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ABSTRACT

Lagrangian forward and backward models are introduced into a coarse-grid ocean global circulationmodel

to trace the ventilation routes of the deep North Pacific Ocean. The random walk aspect in the Lagrangian

model is dictated by a rotated isopycnal diffusivity tensor in the circulationmodel, and the effect of diffusion is

explicitly resolved by means of stochastic terms in the Lagrangian model. The analogy between the proba-

bility distribution of a Lagrangian model with Green’s function of an Eulerian tracer transport equation is

established. The estimated first- and last-passage time density of the deep North Pacific using both the Eu-

lerian and the Lagrangian models ensured that the Lagrangian pathways and their ensemble statistics are

consistent with the Eulerian tracer transport and its adjoint model. Moreover, the sample pathways of the

ventilated mass fractions of the deep North Pacific particles to and from the ocean surface are studied.

1. Introduction

To understand how climate change signals are com-

municated to the global ocean it is essential to determine

the pathways and rates of water mass ventilation. A

natural approach is to trace ocean water masses as they

are transported to and from the sea surface along

advective–diffusive pathways. A considerable observa-

tional effort is directed at tracing watermassmovements

using floats (Furey et al. 2001) and transient chemical

tracers (Fine 2011). However, tracing the movement of

water masses directly poses a considerable observa-

tional challenge because of the vastness of the ocean and

the long deep-water renewal time scales that can extend

to thousands of years.

An alternative approach is to use a numerical ocean

model to simulate the global circulation and then to

trace the movement of water masses in the simulated

ocean using either Lagrangian or Eulerian tracers.

Studies that have adopted the Eulerian approach have

generally ignored pathway information to focus instead

on summary diagnostics such as the fraction of the water

originating from various surface patches or the mean

transit time from the surface (i.e., the age), both of which

are readily obtained by computing appropriate mo-

ments of the Green’s function for the model’s

advective–diffusive tracer transport equation (e.g.,

Haine and Hall 2002; Primeau 2005; Peacock and

Maltrud 2006; Primeau and Holzer 2006; DeVries and

Primeau 2011). Notable exceptions are the path-density
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diagnostic studies of Holzer and Primeau (2006, 2008) in

which some averaged pathway information was

extracted from Eulerian tracers. The path-density di-

agnostic notwithstanding, pathway information has

generally been obtained from models that have

adopted a Lagrangian framework to compute particle

trajectories (Fujio and Imasato 1991; Fujio et al. 1992;

Böning and Cox 1988; Doos 1995). In these Lagrangian

studies, particle trajectories were computed by in-

terpolating the model’s explicitly resolved velocity

along particle pathways. The diffusive transport due to

subgrid-scale processes was neglected. However, in

coarse-grained ocean circulation models the redistribu-

tion of tracers by parameterized eddy diffusive fluxes is

an important part of the transport and its neglect leads

to substantial errors (Hall et al. 2004).

More recent studies have used high-resolution, eddy-

permitting models to compute Lagrangian pathways

(Getzlaff et al. 2006; Bower et al. 2009, 2011; Gary et al.

2011; Lozier et al. 2012). By explicitly resolving meso-

scale eddies, the computed advective Lagrangian tra-

jectories include the effect of mesoscale eddies, but they

still neglect the effect of subgrid-scale processes that

lead to diapycnal diffusion. While diapycnal diffusivities

are generally much smaller than isopycnal diffusivities

their contribution to transport can become significant on

long time scales and cannot be neglected for pathways

that connect the deep ocean to the surface. Further-

more, the extreme computational costs associated with

running eddy-resolving models have limited the appli-

cation of Lagrangian trajectory diagnostics to relatively

short time scales and regional domains. To trace out

global conveyor pathways, multicentury to millennial

time-scale calculations are needed, and only coarse-

grainedmodels with parameterized eddy diffusive fluxes

have acceptable computational costs. It is therefore

critical to take into account the effect of diffusion in

addition to advection in the application of Lagrangian

diagnostics to global models.

In the present study, we combine Eulerian and

Lagrangian diagnostics in a complementary way to study

the ventilation of the deep North Pacific Ocean (DNP)

where the oldest water masses reside. To ensure that our

results are relevant to the real ocean, we use a circula-

tion model that was constrained by transient tracer ob-

servations of chlorofluorocarbon (CFC-11) in addition

to climatological temperature, salinity, and natural

(prebomb) radiocarbon (DeVries and Primeau 2011;

DeVries 2014). The model, which is described more

fully in section 2c, parameterizes eddy mixing using a

diffusive parameterization with a rotated isopycnal dif-

fusivity tensor (Redi 1982; Solomon 1971). From the

point of view of the application of Lagrangian methods

to a global ocean model, a novel aspect of our study

is that we include a random walk component to our

Lagrangian particles that is designed to ensure consis-

tency with the nonisotropic diffusivity tensor used in the

Eulerian tracer transport equation.

This article is organized as follows: In section 2a the

Kolmogorov forward and backward equations for

modeling tracer transport are first discussed, and the

Lagrangian random walk equations consistent with the

advection–diffusion equation and its adjoint are mod-

eled. The probability distributions for the time to

transport the Lagrangian particles to and from the sur-

face are discussed in section 2b. The global ocean cir-

culation model used in this study is briefly described in

section 2c, and the numerical setting used for the di-

agnostic presented in this work is demonstrated in sec-

tion 2d. The diagnostics for the time scales of the deep

North Pacific Ocean to and from the sea surface is pre-

sented for both the Eulerian and Lagrangian calcula-

tions in section 3a. In section 3b, the locations where the

deep North Pacific particles make their last and first

contact with the sea surface are discussed and the ven-

tilation of the ocean’s oldest water mass using an Eu-

lerian tracer diagnostic to partition the water in the deep

North Pacific Ocean according to the surface region

where it was last exposed to the atmosphere as well as

the region where it will first be reexposed to the atmo-

sphere is presented. Furthermore, the typical ventilation

pathways computed using the Lagrangian counterpart

of Kolmogorov forward and backward equations are

also constructed in section 3c. Concluding remarks are

presented in section 4.

2. Theory and methods

In this section, we present the methods we use for

computing Lagrangian particle trajectories.

a. Kolmogorov equations for modeling transport

In probability theory, the time evolution of the

probability distribution of a diffusion process is de-

scribed by the forward and backward Kolmogorov

equations. As will be explained later, these equations

are equivalent to the Eulerian formulation of the for-

ward and adjoint tracer transport equations. For a de-

tailed description of the Kolmogorov equations, the

reader is referred to, among others, Jazwinski (1970) or

Gardiner (1985).

1) KOLMOGOROV FORWARD EQUATION

The Kolmogorov forward equation describes the

evolution of a probability distribution forward in time

from some starting time s to a future time twith t. s. For
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our application, we consider the probability distribution

for the position of a Lagrangian particle.

