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Abstract—Passenger-oriented rescheduling problems receive
increasing attention. However, the passenger assignment models
used for evaluating the rescheduling solutions are usually simpli-
fied by many assumptions. To estimate passenger inconvenience
more accurately, this paper establishes a dynamic passenger as-
signment model during disruptions, in which the time-dependent
demand, disruption-induced service variations and vehicle capac-
ities are all taken into account. Event-based simulation is adopted
to implement the model of the dynamic loading and unloading
procedures of passengers. Based on the model, individual travels
can be tracked, thus making the estimation of individual passen-
ger delay possible. By aggregating individual inconvenience, the
performance of a given rescheduling solution/contingency plan
can be evaluated. Furthermore, recommendations such as adding
train units can also be proposed, as illustrated in the case study.

Index Terms—Disruptions, railway systems, dynamic assign-
ment, event-based simulation

I. INTRODUCTION

Disruptions that result in track blockages or station closures
have been annoying railway systems for years. Many efforts
have been made either to prevent their occurrences or to
mitigate the consequences once they occurred. For the latter, a
widely-adopted method is to use pre-defined contingency plans
that are further modified by traffic controllers according to the
specific conditions [1]. However, such plans together with the
manual modifications are only proposed from the perspective
of operators. Passengers who should have been put first are
neglected. Therefore, it is of great concern to take passengers
into account when dealing with disruptions.

Recently, some contributions to passenger-oriented
rescheduling problems towards either disturbances or
disruptions have been made by [2]–[6]. In these papers,
models and algorithms are proposed to generate rescheduling
solutions automatically with the purpose of minimizing
passengers’ inconvenience. However, as their main focus is
on optimization, the passenger assignment models that are
used for evaluation in these papers are simplified by many
assumptions. A more realistic passenger assignment model is
proposed by [7] to evaluate the mitigation effects of real-time
information that are offered to passengers during disruptions.

In this paper, we pay more attention to what information
should be offered to traffic controllers to help them take better
dispatching measures from the perspective of passengers. For

this purpose, a dynamic passenger assignment model with
more realistic considerations is established, which could be
integrated in rescheduling models.

The terminology on dynamic transit assignment models is
perceived differently across researchers [8]. Usually, three
aspects are partly or completely included to represent the
characteristic dynamic. They are time-dependent OD matrices,
service variations and vehicle capacity constraints. In [9], both
passenger demand and train headways that vary with time
are considered in a schedule-based transit assignment model,
whereas vehicle capacity is assumed to be infinite. As such,
the model is more suitable for strategic planning of proposed
transit systems with the focus on emerging phenomena of
macroscopic congestion. In [10], [11], under given time-
dependent passenger demand, schedule-based transit assign-
ment models are proposed by taking finite vehicle capacity
into account, with the assumption of trains operating precisely
on schedule. Likewise, a passenger equilibrium flow model
with the inclusion of vehicle capacity constraints is established
in [12], while the supply side is assumed to be constant.
Clearly, service variations are overlooked in these models,
however in the real-world, they cannot be fully avoided. In
[13]–[15], service variations are considered and described as
irregularities of train dwell and running times that are thought
to be relevant to the passenger loadings of the corresponding
trains. Their focus is on the average effects of minor service
perturbations on passengers’ reactions rather than on the real-
time management of major service disruptions on passengers’
reactions [16].

In case of major disruptions, service variations are extreme-
ly different from the ones on normal days. Train services could
be delayed, short-turned or completely cancelled. Besides, the
service levels are different in the three phases that constitute a
disruption: the first transition phase from the planned timetable
to the disruption timetable, the second phase where the dis-
ruption timetable is performed, and the third recovery phase
from the disruption timetable to the planned timetable [1].
Passengers who start their journey in different phases might
be affected differently, and even the on-board passengers who
start their journeys before the first phase could be affected.
Although the dynamic transit assignment in [7] pays attention
to the case of major disruptions, it doesn’t explicitly show
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which disruption phases are considered. However, to quantify
passengers’ inconvenience accurately, it is necessary to estab-
lish a passenger assignment model that takes all three phases
of a disruption into account, which is one of the contributions
of this paper. In addition, time-dependent OD matrices and
vehicle capacities are also included.

