) Sα 0.331 kgm

Distance between quarter-chord point and elastic axis xea 0 m

Table 2. Structural parameters for the two DoF NLR7301 airfoil system (taken from Dietz et al.21)

The response surface of the aerodynamic forces has been generated using a tensor-product grid of sample
points in this work. The aerodynamic forces at each sample point have been computed from a harmonic
forced motion simulation of the airfoil at a particular frequency, pitch amplitude and complex amplitude
ratio. The response surface sample locations are shown in Table 3 for the viscous test case of this work.
For the inviscid test case the same samples have been used except for the samples at ∆α = 4◦. At zero
pitch amplitude the aerodynamic forces are identically zero and at k = 0, the aerodynamic forces have been
determined from the difference of two steady simulations at each amplitude. This results in a total of 1280
sample points for the viscous flow test case and 1120 sample points for the inviscid flow test cases. Is is
noted here that the response surface is set up at a certain reference velocity and hence the results obtained
with ADePK are non-matched, see van Rooij et al.3 Interpolation of the response surface is applied using
cubic spline interpolation.

Parameter Values

Pitch amplitude ∆α(◦) 0, 0.1, 0.5, 1, 2, 3, 4, 5

Amplitude ratio |θhα| 0.01, 0.75, 2, 4

Reduced frequency k 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7

Phase difference φhα(
◦) 5, 10, 50, 100, 150

Table 3. CFD sample locations

III. Results

This section shows the bifurcation behaviour of the limit-cycle oscillation solutions obtained with the
ADePK method. The NLR7301 airfoil is studied in two types of flow; a viscous transonic flow at M = 0.75
and ᾱ = 0.7◦, and an inviscid flow at M = 0.74, ᾱ = 0◦. The steady pressure coefficient and skin friction
coefficient distributions are shown in Figure 3. The continuous line displays the upper surface and the dashed
line the lower surface. A black horizontal line has been drawn at the critical pressure. For the inviscid case
a strong shock wave is present on the upper surface near 65% of the chord length, see Figure 3(a). For
the viscous a shock wave is present on the upper surface near the mid-chord position (see Figure 3(b)) and
trailing-edge separation occurs on this surface as well (see Figure 3(c)).

The results of the effect of several structural parameters changes on the bifurcation behaviour of the
LCO solutions from the two test cases shown in Figure 3 are studied in Section A. Then the Mach number is
varied in inviscid flow. The flutter boundary as well as the LCO bifurcation behaviour is computed for each
Mach number, see Section B. Finally, the response surface used to compute the aerodynamic forces during
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Figure 3. Steady pressure and skin friction distributions

the iterations of ADePK and its relation to the LCO bifurcation behaviour is studied in Section C.

A. Structural parameter variations

Two structural parameters have been varied; the structural uncoupled natural frequency ratio ωh/ωα, and
the elastic axis location xea. This section shows the bifurcation behaviour of the LCO solutions in terms of
the LCO amplitude, the LCO mode shape, and the LCO reduced frequency as a function of the freestream
velocity in inviscid and viscous flow.

1. Structural frequency ratio

The structural uncoupled natural frequency ratio, or structural frequency ratio (SFR) for short, has been
varied from 0.49 to 1.21. In order to achieve this, the plunge stiffness Kh has been changed. The remaining
structural parameters are constant (see Table 2). Figure 4 shows the LCO amplitudes versus the freestream
speed normalised by the flutter speed for the NLR7301 airfoil in inviscid flow at M∞ = 0.74 and ᾱ = 0◦.
Figure 5 shows the bifurcation diagrams of the LCO mode shape parameters and the LCO reduced frequency
versus the freestream speed U∞. Figure 5(e) shows the phase difference versus the amplitude ratio. From
Figure 4 it is immediately clear that for small values of ωh/ωα the bifurcation is subcritical. For larger
SFRs, the bifurcation is supercritical. For these large SFRs, the slope of the bifurcation diagram decreases
with increasing SFR. This indicates that the non-linearity becomes larger when the SFR is increased from
0.74 to 1.21 (see Figure 1). From Figure 5(b), the amplitude ratio |θhα| decreases with increasing SFR.
During the bifurcation, the amplitude ratio decreases with freestream speed for SFRs from 0.83 till 1.04. For
larger SFRs, |θhα| increases with increasing U∞, whereas for smaller SFRs, the amplitude ratio shows a more
complicated bifurcation behaviour. The phase difference φhα first decreases somewhat, but then increases up
to about 110◦ at ωh/ωα = 1.21. For ωh/ωα ≥ 0.74, φhα increases during the bifurcation. For smaller SFRs,
the bifurcation behaviour of φhα is more complicated. The reduced frequency at flutter increases up to an
SFR of 0.90, then it decreases with increasing SFR. This is caused by the inverse relation of the reduced
frequency with the freestream velocity (k = ωc/U∞). This relation also dictates the bifurcation behaviour
of the reduced frequency (as a function of the freestream velocity).

