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Fast grasping of unknown objects using principal
component analysis

Qujiang Lei,a Guangming Chen, and Martijn Wisse
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology,
Delft, Netherlands

(Received 25 June 2017; accepted 18 September 2017; published online 29 September 2017)

Fast grasping of unknown objects has crucial impact on the efficiency of robot
manipulation especially subjected to unfamiliar environments. In order to acceler-
ate grasping speed of unknown objects, principal component analysis is utilized to
direct the grasping process. In particular, a single-view partial point cloud is con-
structed and grasp candidates are allocated along the principal axis. Force balance
optimization is employed to analyze possible graspable areas. The obtained gras-
pable area with the minimal resultant force is the best zone for the final grasping
execution. It is shown that an unknown object can be more quickly grasped pro-
vided that the component analysis principle axis is determined using single-view
partial point cloud. To cope with the grasp uncertainty, robot motion is assisted to
obtain a new viewpoint. Virtual exploration and experimental tests are carried out
to verify this fast gasping algorithm. Both simulation and experimental tests demon-
strated excellent performances based on the results of grasping a series of unknown
objects. To minimize the grasping uncertainty, the merits of the robot hardware with
two 3D cameras can be utilized to suffice the partial point cloud. As a result of
utilizing the robot hardware, the grasping reliance is highly enhanced. Therefore,
this research demonstrates practical significance for increasing grasping speed and
thus increasing robot efficiency under unpredictable environments. © 2017 Author(s).
All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.4991996

I. INTRODUCTION

Unknown object means an item that has neither geometric model nor appearance information.
Grasping unknown objects is highly challenging for the robots working at unfamiliar environments.1

With the increasing demand of various robots that are being used in contemporary society, increasing
grasping speed becomes one of the primary tasks for improving the efficiency of robots manipulation.2

A vast amount of research has been conducted on grasping unknown objects over the past
few decades, and many achievements have been attained. To grasp an unknown object, geometric
properties (i.e. symmetries,3 surface,4 edges,5–10 boundary,11–15 silhouette,16 saliency17) are generally
used to construct contours of the target object. For instance, Maldonado et al.,12 ten Pas and Platt13

fitted the shape of the gripper on the boundary of partial point cloud of the target unknown object.
To obtain geometric contours of the unknown object, two methods are commonly used. One is to use
tactile sensors to detect the geometric properties of unknown target object.18–27 The other is to use
a camera to move around to explore the unseen part.16,28,29 Both methods have high grasp security
but are very time expensive. The reason for the first method is that it requires long time to carry
out sufficient contacts with the object. For the second method, much time is used because of the
movement of the camera.

aContact author: E-mail: q.lei@tudelft.nl
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To save time, several fast grasping approaches have been proposed, which can be found in Refs.
6,8,13,15, and 28 Among these approaches, Johannes Baumgartl8 uses RGB images as input, which
can quickly provide 2D geometric information of an unknown object. However, using this approach
cannot always promote successful grasping because an unknown object can have no parallel edges.
By contrast, the other researchers6,13,15,28 employ a partial point cloud, which can formulate more
realistic geometric model. Because the geometry contour is approximated based on partial point cloud,
it can significantly reduce the computing load and thus accelerating grasping speed. Nevertheless,
ignoring other information, such as occlusions, may introduce grasp uncertainty and result in grasp
failure. To deal with the uncertainty with the usage of partial point cloud, a new method for reducing
geometric information for grasping unknown objects can be explored.

The goal of this paper is to reduce grasping time for unknown objects whilst the grasping security
is maintained. In this paper, we propose a novel approach to guide the grasping procedures of unknown
objects based on the principal component analysis. Based on this, a single-view point cloud is used
to reduce the data for formulating geometric contour to save the computational time. The feature of
our grasping approach is to allocate grasp candidates along the principal axis such that the possibility
of useless grasp candidates can be greatly decreased. This algorithm is shown to be successful on
the base of both simulation and experimental tests. By taking the advantage of robot hardware, the
grasping uncertainty is minimized. Therefore, this research demonstrates practical significance for
increasing grasping speed.

This paper is organized in this way: section II introduces our fast grasping algorithm; section III
shows the simulation results; section IV gives the experiment validation; section V outlooks an
approach on enhancing the grasp security using two 3D cameras. Finally, the conclusion of this
research is provided in section VI.

II. A FAST GRASPING APPROACH

This section presents a detailed explanation of our fast grasping approach for unknown objects.
This approach adopts a grasping algorithm which utilizes a single-view partial point cloud. Further-
more, the solutions for tackling exceptional cases of grasping failure by applying this algorithm are
elaborated.

A. Algorithm

Because the configuration of the robot hand follows a Special Euclidean group SE (3) in prac-
tice, it implies many possibilities when locating a robot hand in three-dimensional (3D) space.
In our approach, the principal axis of the target unknown object is used to find out proper posi-
tions for executing a successful grasping action. Figure 1 outlines our fast grasping algorithm, in
which it shows a single-view partial point cloud of the target object is used as input. For general
case of grasping unknown objects, seven steps are required, the details of which are described in
section II B. For the exceptional case to achieve a successful grasping, the solution is illustrated in
section II C.