If we denote byG(t, x; s, y) the probability distribution

of finding a particle at time t at location x, given that it

was at location y at time s, with s , t, then this proba-

bility distribution can be expressed in terms of a solution

of the Kolmogorov forward equation:

›G(t, x; s, y)

›t
1LG(t, x; s, y)5 0,

G(t5 s, x; s, y)5 d(x2 y) . (1)

The differential operator L consists of advective terms

(given by vector a5 ai) as well as diffusion-related terms

(given by the matrix b 5 bij) and is defined as follows:

L (�)[ ›

›x
i

a
i
(t, x)(�)2 ›

›x
i
›x

j

b
ij
(t, x)(�) . (2)

The diffusivity tensor bij must be positive definite and

can be expressed in terms of a displacement matrix s:

b
ij
5

1

2
(ssT)

ij
. (3)

Notice that the matrix s is not uniquely determined by

the symmetric matrix b. However, any choice of s that

satisfies Eq. (3) is correct and will result in statistically

identical diffusion processes.

The Kolmogorov forward equation (1) can be solved

by using a Lagrangian random walk model. In this ap-

proach, Eq. (1) is replaced by an equivalent Îto sto-

chastic differential equation for the position of an

individual particle:

dX(t)5 a(X, t)dt1s(X, t) � dW(t), X(t5 s)5 y , (4)

where the vector dW is called the Wiener increment.

The components dWi of dW are all independent, nor-

mally distributed, random variables with zero mean and

variance proportional to dt. The vectorX represents the

position of the particles, and the increments dX5X(t1
dt) 2 X(t) describe the displacements of Lagrangian

particles according to the effect of a deterministic dis-

placement called the drift a(X, t)dt and a stochastic

displacement s(X, t) � dW(t) that is due to the param-

eterized eddy diffusion. The solutions X(t) of the sto-

chastic processes given by Eq. (4) provide random

samples from the probability distribution G(t, x; s, y).

The Îto calculus is a mathematical approach for

realizing a unique solution to a stochastic differential

equation. Stratonovich is an alternative method that can

also be used to derive stochastic particle models. How-

ever, after discretization of the stochastic differential

equation with an appropriate numerical scheme, math-

ematical subtleties introduced by the stochastic calculus

are irrelevant. For more details about the numerical

treatment of stochastic differential equations, the reader

is referred to Kloeden and Platen (1992).

2) KOLMOGOROV BACKWARD EQUATION

The Kolmogorov backward equation is the formal

adjoint of the Kolmogorov forward equation:

›G(t, x; s, y)

›s
1L yG(t, x; s, y)5 0,

G(t, x; s5 t, y)5 d(x2 y) , (5)

where the differential operator L y is the adjoint of L ,

that is,

L y(�)[ a
i
(s, y)

›

›y
i

(�)1 b
ij
(s, y)

›

›y
i
›y

j

(�) . (6)

The Kolmogorov backward equation governs the evo-

lution ofG(t, x; s, y) with respect to s for s, t. Note that

in the case of the Kolmogorov forward equation, the

state (s, y) is held fixed so that the solution of the forward

equation describes a probability distribution for the lo-

cation x of a particle at successive times for t . s. In

contrast, for the case of the Kolmogorov backward

equation, it is the state (t, x) that is held fixed, while

G(t, x; s, y) as function of the initial position y

evolves backward in time for s , t.

In general, the solution to the Kolmogorov backward

equation G(t, x; s, y) does not necessarily describe a

probability distribution with respect to y. However, we

will show later that the Kolmogorov backward equation

does describe the evolution of a probability distribution

backward in time and therefore can also be simulated

using particle methods.

3) CONNECTION BETWEEN THE KOLMOGOROV

FORWARD EQUATION AND ADVECTION–
DIFFUSION EQUATION

As noted before, samples from the probability dis-

tribution satisfying the Kolmogorov forward equation

can be obtained using a Lagrangian random walk

model equation [Eq. (4)]. Here, we establish the con-

nection between the Kolmogorov forward equation

[Eq. (1)] and the classical advection–diffusion equa-

tion. Our starting point will be the time evolution

equation for the concentration of a passive and inert

tracer c(x, t):

›c

›t
52

›(u
i
c)

›x
i

1
›

›x
i

 
k
ij

›c

›x
j

!
, c(x, t5 s)5 c

0
(x) , (7)
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where x is the position vector, u is the fluid velocity, and

kij are the components of the diffusion tensor K.

Equation (7) is solved subject to the boundary condition

that there is no flux of tracer through the boundary of

the domain, that is,

n � (uc2K � =c)5 0, (8)

with n being a vector normal to the boundary. For cases

where the labeled particles are allowed to leave the

domain, the boundary conditions must be modified to

either prescribe the flux or the concentration of the label

at the boundary. Equation (7) can be rewritten in the

form

›c

›t
52

›(u
i
c)

›x
i

2
›

›x
i

 
c
›k

ij

›x
j

!
1

›

›x
i

 
k
ij

›c

›x
j

1 c
›k

ij

›x
j

!
,

52
›

›x
i

" 
u
i
1

›k
ij

›x
j

!
c

#
1

›2(k
ij
c)

›x
i
›x

j

, (9)

so that we can establish the connection between a and

b in Eq. (1) and u and K in Eq. (7) by identifying

8>><
>>:
b
ij

5k
ij
,

a
i

5u
i
1

›k
ij

›x
j

.
(10)

Substitution ofEq. (10) intoEq. (9) yields theKolmogorov

forward equation [Eq. (1)], and substituting Eq. (10)

into Eq. (4) yields the Lagrangian random walk model

that is consistent with the advection–diffusion equation

[Eq. (7)]. More precisely, we can simulate Lagrangian

paths that include the effects of both advection and

diffusion using the following Îto stochastic differential

equation (SDE):

dX(t)5 [u(X, t)1= �K(X, t)]dt

1s(X, t) � dW(t), for t 2 [s,‘), (11)

X(t5 s)5 y .

Each particle represents a small fraction of the total

mass released at the initial time s. By simulating Eq. (11)

for many particles, an approximation of the tracer con-

centration can be obtained (Spivakovskaya et al. 2007a).

The above development shows that the trans-

formation between the probability distribution and the

time evolution of a tracer concentration is rather

straightforward. The analogy between the randomly

moving particles and the spreading of contaminants in a

fluid is one of the appealing features of the Lagrangian

random walk model. For more details, the reader is

referred to Visser (2008), Gräwe et al. (2012), Shah et al.
(2011, 2013), and Spivakovskaya et al. (2007a,b).

4) CONNECTION BETWEEN THE KOLMOGOROV

BACKWARD EQUATION AND THE ADJOINT

ADVECTION–DIFFUSION EQUATION

There is also a connection between the evolution of

G(t, x; s, y) described by the Kolmogorov backward

equation and the evolution of a tracer in the time-

reversed adjoint advection–diffusion equation.

To establish the connection, we note that the

Kolmogorov backward equation [Eq. (5)] can be re-

written as

›G

›s
52

 
a
i
2

›b
ij

›y
j

!
›G

›y
i

2
›2

›y
i
›y

j

(b
ij
G)1

›

›y
i

 
G

›

›y
j

b
ij

!
.