As expected because of the structural frequency ratio values, Figure 5(e) shows a plunge-dominated mode
shape for small SFRs with a large amplitude ratio and a pitch-dominated mode shape for large SFR (with an
amplitude ratio ≪ 1). For the inviscid flow test case considered here, at small SFRs a subcritical bifurcation
occurs that has a plunge-dominated mode shape, whereas the pitch-dominated cases are supercritical. In
contrast, Kholodar et al.7 observed supercritical bifurcations which are plunge dominated at ωh/ωα = 0.5
and subcritical bifurcations which are pitch dominated at ωh/ωα = 1.8 for the NACA64010A airfoil in
inviscid flow. To further investigate these differences in bifurcation behaviour, the structural frequency ratio
of the NLR7301 airfoil was varied for two other Mach numbers in inviscid flow. From a SFR-variation of
the NLR7301 airfoil at M∞ = 0.75, ᾱ = 0◦ in inviscid flow, unstable LCOs with a plunge- as well as a
pitch-dominated mode shape were found as well. For M∞ = 0.72 on the other hand, plunge dominated LCO
solutions that undergo supercritical bifurcations were observed at small SFRs. These observations suggest
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that there is no correlation between the type of bifurcation (i.e. supercritical or subcritical) that occurs and
the mode shape (i.e. pitch- or plunge-dominated) in inviscid flow.
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Figure 4. LCO pitch amplitude vs freestream velocity normalised by the linear flutter speed for a structural
frequency ratio variation at M∞ = 0.74, ᾱ = 0◦ in inviscid flow

The results of an SFR-variation in case of transonic flow with trailing-edge separation (M∞ = 0.75,
ᾱ = 0.7◦, Re = 2 · 106) are shown in Figures 6 and 7, which show the LCO mode shape and frequency versus
the freestream velocity and the LCO amplitude versus the freestream velocity normalised by the flutter
speed, respectively. For this test case it is observed that the bifurcation behaviour is supercritical for SFRs
up to and including 1.21. Therefore, the bifurcation behaviour has been investigated at ωh/ωα = 1.56 as
well. At this SFR the bifurcation behaviour becomes subcritical. For SFRs smaller than 1.56, from Figure 7
the velocity range covered by the LCOs up to ∆αLCO = 5◦ initially increases with increasing SFR (i.e. the
slope of the bifurcation diagram for amplitudes larger than about 1◦ decreases). Then at ωh/ωα = 0.83 the
velocity range is maximal (and the slope minimal), whereas for ωh/ωα > 0.83, the velocity range decreases.
Hence, for the supercritical bifurcations, the non-linearity becomes stronger with increasing SFR up to a
value of 0.83, and for larger ωh/ωα the non-linearity diminishes again. For ωh/ωα = 1.56 the non-linearity
is again stronger.