B. Grasping unknown objet based on the single-view partial point cloud

Figure 2 presents the procedure to grasp the target unknown objet based on the single-view
partial point cloud. Figure 2 (a) shows a simulation setup in which a spray bottle is used as the
target unknown object. An eye-in-hand system is composed of a 3D camera sensor and a UR5 robot.
The 3D camera sensor is used to acquire the raw point cloud for the given environment. In order to
accelerate computing speed, distance filtering is initially applied on the raw point cloud to remove
those points that are out of the reach of the robot arm, as shown in Figure 2 (b). Figure 2 (c) shows the
transformation of the partial point cloud to the world frame. Figure 2 (d) illustrates the transformation
of the partial point cloud to the object frame. Figure 2 (e) gives the projected point cloud in the object
frame. Figure 2 (f) presents the concave hull contour of the projected point cloud. Figure 2 (g) depicts
all the crossing points. Figure 2 (h) shows possible grasp zone within grasping range of the gripper.
Figure 2 (i) points the method to obtain the best grasp on the graspable zone. Finally, Figure 2 (j)
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FIG. 1. Overview of our fast grasping algorithm.

provides an example of grasp execution. The detailed seven steps for conducting grasping an unknown
object are presented as follows.

Step 1: Obtaining the single-view partial point cloud of the target unknown object
Figure 2 (a) shows a simulation setup in which a spray bottle is used as the target unknown object.

An eye-in-hand system is composed of a 3D camera sensor and a UR5 robot. The 3D camera sensor
is used to acquire the raw point cloud for the given environment. In order to accelerate computing
speed, distance filtering is initially applied on the raw point cloud to remove those points that are
out of the reach of the robot arm, as shown in Figure 2 (b). Then down sampling is used to reduce
the density of the points. After that, Random Sample Consensus (RANSAC) method is employed to
remove the table plane. The determination of principal axis is given as follows.

After the single-view partial point cloud is obtained by a 3D camera, Principal Component
Analysis (PCA) is performed to approximate the centroid and the principal axis of the object. PCA

FIG. 2. The procedure to process the single-view partial point cloud. (a) simulation setup; (b) the filtered distance and down-
sampled point cloud. (c) transformation of the partial point cloud to the world frame; (d) transformation of the partial point
cloud to the object frame; (e) projected point cloud in the object frame; (f) concave hull contour of the projected point cloud.
(g) all the crossing points; (h) possible grasp zone within grasping range of the gripper. (i) the method to obtain the best grasp
on the graspable zone. (j) an example of successful grasp execution.
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is a statistical technique for analyzing correlation between observed data. Let X = (χ1, χ2, · · · , χn)
be the object point set, where χi is a point in the 3D space R3. The centroid of the point set Pcentroid

is calculated by the following equation:

pcentriod =
1
n

n∑
i=1

χi (1)

Giving the values of a point cloud X = (χ1, χ2, · · · , χn), the covariance matrix s can be calculated
by using equation (2):

s=
*...
,
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xx σ2

xy σ2
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+///
-

(2)

in which the nine elements are the values of covariance for the 3D coordinates. The eigenvalues λ1

> λ2 > λ3 (λi ∈ R and i =1, 2, 3), and the corresponding eigenvectors µ1, µ2, µ3 (µi ∈ R3 and i =1, 2,
3) can be obtained. The eigenvector µ1corresponds to the largest eigenvalue λ1, which approximates
the direction of the principal axis. Using the centroid (Pcentroid) of the single-view partial point cloud
and the direction of the principal axis, the principal axis can be obtained.

Step 2: Transforming single-view partial point cloud from camera sensor frame to world frame
The obtained single-view partial point cloud in step 1 is retained in the camera frame. To carry

out analysis using coordinate system, the single-view partial point cloud must be transformed into
the world frame. Feedbacks from the joint encoders of the robot arm are used to construct the
transformation matrix from the end effector of the robot to the base link of the robot. The transformed
single-view partial point cloud in the world frame can be seen in Figure 2(c). The transformed
single-view partial point cloud in the object frame is shown in Figure 2 (d).

Step 3: Constructing object frame
Figure 3 (a) displays three coordinate systems from the eye-in-hand system and the target

unknown object, namely, the world frame (XworldYworldZworld), the 3D camera frame (X3DsenorY3Dsenor

Z3Dsenor) and the object frame (XobjYobj Zobj). The principle axis and the mass center of the partial
point cloud are used to build the object frame. As can be seen from Figure 3 (b), the mass center of
the target object is used as the origin point of the object frame.

The principal axis is used as the Y axis of the object frame. The X axis and the Z axis of the
object frame can be determined by applying equation (3).




−−−→
OcX =

−−−→
OcPs ×

−−−−→
OcPP

−−−→
OcZ =

−−−→
OcY ×

−−−→
OcX

(3)

FIG. 3. Establishment of the coordinate systems. (a) world frame, the 3D sensor frame and the object frame. (b) illustration
of building the object frame of the target unknown object.
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in which Pp and Ps respectively stand for a random point on the principal axis and the position of the
3D camera sensor.