(12)

If the flow is divergence free such that

›

›y
i

 
a
i
2

›b
ij

›y
j

!
5 0, (13)

then

›

›y
i

" 
a
i
2

›b
ij

›y
j

!
G

#
5

 
a
i
2

›b
ij

›y
j

!
›G

›y
i

. (14)

Using this equality in Eq. (12) yields

›G

›s
5

›(~a
i
G)

›y
i

2
›2

›y
i
›y

j

(b
ij
f ) , (15)

where

~a
i
52a

i
1 2

›b
ij

›y
j

. (16)

Now reversing the time by substituting ~s52s and de-

fining ~f (~s, y; t, x)[G(t, x; s52~s, y), the above equa-

tion takes the form

›~f

›~s
52

›

›y
i

(~a
i
~f )1

›2

›y
i
›y

j

(b
ij
~f ) , (17)

which is of the same form as the Kolmogorov forward

equation [Eq. (1)]. Therefore, it can be solved using a

Lagrangian randomwalk model. In view of Eq. (10), the

drift coefficient ~ai for the backward problem is given by

~a
i
52u

i
1

›b
ij

›y
j

, (18)
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and by letting yi 5 2ui, this may be written as

y
i
5 ~a

i
2

›b
ij

›y
j

. (19)

As it turns out, by simply reversing the sign of the ve-

locity field (yi [ 2ui) and redefining the time variable

(~s[ t2 s), we obtain the required Lagrangian random

walk model for the backward problem

dY(~s)5 [2u(Y, t2 ~s)1= �K(Y, t2 ~s)]d~s

1s(Y, t2 ~s)(Y, t2 ~s) � dW(~s), for ~s 2 [t,‘) ,

(20)

Y(~s5 t)5 x ,

where, as before, dW represents theWiener increments.

Thus, the probability distribution corresponding to the

stochastic processY(~s) will be the solution of the adjoint

tracer transport equation

›~c

›~s
52

›(u
i
~c)

›y
i

2
›

›y
i

 
k
ij

›~c

›y
j

!
(21)

that was considered in several previous oceanographic

applications (e.g., Holzer and Hall 2000; Holzer and

Primeau 2006, 2008; Primeau 2005; Primeau and

Holzer 2006). We note that Eq. (21) satisfies the in-

compressibility condition

›u
i

›y
i

5 0 (22)

that was required to derive Eq. (15) fromEq. (12) as well

as the fact that the Kolmogorov equation applied to our

problem does indeed describe the backward time evo-

lution of a probability distribution in terms of y. For an

application of backward time Lagrangian models in

oceanography, the reader is referred to Spivakovskaya

et al. (2005).

b. Probability distributions for the time to transport
particles to and from the sea surface

For the purpose of tracing the movement of water

masses to and from the sea surface, it is customary to

replace the no flux boundary condition of Eq. (8) with a

so-called Dirichlet boundary condition in which the

tracer concentration is specified to be zero at the sea

surface. At the solid boundaries the no flux boundary

condition is retained. In the finite-difference Eulerian

tracer transport model, we implement the Dirichlet

boundary condition by prescribing the tracer concen-

tration to be zero in the top layer of the model. In the

SDE literature (Gardiner 1985), such a boundary

condition is known as an absorbing boundary condition.

To implement the absorbing boundary condition in the

Lagrangian model in such a way that it is consistent with

the Eulerian model, we remove particles the first time

they cross the boundary separating the bottom of the

uppermost layer of the model from the layer immedi-

ately below it.

By applying an absorbing boundary condition at the

sea surface, the solution to the Kolmogorov equations,

which we denote by G8(t, x; s, y) to distinguish it from

the solution with no flux boundary conditions on all

boundaries, no longer yields probability distributions for

x and y because the integral ofG8(t, x; s, y), with respect

to x or y, is no longer normalized to 1. To interpret the

solutions to the forward and backward Kolmogorov

equations as probability distributions, G8 must be nor-

malized appropriately, resulting in

P(x j t, s, y)5 G8(t, x; s, y)ð
dxG8(t, x; s, y)

(23)

for the forward problem and

P(y j t, x, s)5 G8(t, x; s, y)ð
dyG8(t, x; s, y)

(24)

for the backward problem. The probability density

function in Eq. (23) gives the probability per unit vol-

ume that a particle that was at position y at time s can be

found at position x at time twithout havingmade contact

with the surface during the time interval from s to t.

Similarly, the probability density function in Eq. (24)

gives the probability per unit volume that a particle that

is at position x at time t could be found at position y at

time swithout it having made contact with the surface in

the time interval from s to t. As time progresses more

and more, particles make contact with the surface and

get removed from the flow. The normalization integrals

in the denominator of Eqs. (23) and (24), which repre-

sent the probability that a particle has not yet been ab-

sorbed, gradually decrease to zero. Note that the vertical

bar separates the randomly distributed variables (on the

left) from the conditioning variables (on the right). This

notation, standard for probability theory, expresses a

concept that is distinct from the semicolon notation used

for the Green functions in the forward and backward

Kolmogorov equations. For the Green functions, the

semicolon separates the input arguments (on the right)

from the output arguments on the left.

An alternative probabilistic interpretation of

G8(t, x; s, y) in terms of last- and first-passage time dis-

tributions is also possible (Holzer and Hall 2000;
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Primeau 2005). The normalization condition in Eqs. (23)

and (24) can be interpreted as the probability that a

particle has not yet made contact with the surface,

that is,

P(t j s, y)5
ð
dxG8(t, x; s, y) (25)

is the probability that the particle at position y at time s

will not make contact with the surface in the time in-

terval from s to t, and, similarly,

P(s j t, x)5
ð
dyG8(t, x; s, y) (26)

is the probability that the particle at position x at time t

did not make contact with the surface in the time in-

terval from s to t. Thus, subtracting these probabilities

from unity and differentiating gives the probability

density (per unit time) for the last- or first-passage times:

P(t
lp
5 t2 s; t, x)52

›

›s
[12P(s j t, x)] (27)

for s 2 (2‘, t], and the first-passage time distribution is

given by

P(t
fp
5 t2 s; s, y)5

›

›t
[12P(t j s, y)] (28)

for t 2 [s, ‘). In the above expressions P(tlp; t, x) is the

probability density for a particle to have made its last

contact with the sea surface at time s 5 t 2 tlp, condi-

tioned on it being at position x at time t, and P(tfp; s, y) is

the probability density for a particle to make its first

contactwith the surface at time t5 s1 tlp, conditioned on

it having been at position y at time s. The last-passage

time tlp is usually referred to as the age (e.g., England

1995; Deleersnijder et al. 2001; Delhez and Deleersnijder

2002; Delhez et al. 2004), and P(tlp; t, x) is referred to as

the age distribution or as the transit-time distribution

(TTD; e.g., Holzer and Hall 2000; Primeau 2005).

In summary, we can compute the first- and last-

passage time distributions in two ways:

1) Eulerian method: We solve for G8(t, x; s, y) as a

function of (s, y) using the Kolmogorov backward

equation with the drift and diffusion given by Eq.

(19) and then as a function of (t, x) using the

Kolmogorov forward equation with the drift and

diffusion given by Eq. (10). With G8(t, x; s, y) in

hand, we compute the distributions of last- and

first-passage times using Eqs. (27) and (28).

2) Lagrangian method: We initialize an ensemble of

Lagrangian particles in the DNP, as shown in Fig. 1

and then use the stochastic differential equations

[Eqs. (20) and (11)] to simulate the particles’ back-

ward and forward trajectories. We track the particles

until they make contact with the surface, at which

point we record their surface hitting times. From the

sample of hitting times for the backward and forward

trajectories, we estimate, respectively, the last- and

first-passage time distributions.

