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SUMMARY

With many operations at sea carried out by ships or other floating vessels, risks are in-
volved because of the waves and resulting motions of the ships. Examples are the landing
of helicopters on ships, transferring crew from a ship to a wind turbine, or working on the
deck of an anchor handling tug. It is common practice to assess the workability of a cer-
tain operation by statistical criteria. The rationale behind such criteria is in general that
the probability of some phenomenon (e.g. the vertical motion of a helicopter landing
deck) exceeding a certain threshold value has to be less than a chosen acceptable level.
Operability analysis usually qualify a given wave condition as workable or not workable
based on such statistical criteria, assuming that no information is available about when
critical wave induced events occur. In this thesis, the feasibility is investigated to obtain
a short term, ’deterministic’, i.e. time-specific prediction of the critical response: making
available a short term prediction of approaching waves and vessel response real time,
on-board, would give crew the opportunity to anticipate and chose the optimal moment
to perform a critical operation. The research is motivated by two possible advantages of
such a deterministic prediction:

1. It further enhances safety in conditions that were considered as workable from a
statistical point of view.

2. It possibly increases workability by pointing out windows of opportunity in condi-
tions that were considered as unworkable from a statistical point of view.

The chosen approach to obtain the mentioned deterministic prediction of waves and
induced motion response, is to use the ship’s navigation radar as a remote wave sensor.

The spatial domain that can be covered by a navigation radar to observe the sea sur-
face is of course limited: both its minimum and maximum range is limited. Besides it is
obvious that the wave observation will only be available in the past, and by no means
in the future. Therefore, the first chapter answers the theoretical question where in
the spatio-temporal domain waves can be accurately predicted, given a perfect spatio-
temporal observation of the waves. An indicator is proposed that specifies predictability
in space and time based on the spatio-temporal observation and based on a given wave
condition. It is confirmed that the group velocity of the waves is governing concerning
this question.
This so-called predictability indicator is considered for the 1 dimensional case in space
in chapter 2 and extended to 2D in chapter 3.

Chapter 3 addresses the issue that a wave observation obtained from a navigation
radar is by no means a ’perfect’ observation. An approach is proposed with the aim
to minimize the effect of imperfect observations by means of an assimilation proce-
dure referred to as dynamic averaging and evolution. Using synthetic radar data, it is
shown that the approach leads to an accuracy of wave predictions that is significantly
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x SUMMARY

higher than the accuracy of the synthesized observation and that for the purpose of de-
terministic prediction it outperforms the more traditional kind of assimilation used for
sea wave observation by radar, based on three-dimensional Fourier Transformation (3D
FFT) techniques. The imperfection of the observation is included in the synthetic data
by modelling the phenomenon known as ’shadowing’: waves block the view of the radar
behind them, resulting in missing data in the shadowed regions.

Chapter 4 mainly addresses the issue that the reflection of the transmitted electro-
magnetic pulse from the sea surface received by a radar antenna, the so-called back-
scatter, is more likely to be associated with the steepness of the waves, rather than their
elevation: a model is proposed to relate back-scatter to a linear representation of the
wave surface. Based on this model, two alternatives are considered to find the parame-
ters (being the component amplitudes) of this linear wave representation from the ob-
served back-scatter. One is based on a 2D FFT approach, preceded by a beam-wise in-
tegration of the back-scatter in order to relate it to the wave steepness instead of the
wave elevation. The other is based on solving the component amplitudes of the linear
wave representation more directly by solving a least squares problem that minimizes the
difference between the representation and the observation. Advantages of the latter ap-
proach (referred to LSQ) are that it is more suitable to deal with multi-modal sea states
with counter-propagating waves and it does not involve any difficulties related to the
fact that a navigation radar is a scanning sensor, meaning that each observation beam
(and not each recorded image) is recorded at a distinct time instant. Its main draw-back
is its high computational cost, making its real time application challenging. In order to
minimize the computational burden of the LSQ approach, it involves two stages: during
the first stage, the region(s) of high wave energy within the 2-dimensional wave num-
ber space is/are located by means of the much less computationally expensive 3D FFT
method. This enables the selection of a limited number of wave modes whose ampli-
tudes are to be solved using the expensive LSQ approach in the second stage.

In order to strengthen the proof of principle of the approach proposed in the preced-
ing chapters, it is applied to actual field data, reported on in chapter 5. During an off-
shore field campaign of a well-intervention vessel, both raw navigation radar data and
the corresponding vessel motion data was acquired and stored. No reliable determin-
istic wave data was recorded during the trials which is why a comparison of predicted
ship motions was aimed for. Therefore an additional analysis step is introduced aiming
to obtain a prediction of the ship motion response, based on the wave prediction de-
rived from the radar images. For this purpose, a simple linear frequency domain motion
transfer function approach is applied.
Results are shown of ship motion predictions obtained by applying the developed method-
ology to the recorded radar data and a comparison with the actual measurement of the
ship motions is presented. Correlations between these predicted and recorded ship mo-
tions reveal a very significant match. Obtained heave motion correlation based on time
traces of at least 1 hour amount to 0.77 - 0.86.
The main conclusion is that the developed approach has led to a convincing proof of
principle for deterministic ship motion prediction based on wave observation from nav-
igation radar.



SAMENVATTING

Voor veel operaties op zee vormen golven en de resulterende bewegingen van de betrok-
ken schepen een groot risico. Voorbeelden zijn het landen van helikopters op schepen,
het overzetten van bemanning van een schip naar een windturbine voor onderhoud of
het werk op een open dek van een ankerinstallatie schip. Het is gebruikelijk om de werk-
baarheid van dergelijk operaties te baseren op statistische criteria. Het idee achter der-
gelijke criteria is over het algemeen dat de kans dat een bepaald verschijnsel (bijv. de
verticale beweging van het helikopterdek) een gekozen kritische grens overschrijdt on-
der een aanvaardbaar geacht niveau is. Werkbaarheidsanalyses beoordelen een gege-
ven golftoestand als werkbaar of onwerkbaar, gebaseerd op dit soort statistische criteria,
aannemende dat geen informatie beschikbaar zal zijn over wanneer precies een kritisch
golfgerelateerd event zal optreden.

In dit proefschrift wordt de technische haalbaarheid onderzocht van een systeem
dat real-time aan boord een ’deterministische’, dwz tijdsspecifieke voorspelling van de
golven en het resulterende bewegingsgedrag voor de korte termijn voorspelt en op deze
manier de bemanning de gelegenheid geeft hierop te anticiperen. De motivatie voor de
ontwikkeling van een dergelijk voorspellingssyteem is tweeledig:

1. Het zal de risico’s verder verkleinen voor operaties waarbij die sowieso, ook vanuit
traditioneel statistisch oogpunt al acceptabel zijn.

2. Het maakt het eventueel mogelijk om de werkbaarheid te vergroten door in vanuit
statistisch oogpunt onwerkbare condities vooraf tijdsvensters aan te wijzen waar-
binnen een operatie toch veilig uitgevoerd kan worden.

De gekozen aanpak voor het realiseren van een dergelijk voorspellingssysteem is
door de scheepsnavigatieradar te gebruiken als een golfmeet sensor.

Het spatiale domein waarbinnen de navigatieradar het golfoppervlak kan waarne-
men is uiteraard beperkt: er zitten grenzen aan zowel de minimale als de maximale
range van de radar. Daarnaast is het evident dat een observatie alleen het verleden be-
treft en niet de toekomst. Derhalve is het eerste hoofdstuk gewijd aan de theoretische
vraag waar in het spatio-temporale domein golven accuraat voorspeld kunnen worden,
gegeven een spatio-temporale perfecte observatie van de golven. Een indicator is voor-
gesteld en onderzocht die de voorspelbaarheid in plaats en tijd specificeert, gebaseerd
op een gegeven observatie in plaats en tijd en een gegeven golfconditie. Dit deel van het
onderzoek bevestigt dat voor het beantwoorden van deze vraag de groepssnelheid van
de golven leidend is, en niet hun fase snelheid.
De zogenaamde voorspelbaarheidsindicator is onderzocht voor het geval van eendi-
mensionale golven in hoofdstukt 2 en uitgebreid naar de tweedimensionale situatie in
hoofdstuk 3.
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In hoofdstuk 3 wordt aandacht besteed aan het feit dat een golfobservatie door een
scheepsradar nooit een perfecte waarneming zal zijn. Er wordt een assimilatiemethode
voorgesteld die er op gericht is het effect van meetonnauwkeurigheden te minimalise-
ren. Met synthetische radar data wordt aangetoond dat de methode leidt tot een voor-
spellingsnauwkeurigheid die aanzienlijk hoger is dan de nauwkeurigheid van de gesyn-
thetiseerde observatie en tevens veel nauwkeuriger dan voorspellingen op basis van de
meer traditionele 3D FFT aanpak. De imperfectie in de synthetische radar data is af-
komstig van het modeleren van een verschijnsel wat ’shadowing’ wordt genoemd: gol-
ven blokkeren het zicht van de radar op het achterliggende zee oppervlak, resulterend in
missende data op die plekken.

Hoofdstuk 4 richt zich op de aanname dat de door de radar antenne ontvangen re-
flectie terugkaatsend van het golfoppervlak eerder gerelateerd is aan de in de kijk-richting
geprojecteerde steilheid van de golven dan aan de elevatie van de golven. Een model
wordt op deze aanname gebaseerd wat het ontvangen radar signaal relateert aan een li-
neaire representatie van de golven. Twee alternatieve methoden worden onderzocht om
de parameters van de lineaire golfrepresentatie (te weten de complexe amplitudes van
de harmonische golfcomponenten) op te lossen uit de gemeten radar data. De eerste
maakt gebruik van twee-dimensionale Fourier transformaties (2D FFT), vooraf gegaan
door een spectrale integratie van het ontvangen radar signaal per beam, ten einde het
signaal te relateren aan golfsteilheid in plaats van elevatie. Het alternatief betreft een
meer directe aanpak waarbij de amplitudes van de harmonische golfcomponenten ge-
vonden worden door het oplossen van een least-squares probleem wat het verschil mi-
nimaliseert tussen de observatie en de representatie ervan. Voordelen van deze tweede
aanpak (LSQ genoemd) zijn dat ze geschikter is in gecombineerde golfcondities waarbij
meerdere golfsystemen deels een tegengestelde voortplantingsrichting hebben en dat
op eenvoudigere wijze wordt omgegaan met het feit dat navigatieradar een scannende
sensor betreft, waarbij de data per omwenteling niet op één en het zelfde moment is
waargenomen, maar elke beam gerelateerd is aan zijn eigen observatie tijd. Het belang-
rijkste nadeel van de LSQ methode is dat ze rekenintensief is, hetgeen de real-time toe-
passing ervan zeer uitdagend maakt. Om de benodigde rekentijd te beperken bestaat de
LSQ methode uit twee fases: tijdens de eerste fase wordt d.m.v. een 3D FFT analyse in
kaart gebracht in welk deel van de twee-dimensionale golfgetal ruimte zich de golfcom-
ponenten bevinden die de meeste energie vertegenwoordigen . Op basis hiervan wordt
een beperkt aantal harmonische golfcomponenten gekozen waarvan de complexe am-
plitudes worden opgelost in de tweede fase. Simulaties met synthetische radar data illu-
streren de kenmerkende aspecten van de prestaties van de twee onderzochte methodes.

Met een overtuigender proof of principle als doel wordt hoofdstuk 5 gewijd aan het
toepassen van de ontwikkelde methodiek op werkelijke velddata. Tijdens een offshore
campagne van een onderhoudsschip werden zowel ruwe radar data als bijbehorende
data van een aan boord geïnstalleerde bewegingssensor geregistreerd. Aangezien geen
betrouwbare golfmeting in de buurt van het schip werd gedaan, richten de analyses in
hoofdstuk 5 zich op een vergelijk tussen de gemeten en voorspelde scheepsbewegingen.
Dit vereist een extra stap in de ontwikkelde methodiek die de bewegingsresponse van
het schip berekent op basis van de uit de radar data afgeleide golfvoorspelling. Hiervoor
is gebruik gemaakt van lineaire overdrachtsfuncties in het frequentie domein.
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De resultaten van voorspellingen van de scheepsbewegingen worden gepresenteerd
en vergeleken met gemeten scheepsbewegingen waarbij een zeer significante overeen-
komst tussen beiden wordt aangetoond. De correlatie tussen gemeten en voorspelde
heave beweging bijvoorbeeld, gebaseerd op tijdreeksen met een minimale lengte van 1
uur, bedraagt tussen de 0.77 en 0.86.

De algemene conclusie luidt dat de ontwikkelde methodiek heeft geleid tot een over-
tuigend proof of concept voor deterministische voorspelling van scheepsbewegingen op
basis van golfobservaties met navigatieradar.
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2 1. INTRODUCTION

1.1. OPERABILITY: STATISTICAL VS DETERMINISTIC APPROACH
A common factor involved with Maritime, Offshore and Naval operations and transport
is the surface waves on the ocean. More specifically, it’s the random and ’unpredictable’
nature of ocean waves and the resulting loads and motions of floating structures that
turns them into a potential thread or at least complicating factor for many activities at
sea. Examples of such activities are the landing of helicopters on floating landing plat-
forms, lifting operations with a floating crane, the transfer of people between, from or
to ships. For many such operations, a relatively short time interval can be identified as
being the actual ’bottle neck’-phase during which the highest risk occurs of e.g. a too
high-impact touch down of the helicopter on the deck, a collision of a lifted load with
the platform from or onto which it is lifted or put down.

It has been common practice for many years to assess operability of offshore oper-
ations, critical with regard to vessel motions in waves, by considering statistical proper-
ties like significant wave height, significant response amplitudes or most probable max-
imum values. These are typical properties related to the sea surface elevation described
as a stochastic process. Especially (but not exclusively) in cases where the response that
is considered to be limiting the operability is non-linear, operability analysis are done
offline: Beforehand, for different environmental conditions possibly occurring in a cer-
tain area and season, the response is computed and tested for the criteria which have
been laid down for the considered operation. A more real time and empirical type of de-
termining operability, yet still relying on stochastic grounds, is applied in e.g. helicopter
aviation. Here, the relevant response is measured real time and tested against predeter-
mined criteria. In countries around the North Sea, Civil Aviation Authorities (CAA) and
helicopter operators are operating under a strict regime; for “small” vessels helicopters
are only allowed to land and remain on deck if pitch and roll angles are less than 2 de-
grees and the ’average heave rate of the largest wave is less than 1 m/s for the last 20
minutes. (Zeilstra et al. [2015], CAA [2008]) Certified Heli-deck Monitoring Systems are
used that measure heli-deck motions and provide on-board real time information that
enables the landing officer to check if safety criteria are satisfied.

With the development of various ways to remotely observe the sea surface elevation
using sensors like LIDAR, incoherent pulse radar and coherent frequency modulated
wave (FMCW) radar, there has been recent interest in considering the (prediction of the)
surface elevation and resulting floating structure motions from a deterministic point of
view. This would allow for a different approach to operability: a glance into the future
of the deterministic vessel motions or related properties could enable optimal timing of
the critical phase of an operation or provide the rationale to adapt course or speed in
order to avoid a critical event. This way, instead of just assessing the operational risk,
decreasing it becomes possible. Moreover, indicating a window of opportunity or save
course/speed in advance by means of an on board prediction system, could enable safe
execution of an operation that would have to be considered not feasible without having
this prediction available, thus increasing operability.

A generalized approach to assess the potential of on-board prediction of workable
windows could be to assume workability for a given operation is related to a maximum
allowed instantaneous wave height (herewith for the sake of generalization neglecting
the fact that it is much more likely the response to the maximum wave than the max-
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imum wave itself that will govern the operability). Assuming the critical phase of the
operation under consideration has a duration of Dc , then one could consider the total
percentage of time that the wave height is part of a time window with a minimum length
Dc , during which the wave height does not exceed this maximum allowed wave height
as a ’deterministic measure’ for operability. Some statistical analysis of linear synthetic
wave traces lead to Table 1.1 which presents these percentages for a chosen allowed max-
imum wave height of 3.0 m, for three different wave conditions and 4 different window
lengths (Dc ).

sea state Hs Tp Dc =30 s Dc =60 s Dc =90 s Dc =120 s
3 1,0 5,1 100% 100% 100% 100%
4 2,0 7,1 99% 98% 96% 93%
5 3,4 9,2 52% 22% 7% 3%

Table 1.1: Percentage of time wave height is part of a window with minimum duration of Dc s, during which
the wave height does not exceed 3.0 m

As can be seen, a 100% workability is found in sea state 3, for which the most probable
maximum is well below the chosen 3 m maximum allowed wave height. In sea state 4
however, the general rule of thumb would yield 4 m for the most probable maximum
wave height, meaning that the chosen 3.0 m allowed maximum is likely to be exceeded,
possibly leading to considering this sea state as not workable. However, as can be seen,
a very large percentage of time, the wave height belongs to windows with the indicated
lengths Dc where this maximum is not exceeded and even in sea state 5 considerable
workable time windows occur. The percentages indicate that, being able to predict when
these workable windows occur sufficiently in advance, a considerable amount of time
can be considered as ’workable’.

1.2. RESEARCH INTO DETERMINISTIC PREDICTION OF SHIP MO-
TIONS USING REMOTE WAVE SENSING

It has been shown that in principle, for time scales in the order of tens of seconds, it is
feasible to accurately predict wave elevation and related behavior like vessel motions in
a deterministic way from a remote wave observation:
For long-crested waves Morris et al. [1998] and Edgar et al. [2000] reported on prediction
accuracy of wave elevation computed with a linear wave model. They showed the effect
of optimal truncation of input data for the initialization of the model and the effect of
the shape of the wave spectrum and water depth on the prediction horizon. Also using a
linear wave model for long-crested waves, Naaijen and Huijsmans [2008] considered the
prediction accuracy using experimental data. E.g. Trulsen and Stansberg [2001], Trulsen
[2005], Blondel et al. [2008] and Shemer et al. [2010] showed results using nonlinear wave
models with experimental data of bi-chromatic and irregular long-crested waves.
Successful prediction of wave elevation and wave induced ship motions in short crested
seas from experimental data was reported by Naaijen et al. [2009] and extended to the
prediction of wave drift forces by Naaijen and Huijsmans [2010]. For both studies the
two-dimensional representation of the wave field was obtained by correlating a rather
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limited number of input time traces of the wave elevation, recorded at a sparse set of
locations, as suggested by Zhang et al. [1999] and Janssen et al. [2001]. Clauss et al.
[2015] presented an approach on deterministic wave and ship motion prediction meant
to be initialized by spatial snap shots of the wave elevation obtained by radar. The work
focused on non-linearity in the wave evolution by using a Higher Order Spectral wave
model.

The above mentioned references all have in common that for the initialization of the
wave propagation, the wave elevation was exactly known in some spatial, temporal or
spatio-temporal observation domain, be it by numerically synthesizing this observation
or measuring it in a controlled environment. Measuring waves offshore, with no earth-
fixed anchor point or reference available however, is not a trivial task. The necessity of a
spatial observation domain that exceeds one single point, relevant since in nature waves
are subject to directional spreading, and the wish for remote wave sensing in order to
enable wave prediction, increases the challenge of wave observation in the field. At the
time the research for this thesis started, no evidence for a feasible phase resolved re-
mote wave observation method providing sufficient accuracy and spatial coverage was
reported. An attractive candidate was identified though: nautical radar, the pulse radar
operating in X-band that is part of every ship’s standard navigation equipment. Under
the condition that the sea surface roughness is sufficient, which is the case at sufficiently
high wind speed, the electro-magnetic (EM) waves in the X-band, their length being in
the range of 2.5-3.75 cm, interact with the sea surface according to a mechanism known
as Bragg-scattering. As a result of this, a radar return is received from the sea surface
and its modulation due to the longer gravity waves reveals valuable information about
these gravity waves. The oldest reference reporting on current and wave observation by
radar is Oudshoorn [1960]. It reports on current measuring by tracking of buoy reflectors
visible on subsequent photographs of the radar screen and on visual inspection of wave
directions from radar images near the entrance to the Rotterdam harbor and the estuar-
ies in the South-West of the Netherlands. Until the early eighties, several publications re-
port on visual wave observations from radar images. Hoogeboom and Rosenthal [1982]
and Ziemer et al. [1983] are among the first who apply digital processing to radar images
and show that the spectra of radar images, obtained by 2D FFT, are very similar to wave
spectra obtained from conventional directional wave buoy measurements. Young et al.
[1985] introduces the 3D FFT approach to radar images, which for many years has re-
mained the basis for most efforts into wave spectrum, current and water depth retrieval
from radar images.

Although the majority of publications using radar as a wave sensor has been focus-
ing the retrieval of statistical wave properties (and surface current and water depth), es-
pecially last decade, various research efforts aiming for deterministic wave sensing and
wave and wave induced motion prediction have been initiated:

In 2006, the joint industry program On-board Wave and Motion Estimator (OWME)
was initiated by the Maritime Research Institute in the Netherlands (MARIN). The aim of
the project was to develop a proof of concept for an on-board decision support system
that would be capable of predicting quiescent motion periods on board of stationary ves-
sels by using non-coherent nautical radar data as basis for a remote wave observation.
(Dannenberg et al. [2010])
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In 2009 the Dutch Ministery of Defense granted subsidy for the Small Business Inno-
vation Research (SBIR) project ’Short-term motion prediction of navy vessels in heavy
weather’, its aim being the development of a demonstrator for a short-term motion pre-
diction system, capable to predict the motion of a fast moving vessel (up to 25kn) in
heavy seas with sufficient accuracy to support critical operations such as helicopter launches
or landings. (Adegeest [2013])

Clauss et al. [2012] report on the German ’Loads on Ships in Seaway’ (LaSSe) project’s
result: a decision support system referred to as ’CASH’ (Computer Aided Ship Handling)
aims to detect incoming wave sequences possibly arousing critical ship motions in ad-
vance, thus providing operational support to avoid dangerous situations during both
transit and static operations.