Note that instead of looking at passengers’ pre-trip travel
decisions, the dynamic passenger assignment model proposed
in this paper mainly focuses on passengers’ en-route travel
decisions. This means that passengers are assumed to have
planned paths in mind before they actually arrive at the origin
stations, however, possibly they have to re-plan their paths due
to service variations during disruptions. Such an assumption
is justified, since nowadays passengers can rely on various
travel-planner applications in mobile phones or the official
websites of operator companies to find their preferred paths.
This is particularly true for passengers who have a clear
travel purpose (e.g. commuters). Thus, once disruptions occur,
passengers would make en-route travel decisions by comparing
the alternative paths during disruptions with their planned
paths.

In what follows, we first explain the network modelling
approach in Section II. Then, in Section III, the proposed
dynamic passenger assignment framework is shown, followed
by the introduction of the main parts in the framework. Finally
in Section IV, a case study of a complete track blockage in
part of the Dutch railway network is performed.

II. NETWORK FORMULATION

A space-time network is a typical approach to formulate
transit services [10]–[14], especially for schedule-based ser-
vices. In view of the real-time environment of disruptions, it
is most suitable to formulate the train services in a space-time
network. Generally, the formulation of pedestrian movements
like boarding/alighting nodes and arcs are included in the
space-time network. This results in an increasing amount of
nodes and arcs, thus slowing down the computations. There-
fore, we exclude the formulation of pedestrian movements, and
propose another network formulation. An example is given in
Fig. 1.

Fig. 1. Network formulation

In Fig. 1, nodes are either train-relevant or station-relevant.
The train-relevant nodes consist of arrival nodes and departure

nodes that are assigned with information of a time instant,
type (arrival or departure), corresponding train number and
station, etc. The station-relevant nodes are also called virtual
nodes here, which are convenient for path generation. For each
station, a virtual node is created and each arrival node at the
station is linked to the virtual node as a predecessor. Note that
virtual nodes are assigned with information of type (virtual)
and corresponding station only. This means they don’t have a
timing attribute in Fig. 1.

When we search paths for a particular OD, a pair of source
and sink node has to be determined. Here, the chosen source
node is a departure node at the origin station. For the sink
node, instead of trying every possible arrival node at the
destination station, only the virtual node at the destination
station is chosen. More details about path generation can be
found in Section III.

Likewise, arcs are either train-relevant or station-relevant.
The train-relevant arcs start from departure nodes and point
to the space-adjacent arrival nodes that share the same train
numbers (i.e. one single train). The station-relevant arcs are
divided into two categories. One includes the arcs that connect
two time-adjacent nodes in the same station. Such arcs enable
passengers to wait to board trains at origins, transfer from one
train to another, or dwell at the station in a train. Along with
the aforementioned train-relevant arcs, the weights of these
arcs are the time differences between the predecessor node
and the successor node. One other category are the arcs from
arrival nodes to virtual nodes in the same station. These arcs
enable passengers to leave the railway system once they arrive
at the final destination. We assign equal weight to each of such
arcs, since they are not used to distinguish paths.

This formulation is in fact a compact transformation of
the timetable into a network. The formulation of pedestrian
movement is discarded, which brings the advantage of short
computation times in searching paths. However, it also leads to
an inability to distinguish transfers when searching the paths,
which makes penalizing transfers impossible. To overcome this
issue, we generate all reasonable paths first, and perform af-
terwards an analysis on the transfers. This is further explained
in Section III.

III. DYNAMIC ASSIGNMENT MODEL

The framework of dynamic passenger assignment in this
paper consist of three parts, as shown in Fig. 2. Part I assigns
each passenger with a planned path. Part II decides when a
passenger would take a re-plan action if his planned path is
delayed or cancelled. Since our assignment model is event-
based, it is necessary to pre-determine the trigger event that
determines when a passenger may re-plan his travel (i.e.
en-route travel decision). Part III simulates the passengers’
loading procedure to confirm the finally realized paths, by
taking unsuccessful boarding due to full trains into account.
In the following, the three parts are explained successively.