For all SFRs, except for the largest four, the phase difference starts at a small value and increases with
freestream speed. For ωh/ωα = 1.15 and 1.21 the phase difference starts at 100◦ or above. At ωh/ωα = 1.56
the phase difference increases with decreasing freestream speed. Note that at this SFR the phase difference
has been extrapolated, since the largest sample point is at φhα = 150◦. Figure 6(e) clearly shows the large
range of phase difference covered by SFRs near 1. Furthermore, at small SFR the LCOs are stable, the
mode shape is plunge-dominated and |θhα| decreases with increasing U∞. At large SFR the LCOs are stable
at small to moderate amplitudes and unstable at large amplitudes, the mode shape is pitch-dominated and
|θhα| first increases with increasing U∞ and then increases further with decreasing U∞. This behaviour is
similar to that observed by Kholodar et al.7 However, it is in contrast to that of the inviscid flow test case
of Figures 4 and 5. The reduced frequency at flutter shows similar behaviour as the inviscid flow test case,
i.e. it increases with increasing SFR up until 0.90, for larger SFRs it decreases. Furthermore, as expected
due to the inverse relation with U∞, for the supercritical bifurcations the reduced frequency decreases with
freestream speed, whereas at the largest two SFRs k first decreases and then increases.

From the results of these two test cases it can be concluded that variation of the structural uncoupled
natural frequency ratio significantly influences the LCO bifurcation behaviour. Especially when the non-
linearity is relatively weak as for the inviscid case shown in this section, the bifurcation type can change.
For the viscous test case, the bifurcation type did not change under a variation of the structural frequency
ratio from 0.49 to 1.21. However, it is changes when the structural frequency ratio is increased further to
1.56.
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Figure 5. LCO mode shape vs freestream velocity for a structural frequency ratio variation at M∞ = 0.74,
ᾱ = 0◦ in inviscid flow
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Figure 6. LCO mode shape vs freestream velocity for a structural frequency ratio variation at M∞ = 0.75,
ᾱ = 0.7◦ in viscous flow

2. Elastic axis location

In order to investigate the generality of the results obtained in this work, the elastic axis location has been
varied, keeping the remaining parameters constant (the static moment Sα and the mass moment of inertia

10 of 23

American Institute of Aeronautics and Astronautics



0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3
0

1

2

3

4

5

∆α
LC

O
 (

°)

U∞/U∞
f

 

 0.49
0.54
0.65
0.74
0.83
0.90
0.97
1.04
1.10
1.15
1.21
1.56

Figure 7. LCO pitch amplitude vs freestream velocity normalised by the linear flutter speed for a structural
frequency ratio variation at M∞ = 0.75, ᾱ = 0.7◦ in viscous flow

Iα as well). Figures 8 and 9 show the result in terms of the bifurcation behaviour for the inviscid test case
at M∞ = 0.74, ᾱ = 0◦ and for viscous test case at M∞ = 0.75, ᾱ = 0.7◦, respectively. Note that the non-
dimensional elastic axis location from the quarter-chord point is shown in the legend of these figures, where a
positive distance indicates that the elastic axis is located aft of the quarter-chord point, see Figure 2. Figure
8 shows a change in bifurcation behaviour from subcritical to supercritical with increasing aft location of
the elastic axis for the test case in inviscid transonic flow. From Figure 9 it is observed that, for the viscous
flow test case, the slope of the supercritical bifurcation increases when the elastic axis is located further aft
of the quarter-chord point, i.e. the non-linearity becomes weaker. However, the bifurcation type remains
the same. For this test case, the amplitude ratio decreases with increasing freestream velocity, except when
the elastic axis is located upstream of the quarter-chord point, then it first increases and then decreases,
see Figure 9(b). For the inviscid test case the amplitude ratio decreases during the bifurcation for all xea,
see Figure 8(b). At M∞ = 0.74, ᾱ = 0◦ the phase difference shows a complicated bifurcation behaviour,
see Figure 8(c), whereas the phase difference increases with increasing freestream velocity for all elastic axis
locations at M∞ = 0.75, ᾱ = 0.7◦. When the elastic axis is located at 75% of the chord length, i.e. 0.5c
behind the quarter-chord point, the phase difference increases dramatically for the viscous flow test case.
This happens at very small amplitude ratios, as can been from Figure 9(e). This means that for xea = 0.5c,
the LCO mode shape becomes almost a pure pitch motion where plunge leads pitch. For both test cases, the
reduced frequency increases with increasing distance between the quarter-chord point and the elastic axis,
although it decreases with increasing freestream velocity for a particular elastic axis position, as expected
due to the inverse relation with the freestream velocity.