In 2007, the Office of Naval Research launched a Multidisciplinary University Re-
search Initiative (MURI) titled ’Optimum Vessel Performance in Evolving Nonlinear Wave
Fields’. The aim of this 5-year, 5 M$ program was to develop a real time system for adap-
tive path optimization for minimizing wave induced vessel motions. Its technical ap-
proach was to use radar (both coherent and non-coherent were considered) for remote
wave field sensing, predict the wave field using a non-linear wave model, compute non-
linear ship motions and optimize the path to be followed. (Beck [2012]) One of the re-
search topics in the MURI program also addressed what can be considered to be the
main topic of this thesis: the coupling between radar images and a wave propagation
model. As reported by Aragh et al. [2008], the chosen approach was to use a variational
data assimilation scheme with a pseudo spectral non-linear wave model to obtain a wave
observation from the radar images which can be evolved to obtain the predicted wave
field. The project evolved towards the use of coherent and coherent on-receive1 radar
and resulted in the first reported evidence for fairly successful deterministic wave ob-
servation: Lyzenga et al. [2010] shows time traces of wave elevation obtained from a
coherent and a coherent-on-receive radar which both compare fairly well with in-situ
measurements.

Within the NATO Submarine Rescue System (NSRS) program, an initiative by the U.K.
Ministry of Defense, deterministic wave prediction for the safe deployment or recovery
of a rescue submarine from or onto a mother ship was addressed: Belmont et al. [2014]
also used surface wave observations from nautical pulse radar based on 3D FFT analysis,
but, as opposed to the above mentioned references, applied additional analysis to use
these observations to initialize a linear wave propagation model. No validation against
an independent reference observation is presented however: predictions are compared
to the surface elevation provided by the wave radar itself, thus merely possibly giving
evidence for the self-consistency of the combined sensor and analysis method, rather
than validating its actual accuracy.

In 2010, the US Navy Office of Naval Research (ONR) issued a call for proposals for
research and development of ’Environmental and Ship Motion Forecasting’ (ESMF) as
part of the so-called Enabling Capability ’Connectors and the Sea Base’. The Sea Base is

1’Coherent’ radar is capable of recording the phase shift between the transmitted and received EM signal, thus
enabling Doppler processing to retrieve the velocity in the look direction of the reflector, in this case being the
radial velocity component of the sea surface. With the ’coherent-on-receive’ concept, a low cost non-coherent
marine radar can be modified in order to enable Doppler processing. (See e.g. Smith et al. [2013])
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a concept, developed in order to enable “Operational Maneuver from the Sea (OMFTS),
the Marine Corps’ warfare doctrine where all logistics support will come from the sea,
rather than from supply points ashore.” Next to motion-mitigating ramp and crane sys-
tems currently in development by ONR, the 23 M$ ESMF program aims to mitigate de-
lays in material transfer caused by excessive ship motion. (ONR [2010])
Alford et al. [2015] and Connell et al. [2015], report on fairly successful deterministic
ship motion prediction achieved within the ESMF program, both applying coherent(-
on-receive) radar.

It can be concluded that successes have been reported in various areas involved in
the problem of deterministic wave and ship motion prediction, like e.g. the initialization
of wave models from synthetic wave/radar data or the fast computation of non-linear
wave fields and ship motions. However, despite the above mentioned research efforts,
until the start of the research leading to this thesis, no evidence for successful (i.e. sig-
nificantly accurate) prediction of deterministic wave elevation from real field data was
reported, not even for conditions/situations where a linear approximation of the waves
could be expected to be sufficient. This observation leads to the research objective as
formulated in the next section.

1.3. OBJECTIVE OF THE RESEARCH
The objective of this research is to develop an alternative method for the analysis of data
from non-coherent nautical radar, with the aim of using the extracted wave information
to initialize a wave propagation model. Essentially, a method specifically tailored for
deterministic (i.e. phase resolved) prediction is pursued which will be part of an overall
processing chain which computes a deterministic prediction of ship motions.
The emphasis of the research will be on what has been identified as the ’missing link’
or at least the link that lacks evidence from past efforts towards real time ship motion
prediction: the deterministic detection and prediction of waves from (non-coherent)
radar data. In order to limit the scope of the research and enable a focus on this crucial
link in the processing chain, some simplifying boundary conditions to the problem are
imposed:

• the used wave model will be linear

• the used ship motion response model will be linear

The main consequence of both simplifications will be that use can be made of fully es-
tablished approaches for wave propagation and ship motion modeling, at the cost of the
fact that successful application of the approach to be developed will be limited to rela-
tively benign sea states. However, apart from the mentioned desired research focus, this
limitation is justified by the intended application: since the deterministic ship motion
prediction approach to be developed is the key component of a decision support system
for offshore operations, it will have to suit the associated operational conditions, which
in many cases are benign.

Further more, the research will be restricted to the case that the radar antenna posi-
tion is fixed, which is the case for many offshore operations carried out with stationary
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vessels; however, the approach to be developed will preferably require merely some ob-
vious adaptations in order to be applied to the case of radar images taken from a ship
with forward speed. It should be noted though that the intended applications are sig-
nificantly different from the ones aimed for by e.g. (??), who investigated the option
of active automated control of fast crafts based on real time remote wave observations.
The latter application comes with rather different requirements to the wave observation,
mainly being higher accuracy, and a much smaller range.

1.4. OUTLINE OF THE THESIS
Chapter 2 will address wave model initialization by means of FFT and the spatio-temporal
domain within which waves can be predicted deterministically, based on a supposedly
perfect wave observation given in a temporal or spatial observation domain. Under-
standing predictability in this sense is essential to assess maximum achievable predic-
tion horizons for specific wave conditions and observation set-ups. The problem will
extensively be discussed for 1D waves under the assumption that the wave direction is
known.

Chapter 3 will consider the prediction of 2D waves (as opposed to 1D waves in Chap-
ter 2) and non-perfect observation data (as opposed to the (as good as) perfect observa-
tion data used in Chapter 2). Based on the 2D FFT approach for wave model initialization
(analogue to the 1D FFT used in chapter 2), this chapter will describe so-called dynamic
averaging and evolution. This is a procedure with the objective of:

1. enhancing accuracy of the prediction in case of non-perfect observations

2. enabling a continuous prediction, i.e. from 0 sec into the future, at the center of the
observation domain (which is in practice the radar antenna of the ship), despite
the fact that no (reliable) observation data is available in the near range around
this antenna (which is indeed the case for nautical radars on ships).

The theory of predictability presented for 1D in Chapter 2 will be extended to the 2D
situation in this chapter.
An approach is presented to detect the ’main’ wave direction in order to deal with the real
life situation where the main wave direction cannot considered to be known a priori, an
issue that was left unaddressed in chapter 2.

Chapter 2 and 3 address spatio-temporal predictability and an approach for contin-
uous data assimilation, assuming an actual (be it non-perfect) wave observation.
Chapter 4 specifically aims to pursue the question how to deal with the situation where
it is not an actual wave observation that is available, but merely an observation of some-
thing which is supposedly related to the wave observation, being the radar back scatter.
A simple physical model is provided for the back scatter which is obtained when observ-
ing ocean waves with nautical radar and and 2 different methods are presented to invert
radar images into wave elevation observations. The proposed methods are validated by
applying them to synthetically generated radar images.

In Chapter 5, the most successful method resulting from the investigation in chap-
ter 4 is applied to field data: Radar images recorded from a stationary vessel are used
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to predict the vessel’s motions which are compared to the recorded vessel motions for
validation.

Conclusions and recommendations will finally be presented in Chapter 6
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2.1. SUMMARY
We discuss the spatio-temporal domain, here referred to as the predictable zone, in
which waves can be predicted deterministically based on an observation in a limited
spatial or temporal domain. A key issue is whether the group or phase speed of the ob-
served waves governs the extent of the predictable zone. We have addressed this issue
again using linear wave theory on both computer-generated synthetic wave fields and
laboratory experimental observations. We find that the group speed adequately indi-
cates the predictable zone for forecasting horizons relevant for offshore and maritime
applications.
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2.2. INTRODUCTION
When applying deterministic prediction, it is crucial to be well aware of its limitations.
Concerning these limitations, the following distinction can be made:

1. Given an observation of the wave elevation in a limited domain in space or time,
the associated spatio-temporal zone where an accurate prediction can be made
is limited and will depend on the wave spectrum. This zone will be referred to as
the theoretical predictable zone and will be explained in detail hereafter. A good
understanding of this limitation is important to enable an efficient wave sensor
positioning with regard to the target location and an adequate interpretation of
predictions.

2. Depending on the applied wave model and the method of initialization using avail-
able observation data, the accuracy of the prediction itself will be limited.

The first issue has been raised in various publications. In Morris et al. [1998], Edgar
et al. [2000] and Naaijen and Huijsmans [2008] the phase speed was assumed to govern
the predictable zone. Abusedra and Belmont [2011] specifically explain why they believe
the phase speed governs the predictable zone. On the other hand Blondel et al. [2010a],
Naaijen and Huijsmans [2010], Dannenberg et al. [2010] and Blondel and Naaijen [2012]
use the group velocity as the governing velocity concerning predictability. More specific
explanations and observations that support this latter point of view can be found in Wu
[2004] and Naaijen et al. [2009].

The aim of this chapter is to address this topic again and provide further explanation
of predictability in space and time, supported by numerical simulations and experimen-
tal data, thus providing clarity on which wave speed governs predictability. In order to
do this, irregular long-crested waves are considered.

The second issue is not addressed in this chapter.
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2.3. APPROACH
An observation of the sea surface in a limited spatial, temporal or spatio-temporal do-
main is not sufficient to predict the sea surface elevation in the entire ocean for all time.
The limited domain where a prediction can be expected to correlate well with the true
surface elevation will be referred to here as the ’theoretical predictable zone’. The con-
cept of theoretical predictable zone will be explained in detail in the section on pre-
dictability, following a brief description of a linear, long-crested wave model and its ini-
tialization from an observed time trace of the surface elevation. The section on pre-
dictability employs the method of stationary phase to explain the relevant wave speed
governing the theoretical predictable zone. This theory will then be verified by means of
numerical simulations, using both synthetic and experimental data, using the following
approach:

Long-crested linear irregular waves with a given wave spectrum are synthesized in a
spatio-temporal domain (x, t ). A time trace of these synthesized waves at one specific
location x is then used to initialize a linear wave model as described in the next section.
With the wave model, the surface elevation is computed in the entire domain (x, t ) and
compared to the synthesized waves. The difference between the computed (predicted)
and the synthesized wave elevation will be quantified and referred to as the ’practical’
prediction error. Additionally, a similar procedure is followed using experimental data:
long-crested waves are generated in a basin, and measured by a number of probes. The
wave elevation at one probe is used to initialize the wave model which will then com-
pute the wave elevation at the remaining probes. At each of these remaining probes the
’practical’ prediction error can be determined. The theoretical predictable zone indi-
cates where in space and time an ’accurate’ prediction is possible. Comparing this to
the practical prediction error obtained from the actual simulations will provide insight
in the adequacy of the chosen definition of the theoretical predictability.
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2.4. A LINEAR MODEL FOR PROPAGATION OF LONG-CRESTED

WAVES
In the following it is assumed that all waves are long-crested and traveling in the same
direction and that this direction is known. Under these assumptions, prediction of the
wave elevation with a linear wave model is straightforward and has been addressed sev-
eral times (Morris et al. [1998], Trulsen and Stansberg [2001], Blondel et al. [2010b],
Clauss et al. [2009], Naaijen and Huijsmans [2008] to name a few). We will consider the
case where the measurement used as input for the prediction is a time trace of the sur-
face elevation observed at a fixed location. Then the linear wave model used can be
expressed as

η (x, t ) = Re

{∫ ∞

0
η̂ (ω)e i (k(ω)x−ωt )dω

}
(2.1)

where η is the wave elevation,ω is the angular frequency, η̂ (ω) is the Fourier transform of
the time series of surface elevation at a reference location, and k (ω) is the wavenumber
related to ω according to the linear dispersion relation.

A discrete form of this integral can be written

η (x, t ) = Re

{
M/2∑
m=0

η̃me i (km x−ωm t )

}
(2.2)

where the complex amplitudes η̃m can be obtained from a Discrete Fourier Transform
(DFT) of a time trace of duration T . Here ωm = 2πm

T , km is related to ωm through the
linear dispersion relation, and M is the number of samples in the time trace. Having ob-
tained the discrete complex amplitudes, they can be used in equation (2.2) to compute
the prediction for the surface elevation at any required location and time (x, t ).
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2.5. PREDICTABILITY

2.5.1. PREDICTABLE ZONE

The limited predictable zone afforded by equations (2.1) or (2.2) has been discussed be-
fore (e.g. Morris et al. [1998], Wu [2004], Naaijen and Huijsmans [2008], Blondel et al.
[2010a], Naaijen and Huijsmans [2010], Dannenberg et al. [2010], Blondel and Naaijen
[2012], Abusedra and Belmont [2011]). This theory is briefly revisited here, see figure 2.1.

Suppose the wave elevation is measured during the time interval from O to T at loca-
tion x0. T is the duration of the measurement. The question is where in space and time
this measurement is useful for prediction of the surface elevation. To address this ques-
tion, we first make the trivial observation that each individual term in equation (2.2) is a
sinusoidal oscillation uniform throughout space and time, with crests and troughs prop-
agating with the phase speed, but with no otherwise localizable information in space or
time. Localizable information appears through the superposition of terms in equation
(2.2), in the form of nonuniformities that we shall call wave packets and that propagate
with the group velocity. The ability to give a prediction is therefore a matter of predict-
ing the propagation of wave packets, which is given by classical ray theory, or which is
captured by the method of stationary phase applied to the integral in equation (2.1). A
wave packet within the interval OT, propagating with one particular group velocity, will
contribute to the wave elevation between sloped lines OA and TB whose slope equals
that particular group velocity, thus contributing to a prediction between t1a and t1b at
location x1. A second wave packet with a higher group velocity, equal to the slope of line
TA, can contribute to a prediction between t2a and t2b at x1. If the mentioned group ve-
locities are the highest and the lowest asssociated with the wave spectrum, this leads to
a triangular ’predictable’ zone (OTA) indicated in dark gray in figure 2.1.

In a real-time application of wave prediction, obviously the trace OT has to be ac-
quired before it can be processed. So in the ideal case, neglecting computational time,
only the part of OTA on the right-hand side of T can be considered as ’prediction’. The
remainder of OTA should be referred to as ’hindcast’. However, this distinction will not
be made in the rest of this paper.

Figure 2.1: Construction of predictable zone
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For any time t at any location x we can sum up the relative amount of energy in wave
packets arriving from the time interval OT at x0. The result of the summation can be
interpreted as a predictability indicator

P (x, t ) =

ωh∫
ωl

S (ω)dω

∞∫
0

S (ω)dω
(2.3)

where S(ω) is the energy density spectrum of the wave elevation. ωl and ωh are the low-
est and the highest possible frequencies, respectively, for which energy of wave pack-
ets could be propagated from OT at x0 to the target time and location x, t . Frequencies
ωl and ωh follow from the highest and lowest possible group velocities respectively for
which this is the case. These group velocities are given by

cg l =
x −x0

t −T
(2.4)

cg h = x −x0

t
(2.5)

and can be interpreted as follows: a wave packet within the interval OT at x0 with a group
velocity higher than cg l will have passed location x already at time t , while a wave packet
within the interval OT at x0 with a group velocity lower than cg h won’t have arrived at
location x yet at time t .

We have assumed that, since we are dealing with gravity waves, the group velocity is
a strictly decreasing function of frequency, and we have cg l > cg h . P depends on x and t
due to the dependence on cg l and cg h and the integration boundaries ωl and ωh .

The predictability indicator P proposed here is based on the wave spectrum S within
linear wave theory for a uniform and stationary medium, thus S itself is assumed to be
independent of x and t . In reality, these assumptions will not hold, and the spectrum
will evolve in space and time.

Following Wu [2004], 1−P can be interpreted as a prediction error indicator, quanti-
fying the relative amount of wave energy represented by the ’unpredictable’ frequencies.
(Wu [2004] uses

p
1−P , we use 1−P instead.)

A question that has been raised several times (Wu [2004], Naaijen et al. [2009], Abuse-
dra and Belmont [2011]) is whether the slope of the lines bounding the predictable zone
is given by the group or the phase speed. For gravity waves the phase speed exceeds
group speed, meaning that the prediction horizon (the furthest point in the future that
can be predicted) would reach further into the future for group speed. An answer to this
question can be found from the method of stationary phase as indicated by Abusedra
and Belmont [2011] and briefly discussed in the next paragraph, or it can be found from
simulations as those presented in section 2.6.

Figure 2.2 shows contour lines with intervals of 0.2 of 1−P based on the wave spec-
trum observed during one of the basin experiments carried out for this study and assum-
ing the group velocity determines ωl and ωh . The slopes of the contour lines depend on
the contour level for 1−P . This can be explained by considering figure 2.1 again, where it
was assumed that there exist a fastest and a slowest propagation speed. It was assumed
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that the line TA bounds the dark gray area with 100% predictability (where 1−P = 0).
On the right-hand side of TA fast propagating wave packets originating from x0 for t > T
will contribute to the surface elevation, and 1−P > 0. On the right-hand side of the line
TB, even the slowest propagating wave packets from x0 for t > T will contribute to the
surface elevation, and 1−P = 1. Therefore a fixed value of 1−P between 0 and 1 should
result in a contour line with a slope between those of lines TA and TB. Defining the the-
oretical predictable zone as 1−P being smaller than a threshold value, it is obvious that
the size and shape of the predictable zone will depend on the chosen threshold value. As
shown below, contour plots of the practical prediction error from simulations show the
same behavior, the contour plots of the practical prediction error show different slopes
for different contour levels.

Similar simulations as described in section 2.6.2 have been carried out by Abusedra
and Belmont [2011], who examine plots in the (x, t )-plane indicating whether at a cer-
tain point (x, t ), the maximum error obtained from 1000 realizations is less than a given
value. Observing the slopes of the area where this is the case, as done in Abusedra and
Belmont [2011], is equivalent to observing the slopes of contour lines of the practical
prediction error Er r in equation (2.11) at a certain contour level. The slopes that will be
found to be bounding the zone where the practical prediction error Er r (or the equiva-
lent practical error as defined by Abusedra and Belmont [2011]) is less than a threshold
value will depend on the threshold, as is the case for the slopes of contour lines of the
theoretical prediction error indicator 1−P as explained above. This is confirmed by sim-
ulation results described in section 2.6, figure 2.6(b).

Further insight about the relevance of group or phase speed is provided by consid-
ering a cross section of a contour plot instead of the slope of the contours, see figure
2.3. Schematic theoretical prediction zones, defined as domains within which 1−P is
less than an arbitrary threshold value, are drawn for the case of group and phase speed,
indicated by OT Ag and OT Ap respectively. Plotting the practical prediction error found
from simulations together with the two versions of the theoretical error indicator 1−P
and examining a cross section at the position indicated by the dashed line would reveal
clearly whether it is 1−P based on group or phase speed that better matches the ob-
tained simulation results for the practical prediction error. Such figures are presented in
section 2.6.

2.5.2. METHOD OF STATIONARY PHASE
The method of stationary phase provides an approximate evaluation of the integral in
equation (2.1) and suggests an answer to the question raised here. An explanation of the
method related to linear dispersive waves can be found in e.g. Murray [1974], and was
also given by Abusedra and Belmont [2011] and is summarized here.

Equation (2.1) describes the surface elevationη(x, t ) as a superposition of linear modes
with wave numbers k and frequencies ω related by the linear dispersion relation ω =
ω(k). Assuming a fixed ratio x/t and examining the properties of the wave field as x and
t become large, it is convenient to rewrite the complex exponential in equation (2.1) as

e i (kx−ωt ) = e i t (kx/t−ω) = e i tχ(k,x/t ) (2.6)

where χ is the so-called phase function. For large values of t , this exponential represents
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Figure 2.2: Contour plot of theoretical predictability 1−P (x, t ) in spatio-temporal domain.

Figure 2.3: Schematic 1−P (x, t ) in spatio-temporal domain for group and phase speed.
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rapid oscillations that are such that in the integration in equation (2.1), the positive and
negative parts effectively cancel each other out, except in the vicinity of k0 andω0, where
the derivative of the phase function χ with respect to k is zero

∂χ

∂k
(k0, x/t ) = 0 (2.7)

and consequently we have the group velocity

cg (k0) ≡ ∂ω

∂k
(k0) = x/t (2.8)

The meaning of this is that in the limiting case of large x and t , for an observer moving
at constant velocity x/t , only wave packets whose group velocity equals x/t will signif-
icantly contribute to equations (2.1) or (2.2). For a point (x1, t ) in figure 2.1 to be pre-
dictable, based on an observation at location x0 between O and T, all lines that can be
drawn through the point, with slopes corresponding to energetic frequencies in the wave
spectrum, should cross the observation OT. This results in a predictable subset of points
(x, t ) indicated by the dark gray triangle OTA in figure 2.1, with the slopes of lines OA and
TA being equal to the group velocities associated with the highest and lowest frequency,
respectively, at which significant energy is present in the observation.

With cg l and cg h in equation (2.4) and (2.5) being group velocities, the associated
frequencies are related by

cg l =
(

1

2
+ kl h

sinh(2kl h)

)
ωl

kl
(2.9)

and

cg h =
(

1

2
+ khh

sinh(2khh)

)
ωh

kh
(2.10)

where h is the water depth.
As rightfully pointed out by Abusedra and Belmont [2011], it is not obvious that for

any point in the triangle OTA, the magnitudes of x and t are sufficiently ’large’. In order
to assess the required magnitudes of x and t for the above analysis to be valid, we will
resort to numerical simulations and laboratory experiments.
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2.6. SIMULATIONS

2.6.1. PROCEDURE
We have employed Monte–Carlo simulations to verify the theory on predictability using
the model outlined in section 2.4: a DFT of a time trace of length T of the wave elevation
observed at one specific location, which could be the first probe for simulations of the
experimental data, is used according to equation (2.2) to make predictions of the wave
elevation at other locations. The result can be compared with synthetic waves and with
measurements from experiments.

Figure 2.4 shows a sample time trace of predicted and true wave elevation in a time
window around t = t1a and at x = x1 as indicated in figure 2.1. The prediction is based
on the observed time trace OT at x = x0. As can be seen, the agreement is less good
at the left-hand side of the figure, as expected, since at earlier times we are outside the
predictable zone where 1−P is increasing.
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Figure 2.4: Predicted and true wave elevation around left boundary of predictable zone.