Both methods should give the same result except for the

effect of numerical errors.

c. Circulation model

The ocean circulation model with which we compute

our tracer diagnostics is based on the formulation de-

scribed in DeVries and Primeau (2011) and in DeVries

(2014). The model has a 28 horizontal resolution with

24 layers in the vertical, ranging in thickness from

FIG. 1. Initial distribution of tracers in the deep North Pacific.

Black squares represent the center of the model’s grid boxes; the

(a) horizontal section and (b) vertical section of the deep North

Pacific Ocean (i.e., below 1431m). Lagrangian particles are ini-

tialized uniformly at the center of each grid box, while the Eulerian

tracer is initialized uniformly throughout each grid box. The hori-

zontal solid black lines in (b) shows the edges of the vertical layers.

Note that the thickness of the vertical layers varies with depth.
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approximately 30m near the surface to 500m at depth.

The dynamical model uses a steady-state linear mo-

mentum balance that is optimized to produce a cir-

culation field that reproduces transient CFC-11

observations and climatological observations of salinity,

temperature, and natural (prebomb) radiocarbon. The

assimilation of these tracers eliminates most of the

conspicuous biases that plague free running ocean gen-

eral circulation models of comparable resolution. More

importantly for our application, the assimilation of

CFCs and natural radiocarbon ensures that the transport

time scales between the DNP and the surface in our

circulationmodel are in agreement with those of the real

ocean. Because our dynamical model is used to diagnose

the circulation of the ocean by combining observations

with the dominant large-scale dynamical balances, we

can parameterize the effect of eddies in ways that are not

possible or desirable in prognostic OGCMs. An impor-

tant feature of this model is that the momentum balance

includes a forcing term that is used to take into account

the various sources of errors in the steady-state linear

momentum balance. These include errors due to the

missing nonlinear terms, errors in the temperature and

salinity observations used to compute the baroclinic

pressure terms, errors in the wind forcing, errors due to

the missing seasonal cycle, and errors due to missing

subgrid-scale physics, including mesoscale eddies.

Coarse-resolution prognostic models often include an

explicit parameterization for the advective effect of

eddies. To the extent that eddy advection leaves an

imprint on the tracer fields used for the assimilation, its

effect is included in our diagnosed circulation. For our

inverse model, separating the velocity field into a large-

scale and a subgrid-scale component is an ill-posed

problem and is not necessary for the computation of

Lagrangian trajectories. For the application of the

methods we present here to prognostic ocean circulation

models, what is needed is the total advective velocity

including both the explicitly resolved large-scale ad-

vection and the advection due to subgrid-scale eddies.

The tracer equation parameterizes eddy diffusive

fluxes using an isopycnal diffusivity (KI 5 103m2 s21)

with the slope of the isopycnal surfaces computed using

climatological observations of temperature and salinity

from the 2009 World Ocean Atlas (Locarnini et al. 2010;

Antonov et al. 2010). The vertical diffusivity includes a

uniformbackground vertical diffusivity (KV5 1025m2s21)

that is enhanced in the surface mixed layer as diagnosed

from observations of winter mixed layer depths (de Boyer

Montégut et al. 2004) according to the K-profile parame-

terization of Large et al. (1994).

In comparison to the version of the model used in

DeVries and Primeau (2011), substantial improvements

have been made to the model. These include (i) a dou-

bling of the horizontal resolution, (ii) a vertical diffu-

sivity that varies in the vertical to account for spatially

varying mixed layer depths, (iii) an along-isopycnal

diffusivity rather than a horizontal diffusivity, and (iv)

the inclusion of CFC-11 in the assimilation.

d. Numerical setting for the Lagrangian particles and
Eulerian tracers

For the Eulerian diagnostics, we distribute a unit

amount of tracer uniformly in a layer bounded by depths

between 1431 and 4534m in the Pacific basin north of

the equator, a region we refer to as the deep North Pa-

cific Ocean. The tracer is then propagated backward in

time using the adjoint advection–diffusion equation as

well as forward in time using the advection–diffusion

equation. The time integration scheme used for this

computation is a second-order, trapezoidal, Crank–

Nicolson method. Both equations are solved subject

to a Dirichlet boundary condition in which the surface

concentration is prescribed to be zero and no flux

boundary conditions at the solid boundaries.

For the Lagrangian diagnostics, we initialize 15 par-

ticles at the center of each model grid box within the

DNP. Thus, the shallowest particles are initialized at a

depth of ;1595m, and the deepest are initialized at a

depth of ;4825m. Figure 1a shows a plan view of the

initial particle locations, and Fig. 1b shows a vertical

section view. We simulate a sample of backward and

forward Lagrangian trajectories for these particles by

applying the Milstein scheme (Shah et al. 2011, 2013) to

Eqs. (20) and (11), respectively. As shown in Shah et al.

(2011, 2013), it is essential to utilize the Milstein scheme

to accurately simulate Lagrangian trajectories in the

presence of nonisotropic diffusion. For our ocean cir-

culation model this is particularly important in regions

with steep isopycnal surfaces. Furthermore, we used a

variable time step size strategy suggested in Shah et al.

(2013) to prevent particles from crossing the solid basin

boundaries.

Even though we have multiple particles starting at the

same location, the stochastic effects that represent the

circulation model’s eddy diffusivity produces distinctive

Lagrangian pathways for each particle. For the de-

terministic effects of the circulation model’s resolved

currents, we have to interpolate the velocity available

at a set of discrete points centered on the faces of the

model’s grid boxes onto the locations of the Lagrangian

particles. For this, we assume that within a model grid

box the x, y, and z components of the velocity vary only

in the x, y, and z directions, respectively, and then lin-

early interpolate each velocity component between grid

points. This approach guarantees that the nondivergent
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velocity of the ocean circulation model is preserved

(Doos 1995). In general, the statistics for an ensemble

of trajectories are less sensitive to the interpolation

method, provided the integration method is suffi-

ciently accurate. The linear interpolation method has

been shown to produce reliable results (Böning and

Cox 1988).

3. Results

The waters of the deep North Pacific Ocean are the

oldest in theWorld Ocean (DeVries and Primeau 2011).

Given enough time, even relatively weak diapycnal

diffusivities become important. We therefore include

eddy diffusive effects in the Lagrangian particle trajec-

tories and Eulerian tracer diagnostics we compute. As

discussed in section 2, the numerical scheme employed

for the computation of the Lagrangian trajectories en-

sures consistency with the Eulerian tracer diagnostics.

a. Time scales for transport from and to the sea
surface

To set a context for the presentation of the Lagrangian

ventilation pathways, we begin by reviewing the distri-

bution of times with which particles are transported from

the surface to the DNP and back.

The last-passage time distribution is shown in Fig. 2a.

The Eulerian and Lagrangian methods for computing

the distribution agree reasonably well, considering the

numerical errors and the sampling variability associated

with the finite sample size used for the Lagrangian

method.

To first order we see that the most probable last-

passage time from the surface for water particles in the

DNP (i.e., the most probable age) is ;600 yr, but the

distribution is strongly skewed to the right. The mean of

the distribution is ;1172 yr. An eigenanalysis of the

adjoint transport operator reveals that the tail decays

exponentially with a time scale of 783 yr as tlp / ‘. The
exponentially decaying tail of the last-passage distribu-

tion is in clear opposition to the ‘‘great ocean conveyor’’

metaphor (Broecker 1991), which at face value

predicts a sharp cutoff for the maximum age of water

parcels. The exponential decay of the age distribution

for large age values has been noted previously in

Mouchet et al. (2012) and Primeau and Holzer (2006).