Increasing the structural frequency ratio to 1.21 for the viscous test case results in a change of bifurcation
type as illustrated in Figure 10. Note that the most aft elastic axis location is no further than 35% of the
chord length aft of the quarter-chord point, because no flutter was observed for more aft locations of the
elastic axis. For the transonic inviscid test case, a transition from subcritical to supercritical bifurcation
behaviour at the nominal structural frequency ratio (0.70) is observed when the elastic axis is moved aft.
Hence, these results show that, when the elastic axis location is shifted, the strength of the non-linearity
changes and a change in bifurcation behaviour may occur.

B. Mach number variation in inviscid flow

Figure 11(a) shows the flutter speed U∞f
versus the Mach number at a mean angle of attack of 0◦ (as

obtained from the conventional p-k method). The nominal structural parameters as shown in Table 2 have
been used in this section. The flutter speed decreases with increasing Mach number, at transonic Mach
numbers a minimum is reached, the so-called “transonic dip”. The flutter boundary shown in Figure 11(a)
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Figure 8. LCO mode shape vs freestream velocity for a variation of the non-dimensional elastic axis location
at M∞ = 0.74, ᾱ = 0◦ in inviscid flow (value of xea/c is shown in the legend)

shows two transonic dips, at M∞ = 0.72 and at M∞ = 0.78. The plunge mode was the first mode to become
unstable for all Mach numbers. At Mach numbers of 0.76 and larger the second mode, the pitch mode,
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Figure 9. LCO mode shape vs freestream velocity for a variation of the non-dimensional elastic axis location
at M∞ = 0.75, ᾱ = 0.7◦ in viscous flow (value of xea/c is shown in the legend)

becomes unstable as well. However, this occurs at much higher freestream velocity then the plunge mode.
Such a flutter boundary is typical for Euler-based flow calculations.33 A similar-shaped flutter boundary
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the non-dimensional elastic axis location at M∞ = 0.75, ᾱ = 0.7◦, ωh/ωα = 1.21 in viscous flow (value of xea/c is
shown in the legend)

was found by Yang et al.33 and Hall et al.34 for the NACA64A010 airfoil. The secondary unstable mode
disappears in viscous flow. Therefore, in this work only the first unstable mode will be considered in the
study of the LCO behaviour of the NLR7301 airfoil.

Figure 11 also shows the reduced frequency kf , amplitude ratio |θhα|f and phase difference (φhα)f at
flutter versus the Mach number at a mean angle of attack of 0◦. As expected, the reduced frequency at flutter
increases with increasing Mach number and shows the opposite behaviour of the freestream speed, since a
maximum is obtained at M∞ = 0.72 and M∞ = 0.78. The amplitude ratio at flutter increases from 0.72 at
M∞ = 0.55 to about 0.9 at transonic Mach numbers. Similar behaviour was observed by Kholodar et al.6, 7

for the amplitude ratio at flutter at an ωh/ωα of 0.8 for the NACA64A010A airfoil. (Here ωh/ωα = 0.70.)
The phase difference between pitch and plunge at flutter increases from about 9◦ at M∞ = 0.55 to about
15◦ at M∞ = 0.71 and then decreases until to almost 0◦ at M∞ = 0.8. Hence, the lag of the pitching motion
w.r.t. the plunging motion first increases, and then decreases again.