Step 4: Acquiring concave hull contour of the single-view partial point cloud
After we obtained the partial point cloud in the object frame, the contour of the partial point cloud

will be abstracted. Specifically, the partial point cloud is firstly projected to the XOY (XobjOobjYobj)
plane of the object frame. Figure 2 (e) shows the projected point cloud. There are two methods
to obtain the contour of the projected point cloud, namely, the concave hull contour and the con-
vex hull contour. For this scenario, concave hull contour can better represent the geometric shape
of the target unknown object. Concave hull contour of the target object is extracted as shown in
Figure 2(f).

Step 5: Calculating graspable zones
To figure out all graspable area within grasping range on the contour of the target object, grasp

candidates are allocated along the principal axis (the Y axis of the object frame). The minimum
Y value (ymin) of all the points on the concave hull contour is firstly decided. Subsequently, a
straight line parallel to the X axis is used during the searching process from the top to the bot-
tom. In this manner, the most left and most right crossing points between the straight line and the
concave hull contour can be determined. An appropriate step (∆y shown in Figure 4) is added to
ymin such that the searching process can apply to the whole concave hull contour from the top to the
bottom.

The straight line parallel to the X axis can be obtained according to equation (4). All crossing
points can construct a point cloud as shown in Figure 2(g). For each straight line, when the distance
between the most left point and the most right is smaller than the grasping range of the robot hand,
the most left point and the most right point will be saved to construct a point cloud, which is shown
in Figure 2(h). The graspable zone of the target unknown object is repented by the point cloud in
Figure 2(h).

y= ymin + n∆y (4)

Step 6: Optimizing total force on the XOY plane of the object frame
In the step 5, the graspable zone is extracted out by considering the grasp range of the robot hand.
To obtain the best grasp on the graspable zone, Figure 5 illustrates the evaluation process to allocate
grasp candidates along the principal axis from the top to the bottom. As shown in Figure 5(a), the
green, blue and red rectangles stand for three example grasp candidates. In order to achieve a stable
final grasp, force balance computation is carried out for every grasp candidate. The blue points in
Figure 5(b) stand for a grasp candidate. Points on the two grasp sides are used to fit two straight lines,
and the angle between the two straight lines is used to evaluate the stability of this grasp. The bigger
the angle is, the less stable the grasp is.

The straight line can be expressed as y = kx + b, in which the coefficients k and b can be
determined using equation (5). The two red lines in Figure 5(c) stand for the two fitting lines. Figure 6
demonstrates the results of force balance computation of the graspable zone. We can observe that force
balance reaches the minimum value when the number comes to search index 33, which corresponds
to the best force balance.

FIG. 4. The method to determine the graspable zone of the target unknown object.
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FIG. 5. Evaluation of the grasping candidates within grasp range (a) green, blue and red rectangles of grasp candidates; (b)
blue points of a grasping candidate (c) two fitting lines.
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Step 7: Force balance evaluation on the XOZ plane of the object frame.
In the previous step, we explained the method to determine the best grasp using force balance
computation on the XOY plane of the object frame. Next, the effect of force balance on the XOZ plane
on the stability must be also studied. Figure 7(a) shows an initial configuration of the robot and the
target unknown object. Figure 7(b) shows that the robot is approaching the grasp point. Figure 7(c)
shows the force balance analysis of this grasp candidate on the XOZ plane. F1 and F2 respectively
stand for the force that the gripper imposes on the target object.

The point cloud covered by the grasp candidate is extracted to be used for force balance analysis
on the XOZ plane, which is illustrated in Figure 8. The green points in Figure 8(a) stand for the
area covered by a grasp candidate. Figure 8(b) shows the point cloud covered by grasp candidate is
extracted and the two grasp sides are shown as the red points in Figure 8(b). The average Z values
of the left and the right grasp sides are worked out shown as the Z1 and Z2 in Figure 8 (c). The
difference between Z1 and Z2 is used to evaluate the stability of the grasp candidate on the XOZ
plane. A threshold (Zdif max) can be set by this system, thus, when |Z1 � Z2|< Zdif max, the grasp
candidate is saved, otherwise the grasp candidate is removed.

FIG. 6. The results of force balance computation on the XOY plane.
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FIG. 7. Evaluation of the grasp candidates on the XOZ plane (a) initial configuration of the robot and the target unknown
object. (b) the robot becomes contact with the grasp point. (c) the force balance analysis of this grasp candidate on the XOZ
plane.

The above seven steps illustrate the fast grasping strategy of using principal component analysis
based on the obtained single-view point cloud. However, there are four risks that can lead to grasping
failures. Firstly, a grasping failure can occur when the principle axis cannot be obtained using single-
view point. Figure 9 illustrates three successful grasps from the three perspectives of left, middle and
right by rotating the robot arm. It also includes a grasping failure due to the fact that principle axis
was not determined because of the point data loss.

Secondly, a graspable zone is not possible to be obtained when the gripper cannot cover the target
object, which can be deduced in step 5. Thirdly, the angle (δ) corresponding to the force balance
calculation can be too large (as shown in step 6), which infers that the object will be squeezed out
when the robot tries to perform the grasping action. In addition, grasping failure can be triggered
because of the resultant unbalanced force when the range between Z1 and Z2 for all grasp candidates
are greater than the threshold (step 7).