We define the mismatch between prediction η and true wave elevation ηm as

Er r (x, t ) =
〈(
η (x, t )−ηm (x, t )

)2
〉

2σ2 (2.11)

where η is the predicted surface elevation, ηm is the measured or synthesized surface
elevation, σ2 is the variance of the measured or synthesized wave elevation averaged
over all probes, 〈·〉 denotes ensemble average.

We notice that Er r = 0.5 in the case that we predict a flat surface η(x, t ) = 0. Also
Er r = 1 if the prediction η has the same variance but is otherwise uncorrelated with the
measured or synthesized wave elevation ηm . For values Er r ≥ 0.5 we may consider the
prediction as useless.

For experimental data we achieve an ’ensemble’ by using partly overlapping time
traces, separated by ∆t , see figure 2.5. The interval ∆t was chosen to optimise conver-
gence of the practical prediction error, this is discussed in appendix A.
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Figure 2.5: Obtaining multiple realizations by partially overlapping time traces.

From a time trace of length T at the reference location x0, we obtain a prediction
which is expected to be accurate within the theoretical predictable zone. The theoretical
predictable zone, which is the domain where 1−P is less than a chosen threshold, can
be determined based on group or phase speed. In case of phase speed, the propagation
velocities in equations (2.4) and (2.5) would have to be substituted by the phase speeds

cpl =
ωl

kl
(2.12)

and

cph = ωh

kh
(2.13)

Both options are indicated by the triangles in figure 2.3. The practical prediction er-
ror Er r is computed for large x−x0, such that both of these theoretical prediction zones
become clearly discernible. This in order to observe whether the practical prediction
error Er r confirms the assumed theoretical predictable zone based on group or phase
speed.

2.6.2. SIMULATIONS USING SYNTHETIC WAVES DATA

SYNTHETIZATION OF WAVE DATA

A linear wave model has been used to synthesize the wave data. In order to avoid any
systematic coincidence between the frequencies used in the generation of the synthetic
waves and the ones that are used in its analysis by means of a DFT, generation has been
carried out using non-equidistantly spaced frequencies: the waves are composed of N
components, each representing an equal amount of wave energy. N = 2000 has been
used in this study. Consequently the discrete frequencies are spaced closer together near
the peak of the spectrum and further apart at the low and high frequency ends of the
spectrum. Each realization of the wave field is generated using a different set of random
phase angles, thus assuring independence between the different realizations.
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RESULTS

Figure 2.6 shows contour plots of both the theoretical prediction error indicator, 1−P
based on group velocity, and the practical prediction error as defined in equation (2.11)
from simulations averaged over an ensemble of size 5000. The wave spectrum S was
chosen identical with the spectrum observed during one of the basin experiments men-
tioned in the next section, a JONSWAP spectrum with a significant wave height Hs =
0.024 m and mean zero crossing period T2 = 0.87 s. Although the result for Er r has con-
verged, as shown in the appendix in figure A.1, still an apparently random variation of the
error Er r is observed. For this reason Er r (x, t ) has been smoothed by a two dimensional
filter in space and time before constructing the contour lines of Er r in figure 2.6(b).
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Figure 2.6: Contour plots of theoretical error indicator 1−P based on group velocity and practical prediction
error Er r from simulations with synthetic wave data.

Although 1−P is not directly comparable to Er r , we do observe that the two regions
outlined in figures 2.6(a) and 2.6(b) are both qualitatively and quantitatively quite simi-
lar.

Figure 2.7 shows the practical prediction error Er r against time at x = 30 m, which is
a cross-section in time at the location indicated by the dashed horizontal line in figure
2.6(b). Figure 2.7 also contains the theoretical prediction error indicator 1−P for the
location indicated by the dashed lines in figure 2.6. Two versions of 1−P are shown,
based on the group and phase speeds.

It is seen that 1−P based on group velocity quite accurately matches the practical
prediction error Er r while poor agreement is found for 1 − P based on phase speed.
The simulation results clearly indicate that it is the group velocity that governs the pre-
dictable zone.

2.6.3. SIMULATIONS USING EXPERIMENTAL WAVE DATA

EXPERIMENTS

We employ data of experiments in two different towing tanks, at the Ship Hydromechan-
ics Department at Delft University of Technology, The Netherlands (TUD), and at Ecole
Centrale Nantes, France (ECN). During these experiments, irregular waves were gener-



2

22
2. LIMITS TO THE EXTENT OF THE SPATIO-TEMPORAL DOMAIN FOR DETERMINISTIC WAVE

PREDICTION

0 50 100 T 150 200 250 300
0

1

E
rr

 [-
]

 

 

0

1

1-
P

 [-
]

Err
1-P based on group speed
1-P based on phase speed

Figure 2.7: Prediction error against time at x = 30 m.

ated and measured by an array of probes. Using the measurement at the first probe
positioned closest to the wave maker, the amplitudes and phase angles of the terms in
equation (2.2) are obtained by DFT. Using the same formula enables calculation of the
wave elevation at the remaining probe locations at any required moment in time, which
then can be compared to the measurements at these probes, enabling computation of
the practical prediction error Er r . Figure 2.8 schematically depicts the experimental set
up with the numbered dots indicating the probes. The positions of the probes, which are
not exactly equidistant, are listed in table 2.1. The water depth during the experiments
amounts to 2.13 and 2.81 m for the TUD and the ECN towing tank respectively.

Figure 2.8: Layout of probes in basin. The wavemaker (WM) is to the left.

probe nr position from WM flap, TUD position from WM flap, ECN
[-] [m] [m]
1 41.02 18.48
2 53.42 24.43
3 65.92 30.26
4 79.35 36.11
5 90.06 42.29
6 102.33 48.23
7 115.03 54.11
8 127.50 60.29
9 - 66.14

Table 2.1: Probe positions for TU Delft and EC Nantes experiments.

Characteristics for the experiments are listed in table 2.2 where Hs is the significant
wave height, Tp is the peak period, T2 is the mean zero crossing period, and ε is average
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wave steepness
ε=p

2kpσ (2.14)

where kp is the peak wave number of the spectrum, and σ is the standard deviation of
the surface elevation.

facility Hs Tp T2 ε

[-] [m] [s] [s] [-]
TUD 0.025 0.923 0.885 0.040
ECN 0.031 2.008 1.523 0.011

Table 2.2: Summary of characteristics of wave conditions.

Both experiments are supposed to correspond to a JONSWAP wave spectrum having
a peakedness factor γ= 3.3.

The data in table 2.2 corresponds to the values observed at the first probe, i.e. the
reference probe that was used as input for the predictions. The main difference between
the two experiments is the order of magnitude of the probe distances: for the experi-
ments carried out at TUD this is in the order of 10 peak wavelengths, while for the ones
conducted at ECN, the probes are positioned approximately 1 peak wavelength apart.

RESULTS

The error indicator 1−P and the actual error Er r from simulations with the TUD data are
shown in figure 2.9. As was done for the simulations with synthetic data, cross sections
of the contours of Er r and 1−P , i.e. time traces of the practical prediction error Er r
(left y-axis) and the theoretical error indicator 1−P (right y-axis), based on group and
phase speeds, are presented for probes 1 (observation probe), 2, 4 and 6. The bottom
figure represents the observation probe (probe 1) where an observation of length 128 s
was used as input for prediction at the remaining probes.

In order to make a visual inspection of the match between Er r and 1−P easier, the
left y-axis corresponding to Er r has been scaled such that the minimum and maximum
values of Er r correspond to values of 0 and 1 for 1−P , respectively. This axis scaling is
justified by the fact that 1−P only gives a qualitative indication of the expected predic-
tion. 1−P has been determined according to a numerical computation of equation (2.3)
using the spectrum S observed at the observation probe. The limiting value for Er r is
not exactly equal to 1 at each probe due to the fact that a slightly different variance σ2

was observed at different probes in the basin.
It is seen that the curves representing Er r and 1−P based on group velocity coincide

well, while the assumption of phase speed governing the predictable domain is quite
inadequate. From these figures we conclude that, at least for the propagation distances
employed in the TUD experiment, the boundaries of the predictable zone are governed
by the group velocity.

Recall that the method of stationary phase requires the propagation time and dis-
tance to be large. As indicated in figure 2.9 the smallest propagation distance, the dis-
tance from probe 1 to probe 2, amounts to 9.3 peak wave lengths. The presented results
using data from the TUD experiment do not indicate what conclusions could be drawn
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Figure 2.9: Prediction error and error indicator from TUD data.
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for the minimum required propagation time and distance for the method of stationary
phase to be useful.

In order to conclude about smaller propagation distances, data from the ECN ex-
periment is considered. Here the distances between the probes, see table 2.1, amounts
to approximately one peak wavelength only. Results are shown in figure 2.10. Again,
the bottom figure represents the observation probe (probe 1). An observation of length
76.8 s was used. Also for these rather limited propagation distances, it is seen that the
theoretical prediction error indicator based on group velocity shows significantly better
agreement with the practical prediction error than the theoretical prediction error indi-
cator based on phase speed.
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2.7. PREDICTION HORIZON AND OPTIMAL PREDICTION DISTANCE

IN PRACTICAL APPLICATION OF DETERMINISTIC WAVE PRE-
DICTION

In order to relate the above results to the practical application of deterministic wave
prediction in maritime and offshore operations, we will here estimate the minimum re-
quired distance between observation site and prediction site for typical prediction hori-
zons of 30–120 seconds (Dannenberg et al. [2010]). Therefore, the contour plots of the-
oretical predictability in figure 2.6 are considered again. On full-scale this figure corre-
sponds to a JONSWAP spectrum with a peak period of 5.0 seconds. The ideal distance
between observation and prediction site would be such that:

• it is large enough for the prediction site to be inside the predictable zone implied
by the observation, and allowing a prediction some time into the future,

• it is not so large that the accumulation of errors ruins the prediction.

In order to identify these ideal distances, vertical cross sections of the contour plots
of the theoretical predictability in figure 2.6(a) are considered: for a given required pre-
diction horizon, the ideal distance between observation and prediction is defined here
as the distance from the observation to the closest point where 1−P is smaller than a
chosen threshold value of 0.01. Figure 2.11(a) shows a vertical cross-section of the con-
tour plot of 1−P for a value of t that corresponds to a 30 s forecast on full-scale. The
above defined ideal distance is indicated by the circle in figure 2.11(a). The distance x is
normalized by the peak wavelength in this figure. The observation site is at x = 0. Figure
2.11(b) shows the ideal observation distance for a range of forecast horizons between
0 and 180 s. As can be seen, a forecast horizon of 30 seconds requires an observation
distance between 4 and 5 peak wavelengths, for which it has been shown from the ex-
periments in figure 2.10 that it is indeed the group velocity that governs the predictable
zone.
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2.8. CONCLUSION
We have shown that for deterministic wave prediction applied on propagation distances
and forecasting horizons of practical interest to offshore operations, the predictable zone
is governed by the group velocity of the waves.
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3.1. SUMMARY
This chapter presents a scenario that integrates both the initialization of a 2D wave model
using an observation domain similar to what can be provided by nautical radars on ships
(a 2D ring-shaped observation domain), and the propagation of the waves itself, into a
continuously updated procedure.

This integration, which is achieved by a dynamic averaging-evolution procedure will
be shown to provide:

1. a prediction accuracy which is significantly higher than the accuracy of the obser-
vation itself.

2. the ability to provide a continuous prediction, i.e. from 0 sec (which will be called
’now-cast’) into the future, at the center of the observation domain (which is in
practice the radar antenna of the ship), despite the fact that no (reliable) observa-
tion data is available in the near range around this antenna (which is indeed the
case for nautical radars on ships).

The method uses multiple subsequent observations of the waves (radar images) in a
different way than the more conventional 3D FFT and will be shown to be superior to 3D
FFT for deterministic prediction purposes.

Verification will be done using synthetic radar images, taking into account only one
of the modulation mechanisms known to play a role in radar observation of ocean waves,
being so-called shadowing.

The presented scenario is not able to deal with counter propagating waves. A sepa-
rate step is proposed to detect the main propagation direction of the waves which needs
to be known.

(Chapter 4 will present the model that can cope with counter propagating wave sys-
tems and does take into account a more realistic interpretation of radar data.)

The theory on predictability presented in Chapter 2 will be extended to the 2D situa-
tion.
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3.2. INTRODUCTION

3.2.1. A BRIEF HISTORY OF WAVE OBSERVATION AND PREDICTION USING

NON-COHERENT NAUTICAL RADAR

Starting with Hoogeboom and Rosenthal [1982] and Ziemer et al. [1983], who both ap-
plied 2D FFT analysis to reveal qualitative wave phenomena from radar images and
Young et al. [1985], who extended to 3D FFT, enabling detection of surface current, the
vast majority of the efforts so far to use the nautical radar as a wave sensor has been
based on spectral methods dedicated to retrieve statistical wave parameters such as
mean wave period, wave direction, non-phase-resolved directional wave spectra and
properties that could be derived from the surface elevation like water depth and sur-
face current speed and direction.
The magnitude of the back scatter from the ocean surface received by a radar antenna
is not only related to the physical properties of this wave surface. It is affected by many
factors such as transmitted power, (logarithmic) signal amplification and mean sea sur-
face Radar Cross Section (RCS), whose precise effects in practice cannot be quantified.
Therefor, the question how the absolute magnitude of the (analyzed) radar signal relates
to the absolute wave elevation cannot easily be answered. For the detection of wave
directions and lengths, as well as water depth and surface current, this question is not
necessarily relevant. This is different for problems where we are interested in e.g. wave
energy density spectra or actual deterministic surface elevation. So regardless whether
it is a statistical or a deterministic wave observation that is pursued, when using non-
coherent radar, which only provides the magnitude of the back scatter, there is the re-
maining challenge of the scaling problem: how does the actual magnitude of the radar
signal relate to the wave elevation. This problem as been addressed extensively. Ziemer
and Rosenthal [1987] proposed the use of a parametrized modulation transfer function
to derive surface elevation from radar images. Borge et al. [1999] propose an approxi-
mate relation for the significant wave height with two parameters that have to be cali-
brated. Both references make use of the so-called signal-to-noise ratio (SNR), being the
ratio between those components resulting from the 3D FFT that represent actual waves
and those that are considered as noise. This kind of approach for the scaling problem is
also applied by Borge et al. [2004], and Dannenberg et al. [2010] in their pursuit for the
measurement of deterministic surface elevation detection from radar images. A different
approach was presented by Dankert and Rosenthal [2004] who introduced an empirical
scaling method not requiring any reference observation: assuming that the back scat-
ter intensity is related to the local incidence angle of the EM wave with the sea surface,
this relation was mapped onto the time-averaged back scatter values which, under the
same assumption, would be related to the local averaged incidence angle, the latter be-
ing known by the distance from the antenna and antenna height above the surface. The
question how to reveal the scaling between back scatter data from non-coherent radar
and wave height has been subject to many more publications, see e,g, Buckley and Aler
[1998], Gangeskar [2014] and Wijaya and van Groesen [2014].

Based on the 3D FFT approach by Young et al. [1985], various efforts were done to
retrieve the actual surface elevation deterministically, all basically applying the follow-
ing procedure (which will be explained in detail in the proceeding of this chapter): a 3D



3

34 3. DYNAMIC AVERAGING AND EVOLUTION

FFT is applied to a sequence of radar images after which components that do not map
to (a certain band width around) the dispersion relation are considered as non-wave-
related noise. This will be referred to as ’dispersion filtering’. For the inverse transfor-
mation, only those components that sufficiently satisfy the dispersion relation are used,
thus eliminating noise.
Borge et al. [2004], Dankert and Rosenthal [2004] and Hilmer and Thornhill [2014] used
this approach to address the possibility for wave observation, while Dannenberg et al.
[2010], Adegeest [2013] and Clauss et al. [2012] extended to prediction. The predictions
in these references were obtained by simply applying an appropriate phase shift to the
wave components resulting from the 3D FFT and dispersion filtering, corresponding to
the space shift and time delay associated with the prediction. However, as was shown by
Naaijen and Blondel [2012] and Blondel and Naaijen [2012], and as will be shown again
in this chapter, the predicting capabilities of a linear wave model based on a 3D FFT
analysis is rather limited: the accuracy of a phase resolved wave prediction, (i.e. the evo-
lution into future time outside the spatial area of observation) decreases very fast with
increasing evolution time/distance and it should be concluded that coefficients of a lin-
ear wave representation obtained by 3D FFT do not suit the purpose of deterministic
evolution/prediction. For this, and possibly additional reasons, no (statistically signifi-
cant) evidence for successful deterministic wave or ship motion prediction was reported
in these references.
The fact that the accuracy of a sea surface observation based on 3D FFT and dispersion
filtering could be significant is shown by Hilmer and Thornhill [2014] who report on ex-
periments during which buoy measurements are compared to deterministic reconstruc-
tion of wave elevation obtained from navigation radar.
Belmont et al. [2014] used surface wave observations from incoherent radar, also based
on 3D FFT analysis. Instead of directly propagating the wave components resulting from
the 3D FFT analysis, they added an additional analysis step: the 3D FFT approach was
used to construct a wave observation as mentioned above. Then they applied an addi-
tional analysis to use these observations to initialize a linear wave propagation model
in a similar way as was done by Zhang et al. [1999], Janssen et al. [2001] and Naaijen
et al. [2009], meaning that a series of time traces at a limited number of observation
points was used to solve the coefficients of a linear wave field representation existing of
a limited number of directional wave components. As an alternative, the same reference
reports on a 2 -FFT based approach, using the full spatial coverage offered by wave radar
instead of selecting a limited number of point observations. No validation against an
independent reference observation is presented however: predictions are compared to
the surface elevation provided by the wave radar itself, thus merely possibly giving evi-
dence for the self-consistency of the method, rather than validating its actual accuracy.
Besides, the reported results themselves are unconvincing.
Another attempt, for deterministic wave observation, not relying on the classical 3D
FFT approach, was reported by Aragh et al. [2008]. They used a variational assimila-
tion scheme to match the obtained radar data with a pseudo spectral wave model and
used the above mentioned approach by Dankert and Rosenthal [2004] to solve the scal-
ing issue.

As mentioned in chapter 1 however, despite the mentioned research efforts, until the
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start of the research leading to this thesis, no evidence for successful (i.e. significantly
accurate) deterministic observation nor prediction of wave elevation (and resulting ship
motions) from non-coherent radar was reported.

3.2.2. WAVE MODEL INITIALIZATION USING INACCURATE OBSERVATION DATA:
DATA ASSIMILATION

As a first step towards a successful deterministic ship motion prediction approach, this
chapter will isolate the following aspect of the overall problem:
How to initialize a linear wave propagation model using a highly inaccurate remote ob-
servation of the sea surface?
A key feature to the proposed answer to this question is a continuous assimilation be-
tween observations and model. Data assimilation is a procedure which “attempts to
combine a physics-based model with observational data to provide an improved esti-
mate of the state of a system that is better than what could be obtained by just using
either observations or numerical models alone.” (Aragh [2007]) As a matter of fact, the
mentioned combined 3D FFT - dispersion filtering approach for sea surface reconstruc-
tion is in essence also an assimilation method which acknowledges the fact that the
observed data does not accurately represent the surface elevation. Aragh et al. [2008]
uses a different assimilation scheme where a cost function, which is defined as the dif-
ference between radar observations and predictions from a nonlinear wave evolution
model over a limited time interval, is minimized. The limited time interval is referred to
as the assimilation interval. An adjoint method is used to calculate the gradient of the
cost function.
Paalvast et al. [2014] applied a direct approach to feed simulated wave observations by
radar into a 3D panel model using a frequency domain Green’s function, allowing for di-
rect integration with a computation of vessel exciting forces and resulting motions. Also
here, the physics of the wave propagation behavior introduced by the Green’s function,
results in an improved observed and evolved wave field, whose accuracy is higher than
the actual observation.

The main aim of this chapter is to present an alternative assimilation scenario that
integrates both the initialization and the propagation into a continuously updated pro-
cedure, as opposed to the above mentioned assimilation approaches which all use a lim-
ited assimilation interval.
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3.3. APPROACH

3.3.1. OBSERVATION DATA AND DOMAIN
Verification of the assimilation scenario to be proposed is done by using synthetically
generated input data. This input data will resemble some aspects of actual radar images
of the sea surface, nevertheless ignoring various aspects of actual nautical radar data:
From the synthetic sea surface elevation, synthetic radar-like images are constructed
by only taking into account the geometric effect of so-called shadowing, which is the
phenomenon that parts of the sea are invisible for the radar since the electro-magnetic
(EM) radar waves are being blocked by other waves. In work by Plant and Farquharson
[2012], investigated radar data do not support the hypothesis that geometric shadowing
plays a significant role at low-grazing-angle. Indications are found that shadowing rather
occurs as so-called partial shadowing. Yet in this study we have chosen to model the
effect of shadowing by complete geometric shadowing.
Hydrodynamic and tilt modulation effects and other hardware specific properties that
determine the real radar images, are ignored. Hydrodynamic modulation describes the
modulation of the energy of the (wind induced) ripples by the interaction with the longer
gravity waves and tilt modulation of the received signal occurs due to the changes of the
effective incidence angle of the EM waves along the long wave slope. Apart from the fact
that these effects are irrelevant for demonstrating the main contribution of the averag-
ing and evolution scenario as presented in this chapter, this choice can be justified by the
fact that hydrodynamic modulation is believed to be negligible in various publications
considering observation of waves by radar at low grazing angles (Dankert and Rosenthal
[2004],Borge et al. [2004], Seemann et al. [1997], Lee et al. [1995]). Besides, tilt modula-
tion is an effect that can be inverted without significant loss of accuracy as will be shown
in chapter 4.
Aspects introduced by specific sensor-related properties of a radar system, such as the
mean contribution to the radar cross section, signal amplification and range depen-
dency of the received signal are neglected here. These are in fact effects associated with
the scaling issue, mentioned in previous section. One of the consequences of the chosen
linear approximation for the wave modeling, is that the modeled evolution of the waves
is independent of their amplitude. This allows us to propagate the received radar signal
as is, postponing the scaling problem to a later stage of the processing chain. The scal-
ing issue can therefor be ignored for the time being which is why it is not modeled in the
synthetic radar data either. The scaling issue will be addressed in chapter 5.
In fact for the presented method, the source of the imperfections of the observed data is
not relevant here: it does not affect its relevance nor applicability.