The ADePK method has been used to compute the bifurcation behaviour at several Mach numbers
(M∞ = 0.55, 0.6, 0.65, 0.7, 0.72, 0.74, 0.75 and 0.8). Figure 12 shows contours levels of the LCO amplitude
at several Mach numbers versus the freestream velocity. The flutter boundary has also been included (zero
amplitude). Stable LCOs are shown with circles and unstable LCOs with squares. The dashed lines connect
the unstable LCOs and the full lines the stable LCOs. It is observed that at subsonic Mach numbers the
contour lines are much closer than near the transonic dip. This means that the bifurcation diagrams are
much steeper at subsonic Mach numbers than near the transonic dip. Furthermore, when LCOs of a certain
amplitude are allowed, for example with an amplitude of 3◦, the transonic dip would be less deep than in
case of flutter (zero amplitude). Hence, the non-linearity is much stronger at M∞ = 0.72 and M∞ = 0.75
than at M∞ = 0.55, 0.6 and 0.65. This can be seen more clearly from the bifurcation diagrams shown
in Figure 13. This figure shows the LCO mode shape versus the freestream velocity. The bifurcation of
the LCO amplitude is supercritical for the smallest two Mach numbers (M∞ = 0.55 and 0.6). Then it
becomes subcritical with increasing Mach number, i.e. for M∞ = 0.65 and M∞ = 0.7. The bifurcation
becomes supercritical again when further increasing Mach number. At M∞ = 0.74 multiple stable and
unstable LCOs exists. At M∞ = 0.75 the bifurcation is subcritical as well, with stable LCOs of noticeable
amplitude (up to 5◦) that occur below the flutter boundary. This is also seen in Figure 12. At M∞ = 0.8 the
bifurcation is supercritical. Figure 13(b) shows that amplitude ratio |θhα| decreases during the bifurcation
for most Mach numbers, except for M∞ = 0.7. Hence, the LCO mode shape becomes slightly more pitch-
dominated during the bifurcation of the LCO solution. Only at M∞ = 0.7 the motion tends to become a
more complex pitch-plunge motion. This is also depicted in Figure 14, which shows the phase difference
versus the amplitude ratio. From Figure 13(c), the phase difference increases with freestream speed for Mach
numbers up to 0.6. At M∞ = 0.65 it increases with decreasing freestream velocity, whereas for M∞ = 0.72
it decreases with increasing U∞. For M∞ = 0.7 and the largest three Mach numbers the phase difference
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Figure 11. Flutter speed, reduced frequency, amplitude ratio and phase difference as a function of Mach
number in inviscid flow

shows a more complex bifurcation behaviour. The same holds for the amplitude ratio at these Mach numbers.
The bifurcation behaviour of the reduced frequency, shown in Figure 13(d), is again dictated by its inverse
relationship with the freestream velocity.

Upon comparing the results obtained here with the Mach number variations performed by Kholodar et
al.,6, 7 it is noted that they observed, at an ωh/ωα of 0.8, unstable LCOs (up to 7◦) for Mach numbers far
below the transonic dip (which is at about M∞ = 0.8 in their case), whereas for the NLR7301 airfoil at
M∞ = 0.55 and M∞ = 0.6 stable LCOs are observed. Closer to the transonic dip and in the transonic dip
region itself, i.e. in the Mach number range from 0.78 to 0.85, Kholodar et al.6, 7 observed supercritical
bifurcations for the NACA64A010A airfoil as also observed here (i.e. at M∞ = 0.72). Directly after the
dip the LCOs became unstable again and then stable again, as for the NLR7301 airfoil. Hence, except for
the supercritical bifurcation behaviour for subsonic Mach numbers, the NLR7301 and the NACA64A010A
airfoil seem to exhibit similar bifurcation behaviour close to the flutter boundary.

C. Response surface analysis

In order to investigate what non-linearity is responsible for the bifurcation behaviour, the magnitude and
phase angle of the complex-valued ratios of the first harmonic of the lift to that of the plunging motion (i.e.
|θLh| and φLh) and the magnitude and phase of the first harmonic of the moment to that of the pitching
motion (i.e. |θMα| and φMα), have been made constant (one-at-a-time analysis). The forces have each been
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Figure 12. Flutter speed and LCO amplitude contours as a function of Mach number in inviscid flow

set, one at a time, to their value at ∆α = 0.1◦. Then ADePK has been used to compute the bifurcation
behaviour. The structural parameters are again those of the nominal structural model (see Table 2). This is
performed for all Mach numbers of the inviscid Mach number test case shown in Section B as well as for the
viscous test case at M∞ = 0.75, ᾱ = 0.7◦, Re = 2 · 106. Figure 15 shows the resulting bifurcation behaviour
for the viscous test case as well as for inviscid flow at M∞ = 0.75 and ᾱ = 0◦.