The exponential tail of the age distribution is a mani-

festation of eddy mixing, which, by imparting a random

walk component to particle trajectories, gradually

erases a particle’s memory of its past trajectory. As

pointed out by Primeau and Holzer (2006), for particles

that reside in the ocean a very long time, this loss of

memory causes the ocean to look progressively more

like a well-mixed reservoir, for which the age distribu-

tion is an exponentially decaying function (Bolin and

Rodhe 1973). In section 3c, we illustrate with explicit

examples of particle trajectories with long surface-to-

DNP transit times how large-scale advection coupled to

eddy-driven random walk behavior produces this loss

of memory.

The first-passage time distribution is shown in Fig. 2b.

Unlike the case of the last-passage time distribution,

here we see a substantial discrepancy between the

Lagrangian and Eulerian results. The most probable ar-

rival time as estimated from the Lagrangian calculation is

;250 yr, whereas the Eulerian calculation suggests that

the most probable arrival time is closer to ;300yr. But

more importantly, the Lagrangian calculation suggests

FIG. 2. (a) Distribution of last-passage times (also known

as the age distribution or the transit-time distribution) and

(b) distribution of first-passage times for the deep North Pacific

Ocean region as computed using theEulerian tracermethod (solid)

and using the Lagrangian particle model (dashed). Distributions in

blue are computed for DNP, while distributions in magenta are

recomputed for the tracer initialized above ;4000m in DNP (i.e.,

by excluding the deepest DNP layer). The vertical green lines

separate the time intervals used in the ventilation diagnostics of

sections 3b and 3c.
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that a larger fraction of the particles are transported along

fast trajectories than implied by the Eulerian calculation.

This difference is too large to be attributed to the distinct

and unavoidable discretization errors tied to each

method. Further investigation reveals that the difference

can be attributed to the fact that the initial positions of the

Lagrangian particles are not distributed uniformly in the

DNP. Because the particles are initialized in the middle

of the model layers and the thickness of model layers

increase with depth, the number of particles initialized

per unit volume decreases with depth. This, together with

the fact that the mean first-passage time in the North

Pacific increases monotonically with depth (DeVries and

Primeau 2011), explains the bias toward shorter first-

passage times in the Lagrangian calculation. For the last

passage we did not obtain a biased result because the

depth of the maximum mean age is located at a depth

with approximately the same number of particles initial-

ized above and below the maximum. In support of this

explanation, we recomputed the first-passage time dis-

tribution using only particles initialized above 4000m

instead of 4534m, that is, by excluding the deepest and

thickest DNP layer (Fig. 1b) found that the bias was

greatly reduced (Fig. 2). To avoid such biases, future

applications of the Lagrangian method should initialize

particles uniformly within the starting domain of interest,

perhaps by randomly distributing the particles inside the

starting volume.

Ignoring the remainingminor differences between the

Lagrangian and Eulerian calculations, we see that the

first-passage time distribution is skewed to the right

with a mean of ;951 yr and a mode at only 300 yr. For

tfp / ‘, the first-passage time distribution enters an

exponentially decaying regime with an e-folding decay

time scale of 783 yr. This e-folding time scale is identical

to that of the last-passage time distribution. However,

the exponentially decaying regime of the first-passage

time distribution accounts for ;11% fewer particles

than it does for the last-passage time distribution. As we

will see in the next section, this difference together with

the shift of the mode and mean to shorter times relative

to the last-passage time distribution can be explained by

the fact that particles can be flushed out of the DNP

along relatively short pathways to the nearby upwelling

regions of the equatorial Pacific Ocean.

b. Locations where particles make their last and first
contact with the surface ocean

To explore the relative importance of different sur-

face regions for the ventilation of the deep North Pacific

Ocean, we recorded the surface hitting locations of

the backward and forward particle trajectories. The

surface hitting locations for the backward trajectories

correspond to regions that contribute to the formation

of the water masses residing in the DNP, whereas the

surface hitting locations for the forward trajectories

correspond to regions where water from the DNP is first

exposed to the atmosphere. These surface hitting loca-

tions are shown in Fig. 3.

The main regions where DNP waters enter the in-

terior as they begin their journey to theNorth Pacific are

in the Southern Ocean and in the North Atlantic Ocean.

The contribution from the surface of the North Pacific

Ocean is relatively minor despite its proximity to the

DNP. This is in accord with the fact that there is no deep

water formed in the North Pacific Ocean.

For the reexposure of DNP waters to the atmosphere,

the main regions are in the tropical Indian, Pacific, and

eastern Atlantic basins as well as in the SouthernOcean.

Because of wind-driven Ekman upwelling along the

coast of the Americas, the region with a high density of

first contacts in the eastern tropical Pacific extends to the

FIG. 3. Surface hitting locations for deep North Pacific particles

(a) showing where particles last hit the surface before being

transported to the DNP (i.e., surface locations where tracers enter

the deep Pacific ocean) and (b) showingwhere particles in theDNP

will first hit the surface (i.e., locations where deep Pacific tracers

are first exposed to the atmosphere). Of initial populations of

146 340 particles, only particles with last- or first-passage times less

than 3000 yr are shown.
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north and south into the subtropics. A significant num-

ber of the particles from our sample also make their first

contact with the surface in the western part of the Pacific

Subpolar Gyre where Ekman divergence and deep

mixed layers brings particles to the surface. In contrast,

none of the particles in our sample hit the surface in the

subtropical gyres where Ekman convergence drives

downwelling currents.

In comparing the maps of the backward and forward

hitting locations, the Southern Ocean stands out as a

region that is important for both connecting pathways

from the surface to the DNP and from the DNP back to

the surface. However, the forward hitting locations are

confined farther south in the region of Antarctic di-

vergence, whereas the backward hitting locations extend

farther north into the Antarctic and subtropical con-

vergence zones.

Using the Eulerian model, we computed the spatial

probability distribution for the backward and forward

hitting location partitioned according to fast (tlp, tfp ,
500 yr), intermediate (500, tlp, tfp , 1500 yr), and slow

(tlp, tfp . 1500 yr) pathways. The breakdown into fast,

intermediate, and slow pathways for the backward tra-

jectories accounts for approximately 21%, 54%, and

25% of the water mass, and for the forward trajectories

it accounts for approximately 34%, 47%, and 20%of the

water mass. The results for the backward trajectories are

shown in the left panels of Fig. 4, and the results for the

forward trajectories are shown in the right panels.

The probability density of last contact with the surface

is relatively more localized than the corresponding

probability for first contact. This is most evident by

comparing the latitudinal probability densities for the last

and first contactwith the surface shown in Fig. 4. The high

probability density centered at the equator dominates the

first-contact probability density but is absent in the dis-

tribution for the location of last contact with the surface.

Only approximately 4% of the DNP water is venti-

lated from the surface North Pacific with most of this

coming from fast and intermediate pathways. Approxi-

mately 67% of the DNP water is ventilated from the

Southern Ocean, with a 15.6%, 35.4%, and 16.3%

breakdown into fast, intermediate, and slow pathways.