Common nautical x-band radars are pulse radars, alternately transmitting an EM
pulse and receiving the return, unable to transmit and receive simultaneously. The short
time between transmitting the pulse and the start of the receiver results in a near an-
tenna blind range for which no return signal is available. Besides this absolute lack of
data within this blind range, received near range back scatter can be too high to distin-
guish wave related effects and/or suffers from interaction effects with the ship’s hull. For
this reason, the range from which no actual useful data is available can be larger than the
blind range. In general a ring shaped observation can be assumed to be available with
an inner radius within which no (useful) data is available and an outer radius which is
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determined by the pulse repetition frequency PRF of the radar. Consequently, a propaga-
tion model has to evolve the information inwards from the ring shaped observation area
towards the radar position. Using a ring shaped observation domain surrounding the
target location enables prediction in both uni- and multi-modal seas with wind waves
and swell(s) coming from possibly substantially different directions. Specific attention
will be paid to the question how to treat multi-modal seas in the proposed scenario.

3.3.2. TECHNICAL APPROACH
The approach followed in this chapter is as follows: sets of subsequent images of short
crested waves are created by synthesizing the waves and adding the geometric shadow-
ing effect. Using only a ring-shaped spatial domain (that corresponds to the range ca-
pabilities of nautical X-band radar) a first attempt is made to reconstruct the shadowed
parts in this ring-shaped observation domain for each created image separately. Thus
reconstructed ring-shaped observations of the surface elevation are used as input for
the dynamic averaging-evolution scenario to be described. Surface elevation obtained
after this averaging-evolution scenario can be compared to the originally synthesized
wave elevation in both the ring-shaped observation domain and the near antenna area
(including the target location, i.e. the antenna position) surrounded by the ring-shaped
observation.

The chapter is arranged according to the successive steps in the approach of the in-
vestigations: section 3.4 will describe in detail how the synthetic radar images are cre-
ated that will be used to verify the proposed method. Section 3.5, will cover the dynamic
averaging-evolution scenario (DAES) which aims to reconstruct/predict the wave eleva-
tion at the position of the radar using the synthesized radar images. Separate subsections
will be dedicated to the following aspects:

1. 2 different methods that aim to ’repair’, i.e. reconstruct the shadowed parts of
each of the separate observed images before using them as input of the averaging-
evolution scenario.

2. evolution of single observations, including a description of how to deal with multi
modal sea states

3. dynamic averaging of multiple observations

4. evolution and prediction at the radar location

In order to make a comparison between the proposed DAES and more conventional 3D-
FFT approach, the theory of 3D-FFT and dispersion filtering will be addressed in section
3.6. Section 3.7 will present the investigated case studies and the corresponding simula-
tion results. A discussion of the results and conclusive remarks will be given in section
3.8.
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3.4. SYNTHETIC DATA
In the first subsection we describe the construction of the synthetic surface elevation
maps. These will be used to generate the synthetic radar images as described in the
following subsection, and later to quantify the quality of the simulated surface elevation.

3.4.1. SYNTHETIC SURFACE ELEVATION
The synthetization of the surface elevation will be based on a chosen 2D wave spectrum
S (ω,θ), defined by a 1D spectrum Sη (ω) and a directional spreading function D (θ):

S (ω,θ) = Sη (ω) ·D (θ) (3.1)

In the actual simulations addressed in section 3.7, the well known Jonswap spec-
tral shape is used for Sη, further specified in paragraph 3.7.1 The directional spreading
function with exponent s and main propagation direction θmai n as a function of wave
propagation direction θ is given by:

D (θ) =βcos2s (θ−θmai n) for |θ−θmai n | <π/2, = 0 else (3.2)

with normalization β such that
∫

D (θ)dθ = 1

To synthesize a sea, we use a linear superposition of N regular wave components
each having a distinct frequency and propagation direction. Equally spaced discrete fre-
quenciesωn are chosen by dividing the frequency band of the 1D spectrum (Sη (ω)) con-
taining significant energy by the number of desired components N . In order to assure
that the sea is ergodic (Jefferys [1987]), it is required that only a single direction corre-
sponds to each frequency.

A propagation direction is assigned to each wave component by randomly drawing
from the directional spreading function D (θ) which is used as a probability density func-
tion, as proposed by Goda [2010].

With N the number of wave components used, kn the wave vector corresponding to
the frequency ωn , and with φn phases that are randomly chosen with uniform distribu-
tion in [−π,π], the sea is then given at polar spatial co-ordinates by:

η
(
ϕ,r, t

)=∑
n

√
2Sη (ωn)dωcos

(
knr cos

(
ϕ

)
cos(θn)+knr sin

(
ϕ

)
sin(θn)−ωn t +φn

) (3.3)

where
√

2S (ωn)dω is the amplitude of each wave component and Sη is the wave spec-
trum.

Circular snapshots of the surface elevation with a radius of 2025 m are synthesized
at a polar spatial grid with radial resolution 7.5 m and angular resolution 0.5 deg and
at times which are multiples of d t = 2sec, corresponding to a realistic radar antenna
rotation time.

3.4.2. SYNTHETIC IMAGES
With ’synthetic images’ we refer to the synthesized radar observation of the surface el-
evation. When the sea will be scanned by the radar, parts of it will be hidden for the



3.4. SYNTHETIC DATA

3

39

electro-magnetic radar waves since they are blocked by other waves. In general, be-
sides shadowing, tilt (slope of the sea surface relative to the look-direction of the radar)
is considered to be an important modulation mechanism for wave observations by radar
(Dankert and Rosenthal [2004], Borge et al. [2004]). (As Dankert and Rosenthal [2004], we
neglect so-called hydromechanic modulation as described by e.g. Alpers et al. [1981].)
However, in this paper we will consider only shadowing: our main aim is to show the
capability of the proposed averaging-evolution scenario to cope with imperfect obser-
vation data for which the shadowing is most relevant. The question how the wave eleva-
tion can be obtained if it is the tilt that is supposed to be observed has been addressed by
e.g. Dankert and Rosenthal [2004] and will be covered in chapter 4. It is briefly explained
here how the shadowing effect is applied to the synthetic wave data which is according
to Borge et al. [2004]:

With the radar at the origin x = (0,0), we take a ray in a specific direction, starting
at the radar position towards the outer boundary, using r to indicate the distance from
the radar. We write s (r ) for the elevation along the ray, and Λ for the height of the radar.
The straight line to the radar from a point (r, s (r )) at the sea surface at position r is given
for ρ < r by z = `

(
ρ,r

) = s (r )+ a
(
r −ρ)

with a = (Λ− s (r ))/r . The point (r, s (r )) at the
sea surface is visible if `

(
ρ,r

) > s
(
ρ
)

for all ρ < r , i.e. if minρ
(
`

(
ρ,r

)− s (r )
) > 0. At the

boundary of such intervals the value is zero, and so the visible and invisible intervals are
characterized by si g n minρ

(
`

(
ρ,r

)− s (r )
) = 0 and = −1 respectively. This leads to the

definition of the characteristic visibility function as

χ (r ) = 1+ si g n

[
Mi n
ρ

{
Γ

(
r −ρ)

Γ
(
ρ
)(
`

(
ρ,r

)− s (r )
)}]

(3.4)

where Γ is the Heaviside function, equal to one for positive arguments and zero for neg-
ative arguments. The visibility function equals 0 and 1 in invisible and visible intervals
respectively. The shadowed wave ray, as seen by the radar, is then given by

sshad (r ) = s (r )χ (r ) (3.5)

which defines the spatial shadow operator along the chosen ray. In figure 3.1 an example
is visualized in which the visibility function χ is zero between r1 and r2

Repeating this process on rays through the radar for each direction, leads to the shad-
owed sea, Sshad (x) .

The synthetic image is obtained by removing information in a circular area around
the radar position with a radius of r0. Then the ring-shaped synthetic image is described
by

I (x) = Sshad (x) ·Γ (|x|− r0) (3.6)
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Figure 3.1: Shadowing: the visibility function is 0 between r1 and r2
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3.5. DYNAMIC AVERAGING-EVOLUTION SCENARIO
This section presents the dynamic averaging-evolution scenario (DAES) which aims to
provide (a prediction of) the surface elevation at the radar position using the disturbed
(by shadowing) ring-shaped observation of the sea given by the synthetic images de-
scribed in section 3.4.2. The first subsection deals with two simple ways to improve the
quality of each individual synthetic image by attempting to fill in the gaps caused by the
shadowing. These reconstructed surface elevation maps are then used in the dynamic
averaging method to prepare updates that will be assimilated in a dynamic evolution or
used as initial state for a prediction.

3.5.1. SPATIAL RECONSTRUCTION FROM SYNTHETIC IMAGES
In the following, two methods will be presented for a first attempt to reconstruct the
synthetic images in regions where the observation is shadowed.

1. vertical shifting

The image data is interpolated to a Cartesian spatial grid (x) and shifted vertically
such that the spatial average (over the observation area) vanishes. With a scaling
factor α to obtain the correct variance, this will produce the reconstructions R0

n as

R1
n (x) =α (In (x)−mean(In)) (3.7)

As mentioned in the introduction, it is assumed that the true variance of the waves
(or significant wave height) is known (from either additional analysis and/or a ref-
erence measurement) so α can be determined.

2. horizontal shifting

The second proposed method is described as

R2
n (x) =α(

In (x)−E
(
In ,−Tp /2

))
(3.8)

Here E
(
In ,−Tp /2

)
evolves the sea, again first interpolated to Cartesian co-ordinates,

backwards in time over half of the peak period, for which in multi-modal seas we
will take the peak period of the wind waves. The evolution itself indicated here
with the operator E will be explained in detail in the next subsection. Note that
for harmonic long crested waves with period Tp of which negative elevations have
been set to zero elevation (to roughly resemble the effect of shadowing), recon-
struction R2 leads to the exactly correct harmonic wave.

3.5.2. EVOLUTION OF A SINGLE IMAGE
Let the reconstructed synthetic image, denoted by R, defined at Cartesian co-ordinates
x and obtained by either reconstruction method described in the previous subsection,
be given by its 2D Fourier description as:

R (x) =Σka (k)e i k·x (3.9)
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where k is the 2D wave vector. Coefficients a can be obtained by applying a 2D FFT on
R. It should be noted that in the following the coefficient a representing the average is
taken 0, i.e. a (k = (0,0)) = 0.
For given direction vector e, define the forward evolution in the direction of e as:

Ee (R, t ) =Σka (k)exp i
[
k ·x− si g n (k ·e)Ω (k) t

]
(3.10)

where k = |k| andΩ (k) =√
g k tanh(kh) is the exact dispersion above depth h.

Changing the minus-sign into a plus-sign in the phase factor, the backward propa-
gating evolution in direction −e is obtained.
For uni-modal sea states, such as wind waves or swell, there will be a main propagation
direction epr op , the direction of propagation of the most energetic waves. Other waves in
such wave fields will usually propagate in nearby directions, less than π/2 different from
the main direction. In such cases we can take epr op as the direction to define the evo-
lution. Actually, any direction from the half space of wave vectors can be chosen which
has positive inner product with all wave modes that contain significant energy.

In multi-modal sea states, in most practical cases a combination of wind waves and
swell, the situation will be different if the waves may a wider directional spreading than
the π/2 difference from the main direction that was assumed for the uni-modal sea
states. When the wave directions are spread out over more than a half space, one evo-
lution direction so that all waves are propagated correctly cannot be found anymore. If
only low-energy waves are outside a half space, one may still use a forward propagat-
ing evolution operator. Then an optimal choice for the evolution direction is the one
for which the maximum portion of the total wave energy is evolved correctly. A way to
identify this optimal direction is discussed now. Practically, we use a second (or more)
’control’ image, and look for which vector e the evolution of the first image according to
equation (3.10) corresponds with the control image as good as possible in least-square
norm; this then determines the main evolution direction (MED). Explicitly, given two
successive images of the wave field, say R1 and R2 a small time d t apart, we compare R2

with the forward evolution in the direction e of R1 and minimize the difference over all
directions e, defining the MED as the optimal value:

eMED ∈ min
e

|Ee (R1)−R2| . (3.11)

Instead of minimizing a norm of the difference, one can also take the maximum of
the correlation. For fields with limited directional spreading there will be a broad interval
of optimal directions, in which case the average of the optimal directions can be chosen.
For cases of multi modal sea states where the main propagation direction of the different
modes deviate very much there is likely to be one distinct optimal MED. It is possible that
with this method using the MED, a significant amount of wave energy is evolved in the
wrong direction, depending on how much the main directions of the different modes
differ. In the following we will use a simplified notation when evolving over one time
step d t , namely

E (R) = EeMED (R,d t ) (3.12)
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Evolving over several time steps, say l ·d t , is then written as a power (succession of
evolutions) E l .

3.5.3. UPDATES FROM DYNAMIC AVERAGING
The reconstruction process described in subsection 3.5.1 gives approximate surface ele-
vation maps Rn . The study cases will show that these reconstructions are still rather poor
when compared to the exact synthetic surface elevation maps. In order to reduce the ef-
fect of this reconstruction error and thereby to improve the accuracy of the elevation
prediction near the radar, we propose an averaging procedure in physical space. This
procedure will involve three successive reconstructed images and the simulated wave
field at the instant of the last image.
To set notation, the simulated sea (the simulation process will be detailed below) at time
t will be referred to as ζ (x, t ); at discrete times l ·d t we write ζl (x) = ζ (x, l ·d t ).

The simulation is initialized by taking for the first Nt time steps the Nt successive
reconstructed images:

ζl (x) = Rl (x) for l = 1,2, ..., Nt (3.13)

For the sake of notation simplicity, Nt will be taken 3 in the following. It should be
noted though that Nt can be any positive integer. For the continuation, updates will be
used to assimilate the evolution. We describe the update process at a certain time t0,
which is a multiple of 3d t . Available at that time are the simulated wave field at t0, to
be denoted by ζ0 (x) = ζ (x,t0), the reconstructed image at time t0, and 2 previous im-
ages at times t−1 = t0 −d t , t−2 = t0 −2d t ; these reconstructed images will be denoted by
R0,−1,−2 respectively. Since these images R have substantial inaccuracies despite the re-
construction, it can be expected that an averaging procedure improves the quality. This
averaging has to be done in a dynamic way to compensate for the fact that the images
are available at different instants in time. Therefore the images R−1 and R−2 have to be
evolved over one, respectively two, time steps d t . This produces E (R−1) and E 2(R−2),
each representing, just as R0, an approximation of the wave field at time t0. But the in-
formation will be different, partly complementary, because the information at different
time steps shows somewhat different parts of the wave because of the shadowing effect.
Therefore an arithmetic mean will contain more information, and may also reduce inci-
dental errors and noise. The ongoing simulation ζ0 also gives an approximation of the
sea at t0, and additionally in the near-radar area where R does not contain information.
Choosing a weight factor w for the ongoing simulation ζ0, we take as update at time t0

the following combination:

U0 (x) =
(
(1−w) · 1

3
(R0 +E (R−1)+E 2 (R−2))+w ·ζ0

)(
1−χr ad

)+ζ0χr ad (3.14)

where χr ad (x) is the characteristic function (or a smoothened version) of the near-radar
area: it indicates the near radar zone where no waves can be observed by χr ad = 1 and
the remaining spatial domain by χr ad = 0(possibly with a smooth transition over some
chosen distance from 0 to 1). As mentioned, the number of reconstructed images to be
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taken in the update, Nt , can be more or less than 3. (Moreover each of them could be
given a different weight which has not been investigated.) The weight factor w has been
chosen 0.5 resulting in equal weight for the ongoing simulation ζ and newly observed
images R in the averaging.

3.5.4. EVOLUTION, PREDICTION AND PREDICTABILITY

EVOLUTION AND PREDICTION

The updates defined above will be used as assimilation data to continue the simulation.
In detail, after the construction of an update, say U3m , the simulation continues with this
wave field as initial elevation field for three consecutive time steps:

ζ3m+ j = E j (U3m) for j = 1,2,3. (3.15)

This defines the full evolution in time steps d t , which is repeatedly fed with new
information from the reconstructed images through the updates. This scenario can run
in real time in pace with incoming real radar images.
A prediction can be defined, starting at any time t0 = l ·d t for a certain time interval
ahead, without using any information of synthetic images later than t0. The prediction,
say for a future time of t ∈ [t0, t0 +Π], where Π is the prediction horizon, is then defined
as:

P (t0,τ) = E (U0 (t0) ,τ) for τ ∈ [0,Π] . (3.16)

PREDICTABILITY

It has been shown in chapter 2 that the prediction horizon is mainly governed by the
group velocity of the observed waves and the size of the observation domain. The theory
of predictability, covered for 1D waves in chapter 2, will be extended to the 2D case now.
In case of a nautical radar, the spatial observation domain will be the ring-shaped area,
previously indicated byχr ad = 0. As a consequence, the domain in which we can expect a
reliable prediction is limited in space and time. See figure 3.2 which depicts a simplified
(still 1D) schematic representation of the spatio-temporal observation and prediction
domain. The radar position is indicated by B. OB can be considered as the latest available
update, say U0. OA is the observable zone where χr ad = 0. The update in this zone
originates from the averaging of R0, R0−1, R0−2 and the evolution of the previous update
E 3 (U0−3). AB is the near radar zone where χr ad = 1 for which the update U0 originates
from E 3 (U0−3) only. The horizontal axis refers to the prediction time τ.

When initializing the above described DAES scenario, no simulation result ζ is avail-
able yet so no information can be provided in AB. With the slope of the line through A
being equal to the group speed of the shortest waves observed, using the observation at
OA only, no good prediction can be expected at target location B before τ= τ1 since the
(shorter) waves observed in OA at τ= 0 haven’t arrived yet at location B. The predictable
zone in this case is indicated by the dark gray area. The sloped line originating from O
has a slope equal to the group speed of the longest waves observed. For predictions at
location B beyond time τ2 inaccuracies will be introduced mainly by the fact that the
longer waves observed at τ = 0 have passed location B already. DAES as presented in
this paper uses the evolution of the past observations and assimilates it with updated
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Figure 3.2: predictable zone
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observations. As a result of this, after the scenario has been run for a while, evolved wave
elevation will be available at AB. Together with the evolution of the wave elevation at OA
and an updated observation at OA, the predictable zone will eventually be increased as
indicated by the light gray area.
As an upper bound for the prediction horizonΠ at B, τ2 can be used: After τ2 the predic-
tion accuracy will certainly drop since the longer waves arriving at B were not part of the
observation, as was shown in chapter 2. However, specifying the accuracy that is desired
for the prediction, may reduce the prediction horizon Π compared to the above sug-
gested upper bound: the prediction accuracy possibly decreases with increasing propa-
gation distance/time, also before τ2.

Knowing the energy density spectrum of the waves, it is possible to define a quali-
tative indicator for the predictability and consequently the upper bound for the predic-
tion horizon, based on the observation in a specified spatial domain. In chapter 2 this
was done for a temporal observation domain. Analogously, a spatial observation can be
used. Such an indication is very useful from a practical point of view: it can e.g. define
the workability for a certain offshore operation if a minimum prediction horizon is re-
quired. In case of a spatial observation at OA and prediction available from the past up
to location B, for any chosen prediction time τ, a sloped line can be constructed from O
to (τ,B). For τ > τ2, waves with a group speed larger than the slope of the constructed
sloped line are occuring, which have not been observed at OB. From the spectrum the
relative amount of energy represented by these waves can be determined. This way the
so-called predictability indicator P.I . for the antenna location can be constructed yield-
ing a similar formulation as was given by equation (2.3):

P.I . (τ) =

∞∫
ωl (τ)

S (ω)dω

∞∫
0

S (ω)dω
(3.17)

Please note that the predictability indicator was referred to as P in chapter 2 and will
be labeled P.I . from here in order to distinguish from P as defined in equation 3.16.

where ωl is the wave frequency corresponding to a group velocity which is equal to
the steepness of the line connecting O to (τ,B).