From Figure 15 it is clearly seen that the setting the phase of the lift constant results in a completely
different bifurcation behaviour for both test cases. The importance of the non-linearity in the phase of the
lift (with increasing amplitude) was already observed by the authors in van Rooij et al.,1 which discussed
the energy budget of limit-cycle oscillations. At M∞ = 0.75, ᾱ = 0◦ the LCO amplitude increases rapidly in
case of a constant phase of the lift. Holding the remaining parameters constant does have a small influence
on the bifurcation behaviour, but this influence is not as significant as in case of φLh. However, when keeping
the magnitude of the moment |θMα| constant at M∞ = 0.8 (not shown here) in inviscid flow, the bifurcation
behaviour is also somewhat different from the non-linear case for amplitudes up to 4◦. Although the trend
towards a supercritical bifurcation is the same as in the non-linear case. This cannot be concluded in case of
a constant φLh for this test case. For other Mach numbers in inviscid similar trends regarding the bifurcation
behaviour when φLh is held constant are observed. The results of the one-at-a-time constant aerodynamic
force or moment analysis for the viscous flow test case at M∞ = 0.75 and ᾱ = 0.7◦ are shown in Figure
15(b). For this test case keeping φLh constant also results in the most significant deviation from the actual
(non-linear) bifurcation behaviour. Hence, from this study it can be concluded that the non-linearities in
the phase of the lift are responsible for the type of bifurcation that occurs. In addition, for some test cases
(e.g. M∞ = 0.8, ᾱ = 0◦ in inviscid flow) non-linearities in the magnitude of the moment might influence the
bifurcation type.

Now the question is can the observations and conclusions from Figure 15 (and from the other Mach
numbers in inviscid flow, which are not shown here) be used to link a certain bifurcation behaviour to
the response surface? In other words given a certain response surface, which types of bifurcations can
occur provided the right structural properties are available? To answer these questions the aerodynamic
response surface has been analysed through various slices. During this analysis it was noted that at those
amplitudes at which the stability of the LCO changes, i.e. at a saddle-node bifurcation of limit cycles,35

the aerodynamic response surface also shows curvature changes. That is, the phase of the lift w.r.t. plunge
shows curvature changes. Figure 16 depicts a slice of the response surface versus the pitch amplitude at
M∞ = 0.75 and ᾱ = 0◦ in inviscid flow. The time domain reference samples at |θhα| = 0.75, φhα = 5◦ and
k = 0.5 and the interpolated response surface at this mode shape and frequency are shown in this figure
by the squares and the blue dashed lines, respectively. This mode shape is close to the flutter mode shape,
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Figure 13. LCO mode shape vs freestream velocity for various Mach numbers in inviscid flow

but at the sample locations of the response surface, such that one only sees the effect of the interpolation.
Furthermore, slices of the response surface are shown versus pitch amplitude at the flutter mode shape (i.e.
|θhα| = 0.8964, φhα = 4.7966◦ and k = 0.4424, red lines) as well as at the mode shape at an LCO amplitude
of 5◦ (|θhα| = 0.8886, φhα = 4.0775◦ and k = 0.4576, green lines). Figure 16 shows that φLh exhibits
a minimum at about 1.5◦. From Figure 15(a), at this amplitude, the stability of the LCO changes from
unstable to stable (i.e. a saddle-node bifurcation of LCOs occurs35). |θLh|, |θMα| and φMα do not show this
behaviour at 1.5◦, although the phase of the moment changes curvature at an amplitude of 1◦. The flutter
and ∆αLCO = 5◦-mode shapes are very similar, they are only shifted on the ordinate. A direct comparison
of the shape of φLh interpolated at the flutter mode shape and that of the bifurcation diagram is obtained
when the freestream velocity is plotted versus the LCO amplitude, see Figure 17(a). Comparing this figure
with Figure 16(c) clearly shows that the phase of the lift and the bifurcation diagram exhibit the same shape.
In general, it was found that comparing the shape of the sine of φLh at the flutter- and ∆αLCO = 5◦-mode
shape is a better measure for the shape of the bifurcation diagram, see Figures 17(a) and 17(b). For this test
case φLh is close to zero and therefore the phase of the lift exhibits the same shape as the sine of this phase.
However, when the phase of the lift is not close to zero, the sine of φLh naturally has a different shape.