Fig. 2. Framework of the dynamic passenger assignment model

A. Passenger planned path assignment (Part I)
In part I, three modules are included: the network formula-

tion, path generation, and planned path assignment. First of all,
the original timetable is transformed into a space-time network
as shown in Fig. 1. The resulting departure nodes and arrival
nodes are sorted in time-ascending order to constitute the event
list based on which part III can proceed. In other words, events
are represented by departure nodes and arrival nodes. Next,
we generate paths for each OD pair in the concerned time
period. We assign each passenger with a planned path from
the path set by assuming that a passenger always chooses the
least transfer path with the earliest departure time regarding his
arrival time at the origin station. Here, a passenger’s planned
path is characterized by a sequence of events in time-ascending
order.

In this paper, for each departure node at each station, the
paths from the departure node to any other station within a
reasonable arrival time horizon are generated (if any). Waiting
times at origins are excluded in the paths, but are considered
in the procedure of assigning paths by comparing passenger
arrival times with path departure times. In other words, the
total travel times of paths consist of only in-vehicle times and
transfer waiting times if any. The method of generating paths
for each departure node is introduced in an example below.

In Fig. 3, suppose the paths from the departure node of train
1 at station A to station D need to be generated. Then, the
departure node is chosen as the source node, and the virtual
node at station D is chosen as the sink node. Additionally,
to exclude waiting times at the origin, we cut the station
arc starting from the source node. After that, a shortest path
algorithm is performed, and the shortest path that takes the
minimal time is generated.

Fig. 3. The shortest path from the departure node of Train 1 at station A to
station D (bold red)

Next, we find the nodes at station D, that are after the
destination arrival node of the shortest path but are within
a certain time horizon. Here, the time horizon is determined
by the inverse of the frequency of services that are relevant to
the source node, since passengers would not skip a service for
another one that is actually the same type but operates later.
Besides, to avoid meaningless waiting times at destinations,
the arcs between these nodes are eliminated (as Fig. 4 shows).
Then, a k-shortest path algorithm is performed to find the paths
that have reasonable total travel times from the source node
to the sink node. Here, the value of k in the k-shortest path
algorithm is set as the number of destination arrival nodes
that are within the chosen time horizon. In fact, the value of
k has impact on the quality of the path set, while quality is
interpreted as whether the paths that passengers would plan to
choose are all contained in the path set.

Fig. 4. The second shortest path from the departure node of Train 1 at station
A to station D (bold pink)

The way we set the value of k in this paper is actually
based on the assumption that between the departure node and
each arrival node, only one path is available. It could happen
that two paths have the same total travel time, but the needed
transfer counts are different. Even so, the least transfer path
can be found under the given k since such paths mostly cost
less total travel times compared to the ones that need transfers.

B. Passenger re-plan actions pre-set (Part II)

In part II, according to the given disruption timetable,
the event list is updated. Next, a comparison between each
passenger’s planned path and the updated event list is made to
check whether the planned path would be delayed/cancelled
or not. If yes, an event is assigned to the passenger, which
triggers that the passenger re-plans his travel.



In order to assign affected passengers with proper trigger
events, the following information is needed: reasons of re-
planning paths (cancellation or delay), the left transfer counts
of planned paths, planned boarding times at origin stations and
transfer stations (if any), start time of disruption, and forced
off stations of on-board passengers whose planned paths are
cancelled. Based on this information, decision trees regarding
where to take re-plan actions for passengers who encounter
delay and cancellation are described in Fig. 5 and Fig. 6,
respectively. Here, a forced off station is the place where a
train service is short-turned or completely cancelled. Note that,
as the left transfer counts may be more than one, thus once
the boarding time of first left transfer is before disruption start,
we cannot directly make the ”no re-plan” decision, but need
to check the boarding time of next left transfer.

Fig. 5. Re-plan decision tree for passengers with delayed planned paths

Fig. 6. Re-plan decision tree for passengers with cancelled planned paths

For the passengers who re-plan at origin stations, the re-
plan actions are triggered when the passengers’ arrivals are
simulated. For the passengers who re-plan at transfer/forced
off stations, the trigger events are the planned arrival events
that correspond to the transfer or forced off stations.