Assuming a linear representation of a 2D field, which can simply be interpreted as a
summation of many 1D wave fields, each having a different propagation direction, the
extension of P.I . to the 2-D situation can be based on the same interpretation:

P.I . (τ) =

2π∫
0

∞∫
ω1(τ)

S (ω,θ)dωdθ

2π∫
0

∞∫
0

S (ω,θ)dωdθ

(3.18)

It has to be noted though that this straightforward extension towards to the 2D sit-
uation only holds for a circular observation domain: only then, the distance from the
edge to the center, projected in the considered propagation direction, will be equal for
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each possible propagation direction, and as a consequence ωl (τ) will not depend on
propagation direction θ.
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3.6. 3DFFT
As mentioned in the introduction, the majority of the attempts to retrieve the actual
deterministic wave surface elevation from radar images reported in literature, has been
based on 3D FFT techniques. This section addresses some relevant aspects of the 3D FFT
approach. In order to demonstrate the superiority of the proposed DAES method, results
of simulations using 3D FFT approach will also be presented in the following sections.
Let the discrete 3D Fourier transform of a series of Nt input images Ri j l , whose discrete
points are defined at a Cartesian grid of points with intermediate distances d x and d y
and time intervals d t , be given by:

F
(
kmn ,ωq

)= Nx−1∑
i=0

Ny−1∑
j=0

Nt−1∑
l=0

R
(
xi j , tl

)
e−i

(
kmn xi j −ωq tl

)
(3.19)

where:
kmn =

(
m 2π

Nx d x ,n 2π
Ny d y

)
, ωq = q 2π

Nt d t

with m ∈ [−Nx /2+1, Nx /2] and n ∈ [−Ny /2+1, Ny /2], q ∈ [−Nt /2+1, Nt /2]
Since R is a real-valued function, the following relation yields:

F
(
kmn ,ωq

)= F∗ (−kmn ,−ωq
)= F∗ (

k−m−n ,ω−q
)

(3.20)

where ∗ indicates the complex conjugate
The amplitude spectrum, one-sided with respect to the ω -axis can be defined as:

a
(
kmn ,ωq

)= pN−1
x N−1

y N−1
t F

(
kmn ,ωq

)
(3.21)

where:
q ∈ [0, Nt

2 ], p = 2∀q ∈
[

1, Nt
2 −1

]
, p = 1∀q ∈

{
0, Nt

2

}
Using these amplitudes, which are not only a function of k but also of ω, as opposed to
the 2D inverse FFT given by equation (3.9), the loss-less inversion back to R yields:

Ri nv (x, t ) = Re

 Nx /2∑
m=−Nx/2+1

Ny /2∑
n=−Ny/2+1

Nt /2∑
q=0

a
(
kmn ,ωq

)
e i(kmn x−ωq t)

 (3.22)

The argument of vector k equals the phase speed direction.
Suppose that t0 indicates the time associated with the last image in the series of Nt

input images, Ri nv (x, t ) will be an exact reconstruction of each input image R at any time
used in the 3D FFT, i.e. any time t = t0 − l ·d t , with l ∈ [0, Nt −1]).
The surface elevation obtained this way is not evolving. This means that in order to
obtain the wave elevation at the location of the antenna (which is surrounded by a zone
where there is no observation available) and/or future times (t > t0), some manipulation
is required regarding equation (3.22). Maintaining the analogy with the described DAES
we again use P to refer to the predicted wave elevation. In order to have an evolving wave
field in accordance with the linear dispersion relation, we replace the explicit ω by the
implicitΩ(k) to obtain prediction P :
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P (t0,τ) = Re

 Nx/2∑
m=−Nx/2+1

Ny/2∑
n=−Ny/2+1

Nt/2∑
q=0

a
(
kmn ,ωq

)
e i (kmn x−Ω(kmn )(Nt ·d t+τ))

 (3.23)

with a still being the coefficients resulting from a 3D FFT on Nt images, the last of which
taken at t0. An actual prediction (τ> 0) can be obtained using equation (3.23), while due
to the periodicity in space and time involved with equation (3.22), the wave elevation
obtained from (3.22) when substituting a value t > Nt d t would merely yield a repetition
of the used observations.
The 3DFFT approach is often used in combination with a dispersion filter f in order to
decrease any effects and disturbance that do not relate to the ocean waves: only coeffi-
cients a are used for the reconstruction/prediction for which k andω sufficiently closely
satisfy the dispersion relation:

P (t0,τ) = Re

 Nx/2∑
m=−Nx/2+1

Ny/2∑
n=−Ny/2+1

Nt/2∑
q=0

f (k,ω) a
(
kmn ,ωq

)
e i (kmn x−Ω(kmn )(Nt ·d t+τ))

 (3.24)

E.g. Aragh et al. [2008] propose the use of a Gaussian filter for f and Borge et al. [2004]
applies a Dirac Delta function. A simple ’triangular’ filter is used here:

f (ω,k) = max

(
0,

(
1− |ω−Ω (k)|

dω ·w f

))
w f

−1 (3.25)

in which ω is again the frequency associated with the 3D FFT, dω is the frequency res-
olution in the 3D FFT (dω = 2π

Nt d t ) and w f is a parameter defining the filter width. This
way, f is defined such that its sum overω equals 1 and its value tapers from its maximum
value at ω equals (or is nearest to) Ω, to zero at ω deviates w f steps of dω from Ω. See
figure 3.3 in which f is plotted for different w f values for the case of Ω = 0.9 (left) and
Ω= 0.84 (right), for dω= 0.1.

In the following, results for the prediction of the wave elevation obtained from the
3D FFT approach according to equation 3.24 will be presented using w f = 1: some vari-
ations concerning the filter width w f have been tried resulting in w = 1 to be optimal.
This prediction will be used to compare with the result obtained from DAES given by
equation 2.3. During the simulation, this 3D FFT process will be repeated using subse-
quent and overlapping series of images, without any averaging. Whether the wave eleva-
tion at the radar position will be available at τ= 0, will therefore depend on the number
of images Nt used for the 3D FFT: for small Nt , a significant portion of the total wave
energy represented by the shorter wave components will not be able to cover distance
AB in figure 3.2 within time Nt d t .
For all simulations using 3D FFT, Nt = 64 is used.

Concerning the predictability, discussed in paragraph 3.5.4, there are two additional
aspects that need to be considered with regard to the application of P.I . in the described
3D FFT approach:
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Figure 3.3: dispersion filter f for different filter widths w f

1. No averaging with evolutions from the past is used: contrary to the DAES approach
this 3D FFT approach represents an assimilation with a limited assimilation inter-
val. As a result of this, the near antenna zone (r < r0) indicated in figure 3.2 by AB
will not contain information at any given time t0. For that reason, we have to take
into account that not all (shorter) wave components observed in OA have arrived
at B before τ1. This can be expressed in the predictability indicator P.I . by adapting
equation (3.18) as follows:

P.I . (τ) =

2π∫
0

ωh (τ)∫
ωl (τ)

S (ω,θ)dωdθ

2π∫
0

∞∫
0

S (ω,θ)dωdθ

(3.26)

where ωh is the wave frequency corresponding to a group velocity which is equal
to the steepness of the line connecting A to (τ,B).

2. It should be bared in mind that in case of a 3D FFT, the obtained wave component
amplitudes a are not only based on the observation OA, but also on the Nt −1 pre-
ceding observations. This makes the definition of the predictability less straight-
forward. In an attempt to take into account the fact that for certain τ the pre-
dictability should not be considered to be dependent on the observation OA at
τ = 0 only, but also on previous observations, a combined predictability indica-
tor P.I .av is defined as the average of all P.I .’s associated with each of the Nt used
observations:

P.I .av (τ) = 1

Nt

Nt−1∑
n=0

P.I . (τ+n ·d t ) (3.27)
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3.7. CASE STUDIES
In this section we present the results for two study cases: one for wind waves and one
with combined wind-waves and swell. Comparisons are presented between the pre-
dicted wave elevation, obtained by processing the synthesized images with both 3D FFT
and the proposed DAES method and the exact wave elevation as it was synthesised.

We start to specify the sea data and other physically and numerically relevant param-
eters of the simulations, followed by the simulation results.

3.7.1. PARAMETERS OF THE STUDIED CASES

GEOMETRY AND SPATIAL GRID PARAMETERS

The seas that we consider evolve above a depth h = 50m. The height of the radar is
an important quantity because the severity of the shadowing effect is governed by the
ratio of radar height and wave height. We will report on a value of the radar height
hR of 15 m above the still water level for which rather severe shadowing occurs. The
radar is assumed to be at a fixed position above the still water level. The wave eleva-
tion is synthesized on a polar spatial grid, with range and azimuth resolution set to 7.5
m and 0.5 deg respectively. We assume that the radar scans the ring area with outer ra-
dius rmax = 1800m and therefore taper the synthetic images to value 0 at r = 1800m by
multiplying the used images R with a window function which smoothly tapers from 0 at
r = 1800m to 1 at r = 1800−75m. In order to take into account the earlier mentioned
’blind’ zone close to the antenna up to r0 = 500m, a similar window function is used ta-
pering from 0 at r = 500m to 1 at r = 500+75m around the position of the antenna. In
this chapter, the fact that a navigation antenna has a limited rotational speed, resulting
in a different recording time for each recorded beam, is ignored: spatial snapshots are
synthesized in which all points are associated with the same instant in time. The time
interval between the subsequent snapshots, d t , is set to 2 s. During the simulation each
image is first interpolated on a square spatial grid of size 512 x 512 points, with spatial
step size dx=dy=7.5 m before applying one of the reconstruction methods mentioned in
paragraph 3.5.1.

SEA STATES

We provide the properties of the wind waves and the swell separately; since we consider
linear waves, the characteristics of the multi-modal sea state, which is a combination of
the wind waves and swell, can be derived in a straightforward way. The properties of the
waves, with related wave characteristics above depth h = 50m, are summarized in Table
3.1.

Sea Jonswap | direction | wave characteristics
Hs Tp γ θmai n s ωp kp λp Cp Vp

Wind 3 9 3 −π/2 10 .7 .05 125 13.9 7.4
Swell 1 16 10 3π/4 50 .4 .02 308 19.2 14.8

Table 3.1: Characteristics of sea and swell waves
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The wind waves have main propagation direction from North to South, θW = −π/2;
the wave spreading is given by equation (3.2) with exponent s = 10.

The frequency spectrum of the wind waves is a Jonswap spectrum with peakedness
factor γ= 3, peak period Tp = 9s, and significant wave height HW

s = 3m. (The significant
wave height is not relevant for the behaviour of the waves themselves in the simulation
but it is an important factor that affects the amount of shadowing.)
The multi-modal sea consists of the above wind waves to which is added the swell waves.
The swell consists of waves from the South-Eastern direction, θS = 3π/4, peakedness
factor γ = 10, wave spreading with s = 50, peak period Tp = 16s, and significant wave
height H S

s = 1.
The significant wave height of this combined sea state will be HW S

s = p
10 ≈ 3.15. The

study cases of wind waves without swell and combined wind waves-swell will be denoted
by W15 and WS15 respectively. For the number of discrete components N (equation
(3.3)) used to syntesize the waves, 1500 has been used for the wind waves of W15 and
1500 and 700 for the wind waves and swell respectively of which WS15 is composed.

3.7.2. SIMULATION RESULTS

In this paragraph results of the simulations using both 3DFFT and DAES will be pre-
sented.
We start with presenting some graphical results of the DAES method:
Starting with the first three synthetic images, the dynamic averaging- evolution scenario
is initiated. The described procedure is repeated at every time being a multiple of Nt d t
where 3 is used for the value of Nt . For a certain t = t0, relatively shortly after starting the
simulation, spatial snapshots of the synthesised wave elevation, (shadowed) geometric
image and computed reconstruction of the wave field are presented in figure 3.4. Fig-
ure 3.4(a) shows the true wave elevation as synthesised at t = t0. Figure 3.4(b) shows the
shadowed image of the wave elevation depicted in figure 3.4(a): near the antenna, where
r < 500 no observation of the wave elevation is supposed to be available and the eleva-
tion is taken equal to 0 there. The black parts indicate the shadowed parts of the image:
due to shadowing no observation is available and also there the elevation is taken zero.
Figure 3.4(c), shows the reconstruction U0 (t0) (or equally P (t0,τ= 0)). As can be seen
the wave field, which is propagating with the main direction from North to South, i.e. in
negative y-direction has evolved already some distance into the near-antenna zone. Fig-
ure 3.4(d) shows the reconstruction P (t0,τ= 0) for t0 such that the wave field has evolved
to fill the entire blind near antenna range (i.e. r < 500).

A cross section in y direction at x = 0 in figure 3.4(b) of the shadowed waves is shown
in figure 3.5. (Contrary to figure 3.4(b), the waves are shown for r < r0 here as well.
The right hand side y-axis is used to show the mentioned window function 1−χr ad ).
As can be observed for this particular wave condition and radar altitude of 15 m, the
shadowing is rather severe: beyond r = 500 hardly any wave troughs are visible. Despite
this poor quality of the observation, a fairly good reconstruction of the wave elevation
near the radar r < 500 is obtained. This is shown by figure 3.6 which depicts a similar
cross-section showing the synthesised wave elevation, referred to as "true wave", and the
reconstruction P (t0,τ= 0) obtained by DAES again for t0 such that the simulation has
already run sufficiently long for the reconstructed waves to fill the entire near-antenna
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(a) True wave elevation image η (T0) (b) Shadowed image I (T0)

(c) Reconstruction P (T0,τ= 0) (d) Reconstruction P (T0 +150d t ,τ= 0)

Figure 3.4: spatial snapshots of observation, true wave elevation and reconstruction for wave condition W15

blind zone.

CORRELATION

The accuracy of the prediction is quantified by the correlation coefficient cor r , which
correlates the prediction of the wave elevations, obtained from the simulation and the
synthetic wave elevation. The correlation of the prediction of the wave elevation, τ sec
ahead of t0, computed with the information available at time t = t0 is defined as:

c (t0,τ) =
〈
η (x, t0 +τ) ,P (t0,τ)

〉∣∣η (x, t0 +τ)
∣∣ |P (t0,τ)| (3.28)

where <> denotes the inner product. P (introduced in equation (2.3)) denotes the
predicted wave elevation which by definition is a function of x and η (equation (3.3)) the
synthetic wave elevation. (Since the synthetic wave wave elevation η was synthesized
in a polar spatial grid, a linear interpolation was used to obtain it in the Cartesian grid
reffered to by x.)
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Figure 3.5: cross section along wave propagation direction of synthesized shadowed image
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Figure 3.6: Evolution and true wave along a cross section in the main propagation direction
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P and η for specified τ and t0 are a function of x so the correlation is taken over
space (x). Subsequently, the average is taken over t0 to obtain a statistically more reliable
average correlation coefficient cor r :

cor r (τ) = 1

J

J∑
j=1

c
(
t0 j ,τ

)
(3.29)

Note the difference between τ and t0: t0 is the time step of the simulation from which
a prediction is calculated. Using the update scheme described in paragraph 3.5.3, t0 is
raised by Nt d t every time step of the simulation. τ indicates the future moment in time,
with respect to t0 for which the prediction is computed.

(The correlation coefficient as defined above has the advantage of being indepen-
dent of the amplitude or offset: multiplication of one of the signals with a constant or
addition with a constant does not affect the correlation coefficient. This is a useful prop-
erty to assess the accuracy of a prediction based on radar data for which the scaling with
the absolute wave elevation is still an unknown. This scaling issue will be addressed in
chapter 5 where real field data will be used.)

To exclude entrance effects, the computation of the correlation is restricted to t0 such
that all waves have evolved until the entire blind zone has been filled. For the presented
simulations, this entrance amounts to roughly 200 s, i.e. 100 d t . The number of simula-
tion steps J used for calculation of the correlation has been at least 550 for all presented
results.

In order to compute cor r , the predicted wave elevation η which is obtained in the
Cartesian spatial grid of 512 x 512 points as mentioned in the previous paragraph, is in-
terpolated to the same polar spatial grid at which the waves were originally synthesized.
(Simulations for which the predictions were evaluated at the exact polar grid points at
which the waves were synthesized were performed as well. The just mentioned interpo-
lation appeared to have no significant effect on the obtained correlation coefficients.)

ACCURACY OF RECONSTRUCTION

The correlation coefficient has been computed for all investigated combinations of sea
state and radar altitude and the distinction has been made between various sizes of the
spatial domain: cor r is determined for r < 50, r < 500 and r > 500. Results are presented
in table 3.2 and 3.3 for τ = 0 which will be referred to as ’reconstruction’. ’Prediction’
results (for which τ> 0) will be presented in the next paragraph.

The first column in table 3.2 and 3.3 indicates the type of input data, single image re-
construction method (paragraph 3.5.1) and propagation scenario: ’Sea’ refers to the per-
fect (not shadowed) synthetic waves, R1 and R2 refer to the simulations with shadowed
waves using the two reconstruction methods as defined in paragraph 3.5.1 (i.e. R1 for
vertical shifting and R2 for horizontal shifting). R0 refers to simulations with shadowed
waves applying no reconstruction of the individual images. DAES and 3DFFT refer to the
propagation scenarios as described in section 3.5 and 3.6 respectively. The columns with
’Raw’ and ’Rec’ show the correlation of the synthetic images and the individually recon-
structed images (both without having been subjected to DAES or 3D FFT) with the true
wave elevation respectively. For the presented results, the scaling factor α in equation
3.7 and 3.8 was determined for each single reconstructed image separately as follows:
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αn = Hs

4 ·σRn0

(3.30)

where Hs is the significant wave height, assumed to be known. Rn0 is referring to the
unscaled reconstruction and σRn0 refers to its standard deviation. This standard devia-
tion is taken over the part of the image outside the blind near antenna zone, i.e. the part
where χr ad = 0. In case of reconstruction method 1, the mean is taken over the part of
the image outside the blind zone, i.e.:

R1
n0 = In −mean

(
In · (1−χr ad

))
(3.31)
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Raw Rec r < 50 r < 500 r > 500
Sea DAES 1.00 1.00 0.99 0.99 1.00

Sea 3DFFT 1.00 1.00 0.70 0.66 0.61
R0 DAES 0.71 0.71 0.93 0.93 0.90
R1 DAES 0.71 0.71 0.93 0.94 0.90
R2 DAES 0.71 0.74 0.91 0.92 0.87

R1 3DFFT 0.71 0.71 0.67 0.66 0.57

Table 3.2: Correlation at τ= 0 for sea state W15

Raw Rec r < 50 r < 500 r > 500
Sea DAES 1.00 1.00 0.99 0.98 0.99

Sea 3DFFT 1.00 1.00 0.67 0.64 0.60
R0 DAES 0.70 0.70 0.92 0.92 0.90
R1 DAES 0.70 0.70 0.92 0.93 0.90
R2 DAES 0.70 0.72 0.90 0.90 0.86

R1 3DFFT 0.70 0.70 0.62 0.62 0.56

Table 3.3: Correlation at τ= 0 for sea state WS15

3.7.3. PREDICTION
The eventual aim of the simulation scenario is to predict in future time the elevation in
the near-radar area. At each time t0 during the simulation, the obtained reconstruction
at that time, P (t0,τ= 0) can be taken as initial state for a prediction according to equa-
tion (2.3), without additional updates.
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Figure 3.7: Predicted wave elevation using DAES and true wave elevation

Figure 3.7 shows an example of the predicted wave elevation and the true wave ele-
vation at the antenna position against prediction time τ for a DAES simulation with sea
state W15 and reconstruction method R1. (Also the correlation coefficient c (equation
(3.28)) averaged over the latest 100 simulation time steps preceding the time of the sam-
ple prediction shown and the predictability indicator P.I. as defined in equation (3.17)
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are shown.) Plots showing the correlation cor r for r < 50 against τ for simulations with
the bimodal sea state WS15 using DAES are shown in figures 3.8 for perfect wave input
(’Sea’) and 3.9 for shadowed input using reconstruction method R1. (Correlation values
drop below values that represent a practically useful accuracy at high prediction time
τ, which is why in Figure 3.9 and further the τ axis is limited to 250 s.) Corresponding
results with 3D FFT are shown in figures 3.10 and 3.11.
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Figure 3.8: Corr of prediction with DEAS WS15 Sea
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Figure 3.9: Corr of prediction with DEAS WS15 R1

3.8. DISCUSSION OF RESULTS

3.8.1. RECONSTRUCTION METHOD

The vertical shifting method (R1) does not improve the correlation of the individually re-
constructed images as is reflected by the fact that for R1, ’Raw’ and ’Rec’ show identical
correlation in table 3.2. This can be explained by the fact that a vertical shift and mul-
tiplication with a scalar (scaling factor α) as given in equation (3.7) does not affect the
value of the correlation coefficient defined by equation (3.28). The remaining columns
in table 3.2 and 3.3 show the mean correlation of the simulated evolved elevation and
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Figure 3.10: Corr of prediction with 3D FFT WS15 Sea
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Figure 3.11: Corr of prediction with 3D FFT WS15 R1
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true elevation in the near-radar area (r < 50 and r < 500) and in the ring shaped ob-
servable zone only (1800 > r > 500). Here the results for reconstruction method 1 (R1)
and the R0 results again hardly differ. The explanation for this is the fact that for evolu-
tions with R0, as mentioned the 2D FFT component representing the average was taken
0 (a (k = (0,0)) = 0). This makes R0 and R1 virtually equivalent. A small difference can
occur due to the fact that in R1 the subtracted mean was taken over the part of the image
outside the blind zone (as specified in equation 3.31 ), while setting a (k = (0,0)) = 0 in
R0 would be equivalent to subtracting the mean over the entire image.

The gain in accuracy due to the individual image reconstruction is very limited (nihil
in case of R1 as explained above) compared to what is achieved by the dynamic averag-
ing: Using reconstruction method R2, for both investigated sea states W15 and WS15,
the correlation of the individually reconstructed images (’Rec’) has improved from 0.71
to 0.74 and from 0.70 to 0.72 respectively, whereas the correlation of the wave elevation
in the near antenna zone, r < 50, which has been subjected to the dynamic averaging,
shows a correlation value of 0.91 and 0.90 for these cases respectively.

For the prediction/reconstruction within 50 m from the antenna, it appears that nei-
ther reconstruction method R1 nor R2 preceding the DAES improves the final correlation
(cor r ).

3.8.2. PREDICTABILITY

From e.g. figure 3.8 showing results for DAES applied to perfect non-shadowed waves
(’Sea’), it can be seen that for large prediction time τ the correlation decreases. This can
again be explained by the fact that beyond a certain prediction time, the fastest waves in
the observation on which the prediction is based have passed the target location already:
this is expressed by the value of P.I ., also plotted in the mentioned graphs, which starts to
decrease from thereon. (It should be noted that the right-hand side axis associated with
plotting P.I . is always scaled such that the value P.I . = 1 is at the same level as the value of
the cor r for τ= 0 at left-hand side axis.) At a certain prediction time τ, P.I . has decreased
until zero, meaning that even the slowest waves that were observed have passed the tar-
get location. It should be noted that P.I. is a qualitative indicator and not a quantitative
one: a value of P.I . = 1 does not necessarily mean that we should expect a correlation of
cor r = 1; the actual correlation depends on many more parameters such as the quality
of the observation and the prediction procedure. The main reason why P.I . is useful, is
that it indicates from which value of τ the prediction accuracy will certainly decrease:
both in this study and in chapter 2, a very clear match is found between the prediction
time from where prediction accuracy starts decreasing (more drastically) and the pre-
diction time from where P.I. starts decreasing. Therefore, for the maximum prediction
horizon, the maximum value of τ can be taken for which P.I . is equal to one. In practice
predictions will not be very relevant beyond a certain prediction time τ at which P.I . and
consequently the accuracy have dropped significantly. In the specific cases presented
here this prediction time is taken τ = 250s and in the remaining figures of predictions
the maximum presented prediction time is limited to τ= 250s.

As already explained in section 3.6, indicating the predictability in case of the 3D
FFT approach is less straightforward than for DAES: Predictions from 3D FFT are based
on multiple observations in time, while for DAES the prediction can be considered as the
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Figure 3.12: Predictablilty for 3D FFT approach

evolution of a single ’image’ (though in itself, this ’image’ results from dynamic averaging
and evolution of many preceding observations). Figure 3.12 concerns a simulation with
3D FFT applied to perfect non-shadowed waves indicated by R0 and shadowed waves
indicated by R1, both sea state WS15. Predictability is indicated by both P.I (according
to equation 3.26 , so taking into account the effect of the blind zone (r < r0) ) and by
P.I .av . It seems obvious that P.I .av indeed better indicates the predictability: there is a
more clear quantitative relation with the correlation found from the simulations. The
initial increase in accuracy with increasing τ can be explained by the fact that indeed
the shorter wave components need time to cross the near antenna blind zone , which is
expressed by limiting the integration over ω to ωh in equation (3.26).