Nevertheless, the grasping failure that is caused by the unbalanced force on the XOZ in step
7 can be resolved by using changing viewpoint. The solution for this exceptional case was already
pointed out in Figure 1 of this algorithm. In the following subsection, the detailed explanation of the
solution to the this exceptional case is provided.

FIG. 8. Evaluation of grasping an object on the XOZ plane. (a) the green area of point cloud covered by a grasp candidate.
(b) extracted grasping areas and the two grasp sides of the red points. (c) The average values for Z of the left and the right
grasping sides.
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FIG. 9. Grasping the same object from four different perspectives (left, middle, right and bottom) using a single-view point
cloud by following the seven steps.

C. Solution for the exceptional case

To deal with the exceptional case that grasping positions cannot be achieved at one viewpoint,
the main plane to guide the robot arm can be employed to activate another motion of the robot arm.
In this way, a robot can move to another viewpoint to calculate to search for an executable grasp by
following the above seven steps.

Figure 10 illustrates the activation of another motion of the robot arm, in which Figure 10 (a)
and (d) provides two scenarios of two possible graspable areas obtained by the grasp algorithm. The
green points in Figure 10 (b) and Figure 10 (e) respectively stand for the corresponding best grasping
areas returned from the grasping algorithm at this viewpoint. The blue points in Figure 10 (c) and (f)
respectively stand for the main plane of the grasp in Figure 10 (b) and (e). For the scenario as seen
in Figure 10 (a), the shortest distance of movement of the robot arm is to move to the perpendicular
direction of the main plane as shown in Figure 11 (a). For the other scenario shown in Figure 10 (d),
the shortest distance of movement of the robot arm is to move to the tangent direction of the main
plane as shown in Figure 11 (b).

Referring to Figure 1, when the width of the main plane (Wm) is smaller than the graspable range
of the gripper (Gr), then the robot will move to the perpendicular of the main plane. This situation
corresponds to for the Figure 11 (a) which is obtained from Figure 10 (a). The angle (β) of the
movement between the initial sensor point to the target sensor point should be β = π/2�a. Figure 11(b)
shows the other situation which is that the width (d) of the main plane (Wm) is bigger than the grasp
range of the gripper (Gr). The angle (β) of the movement between the initial sensor point to the target

FIG. 10. The method to deal with the exceptions that no suitable grasp is found at a viewpoint plane. (a) and (d) two cases of
best grasp found by the grasp algorithm; (b) and (e) the corresponding best grasping areas; (c) and (f) the main plane.
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FIG. 11. Strategies of moving the robot arm when no suitable grasp is found at one viewpoint, in which (a) and (b) are the
obtained projected main plane (two purples lines), (c) and (d) are illustrations of the robot arm approaching the target sensor
point.

sensor point should be β = α. The specific rotation can be worked out using equation (6). Figure 11 (c)
and (d) shows the robot arm arrives at the target sensor point corresponding to Figure 10 (a) and (d).
When the robot arm arrives at the target viewpoint, the steps from step 1 to step 7 are repeated to
search a suitable grasping area for the target object.
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To sum up, the application of our algorithm of using principal component analysis has been elaborated
based on the seven steps. To solve the grasping failure of an exceptional case, robot motion is used
to obtain single-view point data from another perspective. It can be inferred that our novel algorithm
of using single-view partial point cloud can save time compared to other algorithms that used partial
point cloud data. To verify and validate the efficiency and applicability of our approach, simulation
and experimental tests are presented in the subsequent two sections.

III. SIMULATION TEST

In this section, our grasping algorithm is verified in a simulation environment. First, the structure
of the simulation setup are illustrated. Next, the simulations for grasping unknown objects with
different geometric shapes are performed using a single-view partial point cloud.

A. Structure of simulation setup

Figure 12 illustrates the simulation setup that consists of ROS, Gazebo and MoveIt!. ROS (an
open source robot operating system) is widely used in the community of robotics due to the simply
operations. Gazebo (an Open Dynamics Engine simulator) is the state of art simulator that offers
the ability to efficiently and accurately simulate complex task for robots. MoveIt! (a cutting edge

FIG. 12. Illustration of simulation setup consisting of ROS, Gazebo and MoveIt!.
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FIG. 13. Simulation results of using a single-view partial point cloud as input.

software for robot motion planning) incorporates the latest achievements in navigation, manipulation
and kinetics. The first and foremost part is simulation for a single-view partial point cloud obtained
using a 3D camera, which is illustrated below.