The remaining water, approximately 27% of the DNP

volume, is ventilated from the high-latitude North At-

lantic with a 2.9%, 15.5%, and 8.2% breakdown into

fast, intermediate, and slow pathways. Not surprisingly,

considering the greater distance separating the North

Atlantic from the North Pacific, the breakdown for the

North Atlantic skews toward more intermediate and

slow pathways compared to the Southern Ocean.

Approximately 42% of the DNP water is first reex-

posed to the atmosphere in the low-latitude ocean

between 308S and 308N, and most of these pathways

(;80%)make their first contact in the Pacific sector. For

the low-latitude region there is a 15.9%, 18.7%, and

7.5% breakdown into fast, intermediate, and slow

pathways. Approximately 30% of the DNP water is first

reexposed in the Southern Ocean, with a 7.4%, 15.7%,

and 7.3% breakdown into fast, intermediate, and slow

pathways. Most of the remaining DNP water (27%)

makes its first contact with the surface north of 308N in

the Pacific Ocean, with a 10.2%, 12.7%, and 4.7%

breakdown into fast, intermediate, and slow pathways.

As expected, because of the shorter distances, we find a

relatively larger proportion of fast and intermediate

pathways for the north and low-latitude Pacific Ocean

compared to the Southern Ocean. The relatively larger

role played by the Southern Ocean for the slow paths is

also evident in the zonal probability profiles for the first

contact in Fig. 4. For first-passage times greater than

1500 yr, the Southern Ocean mode has the highest

density, whereas for first-passage times less than 500 yr,

it is the smallest of the three peaks.

c. Ventilation pathways of the deep North Pacific
Ocean

In this section, we present a sample of Lagrangian

pathways of water particles as they are transported by

eddies and the mean circulation from the surface to the

deepNorth Pacific and from the deepNorth Pacific back

to the surface. We partition these pathways according to

their surface hitting location as well as into groups of

fast, intermediate, and slow pathways as we did in

section 3b.

1) SURFACE TO DEEP NORTH PACIFIC PATHWAYS

(i) North Atlantic surface to DNP pathways

Three sample pathways connecting the surface of the

North Atlantic to the DNP are shown in Fig. 5. The first

particle, whose path is shown in Fig. 5a, follows a path-

way very similar to that suggested by the abyssal circu-

lation sketched in Stommel (1958). It starts to thewest of

Iceland and drifts westward into the Labrador Sea

where it convects down to a depth of ;1400m. It then

does a loop in the subpolar gyre of the North Atlantic

where it is upwelled back to depths of ;200m before

being subducted down to depths of more than ;800m.

The particle then drifts southward, first in the center of

the North Atlantic and then westward where it is en-

trained into the deep western boundary current. It is

then transported quickly southward where it joins the

Antarctic Circumpolar Current (ACC). The particle is

then quickly detrained into the Pacific basin where it

follows a northward pathway into the DNP. The total
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transit time for the particle is 295 yr, of which 241 yr are

spent at depths below 1500m.

The second particle, whose path is shown in Fig. 5b,

starts in the western North Atlantic and does several

loops around the subtropical gyre at depths above 500m

before being transported into the subpolar gyre where it

does several more loops at depths greater than 500m.

Eventually the particle is transported southward in the

eastern part of the Atlantic basin before drifting west-

ward and joining the deep western boundary current

near 208N. The particle then flows southward and along

the equator before crossing into the South Atlantic in

the eastern part of the basin. By this time the particle is

already 250 years old. The particle then follows a

southward path where it joins the ACC. After three full

circuits around the ACC the particle is detrained into

the Pacific where it then follows an eddying path into the

eastern North Pacific. The total transit time is 959 yr, of

which 591 yr were spent at depths greater than 1500m.

The third particle, illustrating the pathways connect-

ing the surface North Atlantic to the DNP (Fig. 5c),

starts to the southwest of Iceland where it circulates in

the North Atlantic at relatively shallow depths before

convecting to depths greater than 1000m in the Labra-

dor Sea. The particle then follows a southward pathway

down the eastern Atlantic basin before being entrained

into the ACC where it is quickly detrained into the Pa-

cific basin. It then follows a northward pathway into the

FIG. 4. Fraction (%) of deepNorth Pacific water that made its (left) last contact and (right) first contact with the surface partitioned into

seven regions separated by the black lines. The filled contours represent probability contours 10215 and 10216. The profiles to the right of

the maps show the probability density (normalized by their maximums) for the latitude of last contact with the surface. The uppermost

panels correspond to fast paths with 0, tlp, tfp, 500 yr. Themiddle panels correspond to intermediate paths with 500, tlp, tfp, 1500 yr.

The bottom panels correspond to slow paths with tlp, tfp . 1500 yr. Displayed over Asia is the fraction (%) of the DNP water accounted

for by each time interval.
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DNP. By the time the particle has reached an age of

;450 yr it is already in the North Pacific where it

follows a random walk north of the equator for the re-

maining 1500 yr. This particle trajectory illustrates how

much of the aging of the waters in the DNP occurs in the

deep North Pacific basin itself. The total transit time for

this particle is 1938 yr, of which 1847 are spent at depth

greater than 1500m.

FIG. 5. A sample of Lagrangian pathways whose last contact with the surface was in the

North Atlantic for (a) a fast (tlp, 500 yr), (b) an intermediate (500, tlp, 1500 yr), and (c) a

slow 1500 yr , tlp particle. These trajectories are computed backward in time using a back-

ward Lagrangian model with the particle initialized in the DNP at terminal time. The blue

number indicated overAsia represents the initial depth of the particle. The instantaneous age

of the particle is given by subtracting the time indicated by the numbers (yr) beside the= from

the largest such time, that is, from the time at which the particle hits the surface. The color

represents the depth of the particle. The magenta number indicated over Asia represents the

total time spent by the particle below 1500m.
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(ii) Southern Ocean surface to DNP

Six sample pathways for particles that are transported

from the surface of the Southern Ocean to the DNP are

shown in Fig. 6. Figures 6a and 6b show fast particles,

one of which does two circuits around the ACC at

shallow to intermediate depths before being detrained

into the Pacific after;36 yr. It then follows a pathway to

the North Pacific for a total transit time of 135 yr, of

which 108 yr were spent below 1500m. The second

particle in our sample starts in the Indian Ocean sector

of the Southern Ocean where it does several loops in the

subtropical gyre of the Indian Ocean before contribut-

ing to the Agulhas leakage into the Atlantic basin where

it flows northward in the upper ocean into the high-

latitude North Atlantic. It then returns southward along

the deep western boundary current, is entrained into the

ACC, and quickly detrained into the Pacific basin where

if flows northward into theDNP. The total transit time is

241 yr, of which 166 yr were spent below 1500m.

Figures 6c and 6d show two intermediate pathways

that start in the Southern Ocean. Both pathways in our

sample do several loops around the subtropical gyre of

the Indian Ocean as well as two full circuits around the

ACC. The particle pathway in Fig. 6c does not contrib-

ute to the Agulhas leakage; instead, it gets entrained

into the ACC where it does two full circuits before

drifting into the South Pacific where it spends ;250 yr

before crossing the equator and doing a random walk in

the DNP for another;400 yr. In total, the particle takes

960 yr to be transported from the surface of the Indian

Ocean sector of the Southern Ocean to the DNP. Of

those 960 yr, 637 yr are spent at depths below 1500m.