The same analysis has been performed for the viscous flow test case. The results in terms of freestream
velocity versus LCO amplitude, sine of the phase of the lift interpolated at the flutter mode shape and at
the ∆αLCO = 5◦-mode shape, are shown in Figure 18. From this figure it is observed that the sine of the
phase of the lift and the freestream velocity also exhibit the same shape. Hence, this suggests that when the
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Figure 15. LCO amplitude vs freestream velocity in inviscid flow at M∞ = 0.75, ᾱ = 0◦ and in viscous flow at
M∞ = 0.75, ᾱ = 0.7◦ applying one-at-a-time constant aerodynamic forces

non-linearity in the phase of the lift is responsible for the bifurcation behaviour (i.e. when a constant φLh

results in a significantly different bifurcation behaviour), the shape of the response surface of the sine of the
phase of the lift is the same as that of the bifurcation diagram. In case a constant magnitude of the moment
|θMα| results in a significantly different bifurcation behaviour (e.g. for M∞ = 0.8, ᾱ = 0◦ in inviscid flow),
the shape of the response surface does not exactly match that of the bifurcation diagram, but the overall
trend is the same.

The observations made above are valid for test cases at the nominal structural parameters (see Table 2)
and at zero structural damping. However, when the structural frequency ratio is changed, the shape of the
bifurcation diagram is not always the same as that of the sine of φLh at the flutter mode shape. In most cases
there is an agreement in shape, but this is not generally true. At M∞ = 0.75, ᾱ = 0.7◦ and ωh/ωα = 1.20971
in viscous flow for example, the shape of the rotated bifurcation diagram does not agree with either the
phase of the lift nor the sine of the phase of the lift. Although the phase of the lift is the only parameter that
results in a completely different bifurcation behaviour when φLh is constant. However, for the remainder
of this section the nominal structural parameters are considered and hence the the observations about the
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Figure 16. Response surface versus pitch amplitude for Euler simulations at M∞ = 0.75, ᾱ = 0◦ at |θhα| = 0.75,
φhα = 5◦ and k = 0.5, flutter mode shape and ∆αLCO = 5◦-mode shape

bifurcation behaviour and the shape of the response surface at the nominal structural parameters will be
used.

Now a link has been established between the bifurcation diagram and the response surface, the response
surface can be searched for changes in curvature that might result in other types of bifurcations. If these
other types of bifurcations will occur depends on the structural properties. Furthermore, another open
question might be answered using the link between the response surface and the bifurcation behaviour;
which aerodynamic features are responsible for the form of the response surface? In order to do so, the
unsteady local force distributions are considered.

For the inviscid flow case at M∞ = 0.75, ᾱ = 0◦ forced motion computations have been performed at the
flutter mode shape and frequency, but with various pitch amplitudes (∆α = 0.1◦, 0.5◦, 1.0◦, 2.0◦, 3.0◦, 4.0◦,
and 5.0◦). The same phase of the lift versus amplitude was obtained as when using interpolation on the
response surface. The local force distribution was assessed to find out why the phase of the lift has this shape.
The local magnitude (scaled with the pitch amplitude) and phase angle of the lift distributions are depicted
in Figure 19. The phase of the lift is seen to decrease with increasing pitch amplitude, up to an amplitude
of 2◦, for larger amplitudes the phase increases again. This decrease can be explained as the typical effect
that occurs with increasing pitch amplitude, i.e. the shock peaks decrease in height and spread out when
the amplitude increases. This causes a decrease in the area under the local lift distribution. However, for
∆α > 2◦ the phase of the lift increases. This increase can be explained from the local phase of the lift
distribution as well. For amplitudes of 2◦ and larger there is a shock wave on the lower surface during part
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Figure 17. Freestream velocity versus LCO amplitude and φLh versus pitch amplitude for Euler simulations
at M∞ = 0.75, ᾱ = 0◦ at flutter mode shape
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Figure 18. Freestream velocity versus LCO amplitude and φLh versus pitch amplitude for RANS simulations
at M∞ = 0.75, ᾱ = 0.7◦ at flutter mode shape and ∆αLCO = 5◦-mode shape

of the oscillation cycle, whereas at small amplitudes there is no shock wave on this surface. This Tijdeman36

type B (i.e. intermittent) shock motion on the lower surface causes the phase of the lift to increase again.
Hence, the shock motion on the lower surface causes the subcritical bifurcation with stable LCOs below the
flutter boundary. This is in accordance with the observations of Bendiksen,30, 37 who also found that the
change of the shock motion type is responsible for limit-cycle oscillations in inviscid flow.