C. Passenger realized path confirmation (Part III)
Unlike in part II where we can only see the passengers

who are affected due to delayed or cancelled trains, in part III

we can check which passengers are affected by full trains.
In this part, passengers’ arrivals and the loading/unloading
procedures are implemented by event-based simulation. The
events are represented by the arrival and departure nodes that
are generated during the network formulation. All events are
contained in the event list E. Before simulation, E is sorted
in ascending order regarding the time instant of each event:
Time(e). Besides, the previous system time clockp is set to
0. Below, the simulation steps are described.

Step 1: Choose the first element of E as the current event
ec and set the current system time clockc to Time(ec).

Step 2: Simulate passenger arrivals. Find all passengers P1

of each arrival at origin station so between clockp and clockc.
For each p ∈ P1, increase the number of passengers in so (i.e.
V (so)) with one unit. Next, if ec is the re-planning trigger
event of p: Re(p) of p, then implement the re-plan action of
p. After iterating over P1, skip to step 4, if ec is an arrival.
Otherwise, continue.

Step 3: Simulate loading procedures. Find all passengers P2

who wish to board the departing train td at departure station
sd. For each p ∈ P2, if the available capacity C(td) in td
is bigger than 0, p boards td. Then, C(td) and V (sd) both
decrease with one unit. However, if C(td) = 0, the re-plan
action of p is implemented. After iterating over P2, skip to
step 5.

Step 4: Simulate unloading procedures. Find all passengers
P3 who alight from the arrival train ta. For each p ∈ P3,
C(ta) increases with one unit. Next, if the arrival station sa is
the expected destination, p is removed from the simulation.
Otherwise, V (sa) increases with one unit, and the re-plan
action could be implemented for p, if ec is Re(p).

Step 5: Set clockp to clockc. Then, remove ec from E. If
E is empty, the simulation ends. Otherwise, return to step 1.

The re-plan action mentioned above is implemented as
follows: first, search the shortest path that results in minimal
delay with the delay lower than the maximal acceptable delay:
u. If such a shortest path exists, the passenger chooses it for the
following travel. Otherwise, the passenger leaves the railway,
thus being removed from the simulation. Consequently, the
number of passengers staying in the corresponding station
decreases with one unit.

IV. CASE STUDY

The case study is performed on part of the Dutch railway
network where six lines operate on normal days (see Fig. 7).
However, when a complete track blockage occurs between
Hm and Dn, lines 1900 and 9600 cannot run as usual. In
practice, the adopted contingency plan for this disruption
case is as follows: for line 1900, the operation between
Eindhoven (Ehv) and Hrt is cancelled, thus trains are short-
turned at Hm, while for line 9600, the operation between
Hm and Dn is cancelled, thus trains are short-turned at Hrt.
Apparently, such a contingency plan only concerns which
changes should be made on services to accommodate the
reduced infrastructure capacity. Whereas during disruptions
the vehicle capacity could be insufficient, thus resulting in



passengers’ unsuccessful boardings and possibly more delay
at the destination. To avoid this issue, traffic controllers need to
decide whether it is necessary to add more units to particular
trains. In the following case, we use the proposed dynamic
passenger assignment model to help traffic controllers make
such decisions under different scenarios.

Fig. 7. The concerned line network

Here, the scenario is differentiated by two factors, the
available capacity of each train when reaching the concerned
network and the passenger maximal acceptable delay on the
destination. The first factor represents the supply that can be
given. The second factor implicitly represents the demand,
since the lower the maximal acceptable delay is, the less
the passengers would continue within the railway. In fact,
the second factor is influenced by the alternatives outside the
railway. If the outside alternatives are much faster compared
to the alternatives provided by the railway, it is possible that
passengers would drop the railway and turn to the outside
alternatives to continue their travels. In such a case, adding
more train units could be unnecessary, since lots of passengers
might be lost.

In the following, scenarios are constructed based on differ-
ent value settings of the two factors to explore the need for
adding train units.

A. Scenario construction

The value of maximal acceptable delay u is set from 0 to
95 (in minutes) with intervals of 5 min. The reason to set u
up to 95 will be explained later. Under each u, two scenarios
are constructed. In one scenario, the available capacity of each
train is set to be infinite, which enables passengers to board
any train they wish to board. In the other scenario, the available
capacity of each train is finite. For each train, we set its initial
available capacity as the maximal passenger demand across
all of its running processes within the concerned network
on normal days. In other words, we assume that on normal
days the available capacity of each train when reaching the
concerned network happens to ensure successful boarding
within the concerned network.