The particle pathway in Fig. 6d that does contribute to

the Agulhas leakage flows northwestward across the

South Atlantic before crossing the equator in the

FIG. 6. As in Fig. 5, but for Lagrangian pathways whose last contact with the surface was in the Southern Ocean. Panels (a) and

(b) correspond to fast pathways. Panels (c) and (d) correspond to intermediate pathways and panels (e) and (f) correspond to slow

pathways.
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western boundary. It then flows northward, does a loop

around the subtropical gyre of the North Atlantic, and

drifts into the Labrador Sea where it is convected to

depth. By this time the particle is ;100 years old. The

particle then does a random walk southward in the deep

Atlantic basin, rejoins the deep ACC, and drifts into the

Pacific off the coast of Chile. The particle then does a

random walk for another ;550 yr up into the Gulf of

Alaska. The total transit time for this particle is 973 yr, of

which 805 yr are spent below 1500m.

Finally, Figs. 6e and 6f show slow pathways. The

particle pathway shown in Fig. 6e drifts into the Pacific

basin after executing three circuits around the ACC at

shallow to intermediate depths before drifting into the

Pacific basin where it performs a random walk for more

than ;1850 yr. The particle pathway shown in Fig. 6f

makes an excursion into the Atlantic basin by way of the

Agulhas leakage. In the Atlantic the particle flows

northward in the upper ocean all the way to the deep

convection regions of the North Atlantic before re-

turning southward at depth where the particle is reen-

trained into the ACC and then detrained into the Pacific

where it executes a random walk into the DNP. The

total transit time from the surface of the Southern

Ocean to the DNP is 1954 yr, of which 1699 are spent at

depth greater than 1500m.

2) DEEP NORTH PACIFIC TO SURFACE OCEAN

For every particle that makes its way from the surface

to theDNP a particle in theDNPmust be flushed out and

transported back to the surface. Of course the time scales

and pathways for the transport back to the surface are

quite different. The surface hitting locations for the

return pathways are much less localized then the forma-

tion region, which were largely limited to the North At-

lantic and Southern Ocean. In Figs. 7, 8, and 9, we show a

sample of fast, intermediate, and slow particle pathways

from the DNP to the surface. These figures are organized

in terms of the basin where the particles make their first

contact with the surface. Figure 7 shows a sample of

pathways for particles that make first contact in the In-

dian (Figs. 7a–c) and Southern Oceans (Figs. 7d–f).

Figure 8 shows a sample of pathways that make their first

contact in the eastern South Pacific in the upwelling re-

gion off the coast of SouthAmerica (Figs. 8a–c) and in the

eastern South Atlantic basin in upwelling region off the

coast of Africa (Figs. 8d–f). Finally, Fig. 9 shows a sample

of pathways that make first surface contact in the North

Atlantic (Figs. 9a–c) andNorth Pacific (Figs. 9d–f) basins.

(i) DNP to Indian Ocean surface

Of the particles that make first contact in the Indian

Ocean Basin in our sample (Figs. 7a–c), the fast and

intermediate pathways reach the Indian Ocean through

the Indonesian Throughflow. Both particles recirculate

south of equator by following the South Equatorial

Current and the Equatorial Countercurrent before

drifting into the Arabian Sea where it upwells to the

surface. The total transit time for the fast pathway is

247 yr, of which 65yr are spent at depths greater than

1500m. The total transit time for the intermediate path-

way is 904yr, of which 749yr are spent at depths greater

than 1500m. The slow pathway follows a random walk

that eventually allows it to be entrained into the ACC

where it travels twice around Earth. To the south of

Tasmania the particle is entrained into the northeastward

branch of the Indian Subtropical Gyre, which carries it

across the Indian Ocean basin to the coast of Africa be-

fore turning eastward along the equator and eventually

following a random walk into the Bay of Bengal where it

is upwelled to the surface. The total transit time for the

slow pathway is 2036yr, of which 1860yr are spent

below 1500m.

The three particles in our sample that make first

contact with the surface in the Southern Ocean

(Figs. 7d–f) follow random walks from the DNP to the

Southern Ocean where the particles are entrained into

the ACC. The fast pathway does one full circuit around

the ACC before hitting the surface after a total DNP-

to-surface transit time of 143 yr, of which 115 yr were

spent below 1500m. The intermediate pathway also

does one circuit around the ACC, except that before

upwelling to the surface it executes a random walk in

the deep Southern Ocean between Africa and Aus-

tralia, which adds ;100 yr to the transit time. The total

transit time of the intermediate pathway is 560 yr, of

which 492 yr are spent below 1500m. The slow pathway

reaches the ACC after a random walk in the Pacific

basin that lasts about 1950 yr. Once in the ACC, the

particles do two full circuits around Earth before hit-

ting the surface. The total transit time for the slow

pathway is 2044 yr, of which 1896 yr are spent at depths

greater than 1500m.

(ii) DNP to eastern boundary upwelling regions of
the South Pacific Ocean

We show three pathways that connect the DNP to

surface first-contact locations along the eastern bound-

ary upwelling regions of the South Pacific Ocean. The

fast pathway (Fig. 8a) follows a random walk from the

central subpolar gyre to the western boundary where it

recirculates at depths for ;100 yr before being carried

southward to the equator where it is entrained into the

Equatorial Undercurrent, which carries it quickly across

the basin. The particle is then carried southward be-

fore upwelling along the coast of Chile. The total
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DNP-to-surface transit time for this particle is 215yr, of

which 166yr are spent at depths greater than 1500m.

The intermediate pathway (Fig. 8b) executes random

walk in the DNP before crossing into the Indian Ocean

Basin via the Indonesian Throughflow. The particle then

recirculates in the Indian Ocean around the South

Equatorial Current and the South Equatorial Counter-

current at shallow depths as well as around the South

Indian Subtropical Gyre at intermediate depths. The

particle is then entrained into the ACC and is quickly

detrained into the western South Pacific where it makes

the first contact with the surface off the coast of Chile.

The total transit time is 575 yr, of which 298 yr are spent

at depths greater than 1500m.

Finally, the slow pathway (Fig. 8c) follows a south-

ward pathway into the Southern Ocean, where it drifts

westward. From there it makes a brief excursion into the

South Atlantic followed by a random walk excursion

into the western Indian Ocean that lasts more than

1000 yr. The pathway then rejoins the ACC before re-

entering the Pacific Ocean east of Australia. The path-

way follows a pathway north up to the equator where it

veers eastward and crosses the equator in the eastern

Pacific Ocean. The particle then returns close to its

starting position but approximately 1200m higher up in

the water column. The particle then drifts westward and

upwells into the Equatorial Undercurrent close to the

Maritime Continent and is carried across the Pacific

basin and down the coast of South America before hit-

ting the surface off the coast of Chile. The total transit

time for this particle is 1728 yr, of which 1455 yr are spent

at depths greater than 1500m.

(iii) DNP to eastern boundary upwelling region of
the Atlantic Ocean

For the particles that hit the surface in the Atlantic

eastern boundary upwelling region, the fast pathway

(Fig. 8d) follows a pathway southward from the DNP to

FIG. 7. As in Fig. 6, but for particles that make their first contact with the surface of the (left) Indian and (right) Southern Oceans.
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the Southern Ocean at depth where it is mixed into the

upper ocean along the coast of Antarctica. The particle

then journeys around the ACC before being entrained

into the South Atlantic near the tip of South Africa. From

there the particle drifts northwestward in the South At-

lantic Subtropical Gyre at a depth of ;500m. Near the

western boundary the particle turns northward and spirals

up to the surface following the Equatorial Undercurrent

eastward and the South Equatorial Current westward

before hitting the surface near the coast of Angola.