B. Simulations based on a single-view partial point cloud using a 3D camera

The simulations of using a single-view partial point cloud as input are conducted to obtain
suitable grasp. In the simulations, a spray bottle, a cup, a water bottle and an oatmeal box which have
varying geometries are employed. The first column shows the simulation setup of the robot and the
target object. The first three rows of Figure 13 illustrate the simulations to determine suitable grasp
on a single-view partial point cloud. The last row of Figure 13 shows the method of using the main
plane of the single-view partial point cloud to guide the robot to the second viewpoint. For the first
three rows, the second column shows concave hull boundary of the single-view partial point acquired
using one 3D camera. The blue points in the third column stand for the region with grasping range
of the robot hand and this region is graspable zone. The grasp candidates are allocated from the top
to the bottom of the graspable zone. Force balance computation on the XOY plane is conducted on
these grasp candidates and the forth column shows the results of force balance computation. The
corresponding best grasping areas are shown as green points in the fifth column. The last column
demonstrates successful grasp execution for the target unknown objects. The last row demonstrates
how to use the main plane of the single-view partial point cloud of the target object to guide the robot
to the second viewpoint to achieve a suitable grasp.

Table I presents the detailed results of force balance computation on both the XOY plane and
The XOZ plane. Based on force balance on the XOY plane, our grasping algorithm can be used to

TABLE I. Simulation results of force balance computation using a single-view partial point cloud as input.

Spray bottle Cup Water bottle Oatmeal box

XOY (radian) 0.108467 0.797198 0.0446418 0.000365332
XOZ (mm) 2.185 0.4709 0.01 1.56499
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achieve stable grasping results for Spay bottle, Water bottle and Oatmeal box. For the selected cup,
the force balance coefficient of the cup on the XOY plane is much larger due to its own geometrical
character of no parallel sides. For force balance on the XOZ plane, results for all objects are quite
satisfying. The maximum difference is 2.185 millimeter which cannot lead to massive movement of
the target object when the robot tries to grasp it. As for the computing time, time spent to process a
single-view partial point cloud is within one second.

In summary, using the principle axis can reasonably determine the essential feature of an unknown
target. It demonstrated that this grasping algorithm can achieve a greater grasping speed to obtain a
suitable grasping areas compared to others, thus the proposed algorithm is numerically verified. In
order to validate this novel algorithm to practice, the experimental tests are conducted as follows.

IV. EXPERIMENTAL VALIDATION

In order to demonstrate the applicability of our proposed algorithm in reality, experimental tests
are carried out using four different unknown objects of different shapes. The experimental tests are
designed based on the references of the simulations and the availability of unknown objects.

A. Experimental description

An eye-in-hand system consisting of a Universal Robot arm UR5, an under-actuated Lacquey
Fetch gripper and an Xtion pro live sensor is used to conduct experiment tests. The Xtion pro live

FIG. 14. Snapshots from the experimental tests.
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TABLE II. Experiment results of force balance computation on the XOY plane and the XOZ plane.

Spray bottle Wine glass Beer bottle Mayonnaise bottle

XOY(radian) 0.117 0.218 0.017 0.326
XOZ(mm) 2.635 0.504 0.363 0.002

sensor and the under-actuated gripper are installed at the end of the robot arm. With the reference of
simulation models, four experimental tests are carried out as shown below as shown in Figure 14.

In the Figure 14, the first column presents the whole experiment setup. The second and third
columns of Figure 14 show the single-view partial point cloud. The second column corresponds to
the single-view partial point cloud obtained from the perspective of the front direction and the third
column corresponds to the single-view partial point cloud from the back direction. The final grasps
returned from our grasping algorithm of using a single-view partial point cloud as input are shown
as the fourth column of Figure 14.

B. Results

Table II shows the experiment results of force balance computation on the XOY plane and the
XOZ plane. We can find all final grasps are with a good force balance which can ensure the grasp
stability. The fifth column of Figure 14 shows the under-actuated Lacquey Fetch gripper arrives at the
grasping point. The last column demonstrates the successful grasp execution of the target unknown
objects. Our grasping algorithm can quickly process the single-view partial point cloud of the target
unknown object to output the final grasp within one second.

Thus far, our algorithm has been validated using experimental tests. It demonstrated that our
fast grasping algorithm can promote successful grasping results using a single-view partial point
cloud as input. In order to facilitate this novel algorithm to practice, solutions for minimizing gasping
uncertainty is illustrated in the next section.

V. MINIMIZING GRASPING UNCERTAINTY BY USING TWO 3D CAMERAS

As was illustrated in section II, using geometric properties of the target unknown object to obtain
suitable grasps may bring about the risk of grasping failure as a result of the uncertainties induced
from occlusions. For these scenarios, the robot has to move to obtain new perspective to obtain single-
view point cloud data. In practice, the robots that have two cameras can be used to overcome grasp
uncertainty resulting from occlusions. This can be achieved by following the six (A-F) procedures.

A. Building a “big” partial point cloud using two 3D cameras

Figure 15 shows a Baxter robot and PR2 robot which have two camera sensors separately
installed at the robot head and robot hand. Using these types of robots, more completed contour

FIG. 15. Two example robots which use two camera sensors.
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FIG. 16. The method to overcome grasp uncertainty resulting from occlusions. (a) PR2 and Baxter robots are simplified as
a head sensor and a hand sensor (b) two single-view partial point cloud from the two 3D sensors fused together (c) Virtual
viewpoints incrementally allocated around the principal axis of the “big” partial point cloud. (d) the corresponding point
clouds for all virtual viewpoints (e) an example of successful grasp execution.

of the target unknown object can be formed compared to single-view partial point cloud. After
that, virtual exploration is carried out on the “big” partial point cloud to carry out searching of
principle axis. Graspable candidates are allocated between the two camera sensor points, which can
ensure the grasp candidates are allocated on the seen part of the target object. While constructing
the “big” partial point cloud cannot result in much computing time, the increase of grasp security is
achieved.