In each scenario, a disruption of a complete track blockage
between Hm and Dn is set between 11:00 to 12:00, and the

passenger demand from 10:00 to 13:00 is generated. The
reason to generate passenger demand one hour before the
disruption start and one hour after the disruption end is that
in addition to the passengers who start their travels during the
disruption period, the passengers who start their travels either
before the disruption start or after the disruption end could
also be affected.

B. Indicators chosen

For each scenario, whether more train units would be added
is decided according to the influence of the scenario on the
affected passengers. Here, the affected passengers contain the
passengers who leave the railways (left passengers) and the
passengers who stay in the railways to complete their travels
but are delayed at the destinations (delayed passengers). The
indicators of the amount of left/delayed/affected passengers
and the total delay of left/delayed/affected passengers are
chosen to reflect the influence of each scenario.

After implementing each scenario with the proposed dynam-
ic passenger assignment model, the values of the indicators
are calculated by aggregating individual travel information.
In particular, the total delay of left passengers is computed
as the amount of left passengers multiplied by the maximal
acceptable delay corresponded to the scenario, since travels
outside the railways are not tracked in the assignment model.
Here, the assumption is made that if no paths within the
railways are acceptable, we consider the worst case of the
resulting delay of the outside path. The calculated indicators
of each scenario are shown in Fig. 8 and Fig. 9.

C. Result analysis

From Fig. 8 we can see that with increasing maximal accept-
able delay (i.e. u), the amount of left passengers decreases un-
der all scenarios with either infinite or finite vehicle capacity.
When u reaches 95 min, no passengers leave anymore, which
is exactly the reason of setting the value of u up to 95. Besides,
the decrease of the amount of left passengers is relatively sharp
when u is at 20, 35, or 65 min. The reason could be relevant
to the set disruption length (60 min) and the cycle time of
services (30 min). In addition, the gap between the yellow
line and the black line reveals the influence of full trains on
the amount of left passengers, which is however not distinct.
Nevertheless, when looking at the gap between the cyan line
and the magenta line, we find that the influence of full trains on
the amount of delayed passengers is rather distinct, particularly
at higher u. By looking at the gap between the red line and the
blue line, we find that the amount of affected passengers due
to full trains is rare for u under 15, but grows with increasing
u between 20 and 55. When u reaches 60, it sharply increases
and continues such rapid growing till u = 65. Accordingly, we
can conclude that in our case, adding more train units could
help to reduce the amount of passengers affected by full trains
if the maximal acceptable delay is 20 min or higher.



Fig. 8. The amount of left/delayed/affected passengers in each scenario

Fig. 9. The total delay of left/delayed/affected passengers in each scenario

Instead of looking at how many passengers are affected
only, it is also necessary to check how serious passengers are
affected. In Fig. 9, by looking at the gap between the cyan line
and the magenta line, we find that due to full trains, the total
delay of delayed passengers grows with increasing u from
u = 20. Similar trend can be found by looking at the gap
between the red line and the blue line, which represents the
total delay of affected passengers due to full trains. Therefore,
we can conclude that in our case, if the maximal acceptable
delay is 20 minutes or higher, adding more train units could
help to reduce the total delay of passengers affected by full
trains.

Overall, we conclude that under a given contingency plan,
the need to add train units or even how much should be
added depends on the maximal acceptable delay that is actually
determined by the outside alternatives.

V. CONCLUSIONS

In this paper, a dynamic passenger assignment model dur-
ing disruptions in railway systems is proposed. In the case

study, we showed one possible application of the model of
determining the need for adding train units. However, more
applications could be performed based on the proposed model.
For example, the resulting passenger delay of cancelling a par-
ticular train can be calculated, which can be used as the train
cancellation weight in the objective function of an optimization
model for timetable rescheduling. Besides, considering the
fluctuation of day-to-day passenger demand and the frequency
of disruptions, reasonable vehicle capacity allocations for
improving the service resilience during disruptions can be
proposed.
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