The intermediate pathway (Fig. 8e) follows a path in the

North Pacific for approximately 500yr before escaping

into the Indian Ocean via the Indonesian Throughflow.

The particle then rapidly crosses the IndianOceanBasin at

relatively shallow depths before rounding the tip of Africa

into the Atlantic basin. From there, the particle follows a

pathway very similar to the fast particle. The total transit

time from the DNP to the surface hitting location near the

coast of Angola for the intermediate pathway is 516yr, of

which 199yr were spent at depths greater than 1500m.

The slow pathway (Fig. 8f) follows a randomwalk from

the DNP to the Southern Ocean in the abyssal ocean. In

the Southern Ocean, the particle executes three full cir-

cuits around Earth before drifting into the Indian Ocean

where the particles follow a pathway into the subtropical

gyre of the Indian Ocean at depths of ;1100m. The

particle then recirculates into the subtropical gyre before

leaking into theAtlantic basin where it follows a pathway

very similar to the intermediate and fast particles de-

scribed above. The total DNP-to-surface transit time for

the slow pathway is 2114yr, of which 1964yr are spent at

depths greater than 1500m.

(iv) DNP to North Atlantic surface

The particles that make first contact with the North

Atlantic region (Figs. 9a–c) all travel around the ACC

FIG. 8. As in Fig. 6, but for particles that make their first contact with the surface in the eastern boundary upwelling regions of the (left)

Pacific and (right) South Atlantic basins.
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before drifting into the high-latitude North Atlantic via

the western boundary current in the upper ocean. The

fast and slow particle both follow a random walk from

the DNP to the Southern Ocean in the deep Pacific

Ocean, while the intermediate pathway leaves the Pa-

cific via the Indonesian Throughflow at relatively

shallow depths.

Apart from its two circuits around the ACC, the fast

particle (Fig. 9a) does an excursion in the Indian Ocean

Subtropical Gyre before escaping into the Atlantic via

the Agulhas leakage. The total transit time for the fast

particle is 331 yr, of which 266 yr are spent at depths

greater than 1500m.

After crossing into the Indian Ocean, the intermedi-

ate pathway (Fig. 9b) makes an excursion into the Bay

of Bengal before crossing the Indian Ocean and drift-

ing south via the Agulhas Current. At the southern tip

of Africa, the pathway retroflects and drifts westward

in the upper water column of the ACC before being

entrained into the subtropical gyre of the South At-

lantic Ocean. The particle then follows the western

boundary current northward across the equator, does

one circuit around the subtropical gyre of the North

Atlantic, and makes its first contact east of Iceland.

The total transit time for the intermediate pathway is

965 yr, of which 688 yr are spent at depths greater

than 1500m.

The slow pathway (Fig. 9c) performs a randomwalk of

more than 1200 yr in the abyssal waters of the South

Pacific before being entrained into the ACC. The par-

ticle is then detrained into the South Atlantic Ocean

where it performs another random walk of a few hun-

dred years at depths near 1000m. The particle then

crosses the equator and flows northward along the

western boundary current and the North Atlantic cur-

rent where it makes contact with the surface to the east

FIG. 9. As in Fig. 6, but for particles that make their first contact with the surface in the eastern boundary upwelling regions of the (left)

North Atlantic and (right) North Pacific basins.
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of Iceland after a total transit time of 1994 yr, of which

1538 yr were spent at depths greater than 1500m.

(v) DNP to North Pacific surface

In our illustrative sample of DNP-to-surface path-

ways, we have a fast and a slow trajectory (Figs. 9d,f)

hitting the surface in the eastern boundary upwelling

regions off the shore of Baja California, and one in-

termediate pathway (Fig. 9e) hitting the surface in the

Gulf of Alaska.

The fast pathway (Fig. 9d) begins in the tropical

central Pacific Ocean and drifts southwestward until it

reaches the western boundary where it turns northward,

executing an eddying random walk at nominal depths of

;2500m before being upwelled to the upper ocean near

the boundary separating the subtropical and subpolar

gyres of the North Pacific. The pathway then crosses the

Pacific Ocean carried by the Kuroshio Extension system

before turning southward along the coast of North

America. The total transit time is 192 yr, of which 138 yr

are spent below 1500m.

The intermediate pathway (Fig. 9e) begins near the

eastern boundary of the North Pacific and follows a

randomwalk in the deep ocean (depths. 1500m) before

being upwelled into the upper ocean near the coast of

Japan. The pathway then does several loops around the

subpolar gyre and one loop around the subtropical gyre

before hitting the surface. The total transit time is 538yr,

of which 464 are spent at depths greater than 1500m.

Finally, the slow pathway (Fig. 9f) executes a random

walk in the deep ocean that crosses the equator multiple

times before being upwelled to the upper ocean in the

western Pacific basin where theKuroshio separates from

the coast. The pathway then does a large loop around

the subtropical gyre that includes a lengthy randomwalk

at depths near;750m. The pathway eventually hits the

surface after traveling southward along the eastern

boundary upwelling region. The total transit time for the

slow pathway is 1502 yr, of which 1269 yr are spent

below 1500m.

4. Summary and conclusions

Using a combination of Lagrangian and Eulerian

tracers we have quantified the ventilation pathways and

time scales of the deep North Pacific Ocean (DNP).

Because the oldest waters of the World Ocean are lo-

cated in the DNP, the pathways we have computed trace

many of the circulation branches illustrated in schematic

diagrams of the great ocean conveyor (Richardson

2008). Unlike the schematic diagrams, which, by em-

phasizing the mean transport, show smooth arrows that

give the impression of laminar flow, the stochastic

components introduced in our Lagrangian particles

remind us that the ocean is a turbulent fluid. As em-

phasized in the introduction, previous Lagrangian cal-

culations (Fujio and Imasato 1991; Fujio et al. 1992;

Böning and Cox 1988; Doos 1995) have neglected the

effect of eddy diffusion on the movement of particles,

but diffusive effects cannot be ignored. Indeed, Talley

(2013) has emphasized the importance of diffusion for

the closure of the global overturning circulation.

The background vertical diffusivity used in our in-

verse circulation model (1025m2 s21) is consistent with

the best estimates of the global-averaged diapycnal

diffusivity for above depths of 1000m but is an order of

magnitude lower than the best global-averaged esti-

mates below 1000m (Waterhouse et al. 2014). By taking

into account the three-dimensional nature of the global

circulation, the inverse model was able to find a clima-

tological circulation state that is consistent with in-

dependent estimates of air–sea heat and freshwater fluxes

as well as hydrographic observations of temperature and

salinity (DeVries and Primeau 2011; DeVries 2014). In

contrast, the one-dimensional abyssal recipes’ inversion

of Munk (1966) suggested a value for the vertical diffu-

sivity of 1024m2 s21, which is an order of magnitude too

high for the upper ocean but in agreement with the best

present estimate for the deep ocean. Because the vertical

diffusivity was a prescribed parameter in our inverse

model, it is difficult to tell if the observational constraints

provide evidence for the higher deep-ocean value. This

deserves further investigation.
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