The PR2 and Baxter robots in Figure 15 can be simplified as a head sensor and a hand sensor.
The two 3D sensors are used to obtain the “big” partial point cloud. The green and blue point cloud
in Figure 16 (b) respectively stand for a single-view partial point cloud acquired from the head
sensor and the hand sensor. Next, the two single-view partial point clouds are fused together to
obtain the “big” partial point cloud (shown as the brown point cloud in Figure 16 (b)). When we
obtained the “big” partial point cloud, virtual viewpoints (shown as the black points in Figure 16 (c))
can be incrementally allocated around the principal axis between the head sensor point and the hand
sensor point. Figure 16 (d) shows the corresponding point clouds for all virtual viewpoints.

Figure 17 illustrates the distribution of the camera sensors of the Baxter robot and the PR2
robot to obtain “big” partial point cloud. The green cuboid stands for the camera on the robot
head and the black cuboid at the end of the robot arm represent the camera on the robot arm. The
coordinate transformation between the head sensor coordinate system (HESCS) and the base link
coordinate system (BCS) is defined as (Thead). The coordinate transformation between the hand sensor

FIG. 17. Coordinate transformation between two camera sensors and the word coordinate system (WCS).
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FIG. 18. Acquisition of the “big” partial point cloud and transfer it from the world coordinate system (WCS) to the Object
coordinate system (OCS). (a) and (d) are the single-view partial point cloud obtained from the head camera sensor and hand
camera sensor. (b) and (e) are the two single-view partial point clouds of the target object in the camera coordinate system
after removing the table plane. (c) and (f) are the two single-view partial point clouds transferred into world coordinate system
(WCS). (g) is the registered “big” partial point cloud in the WCS. (h) is a “big” partial point cloud transferred from WCS to
object coordinate system (OBS).

coordinate system (HASCS) and the base link coordinate system (BCS) is defined as (Thand). Thead .
Thand can be obtained by equation (7).




Thead =THESCS BCS

Thand =THASCS ECS ∗ TECS BCS
(7)

Figure 18 shows the procedures to acquire the “big” partial point cloud and transfer it from the world
coordinate system (WCS) to the Object coordinate system (OCS). Figure 18(a) and (d) respectively
stand for the single-view partial point cloud obtained from the head camera sensor and hand camera
sensor. Figure 18(b) and (e) stands for the two single-view partial point clouds of the target object in
the camera coordinate system after removing the table plane. Figure 18(c) and (f) stand for the two
single-view partial point cloud transferred into the world coordinate system (WCS). Figure 18(g) is
the registered “big” partial point cloud in the WCS. Figure 18(h) shows the “big” partial point cloud
transferred from WCS to object coordinate system (OBS).

B. Grasp allocation between the two camera sensor points

Figure 19 illustrates the searching strategies between the two camera sensor points. In this figure,
each black point stands for a virtual viewpoint to carry out virtual exploration. The virtual viewpoints
are allocated around the principal axis with a searching step (∆θ). qθ0 and qθ1 stand for the hand and
the head camera viewpoints, respectively. qθimeans the ith virtual viewpoint and qθi = qθ0 + i∗∆θ.

FIG. 19. Searching strategies between the two camera sensor points.



095126-15 Lei, Chen, and Wisse AIP Advances 7, 095126 (2017)

FIG. 20. Schematical illustration of constructing a virtual object coordinate system (VOCS).

C. Constructing virtual object coordinate systems

At each virtual viewpoint, a virtual object coordinate system (VOCS) is constructed for further
analysis. Figure 20 illustrates the construction of the virtual object coordinate system. Specifically,
the principal axis of the “big” partial point cloud in WCS is used to work as the Y axis of the object
coordinate system (OCS). In Figure 20, Rp stands for a random point on the principal axis and Vp
means a random virtual viewpoint. The X and Z axis can be obtained using equation (8).

Using the above method to go through every virtual viewpoint of Figure 19, we can obtain
all VOCSs for all virtual viewpoints. Then the “big” partial point cloud in WCS is transferred to
every local VOCS, all the transferred point clouds can be seen in Figure 21. Each color in Figure 21
corresponds to a transferred point cloud at the local virtual object coordinate system.




−−−→
OcY =

−−−−→
OcRp

−−−→
OcX =

−−−−→
OcVp ×

−−−−→
OcRp

−−−→
OcZ =

−−−→
OcX ×

−−−→
OcY

(8)

D. Grasp allocation for a virtual viewpoint

The grasp configuration in the SE(3) group means many possibilities. To reduce grasp possibility
to accelerate grasp searching, principal axis of the “big” partial point cloud is used to direct the grasp
configuration. In Figure 22, the grasp configuration in the SE(2) group is simply a rotation around the
principal axis. Each configuration can be expressed as Γ[qyi |qθi ], in which yi denotes grasp searching
from the top of the “big” partial point cloud to the bottom of the “big” partial point cloud; θi means
grasp searching between the two camera sensor points.