For the viscous test case at M∞ = 0.75 and ᾱ = 0.7◦ it is also observed that the (intermittent) shock
motion of the lower surface causes the increase of the phase of the lift, see Figure 20. The Tijdeman36 type
B shock wave motion on the lower surface becomes larger and larger with increasing amplitude, this causes
the phase of the lift on the lower surface to become positive over almost the complete surface. Therefore, in
this case, the shock motion on the lower surface causes the supercritical bifurcation.
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Figure 19. Local force- and moment distribution for Euler simulations at M∞ = 0.75, ᾱ = 0◦ at flutter mode
shape
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Figure 20. Local force- and moment distribution for RANS simulations at M∞ = 0.75, ᾱ = 0◦ at flutter mode
shape

IV. Conclusions

This paper has investigated the bifurcation behaviour of limit-cycle oscillation solutions of a two degree-
of-freedom airfoil. A variation of the (linear) structural model parameters has been applied and its effect on
the bifurcation behaviour has been studied. The structural frequency ratio and the elastic axis location of
the two DoF airfoil system have been varied. Varying the structural frequency ratio showed that even though
the bifurcation at the nominal structural frequency ratio is supercritical, a change in structural frequency
ratio can make the bifurcation subcritical (or the other way around). Hence, a change in structural stiffness
can cause LCOs below the (linear) flutter boundary. Furthermore, it was found that a subcritical bifurcation
does not always have to be pitch dominated and the supercritical bifurcation is not always plunge dominated.
When the elastic axis was shifted to a location behind the quarter-chord point similar bifurcation behaviour as
when the elastic axis is located at the quarter-chord point was observed. However, the slope of the bifurcation
curve changed significantly. When the non-linearity is weak, shifting the elastic axis will quickly result in a
change of bifurcation type. Overall, it can be concluded that variations in the structural parameters must be
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considered when predicting of limit-cycle oscillations, as they significantly affect the bifurcation behaviour
(in both strength and type).

The effects of a Mach number variation in inviscid flow on the flutter behaviour and the LCO bifurcation
behaviour have also been studied. LCOs were observed even for subsonic Mach numbers, although the non-
linearity is much smaller for these Mach numbers than for Mach number near the transonic dip. If LCOs
of a certain amplitude, for example 4◦, are allowed, the transonic dip can be significantly reduced. It may
disappear altogether if LCOs of even larger amplitude are allowed. Subcritical bifurcation behaviour was
observed for Mach numbers just below and just above the transonic dip location. At the transonic dip, the
bifurcation was supercritical.

Finally, the relation between the aerodynamic forces and the LCO bifurcation behaviour has been studied.
The phase of the lift was found to be responsible for the type of bifurcation that occurs for the two DoF
airfoil system at its nominal structural parameters. The shape of the rotated bifurcation diagram, i.e. the
freestream velocity versus the LCO amplitude, is very similar to that of the sine of the phase of the lift
versus oscillation amplitude at the flutter mode shape (and at the ∆αLCO = 5◦-mode shape). Hence, in
that case, only a flutter calculation and a few forced motion oscillation simulations at the flutter mode shape
would be sufficient to determine the bifurcation behaviour. However, the sine of the phase of the lift does
not always have the same shape as the LCO amplitude bifurcation diagram when the structural frequency
ratio is varied. Nevertheless, for both transonic flow test cases at the nominal structural parameters it was
investigated what causes the shape of the phase of the lift versus oscillation amplitude. For both cases, the
shock motion on the lower surface was found to be responsible for the curvature of the phase of the lift and
hence for the bifurcation behaviour.

Overall this paper has shown that the limit-cycle oscillations can occur below the flutter boundary
predicted from linearised theory. This investigation serves a first step for studies of larger degree-of-freedom
systems.
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