3.8.3. DAES VS 3D FFT
In general it can be said that the proposed DAES yields far higher accuracy of the pre-
dicted wave elevation than the 3D FFT approach. Compare for example figure 3.9 with
figure 3.11: Figure 3.9 shows that the correlation from DAES for r < 50 is 0.92 for all τ for
which P.I . = 1, while 3.11 shows that a maximum correlation of only 0.62 is reached with
3D FFT.

3.8.4. SCALING

What also can be observed from figures 3.7 is that the variance of the predicted wave ele-
vation decreases with increasing τ. This can be explained by the fact that for large values
of τ, i.e. further into the future, the waves arriving at the antenna location originate from
further distances from the antenna where the shadowing is more severe and the variance
of the observation is lower (taking zero for shadowed regions). Using one scaling factor
α based on the variance of the entire observed image and the true variance of the waves
as was proposed in equation (3.7), does not take into account this decreased visibility
at large ranges from the antenna and in fact does not even guarantee a correct variance
at the antenna for τ = 0. An alternative which is supposed to be practical and feasible
for real life applications is proposed by Naaijen and Wijaya [2014]: a time history of the
wave elevation at the antenna position (e.g. by an auxiliary wave buoy or via recorded
ship motions) and a time history of the predicted wave elevation can be recorded and
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used to calculate the variance of the true waves and the prediction. By taking the ratio
of these variances, a scaling factor dedicated for the antenna location can be obtained.
Such a scaling factor can also be computed as a function of τ, thus removing the afore-
mentioned effect of decreasing variance of the prediction with increasing τ. Since in
chapter 4, an alternative will be presented for the 2D FFT enabling to discard shadowed
points instead of replacing them by zeros, the need for a τ-dependent scaling factor will
be avoided which is why it is not addressed in detail here.

3.8.5. MED AND BIMODAL SEA STATE
In paragraph 3.5.2 it was explained how we propagate the wave components obtained
from a 2D FFT in the mean evolution direction (MED). In case of multi modal sea states,
it depends on the difference between the main propagation directions of the various
modes how much of the total wave energy represented by the obtained components is
propagated in the correct direction. The sea state WS15 was designed such, that the
amount of energy represented by wave components propagating in opposite directions
relative to the total wave energy, is very limited: less than 0.5 %. Differences in the ob-
tained accuracy between W15 and WS15 can therefore only partly be explained by the
limited capability of the MED method to cope with counter propagating waves occuring
in the bi-modal seastate WS15.

3.9. CONCLUSIONS AND RECOMMENDATIONS
The main conclusion that can be drawn from the investigations presented in this chap-
ter is that 3DFFT should be considered not to be suitable for the phase-resolved predic-
tion of waves outside the observation area. The proposed DAES scenario where subse-
quent 2D FFT’s are combined, yields a prediction accuracy that is significantly higher
than what is achieved with 3D FFT. A limitation of the proposed DAES approach as pre-
sented here however is that it is not able to deal with counter propagating wave com-
ponents which can occur in bi- or multimodal seastates. Furthermore it is concluded
that the presented attempts to reconstruct individual images before using them as input
for the DAES, do not improve the accuracy of the prediction of the wave elevation in the
blind zone near the antenna and therefor will be omitted in the proceeding. It should be
noted that the choice for the number of images used for the averaging Nt = 3 (see equa-
tion (3.13)) could be considered as rather arbitrary. Possibly more optimal choices for Nt

can be made, likely to be depending on the wave period. An in depth investigation into
optimization of Nt (as a function of the wave condition) could lead to improved and/or
optimized accuracy in a wider range of wave conditions than the ones considered in
this chapter and is therefore recommended. Concerning the averaging procedure rep-
resented by equation (3.14), the weighing factor w between the evolution and the new
observation was taken 0.5. No in depth investigations into a potentially more optimal
choice of w have been undertaken and are left as a recommendation.
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4.1. SUMMARY
This chapter will discuss a more realistic approach to nautical radar data and discuss its
characteristics. An additional modulation mechanism known to radar images of ocean
waves, being tilt modulation, will be introduced. Two methods to invert tilt modulated
images into elevation will be presented and verified using synthetic radar images includ-
ing tilt and shadowing, as opposed to Chapter 3, in which only shadowing was consid-
ered.
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4.2. INTRODUCTION
The emphasis in the previous chapter, was on an assimilation procedure which updates
the initialization of a linear wave model by continuously feeding in updated observation
data. One step within the proposed assimilation procedure is solving the coefficients
(or wave component / wave mode amplitudes) of the linear 2D wave representation, for
which a 2D FFT was used as described in paragraph 3.5.2.
This chapter mainly focuses on alternatives for solving the coefficients. One of the rea-
sons for this is that back scatter data from non-coherent radar may not be interpreted
as something that linearly relates to the wave elevation but more realistically relates to
the steepness of the waves in the look direction, which will be referred to as ’tilt’. This
slightly complicates the solving of the coefficients from available observations as will be
explained in more detail in paragraph 4.4.2.

Before further addressing the more realistic tilt model for back scatter data from non
coherent radar, some recent efforts addressing the problem of solving coefficients of a
linear 2D wave representation from spatio-temporal observation from various types of
sensors are summarized.
Grilli et al. [2011] and Nouguier et al. [2014] report on an ocean wave reconstruction al-
gorithm based on spatio-temporal surface elevation data acquired by a LIDAR camera. A
least squares fit is applied to find the component amplitudes of a linear representation of
the wave surface elevation, using observations from a spatial domain typically feasible
with a LIDAR camera, which is significantly smaller than the spatial coverage of navi-
gation radar. Additionally, non-linear dispersion effects are accounted for by iteratively
solving for the optimal transformation involved with the so-called choppy wave model.
Connell et al. [2015] integrate the Doppler frequency shift obtained from fully coherent
Doppler radar into a least squares problem, solving the coefficients of a linear 2D wave
representation. This approach is very similar to the alternative suggested in paragraph
4.4.3. Main difference is that in case of a coherent Doppler radar, the observations are in-
terpreted as the relative radial velocity of the wave surface, while in case of non-coherent
radar, observations are interpreted as the steepness of the wave surface in radial direc-
tion.
Alford et al. [2014] also use radial velocity input from coherent radar to finally obtain
a linear (and also non-linear) 2D wave field representation, but present a different ap-
proach for solving its coefficients: the radar data in polar coordinates is Fourier trans-
formed and the time derivative of the velocity potential function is computed from which
the surface elevation is derived through the dynamic free surface boundary condition.
Contrary to the earlier mentioned research, this approach avoids the need of preliminar-
ily associating wave numbers with frequencies by the dispersion relation and therefor
the need of prior knowledge of the surface current.

None of these above mentioned references concerns observation of the sea surface
by non-coherent radar. Therefor the modeling of the back scatter from the sea surface
received by non coherent radar is presented in more detail in this chapter. Subsequently,
given the presented model for the back scatter data, a description of two alternatives to
obtain coefficients of a linear 2D wave representation from this data is given, being part
of an assimilation procedure as described in chapter 3:

1. The first one naturally stems from and builds on the 2D FFT approach presented
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in chapter 3 and will merely involve an additional processing step preceding the
2D FFT as is.

2. An alternative is presented which includes the inversion of tilt in a more direct
way. Abandoning the 2D FFT approach, being part of the scenario used in chapter
3, this alternative comes with some important advantages:

• Shadowed observation points can be omitted from the analysis since no spa-
tially equidistant set of observation points is required.

• Counter-propagating waves do not form a problem which makes the method
applicable to arbitrary multi-modal sea states.
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4.3. MODELING IMAGING OF SURFACE WAVES BY NON COHER-
ENT RADAR

In the previous chapter shadowing was considered as the only modulation mechanism
playing a role in imaging of ocean waves by nautical radar. For low grazing incidence,
which is the case for most applications of wave sensing from ships, shadowing is indeed
one of the dominant mechanisms (Wetzel [1990]). However, there is no physical argu-
ment to assume that back scatter recorded by a non-coherent nautical X-band radar has
a direct relation to the surface elevation, as was done in the previous chapter. A more
plausible approach is to assume it to be related to the local angle of incidence of the EM
waves with the sea surface , as will be discussed in this chapter in more detail. Apart from
the question which modulation mechanisms are relevant, their precise effect is not eas-
ily quantified. In other words: the obscure relation between the normalized radar cross
section (NRCS) 1, and the sea surface elevation is a big challenge in the problem of wave
sensing/prediction from non-coherent nautical radar. Nevertheless, numerous success-
ful applications of nautical radar related to the measurement of gravity wave related pa-
rameters have been reported in literature: One and Two-dimensional wave spectra and
significant wave height detection were obtained by Borge et al. [1999] and Borge et al.
[2004]. Both Borge et al. [2004] and Dankert and Rosenthal [2004] attempt to obtain the
actual surface elevation. A convincing validation of its accuracy is not presented. How-
ever, statistical distributions of crest heights, derived from the sea surface elevation by
Borge et al. [2004] agree reasonably well with in-situ observations. Dankert and Rosen-
thal [2004] show accurate significant wave heights obtained from nautical radar, without
using any reference observation.

An often used representation (see e.g. Velenzuela [1968], Alpers et al. [1981]) of radar
backscatter from ocean waves is given by:

σ0 = σ̄0 +δσ0 (4.1)

whereσ0 denotes the NRCS. A mean contribution to the NRCS due to Bragg scattering of
the electromagnetic waves by the (wind induced) surface roughness is given by σ̄0 and
an additional modulation δσ0 is added due to the gravity waves which tilt the scattering
sea surface.

Literature mentions various possible modulation effects caused by the waves, repre-
sented by δσ0:

• shadowing

• hydromechanical mudulation

• tilt modulation

The phenomenon of shadowing and an approach to minimize the effect of the re-
sulting lack of observation data was addressed in chapter 3. As already mentioned in the

1Radar cross section (RCS) can be considered as the ’detectability’ of a scattering object by radar. In case of a
large collection of scatterers, which the ocean surface is considered to be, the normalized RCS (NRCS) is used
which can be considered as the RCS per unit surface area.
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introduction of chapter 3, hydromechanical modulation is believed to be of minor im-
portance. Besides, no straight forward approach to model or invert its effect is available.
Tilt modulation is likely to be more relevant.

A commonly used model for the radar backscatter of ocean waves is the so-called
2-scale model of eq. 4.1. Indeed assuming tilt modulation as the relevant modulation
mechanism, a linear representation for δσ0 is given by Velenzuela [1968] and Alpers et al.
[1981]:

δσ0 =
∂σ0

(
Θ,ψ,δ= 0

)
∂ tan

(
ψ

) ∣∣∣∣
ψ=0

ηr +
∂σ0

(
Θ,ψ= 0,δ

)
∂ tan(δ)

∣∣∣∣
δ=0

(
−1

r
ηϕ

)
(4.2)

Here ψ and δ are the local slope of the sea surface in the radar looking direction and
perpendicular to this respectively and Θ is the local incidence or ’depression’ angle as
defined in figure 4.1. Λ as depicted in 4.1 is the antenna altitude above the mean sea
surface.

Figure 4.1: Tilt

In order to assess the derivatives in eq. 4.2, it is convenient to interpret δσ0 as be-
ing related to what will be referred to as the ’tilt’, the angle, Θ̃, between the radar look
direction, ū, and the normal to the sea surface, n̄. They can be written as:

ū (r ) = (−sinΘ (r ) ,0,cosΘ (r )) (4.3)

and

n̄
(
r,ϕ

)= (
−∂rη,−1

r
∂ϕη,1

)
(4.4)

For Θ̃ follows:

cos
(
Θ̃

)= ū · n̄

|ū| |n̄| =
sinΘ ·∂rη+cos(Θ)√((
∂rη

)2 + ( 1
r ∂ϕη

)2 +1
) (4.5)

Linearizing for small wave steepness yields:

cos
(
Θ̃

)≈ sinΘ ·∂rη+cos(Θ) (4.6)
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For the local incidence angle can be written:

Θ= tan−1
(

r

Λ−η
)

(4.7)

Linearizing for small wave amplitude yields:

Θ≈ tan−1
( r

Λ

)
(4.8)

after which only the first term in eq. 4.6 depends on the surface gravity waves.
So assuming a linear dependence of δσ0 on the fluctuation of cos

(
Θ̃

)
due to the surface

waves, we could write:
δσ0 = c sinΘ ·∂rη (4.9)

where c is some constant.
Under these assumptions we could write for the derivatives in eq. 4.2:

∂σ0
(
Θ,ψ,δ= 0

)
∂ tan

(
ψ

) ∣∣∣∣
ψ=0

= c sin(Θ) (4.10)

and
∂σ0

(
Θ,ψ= 0,δ

)
∂ tan(δ)

∣∣∣∣
δ=0

= 0 (4.11)

The second term in eq. 4.6 could be considered to introduce a range dependency of the
mean part, σ̄0, of the total NRCS given by eq. 4.1 so we could write:

σ̄0 = σ̄0B + c cos(Θ (r )) (4.12)

where σ̄0B is the mean NRCS due to pure Bragg scattering and c cos(Θ (r )) is a modula-
tion due to the variation of the local incidence angle.
Having available an observation of σ0, a logical first step for the inversion towards η
is to eliminate the term σ̄0. This can be done by subtracting the mean of the (r and ϕ

dependent) signalσ0, determined by calculating the average over a sufficiently long time
history. After subtraction, the remainder is considered to equal δσ0. From eq. 4.9 follows
that from the obtained observation of δσ0 the wave steepness in look direction can be
determined:

δσ0

sin(Θ)
= c ·∂rη (4.13)

As will be shown in the proceeding, the unknown constant c can be eliminated using a
reference measurement.

Dankert and Rosenthal [2004] provide an elegant method to obtain the relation be-
tween observed NRCS and wave steepness that offers two advantages compared to the
above mentioned approach:

1. it does not require any reference observation

2. it also works even if the relation between tilt and NRCS is not linear (as was as-
sumed above).

Since the aim of this research is to use ship-mounted radar, it was decided to assume
availability of a ship motion measurement, providing a convenient reference for deter-
mining the scaling constant c. This will be explained in more detail in chapter 5.
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4.4. INVERSION METHODS FOR RADAR CLUTTER
In the following, basically two methods will be presented for inverting the NRCS into a
wave elevation. To illustrate the methods, the constant Bragg-scattering contribution to
the NRCS, σ̄0B in equation 4.12 and the constant factor c in equation 4.12 and 4.9 will be
assumed to be 0 and 1 respectively. (In the next chapter, dealing with actual field data
from nautical radar, elimination of σ̄0B and c will be considered.) For the principles of
the inversion methods to be presented and their verification with synthetic data, it is not
relevant to include these parameters here.
This means we are considering the inversion of what will be referred to as the ’synthetic
NRCS’, σ0s , which equals cos

(
Θ̃

)
as given by equation 4.5:

σ0s = cos
(
Θ̃

)
(4.14)

This synthetic NRCS is modeled by the approximation given by equation 4.6:

σ0sm = sin(Θ)∂rη+cos(Θ) (4.15)

(withΘ as approximated by equation 4.8)
The first inversion method to solveη from equation 4.15 relies strongly on the method-

ology presented in chapter 3. The only difference of what will be presented in this chap-
ter compared to chapter 3 is that an additional analysis step is introduced: a beam wise
spatial integration of σ0s is applied in order to find η, after which the obtained η can be
subjected to a 2D FFT in order to find the amplitudes of the wave modes representing
the 2D wave field. This approach will be referred to as ’2D FFT’ and will be described in
more detail in paragraph 4.4.2.

Methods presented in previous chapters all rely on FFT techniques and consequently
on equidistant observation data. Due to mainly shadowing or blockage of the radar
beams by obstacles on board the ship, this equidistant observation data is generally not
available in real life situations. Besides, nautical radar is a scanning type of radar: the
antenna has a limited rotational speed meaning that radar images are in fact not spatial
snapshots taken at one instant in time but rather a collection of beam-wise observa-
tions, each observed at its own instant in time. In paragraph 4.4.3, an alternative to the
2D FFT method is presented which will be referred to as ’least squares approach’ (LSQ).
The main advantages of this method are:

1. It can deal with an arbitrary collection of observation points each of whose actual
location is used. Unlike methods involving spatial Fourier transformations, this
method is not restricted to a equidistant Cartesian spatial grid. Therefor, unknown
(e.g. shadowed) or unreliable observation points can be omitted from the analysis.

2. Since the observation points’ actual recording time can be used in the analysis, no
time interpolation in order to obtain spatial snapshots at one instant in time (as
required for applying a 2D FFT, described in 4.4.2) are needed. Eventually intro-
duced inaccuracies due to this interpolation, which can be expected to be more
pronounced for slowly turning antennas and/or short waves, are avoided this way.

3. It can deal with counter propagating waves and therefore with arbitrary (multi-
modal) sea states. There is no restriction on the propagation direction of the solved
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wave modes: where waves propagating in directions deviating more than 90 de-
grees from the main evolution direction cannot be captured using the procedure
described in chapter 3, the LSQ approach provides the freedom to solve waves
propagating in arbitrary directions, thus enabling to handle multi-modal sea states
with wave systems from arbitrary directions.

The main disadvantage of LSQ is the computational effort involved with solving the
involved system of equations (given by equation 4.27).

Until now, surface current has not been considered. All investigations in chapter 3
were carried out with synthetic waves without surface current and for the simulations,
zero current was assumed. For real field application though, a possible surface current
has to be taken into account. Both inversion methods mentioned above rely on the dis-
persion relation for gravity waves which is affected by surface current. Since detection
of spectrum and surface current are closely related, the next paragraph will be dedicated
to these topics. It is acknowledged that current detection is an important part of a deter-
ministic wave prediction procedure. However, in order to limit the scope of this research,
detection of current has not been extensively studied and is only touched upon at an in-
troductory level here. Actual investigations are left out of the scope of this thesis. After
addressing spectrum and current detection in the next paragraph, a detailed description
of the two mentioned deterministic tilt inversion methods will follow in the proceeding
paragraphs of this section.

4.4.1. DETECTION OF DIRECTIONAL WAVE SPECTRUM AND CURRENT
In order to limit the scope of this research, detection of current has not been extensively
studied. This paragraph merely presents a very brief introduction to the topic. For the
purpose of wave propagation modeling in the proceeding, it will be assumed the surface
current is known a-priory, or assumed to be zero.
Regarding wave spectrum, surface current (and water depth) detection, a general dis-
tinction can be made between so-called local and global methods. Basically, global
methods can be used in case of sufficiently homogeneous wave fields, i.e. sufficiently
flat sea bottom. In case of more pronounced bathymetry, spectrum and current will be
less homogeneous and a local method is required. Since the objective of this research is
to provide wave observation / prediction for offshore operation and since the used lin-
ear wave model is not capable of taking into account the effect of bathymetry in the first
place, a global method is aimed for. (Local methods, yielding space dependent hydro-
graphic paramaters such as near-surface current, wave spectrum and bathymetry, are
described by e.g. Hessner et al. [1999] and Senet et al. [2008].)
Young et al. [1985] is the oldest reference to the 3D FFT approach that forms the basis of
most global methods for directional wave spectrum and surface current detection. Mod-
ifications to this basic approach have been made by Senet et al. [1997] and Senet et al.
[2001] who use an iterative method and error model to take into account the non-linear
imaging mechanism due to shadowing and aliasing resulting from temporal undersam-
pling due to the limited rotational antenna speed. Serafino et al. [2010] has adapted the
dispersion filtering by introducing an approach based on maximization of normalized
scalar product of the filtered 3D image spectrum and a characteristic function identify-
ing a narrow band-width around the linear dispersion shell in the 3D wave-vector - fre-
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quency space, a method yielding more accurate current estimation especially for larger
encounter frequencies, resulting from vessel speed.
The most basic method for current and spectrum detection will be presented here which
is practically equivalent to the first iteration of the iterative method presented by Senet
et al. [1997].
Let a (k,ω) be the 3D amplitude spectrum obtained from the discrete 3D Fourier trans-
form of σ0s in a similar way as was done with the images R in equations 3.19 and 3.21 in
section 3.6.
The 3D variance spectrum, one-sided with respect to the ω -axis can be defined as:

S (k,ω) = |a (k,ω)|2 (4.16)

In order to increase the confidence level for the variance spectrum obtained this way,
averaging over time can be applied: S (k,ω) is determined for (possibly overlapping) sub-
sequent time series of radar images and the result is averaged over the number of time
series Nav :

Sav (k,ω) = 1

Nav

Nav∑
i=1

Si (k,ω) (4.17)

where Sav is the average 3D variance spectrum and Si is the 3D variance spectrum ob-
tained from the time series of realization i .
Following Young et al. [1985], the surface current can be found by fitting the dispersion
shell through the obtained average 3D variance spectrum. The dispersion relation in-
cluding surface current is defined as:

Ω
(
k,Ū

)=√
|k|g tanh(|k|h)+k ·Ū (4.18)

where Ū is the 2D surface current vector.
Using the average 3D variance spectral values as weighing factors, solving the following
minimization problem leads to the detected 2D current vector Ūav :

Ūav = min
Ū

I∑
i=1

Sav (ki ,ωi )wp
∣∣ωi −Ω

(
ki ,Ū

)∣∣2
(4.19)

Here, I defines the number of spectral coordinates that are used to fit the dispersion shell
by solving the minimization problem represented by equation 4.19, wp is a weighing
factor for the energy assigned to each component Sav (ki ,ωi ). wp = 0 represents the
option of no energy weighing. ωi is the frequency associated with spectral coordinate
i . Selecting the appropriate I spectral fitting coordinates is an important part of the
procedure and is treated in e.g. Senet et al. [1997].