All transferred point clouds for all VOCSs were already obtained shown in Figure 21. For each
transferred point cloud O[qθ ], grasp candidates are allocated from the top to the bottom, as can be seen
in Figure 23. Let O[qyi |qθ ] (i = 1, 2,..., n) stand for the point cloud covered by ith hand configuration,
such that the red, blue and green rectangles respectively stand for three hand configurations. The

FIG. 21. Transferred point clouds for all the virtual coordinate system (VOCSs).
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FIG. 22. Grasping configuration in the SE(2) group.

corresponding point cloud covered by the three hand configurations can be expressed as O[qyi |qθ ],
O[qyi+1 |qθ ] and O[qyi+2 |qθ ].

E. Force balance computation

For the point cloud O[qθ ]which corresponds to a virtual viewpoint, force balance computation
can be divided into two parts, namely, force balance computation on the XOY plane (Fxoy) and on the
XOZ plane (Fxoz). The application of using force balance to obtain the best grasping areas consisting
of the following two steps.

The first step is using force balance computation on the XOY plane to select the best grasp for each
virtual point cloudO[qθh] from top to bottom, i.e., FXOY =MAX {FXOY {O[qyi |qθ ]∧O[qyi |qθ ] ∈O[qθ ]}}.
For every virtual viewpoint θ, force balance computation on the XOY plane is used to find the best
grasp, and yi(i=1,2,3...,n) stands for the ith grasp candidate allocated along the Y axis.

Next step is using force balance computation on the XOZ plane to compare the best grasp-
ing areas deduced from the first step from left to right, i.e., FXOZ =MAX {FXOZ {O[qym |qθh]}}, in

FIG. 23. Hand configuration for a virtual viewpoint.



095126-17 Lei, Chen, and Wisse AIP Advances 7, 095126 (2017)

FIG. 24. Results of force balance computation on the XOY plane for all virtual viewpoints. (a) best grasping areas for all
virtual viewpoints (b) partial enlarged image.

which θh (h = 1,2,3...,n) stands for the hth virtual viewpoint. O[qym |qθh] stands for the best grasp
candidate of the hth virtual viewpoint. Force balance computation on the XOZ plane is carried
out on the best grasping areas of every virtual viewpoint to choose the best grasp as final grasp
execution.

1. Force balance computation on the XOY plane for each virtual viewpoint

As explained previously, force balance computation is firstly carried out to determine the best
grasping areas for each virtual viewpoint. For a virtual viewpoint, the parameter (θ) corresponds to
a virtual point cloud O[qθ ]. The method in the step 6 of section II.A is used to find the best grasp
for the virtual point cloud O[qθ ] on the XOY plane. Using the above method for going through all
the virtual viewpoints, we can obtain all the best grasping areas for all virtual viewpoints. These best
grasping areas can construct a grasp vector G = (g1, g2...gn), and gnstand for the best grasp for the
nth virtual viewpoint, and n means the total number of virtual viewpoints. Best grasping areas for
all virtual viewpoints are shown as Figure 24. In the next subsection, the selection of the final grasp
from the grasp vector G = (g1, g2...gn) is illustrated.

2. Force balance computation on the XOZ plane for every virtual viewpoint

In order to choose the final grasp from the grasp vector G = (g1, g2...gn), the best grasping areas
for every virtual viewpoint are extracted shown as Figure 25 (a) and (b). The colorful points in the
black circle stand for all the grasps in the vector G = (g1, g2...gn). Figure 25 (c) shows an example
grasp gi(1 ≤ i ≤ n) in the vectorGj. The green points in Figure 25 (c) stand for points covered the
gi. To evaluate the grasp quality of gi, force balance computation on the XOZ plane can be used. In
order to compute force balance on the XOZ plane, the grasp gi is first projected to the XOY plane to

FIG. 25. Best grasping areas for every virtual viewpoint are extracted to do force balance computation on the XOZ plane. (a)
and (b) are the best grasping areas of all virtual viewpoints are extracted. Green points in (c) and (d) stand for an example of
the achieved grasping area.



095126-18 Lei, Chen, and Wisse AIP Advances 7, 095126 (2017)

FIG. 26. The difference between the left and the right contact region of the grasp is used to evaluate the grasp stability. (a)
and (b) extracted left and right contact regions. (c) the average Z values of the left and right contact region.

obtain the most left and most right contact area shown as the red points in Figure 25 (d). The left red
points is numbered as pl1, pl2,...,plm (m is the total number of left red points). The right red points is
numbered as pr1, pr2,...,prn (n is the total number of right red points).




(Xlk ≤ Xi ≤ Xl(k+1))| |(Xl(k+1) ≤ Xi ≤ Xlk)

(Xrk ≤ Xi ≤ Xr(k+1))| |(Xr(k+1) ≤ Xi ≤ Xrk)
(9)

Using equation 9, we can obtain the left and right contact area between the robot hand and the target
object. By so doing a point of the grasp gi is extracted when the X value of this point is located between
two adjacent red points as shown in Figure 25 (d). The extracted left and right contact regions between
the robot hand and the target object are shown as green points and purple points in Figure 26 (a)
and (b). Then average Z values of the left and right contact region are worked out shown as Z1 and
Z2 shown as Figure 26 (c). The difference (∆Z) between Z1 and Z2 is used to evaluate the stability
of this grasp (shown as equation (10)). It is obvious to find that large difference (∆Z) will lead to
rotation of the object around the Y axis, which may lead to grasp failure. Using above method goes
through all the grasp of vector G = (g1, g2...gn), we can obtain the force balance on the XOZ plane
for all grasp candidates of vector G, that is vector ∆Z = (∆Z1, ∆Z2...∆Zn). A line graph (Figure 27)
is drawn according to the vector ∆Z = (∆Z1, ∆Z2...∆Zn). We can predict that force balance on the
XOZ plane reaches the best when virtual viewpoint θi comes to θ4. Therefore, the fourth grasp g4 of
the vector G = (g1, g2...gn) is chosen as final grasp execution.

∆Z = |Z̄left − Z̄right | = |
1
m

m∑
i=1

zi −
1
n

n∑
i=1

zi | (10)

FIG. 27. Results of force balance computation on the XOZ plane for all best grasping areas of every virtual viewpoint.
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FIG. 28. Simulation results of “big” partial point cloud obtained using two 3D cameras.

F. Simulation for the “big” partial point cloud obtained by using two 3D sensors

In this subsection, simulations of using two 3D cameras to construct a “big” partial point cloud
are conducted to obtain suitable grasping areas. Inspired by the Baxter and PR2 robots, we set two
3D cameras in the simulation setup. The black and green cuboids in the first column of Figure 28
respectively stand for the hand camera and head camera. Objects used to conduct simulations can be
seen in the first column of Figure 28. Two single-view partial point cloud of the target object from
the two 3D cameras are used to construct a “big” partial point cloud. Force balance computation is
conducted on the “big” partial point cloud and the results of force balance computation are shown as
the second column and the third column of Figure 28.

Detailed results of force balance computation can be seen in Table III. It demonstrates that
appropriate force balances for all tested objects are obtained on both the XOY plane and the XOZ
plane. The fourth column of Figure 28 shows the final grasp returned from our grasping algorithm.

TABLE III. Final grasp configuration and the corresponding force balance coefficient for the “big” partial point cloud obtained
by using two 3D cameras.

Force balance 1 Force balance 2 Force balance 3 Force balance 4 Force balance 5

XOY XOZ XOY XOZ XOY XOZ XOY XOZ XOY XOZ
0.3576 0.0002 0.0618 0.0021 0.0034 0.0005 0.0003 0.0054 8.5e-6 0.0021



095126-20 Lei, Chen, and Wisse AIP Advances 7, 095126 (2017)

TABLE IV. Grasp computing time of using two 3D cameras to construct a “big” partial point cloud.

Unknown Objects Spray bottle Table tennis bracket Vase Shampoo bottle Oatmeal box

points 9801 1358 19583 7059 11214
Time (s) 1.068 0.515 1.653 0.994 1.198

The last column demonstrates successful grasp execution for all target unknown objects. The fourth
row of Table III shows the final grasps for all tested unknown objects. The third row of Table III shows
the simulation results of force balance computation on both the XOY plane and the XOZ plane. We
can find all the final grasps of the target unknown objects show expected force balance performances
on box the XOY plane and XOZ plane. Thus, it ensures the stability of final grasp execution for all
the tested unknown objects.

Table IV shows the grasp computing time of our grasping algorithm using a “big” partial point
cloud. Even though the point cloud is based on a large number of points, our grasping algorithm can
quickly process the “big” partial point cloud and output the final grasp within two seconds. This result
demonstrates a faster grasping speed compared to the other researchers that use multi cameras30 ore
multi views.31–33

To sum up, the simulation tests to predict the grasping effectiveness in realistic situations are
carried out using two 3D cameras. It demonstrated that the risk of grasping failures can be highly
reduced in comparison with the application of single-view partial point cloud. While the grasping
efficiency is maintained, our algorithm shows the improvements for robots to fast grasp unknown
objects under unpredictable environments.

VI. CONCLUSION

A novel algorithm of using principal component analysis for fast grasping unknown objects is
proposed. For a single-view partial point cloud, graspable candidates are allocated along the principal
axis from the top of the target object to the bottom of the target object. Force balance computation
on both the XOY plane and the XOZ plane ensures the stability of the final grasping action. To
illustrate the efficiency of our grasping algorithm, objects with different geometric shapes are used to
conduct simulations and experiments. Both simulation and experimental tests demonstrated favorable
performances of applying the algorithm. In addition, it shows that using our grasping algorithm the
speed of grasping is greater than other algorithms for steady grasping.

In order to facilitate this algorithm in practice, the grasping uncertainty is minimized by taking
the advantage of two cameras of the robot hardware. Virtual exploration on the “big” partial point
cloud is carried out to determine the final grasp with the best force balance. The simulation results
demonstrated that our grasping algorithm can quickly accomplish virtual exploration with steady
grasping result. Therefore, this research demonstrates practical significance for increasing grasping
speed and thus increasing robot efficiency under unpredictable environments.
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