Once the surface current is known, a procedure referred to as ’dispersion filtering’
as described in paragraph 3.6 can be applied in order to obtain the 2D spectrum. The
main purpose of this is to give more physical meaning to the 3D variance spectrum by
eliminating effects due to measurement noise and spectral leakage. Dispersion filter-
ing attempts to maintain only the physical gravity wave related information contained
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by the average 3D variance spectrum. The average 2D variance spectrum obtained by
dispersion filtering is defined as:

Sav (k) =
∑

ω
f (k,ω)Sav (k,ω) (4.20)

where f represents a filtering factor as defined by equation 3.25.
The normalized average 2D spectrum, Savn , is obtained by ensuring the total variance it
represents to be 1:

Savn (k) = Sav (k)
∞∫

−∞
Sav (k)dk

(4.21)

4.4.2. 2D FFT PRECEDED BY BEAM-WISE SPECTRAL INTEGRATION (’2DFFT’)
This paragraph presents the first of the two proposed methods to obtain wave compo-
nent amplitudes for a 2D linear wave representation from radar data assuming the model
given by equation (4.15). Let the 2D linear wave representation be given by:

η (x, t ) = Re

(
N∑

n=1
a (kn)e i (kn x−Ω(kn )t )

)
(4.22)

In cylindrical coordinates this becomes:

η
(
r,ϕ, t

)= Re

(
N∑

n=1
a (kn)e i(|kn |r cos(ϕ−θn)−Ω(kn )t)

)
(4.23)

Here, k is again the 2D wave vector with θ the wave propagation direction:
k = |k| (cos(θ) ,sin(θ))
Subsequently, for ∂rη can be written:

∂rη
(
r,ϕ, t

)= Re

(
N∑

n=1
i |kn |cos

(
ϕ−θn

)
a (kn)e i(|kn |r cos(ϕ−θn)−Ω(kn )t)

)
(4.24)

In equation 4.24, the dependence of the part before the exponent on the look direc-
tion ϕ prevents the tilt to be represented by a 2D FFT representation with look direction
independent coefficients and as a consequence, the tilt cannot be represented by a rep-
resentation whose coefficients can be directly obtained by a 2D FFT.

A first and logical way to obtain the solved wave elevation, directly related to the 2D
FFT approach presented in paragraph 3.5.2, is to eliminate Θ from the observed σ0sm

and apply a spatial integration over r preceding the 2D FFT:

∂rη
(
r,ϕ

)= σ0s
(
r,ϕ

)−cos(Θ (r ))

sin(Θ (r ))
(4.25)

To obtain η, a beam-wise spectral integration is used: for each separate beam in the
radar image, a 1D FFT is applied to ∂rη with respect to r . With the Fourier transformed
∂rη denoted by η̂r , the wave elevation on one beam can be expressed by:
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η
(
r,ϕ

)=∑
k||

(
i k||

)−1
η̂r

(
k||,ϕ

)
e i(k||r ) (4.26)

where k|| is the wave number projected in the look direction (ϕ) of the considered beam.
This way η can be obtained for each radar image first, after which the exact same proce-
dure as described in chapter 3 can be applied.

One aspect that was not addressed in chapter 3 but which is relevant for the 2DFFT
approach is the fact that the scanning beam of a nautical radar rotates with a limited
angular speed. Consequently, each beam is recorded at a different instance in time: in
equation 4.25, ϕ is a function of time. In order to obtain all recorded data within one
radar image for one specific instance in time, a linear interpolation using the preceding
and the following image is applied. (Usually the data is interpolated towards the time as-
sociated with the so-called Azimuth Reset Pulse (ARP), usually the time when the radar
scanner points to the bow of the vessel.) Let this time be indicated by t00 and let the
time elapsed between subsequent instants of t00 (the rotation period of the antenna) be
indicated by d t . During an antenna revolution, let a beam in a certain look-direction ϕ

be recorded ∆t after the t00 associated with the considered revolution. Assuming con-
stant rotation speed for the sake of this explanation, the data value associated with look
direction ϕ at time t00 is obtained by linear interpolation over time between the value
for t00 +∆t −d t and the value for t00 +∆t .
In the following, this interpolation is referred to as ’helical interpolation’.

4.4.3. LEAST SQUARES APPROACH
This paragraph presents the second approach to solve the wave component amplitudes
replacing the ’2DFFT’ approach as described in the previous paragraph. The alternative
will be a least squares minimization, referred to as ’LSQ’.
LSQ solves a predetermined number of wave modes (linearly superposed wave compo-
nents). In order to minimize the computational effort, the modes to be solved are based
on the normalized average 2D wave spectrum. This normalized 2D wave spectrum, as
well as possible surface current need to be known a priori. This means that a 2 stage
approach is proposed:

1. detect the directional wave spectrum and surface current by 3D FFT as presented
in paragraph 4.4.1 and select the most energetic wave vectors

2. apply a least squares minimization, in order to find the amplitudes of the wave
components for the set of 2D wave numbers that was selected based on the direc-
tional wave spectrum

LEAST SQUARES MINIMIZATION (LSQ) AS ALTERNATIVE TO 2D FFT
In order to obtain the complex wave mode amplitudes, a (kn), equation 4.24 can be
equaled to equation 4.25 containing the ’observed’σ0s , yielding the following minimiza-
tion problem in order to solve for the unknown complex wave components a (kn):

ā = min
a

‖Re(A ·a)−b‖2 (4.27)
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where matrix A consists of elements Anm defined as:

Anm = i |kn |cos
(
ϕm −θn

)
e i(|kn |rm cos(ϕm−θn)−Ω(kn )tm) (4.28)

Vector ā contains the complex wave mode amplitudes a (kn) and the elements bm of
vector b are defined as:

bm=
σ0s

(
rm ,ϕm , tm

)−cos(Θ (rm))

sin(Θ (rm))
(4.29)

The observation points bm and corresponding rows in matrix A are not necessarily
taken from one antenna revolution but can originate from several revolutions. Only visi-
ble points are selected, i.e.: χ

(
rm ,ϕm , tm

)= 1 with χ the characteristic visibility function
as defined in equation (3.4).

ADAPTED DAES
As mentioned, LSQ is integrated in a procedure whose principle idea is that of DAES, as
presented in chapter 3. This paragraph describes this integration.
Initializing the DAES scenario at t = t0, let ā0 be the solution of minimization problem
4.27 at t0, where observations b (eq. 4.29 ) are obtained from Nt images preceding t0,
only selecting visible points. The vector of observation points used to solve ā0 will be
referred to as b̄0, containing elements bm0

(
rm0,ϕm0, tm0

)
. For the next iteration of the

evolution scenario, say at t1, an updated series of Nt images (possibly partly overlapping
with the series used for solution ā0) is used in combination with the evolution of solution
ā0 to t = t1. The solution at t = t0 is evolved towards the time tm1 corresponding to each
of the new observation points according to equation 4.24, resulting in ∂rη1:

∂rη1 = ∂rη
(
rm1,ϕm1, tm1

)=
Re

(
N∑

n=1
i |kn |cos

(
ϕm1 −θn

)
a0 (kn)e i(|kn |rm1 cos(ϕm1−θn)−Ω(kn )(tm1))

)
(4.30)

The set of spatial co-ordinates
(
rm1,ϕm1

)
is in general not equal to

(
rm0,ϕm0

)
since dif-

ferent regions will be shadowed at different instants in time and the vessel may have
moved in between.
Having available the evolved solution from t0, contrary to equation 4.29 (which only
yields for initialization of the scenario), bm1 is obtained by combining this evolution with
the newly observed σ0s in a similar way as was done in chapter 3 (equation 3.14):

bm1 =
(

w ·∂rη1 + (1−w) · σ0s
(
rm1,ϕm1, tm1

)−cos(Θ (rm1))

sin(Θ (rm1))

)(
1−χr ad

)+∂rη1χr ad

(4.31)
Solving the minimization problem again now using ’observations’ bm1 yields solution ā1

corresponding to time t1.
bm2 is obtained by combining the solution ā1 (evolved from t1 to t2) and observations at
tm2 etc.
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4.5. SIMULATIONS WITH SYNTHETIC DATA
In order to verify and compare the two approaches for deterministic prediction from
radar back scatter proposed in this chapter, simulations using synthetic data were car-
ried out. This section will describe the simulations, and present and discuss their results.
The approach is very similar to that was done in chapter 3: synthetic waves are created
and the corresponding radar images are constructed. The latter are used as input for the
two proposed alternatives for deterministic wave prediction. The obtained wave predic-
tion can finally be compared to the originally synthesized waves.
In the following, the set-up of the simulations will be described (paragraph 4.5.1 and
4.5.2), followed by simulation results. The deterministic prediction results with the two
proposed approaches will be presented in paragraph 4.5.3.
As explained, in case of the LSQ approach an estimation of the average directional wave
spectrum is required in order to select the most relevant wave modes. Therefor, results
from simulations concerning spectrum estimation are presented in paragraph 4.5.4.

4.5.1. WAVE CONDITIONS AND SYNTHETIC RADAR DATA

The objective in this chapter is to present a comparison between the two proposed al-
ternatives for solving the wave component amplitudes, rather than just illustrating their
principles. Since the results obtained with one alternative or the other are likely to de-
pend on the wave condition, a range of different wave conditions is considered. The
considered conditions are summarized in table 4.1

Hs Tp γ θmai n s
Condition [m] [s] [-] [deg] [-]

1 1.65 5.0 3 0 10
2 3.0 9.0 3 0 10
3 4.8 13.0 3 0 10
4 3.0, 3.0 9.0, 16.0 3, 10 0, 170 10, 50

Table 4.1: Wave conditions for synthetic simulations

For all cases, water depth h = 1000 was used for the synthetization of the waves.
Radar images were synthesized in a similar way as was done in chapter 3 concerning
the shadowing effect. A radar antenna heightΛ above the free surface of 15 m was used.
Additionally the effect of tilt was included: the synthetic images were created according
to the exact (and non-linear) formulation of equation (4.5), representing the modulation
term in equation (4.1). (As mentioned, the constant term was not included in the syn-
thetization.) For the synthetization of the radar data, an antenna heightΛ above the sea
surface of 15 m was used. For all considered unimodal conditions, i.e condition 1-3, the
significant wave height was chosen such that it resulted in an as equal as possible ’visi-
bility’ , i.e. the average percentage of shadowed points was aimed to be the same. Figure
4.2 shows the percentage of shadowing against range r from the antenna for conditions
1-3.
Anticipating the validation study using field data, to be presented in the next chapter, an
antenna rotation speed was used that is identical to that of the radar system aboard the
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Figure 4.2: Percentage of shadowed points against range r for wave conditions 1-3

vessel used during the field campaign, being 44 rotations per minute. The used range
and azimuth resolution were set to 7.5 m and 0.5 deg respectively, both corresponding
to realistic values for navigation radar systems. A blind zone around the antenna of 300
m was applied. Table 4.2 summarizes the simulated radar system specifications used to
synthesize the radar data.

Λ Antenna height [m] 15
rpm Antenna revolutions per minute 44
d t Antenna rotation time [s] 1.36
∆ϕ Azimuth resolution [deg] 0.5
∆r Range resolution [m] 7.5
r0 radius of blind zone [m] 300

rmax outer radius of image [m] 1250

Table 4.2: Radar specs for synthetic simulations

4.5.2. SIMULATION SETTINGS

CHOICE OF OBSERVATION POINTS AND WAVE MODES

A great advantage of using nautical radar as a wave observer is the spatial coverage and
resolution it can provide: typically a range of 1-3 km can be achieved at a range resolu-
tion of 3-10 m. The azimuth resolution can be in the range of 0.05 - 0.3 deg. Depend-
ing on the sea-state, this wealth of spatial information can be rather abundant, espe-
cially at close range r from antenna where the mentioned azimuth resolutions result in
a high density of available observation points. In chapter 3 a Cartesian spatial grid with
d x = d y = 7.5 m was used towards which the (synthesized)radar data was interpolated,
thus decreasing the amount of data to be processed. This would allow for the detec-
tion of waves of 15 m minimal length. This is considered to be sufficient for generally
occurring sea-states. Moreover, shorter waves are not likely to be relevant in terms of
excitation for 1st order motions of offshore vessels.

The set of wave vectors k corresponding to a 2D FFT applied to the chosen spatial grid
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are given by:

k =
(
n

2π

N ·d x
,m

2π

M ·d y

)
with n ∈ [0, N /2] and m ∈ [0, M/2] (4.32)

M and N are the number of observation points in x and y direction of a rectangular
observation domain respectively. In principle, the LSQ approach provides the freedom
to chose any set of wave vectors whose corresponding amplitudes can be solved. Given
the limitation that, in order to limit the computational burden of solving the minimiza-
tion problem of equation (4.27), we are solving a pre-set number of wave components,
different wave conditions will lead to different ideal resolutions of the wave vector. How-
ever, it was decided to fix the wave vectors: for all cases to be presented, the wave vectors
k of the components to be solved with LSQ were chosen from the set of wave vectors ac-
cording to equation 4.32 (which is equal to the set of wave vectors corresponding to a
2DFFT). For LSQ, of this set of wave vectors, a set of 1500 components is selected rep-
resenting a maximum amount of energy according to the supposedly known 2D wave
spectrum.

The two steps involved in the LSQ approach (spectrum detection and deterministic
solving of the wave modes) are addressed separately in this section: in the simulations,
the most relevant modes to be solved are selected based on the exact 2D wave spectrum.
Separate simulations address the detection of the spectrum itself. The exact 2D spec-
trum S (ω,θ) is the spectrum on which the synthesized waves were based as described
in paragraph 3.4.1. In order to select the most relevant components from the total wave
vector space as defined in 4.32, S (ω,θ) is transformed from the polar (ω,θ)-base to the
Cartesian k (=

(
kx ,ky

)
)-base and normalized:

S (k) = S (ω,θ) · vg (ω)

|k| (4.33)

Sn (k) = S (k)∫
k

S (k)dk
(4.34)

where
vg (ω)

k represents the Jacobian involved with the transformation, vg being the group
speed. Sn refers to the normalized spectrum.

In practice, for LSQ, the used observation points do not necessarily have to be part of
a rectangular or square spatial domain: any arbitrary set of points can be used. However,
for all presented results, a square domain is used with the observation points and wave
modes chosen as above. Additionally, a window function is applied which tapers the
values of the used observation points to zero outside a chosen radius rmax of a circular
domain centered around the antenna, similar as described in paragraph 3.7.1.

Solving the linear system resulting from equation (4.27) was done using a graphical
processing unit (GPU). Because of the computational cost of the LSQ approach and the
limited memory of the GPU, both the number of modes to be solved and the amount
of observation data used was limited. In order to be able to use data from several sub-
sequent antenna revolutions, the amount of used observation data per revolution was
decreased as compared to the 512 x 512 spatial grid used in chapter 3: the spatial grid
size was chosen to measure 360 x 360 points. The radius of the blind zone, r0 was chosen
to be 300 m and the maximum range was set to rmax = 1250m.
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SOLUTION UPDATE RATE

The number of radar images used per update, Nt as defined in paragraph 3.5.3 was set to
5 for the 2DFFT approach. The same number was chosen for the number of images used
to extract the observation data from for the LSQ approach: Nt as defined in paragraph
4.4.3 is set to 5 as well. Due to the memory limitation of the GPU, there is a trade-off
between maximum range and number of images from which observation data is used
(and the number of modes to be solved). In depth investigations into optimizing this
trade-off, which is again likely to be depending on the wave condition, have not been
undertaken.
The chosen Nt for the 2D FFT approach is not claimed to be optimal either.
In order to assess the effect of Nt , a small sensitivity study will be presented further on
in this paragraph in which Nt was varied.

Since no overlapping data was used in subsequent solution updates and no data was
skipped, the time between each prediction update is 5d t . As a consequence, for a cho-
sen distinct value of prediction time τ, say 30 s into the future, the simulation results in
subsequent updates of the wave prediction at τ= 30 that are 5d t apart.
In paragraph 3.5.4, equation (3.16), P was defined as the wave prediction as a function of
prediction time τ obtained from a solution update corresponding to time t0. P refers to
a spatial snapshot of the wave field in the used spatial domain involved with the 2D FFT.
Let P0 now refer to the point of P corresponding to the antenna position. The equivalent
of P0 obtained with the LSQ approach can be constructed by substituting the solved
wave mode amplitudes at update time t = tu , referred to as au into equation 4.23:

P0 (tu ,τ) = Re

(
N∑

n=1
au (kn)e i(|kn |r cos(ϕ−θn)−Ω(kn )(tu+τ))

)
(4.35)

Generally r = 0 can be substituted for the antenna position.
P0 (t0,τ), obtained with solution a0 refers to the very first update of a simulation, P0 (t1,τ)
obtained with solution a1 to the second, etc, all such that tu = tu−1 +5 ·d t .

4.5.3. RESULTS AND DISCUSSION DETERMINISTIC PREDICTION

As explained in paragraph 4.5.2, a simulation will yield time traces of the prediction for
distinct values of prediction time τ whose temporal resolution amounts to 5d t . In order
to increase this time resolution, time traces were created by concatenating the values
P0 (tu ,τ+m ·d t ), with m ∈ {0,1,2,3,4} and {u ∈Z|umin <= u}. Here umi n corresponds to
the time at which all (including the shortest) waves have crossed the blind zone with
radius r0. This means that a thus created time trace for a chosen prediction time value τ
is constructed not only from actual values for τ from subsequent updates, but also values
for up to τ+4ḋ t . Time traces at the antenna position for a chosen prediction time value
τ created this way, are denoted by P0 (t ,τ) where t now refers to the absolute time. Of
P0 (t ,τ), the accuracy can be determined by correlating it with the originally synthesized
wave elevation at the antenna, η (x = 0, t ):

cor r (τ) =
〈

P0 (t ,τ) ,η (x = 0, t )
〉

|P0 (t ,τ)| ∣∣η (x = 0, t )
∣∣ (4.36)
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Figures 4.3 and 4.4 present this correlation cor r as a function of prediction time τ for
wave condition 1-3, together with the predictability indicater P.I . (the latter based on the
theoretical wave spectrum which was used to synthesize the simulation data). (Figures
B.1(a), B.1(b) and B.1(c) in Appendix B present the same results in separate figures per
wave condition, each of which containing results for the 2 different approaches, enabling
easier comparison between the approaches.)
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Figure 4.3: Correlation of predicted wave elevation at the antenna for conditions 1-3 obtained with LSQ
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Figure 4.4: Correlation of predicted wave elevation at the antenna for conditions 1-3 obtained with 2DFFT and
spectral integration

One of the things that can be seen from the result is that P.I . again proves to be a fairly
good qualitative indicator for the prediction accuracy as a function of prediction time τ.
However, compared to results presented in chapter 3 a more pronounced decrease in
correlation can be observed also for the part of the prediction time where P.I . = 1. As
mentioned, the 2DFFT approach presented here is identical to the approach presented
in chapter 3, except for the fact that:

• a preceding beam-wise integration is included here in order to invert the tilt effect
while tilt wasn’t addressed in chapter 3

• the helical interpolation was applied to map all data during one antenna revolu-
tion to one instance in time (whereas in chapter 3 no antenna speed was taken
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into account: snap shots with constant recording time were generated by the syn-
thetization).

• in order to enable fair comparison between 2DFFT and LSQ results in this chapter,
the outer radius of the radar images, rmax was chosen 1250 m for both cases, while
in chapter 3 this was 1800 m.

(Moreover, it should be noted that an antenna revolution period d t of 2.0 s was used in
chapter 3 while here dr = 1.36 s.)
Concerning the second item mentioned above, it was observed from comparison to ad-
ditional simulations where antenna speed was ignored that it had little to none effect on
the correlation. The helical interpolation can become an issue though under different
circumstances as will be addressed further on in this paragraph. In order to assess the
effect of the third item above, simulations were carried out using synthetic data without
tilt for which rotation speed of the antenna was ignored (as was done in chapter 3) and
with a decreased rm ax of 1250 m. Results showed a correlation drop at lower prediction
time τ, as can be expected based on predictability theory, but exactly the same correla-
tion for low τ as simulations with the large rm ax = 1800. The effect of first item, the tilt,
will be discussed in the next sub-paragraph.

EFFECT OF TILT

In general, for both the 2DFFT and the LSQ approach, slightly lower maximum level and
faster decrease with increasing τ of the correlation was found when the observation data
included the tilt effect. This is illustrated more clearly by figure 4.5 and 4.6 which show
the correlation obtained with LSQ and 2DFFT respectively for condition 2, both for the
case that the tilt effect was omitted (in the synthetization of the data and in the analysis)
(black, circular markers) and for the case that it was included (blue, square markers).
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Figure 4.5: Correlation of predicted wave elevation at the antenna obtained with LSQ for conditions 2, com-
paring situation with and without tilt

A good explanation for this has not been found.

COMPARISON OF RESULTS BETWEEN DIFFERENT WAVE CONDITIONS FOR 2D FFT AP-
PROACH

Another observation from figure 4.4 is that the condition with the shortest peak period
(condition 1) appears to be more challenging in terms of prediction accuracy than con-
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Figure 4.6: Correlation of predicted wave elevation at the antenna obtained with 2DFFT for conditions 2, com-
paring situation with and without tilt

dition 2. Condition 3 however, although involving the longest waves, shows a lower cor-
relation than condition 2.
In general it can be expected that the decrease in accuracy with increasing propagation
time or distance is related to the wave properties in terms of some characteristic period
or length. Therefor a faster decrease in accuracy with increasing τ can be expected for
the shorter wave condition. This however, is hardly reflected by the simulation results.
More obvious is a difference in the level of the correlation, starting at τ= 0 (the nowcast),
rather than in its rate of decrease with increasing τ. It could be argued that for a shorter
wave condition, the waves undergo more assimilation updates in the DAES procedure
while they travel through the observation domain since their propagation speed is lower,
which should even result in a higher accuracy for shorter waves. On the other hand, for
shorter waves, the relative propagation distance (relative to the peak wave length e.g.)
through the blind zone, where no new information is added from any observations be-
fore the waves arrive at the antenna position, is longer. This would explain a lower accu-
racy for shorter waves. The separate and joint effects of these mentioned (and possibly
more) factors are not easily quantified or explained and no further attempts are done in
pursuit of a sound explanation for this aspect of the observed results for now.

COMPARISON OF RESULTS BETWEEN DIFFERENT WAVE CONDITIONS FOR LSQ APPROACH

The differences between the results for wave conditions 1-3 obtained with LSQ as ob-
served in figure 4.3 are much more pronounced. This can be explained as follows: Very
obvious from the presented results is the fact that for the short wave period (condition
1, Tp = 5), the correlation obtained with the LSQ approach is much lower than for the
2DFFT approach, while with increasing wave period, the accuracy with LSQ increases
and exceeds the 2DFFT accuracy for condition 3 (Tp = 13). The main reason for a low
accuracy for short wave period using LSQ, is the limited amount of energy that is rep-
resented by the 1500 components chosen to represent the wave field. For the case of
condition 1, 1500 wave components (chosen from the set of wave vectors as described
in paragraph 4.5.2, such that together they represent a maximum amount of wave en-
ergy according to the theoretical spectrum) represent only 51% of the total spectral en-
ergy. For condition 2 and 3 this is 89% and 95% respectively. The ’footprint’ of a Jonswap
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spectrum in the wave vector space is apparently much larger for shorter peak periods.
Figure 4.7 shows the normalized wave spectrum for condition 1. The contour tightly
surrounding the selected 1500 components is shown by the solid white line.

Figure 4.7: 2D wave spectrum of wave condition 1, with indications of the partitions represented by 1500 com-
ponents based on the wave spectrum and the combined response spectrum

EFFECT OF MOTION TRANSFER FUNCTIONS

Although the found correlation obtained with the LSQ approach for condition 1 is too
low for the wave prediction to be useful from a practical point of view, it doesn’t nec-
essarily mean that LSQ should be entirely rejected in case the chosen number of wave
modes represents a (too) limited fraction of the total wave energy. Keeping in mind that
in many practical cases it is the motions of the ship that are of interest rather than (just)
the waves, we might be ’saved’ by the fact that in general a ship will act as a low pass filter
on the incoming waves: under the linear assumptions which allow to adopt the super-
position principle, the effect of the (mostly short) waves that are not covered by the e.g.
1500 components chosen to represent the waves of condition 1 will be much less if the
vessel does not respond to these short waves.

If we take this one step further, it can be argued that in case it is ship motions that are
of interest instead of waves, the components chosen to represent the wave field should
be selected based on the response spectrum rather than the wave spectrum. In order
to do so, the following selection procedure was devised: Let the normalized response
spectrum Sxi for motion mode xi (i = 1−6 referring to surge-yaw) be given by:

Sxi (k) = |Hi (k)|2 ·Sη (k)
∞∫

−∞
|Hi (k)|2 ·Sη (k)dk

(4.37)
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where Sη indicates the directional wave spectrum wave and Hi indicates the transfer
function for motion mode i , defined in the same (earth- fixed) reference system as the
wave spectrum. (This means that Hi defined this way will depend on the earth-fixed
heading of the vessel!)
Assuming that all 6 ship motion modes are equally important, the so-called normalized
combined response spectrum is introduced which is defined as:

Sx (k) = 1/6

6∑
i=1

Sxi (k) (4.38)

Although the normalized combined response spectrum defined this way doesn’t have
much physical meaning, it can be used in order to select the most relevant wave modes.
giving equal importance to all 6 modes and finally resulting in a possibly more optimal
selection of the wave modes to be solved.
It should be noted though that such an approach is feasible when it is indeed prediction
of the first order response of the vessel that is pursued. For the eventual extension of the
application towards prediction of second order drift forces (reported on by Naaijen and
Huijsmans [2010]), the relative wave elevation around the vessel will be important which
is much affected by shorter waves that are possibly neglected when using the proposed
selection procedure based on the response spectrum.
Simulations were carried out using the motion response transfer functions of the vessel
on board of which the field campaign (presented in the next chapter) was performed. It
concerns a 106 m long well intervention vessel. (More details of the ship are presented in
section 5.3 of the next chapter. The procedure of computing ship motions using motion
transfer functions will be described in paragraph 5.5.2.) During the simulation the vessel
had a constant heading with respect to the main direction of the incoming waves result-
ing in bow quartering waves. The transfer functions were constructed correspondingly.
As an example, figure 4.8 shows the normalized heave response spectrum in which the
dashed white contour line tightly bounds the 1500 selected components based on the
combined response spectrum and the solid white line tightly bounds the components
selected based on the wave spectrum. In the former case, 76% of the total heave re-
sponse energy is represented by the selected components, which is significantly more
than the wave energy represented by the same components (which amounts to only 38
%, see figure 4.7). The selected components based on the wave spectrum only repre-
sented 52% of the total heave response energy.

The correlation for the heave motion is presented by the black line with circular
markers in figure 4.9. (The same figure shows the correlation for the case of a slower
turning antenna, which will be discussed in the following.)

EFFECT OF ANTENNA ROTATION SPEED AND HELICAL INTERPOLATION

Concerning the effect of the helical interpolation involved with the 2DFFT approach in
order to map the observation to one instant in time per radar revolution, it was observed
that it had little to none effect on the correlation (as compared to the situation where the
data was synthesized as snapshots with constant time per revolution). However, it must
be noted that in practice rotational antenna speeds significantly lower than the assumed
44 rmp are not uncommon. On many ships, navigation antennas are used turning at 24
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Figure 4.8: Normalized heave response spectrum for wave condition 1, with indications of the partitions rep-
resented by 1500 components based on the wave spectrum and the combined response spectrum
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rpm. In that case, especially for short waves, the mentioned interpolation is likely to
have a more dramatic effect: it would result in only two measurement points per peak
wave period for condition 1.
Simulation results with condition 1 for the earlier used fast rotating antenna (44 rpm,
d t = 1.36 s) are compared with those for a slower antenna (24 rpm, d t = 2.5 s) in figure
4.10.
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Figure 4.10: Correlation of predicted wave elevation at the antenna obtained with 2DFFT for conditions 1,
comparing a fast (dt=1.36, black, circular markers) and a slowly (dt=2.5, blue, square markers) rotating antenna

As can be seen, the correlation for the case of the slow antenna has dropped dramatically.
The same comparison is made for the LSQ approach, as presented by figure 4.11.
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Figure 4.11: Correlation of predicted wave elevation at the antenna obtained with LSQ for conditions 1, com-
paring a fast (dt=1.36, black, circular markers) and a slowly (dt=2.5, blue, square markers) rotating antenna

Interestingly, it can be observed that the correlation of the wave elevation for the case
of the slow antenna has increased compared to the fast antenna. The correlation of the
heave response for the slow antenna has been included in figure 4.9, which also shows
the increase. Although slightly surprising at first sight, a likely explanation can be given:
in the case of the fast antenna, the observation data taken from 5 subsequent radar rev-
olutions in order to solve the minimization problem (4.27) concerns 1.36 peak wave pe-
riods. In case of the slow antenna, 5 images concern 2.5 peak wave periods. Apparently,
the decrease in time resolution is over-compensated by the increase in observation du-
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ration in terms of ’input information’ for the minimization problem. This result gives
lead to a more thorough investigation into optimal choice of data to use as input for the
minimization problem. Under the restrictions of the maximum size of the minimization
problem that will in the end be feasible from the point of view of the computational bur-
den, it might even be the case that in case of a fast antenna, skipping images is beneficial.
For the time being, such investigations are left as a recommendation, since they will have
to be related to maximum feasible size of the problem and computational speed, aspects
that have been left out of consideration in this thesis.

EFFECT OF COUNTER PROPAGATING WAVES IN COMBINED SEA AND SWELL CONDITION

In order to illustrate the advantage of LSQ being able to cope with counter-propagating
waves, results are presented for wave condition 4. As shown in table 4.1 condition 4
concerns a bi-modal sea state with wind waves and swell waves propagating in almost
opposite main directions. Concerning the 2DFFT simulations, the MED (mean evolu-
tion direction, introduced in paragraph 3.5.2) found for this sea state is 87.5 deg and the
relevant half of the wave vector space associated with this MED represents 74% of the
total wave energy. For the LSQ simulations, the selected 1500 components are repre-
senting 91% of the total wave energy. Not surprisingly, the comparison between the two
approaches, presented by figure 4.12, reveals a significantly higher prediction accuracy
for the wave elevation at the antenna position obtained by the LSQ approach.
Apart from a lower correlation in general, the 2DFFT results shows an initial increase
in correlation with increasing prediction time. This phenomenon is related to the blind
radius: it does not occur without a blind radius. However, no sound explanation can be
given for this particular prediction time dependency of the correlation.
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Figure 4.12: Correlation of predicted wave elevation at the antenna obtained with LSQ and 2DFFT for bi-modal
sea state of condition 4

EFFECT OF USED NUMBER OF IMAGES PER PREDICTION UPDATE

To conclude this paragraph, a small sensitivity study into the effect of the number of
new images used per update, Nt , is presented. See figure 4.13 and 4.14 which present
for condition 2 (Tp = 9) the correlation of the predicted wave elevation at the antenna
against prediction time τ. Figure 4.13 concerns the LSQ approach while 4.14 shows the
result using the 2DFFT approach. Overall it can be said that an increased Nt results in
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a slightly increased correlation (at least for τ such that P.I . = 1) for both approaches.
For the presented results the update rate was taken equal to the number of new images
used per update, as a consequence of which an increase of Nt will result in a decreased
number of updates per unit of time, i.e. a decreased update rate. However, this is not a
strict requirement to the procedure: there’s no principle objection against using updates
each of whose subsequent stack of Nt images is overlapping in time. In that case the
benefit of using a larger number of images per update, Nt , might be further increased
slightly, since an increase of Nt wouldn’t result in a lower update rate. Such simulations
haven’t been carried out.
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Figure 4.13: Effect of Nt on correlation for Tp = 9 s, using LSQ approach
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Figure 4.14: Effect of Nt on correlation for Tp = 9 s, using 2D FFT approach

In the proceeding paragraph, results from simulations with the procedure for detecting
the wave spectrum are presented.

4.5.4. RESULTS AND DISCUSSION WAVE SPECTRUM ESTIMATION
In the contest of this thesis, it is not a very exact estimation of the directional spectrum
that is pursued: the only reason why an estimate of the directional spectrum is required,
is the fact that the most relevant wave modes have to be selected to be solved in case of
the LSQ approach: it is sufficient to estimate the most relevant ’footprint’ in the wave
vector space rather than the exact spectral shape. Therefor, the investigation into spec-
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trum estimation presented here is not meant to be an exhaustive study. Only some as-
pects are highlighted that are relevant within the context of the main objectives.

The confidence level of a wave spectrum estimated by some FFT approach is usually
increased by averaging FFT results obtained from subsequent time traces, each of which
gives one estimate of the spectrum. Under the assumption that the statistical properties
of the waves vary only slowly, the average of the subsequent FFT’s is a better estimator
for the spectrum than a single FFT result. The averaging comes with the cost of loosing
phase information. The averaging and dispersion filtering procedure to detect the direc-
tional wave spectrum from series of radar images, was verified by the following simula-
tions: To each of Nav subsequent partly overlapping time series of Nt synthesized images
that were first subjected to the spectral integration (as described in paragraph 4.4.2), a
3D FFT was applied, each of the time series of length Nt starting 8 images later than the
preceding one. Converting the individual 3D FFT results into 3D spectra according to
equation (4.16) and averaging over the Nav subsequently obtained 3D spectra according
to equation (4.17) yields the average 3D spectrum Sav . Subsequently, dispersion filtering
and normalizing according to equation (4.20) and (4.21) results in the average normal-
ized 2D wave spectrum Savn (k). This procedure is repeated Nr eal times using total time
series each of which starting as well 8 images later than the preceding realization. For
the 3 wave conditions, sensitivity of the obtained accuracy of the directional spectrum
to the following parameters have been investigated :

• Nt , length of the time series to which 3D FFT is applied

• effect of not taking into account tilt effect, i.e. omitting the spectral integration.
(Doing so is likely to result in over-estimation of the energy related to high wave
number components. Indeed, Borge et al. [2004] shows that the tail of the spec-
trum obtained by ignoring the tilt effect is too thick.)

• the filter width of the dispersion filter f used in equation (4.20), i.e. the value of
w f in equation (3.25) as described in section 3.6

The accuracy of the detected Savn is quantified in terms of the following error definition:

Er rS = 1

Nr eal

Nr eal∑
i=1

∞∫
−∞

∣∣Savni (k)−Sn (k)
∣∣dk

∞∫
−∞

Sn (k)dk
= 1

Nr eal

Nr eal∑
i=1

∞∫
−∞

∣∣Savni (k)−Sn (k)
∣∣dk (4.39)

where Sn is the normalized theoretical directional spectrum used to generate the syn-
thetic waves. Nr eal is the number realizations.

Firstly, simulation results with and without omitting the spectral integration are
compared. To isolate this issue, these investigations concern simulations with synthe-
sized radar data without shadowing. Not surprisingly, figure 4.15 shows that the error
in the spectrum detection is indeed significantly larger when interpreting the images as
elevation, while in fact they include the tilt effect. This is of course in a sense a very self
fulfilling prophecy, since in the synthesized data the tilt effect was included.
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Figure 4.15: Error in directional spectrum detection, Er rS

It is still interesting to illustrate that under the assumption that the used model for
backscatter is indeed realistically representing actual radar back scatter, it is crucial to
include the tilt effect in the interpretation of the back scatter data: Figure 4.16 shows the
1D spectrum (which is obtained by transforming Sav from the k basis to the (ω,θ) basis
and integrating over θ) for the case of Nt = 128 and w f = 1.

The figure clearly illustrates how the ’wrong’ interpretation of the radar data results
in an overestimated energy at the higher frequencies. This effect becomes more pro-
nounced with longer peak period since the difference between the amplitude of the wave
elevation and the amplitude of the tilt is larger for lower wave numbers. It can be con-
cluded that despite the fact that it is merely a ’footprint’ of the spectrum in k-space that
will be used (in order to select the relevant wave components to be solved with LSQ)
rather than the actual shape of the spectrum, it is not justified to neglect the tilt effect in
the spectrum detection: doing so will result in a possibly wrong selection of components.

Some additional investigations were carried out in order to obtain a suitable choice
for the filter width w f . Results are presented in figure 4.17, from which it can be con-
cluded that the choice of w f does not have a dramatic effect on the accuracy of the de-
tected spectrum. A reasonable choice for w f seems to be 5.

Finally, investigations were carried out in order to assess the effect of shadowing.
The results are presented in figures 4.18 and 4.19, showing the error Er rS and a compar-
ison with the theoretical 1D spectra respsctively. As can be expected, a higher Er rS is
found for the situation including shadowing although the effect is not dramatic. How-
ever, the difference with the situation without shadowing decreases with increasing Nt .
It is therefor concluded that of the considered values of Nt , Nt = 128 can be considered
as the optimal choice.
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Figure 4.16: Detected and theoretical 1D Spectra

0 5 10 15 20 25 30 35

0.4

0.5

0.6

0.7

0.8

0.9

1

fw [-]

E
r
r S

[-
]

ErrS , Tp = 5, Nt = 64 [-]
ErrS , Tp = 9, Nt = 64 [-]
ErrS , Tp = 13, Nt = 64 [-]
ErrS , Tp = 5, Nt = 128 [-]
ErrS , Tp = 9, Nt = 128 [-]
ErrS , Tp = 13, Nt = 128 [-]

Figure 4.17: Effect of filter width on accuracy of detected spectrum



4

92 4. MODELING AND INVERSION OF NORMALIZED RADAR CROSS SECTION

0 20 40 60 80 100 120 140
0

0.25

0.5

0.75

1

Nt

E
r
r S
[−

]

with shadowing, Tp = 5
with shadowing, Tp = 9
with shadowing, Tp = 13
without shadowing, Tp = 5
without shadowing, Tp = 9
without shadowing, Tp = 13

0 20 40 60 80 100 120 140

Figure 4.18: Error in directional spectrum detection, including shadowing Er rS

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

ω [rad/s]

S
a
v
n
(ω

)
[-
],
S
n
(ω

)
[-
]

Savn , with shadowing, Tp = 5
Savn , with shadowing, Tp = 9
Savn , with shadowing, Tp = 13
Savn , without shadowing, Tp = 5
Savn , without shadowing, Tp = 9
Savn , without shadowing, Tp = 13
Sn, theoretical synthetic, Tp = 5
Sn, theoretical synthetic, Tp = 9
Sn, theoretical synthetic, Tp = 13
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4.6. CONCLUSIONS AND RECOMMENDATIONS
Two approaches have been presented for deterministic wave predictions from radar ob-
servations including the tilt effect. Both have been shown to be able to yield accurate
results by applying them to synthetic radar data. It is not possible to draw one general
conclusion about which of the two approaches is superior. It has been shown that this
depends on the wave condition and properties of the simulated radar system. For the
considered cases, it can be said that 2DFFT is superior in case of situations where the
limited number of wave components solved with LSQ does not represent a sufficient
fraction of the total wave energy. A required condition for this, is a sufficiently fast rotat-
ing radar antenna: the linear helical interpolation preceding the 2DFFT, applied to map
the radar data to constant instant in time, has been shown to introduce high inaccura-
cies in case of a combination of short waves and a slow antenna. For the investigated
longer wave periods, the chosen 1500 wave components represented at least 89% of the
wave energy in which cases accurate results were obtained with LSQ. Table 4.3 summa-
rizes the comparisons presenting the minimum and maximum correlation of the wave
elevation at the antenna found for prediction time values τ at which the predictability
indicator P.I . = 1. Minimum and maximum correlation are indicated with cor rmi n and
cor rmax respectively. The maximum prediction time τ for which P.I . = 1 is indicated by
τmax

Condition Tp [s] τmax [s] cor rmax [-] cor rmi n [-] cor rmax [-] cor rmi n [-]
LSQ LSQ 2DFFT 2DFFT

1 5.0 215 0.68 0.61 0.88 0.81
2 9.0 120 0.93 0.89 0.93 0.85
3 13.0 80 0.98 0.90 0.89 0.85

Table 4.3: Minimum and maximum correlation of wave elevation at antenna for P.I . = 1 obtained with LSQ and
2DFFT

Investigations concerning the detection of the 2D wave spectrum revealed that it is
important to take into account the tilt effect even if the detected spectrum only serves as
input for the selection procedure of the most relevant wave modes: ignoring tilt can lead
to a not optimal selection of wave modes. It was also shown that the effect of shadowing
on the accuracy of the detected spectrum is limited in case the 3D FFT is applied to
sufficiently long time traces of radar images: best results were obtained for the case of
Nt = 128. Variations of the width of the dispersion filter fw lead to the conclusion that 5
is a suitable value for fw .

Concerning the averaging procedure represented by equation (4.31), the weighing
factor w between the evolution and the new observation was taken 0.5. Like in chapter
3, again no in depth investigations into a potentially more optimal choice of w have been
undertaken and are left as a recommendation.

As mentioned, due to the memory limitation of the GPU, there is a trade-off between
maximum range and number of images from which observation data is used (and the
number of modes to be solved) for the LSQ problem. In depth investigations into opti-
mizing this trade-off, which is again likely to be depending on the wave condition, have
not been undertaken.
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Also related to the limited memory of the GPU and to the computational burden
of solving LSQ problem is the limited number (1500) of wave modes that were solved.
Increasing this number would increase the energy associated to the solved modes, im-
proving the prediction accuracy, especially for the shorter wave conditions. Currently
the computational time prevents real time application of the LSQ approach. Investi-
gations into a fast solver for the LSQ problem and an efficient implementation (on the
GPU) are required to develop the presented technology from a proof of principle to an
operational tool and are left as a recommendation.

Apart from the aforementioned increase of the number of wave modes, another way
to improve the results for short wave conditions (or more generally for conditions with
the large footprint in the wave number space), is to improve the selection of the wave
modes: for the LSQ approach the resolution dk in the wave number space associated to
the chosen set of wave components, was linked to the chosen spatial grid as explained in
the preceding. The consequence of this was that for the short wave condition, the chosen
fixed number of components only represented a relatively small fraction of the total wave
energy. This resulted in a poor accuracy of the wave prediction. A very logical way to
improve the result is to optimize the chosen dk: with a larger dk, 1500 components will
represent a larger fraction of energy, thus improving the accuracy. Such optimization
will involve a trade-off between resolution in the wave number space and total energy
represented by the chosen number of components and is left as a recommendation for
further improvement of the LSQ approach.
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5.1. SUMMARY
This chapter presents the results of a validation study where the LSQ approach as pre-
sented in the previous chapter is applied to real radar images recorded during the field
campaign carried out within the framework of the OWME-JIP project. During this cam-
paign, radar images and vessel motions of the well-intervention vessel ’Island Frontier’
were recorded. The vessel was operating under DP i.e. without forward speed. Some
details of the campaign and the acquired data will be presented. Motions of the vessel
are computed from the predicted waves using the vessel’s available RAO’s. Since the ex-
act relation between real radar images and wave height is unknown, the recorded vessel
motions are used to scale the predicted motions as will be described. Finally predicted
vessel motions will are compared to recorded vessel motions, yielding an accurate to
fairly accurate match.



5.2. INTRODUCTION

5

97

5.2. INTRODUCTION
The joint industry project (JIP) OWME (Onboard Wave and Motion Estimator) had an
objective that was very similar to the PROMISED project: to derive a prediction of phase
resolved ship motions up to at least 2 minutes in advance using navigation radar data
as a remote wave wave sensor (Dannenberg et al. [2010]). Part of the project was a field
campaign for which the well intervention vessel ’Island Frontier’ was used while it was
operating in the Statoil operated Gullfaks oil field in the North Sea, 110 nm North-West
of Bergen. During the campaign, a wave buoy was deployed and raw radar data was
stored. Additionally the vessel was equipped with a motion sensor and a down looking
radar, both mounted on the helideck. Comparisons made back in the days of the OWME
JIP between recorded ship motions and predictions obtained from the radar data did
not yield any statistically significant correlation. With the benefit of hindsight, it can be
stated now that the most important reason for this is the fact that the used methodology
during the OWME project relied on the 3DFFT approach, which has been shown in chap-
ter 3 to be not suitable for phase-resolved prediction. Having developed the alternatives
presented in chapter 3 and 4, yielding much more promising results from synthetic radar
data, was enough reason to revisit the OWME campaign and apply the newly developed
methods to the available data. It was shown in chapter 4, that the performance of the two
proposed approaches for deterministic wave prediction largely depends on the encoun-
tered condition. For longer wave periods, given that the limited number of solved wave
components with LSQ represent a sufficiently large fraction of the total wave energy,
LSQ yielded more accurate results. Anticipating the conditions that occurred during the
OWME field campaign, which were sea states with peak periods all above 11 s, it was
decided to select the LSQ approach to be applied to the field data. Challenges regard-
ing computational efforts involved with solving the minimization problem of equation
4.27, which currently prevent real-time application of the LSQ approach, are assumed
to be solvable by improved numerical methods and/or increased hardware capacity. In
order to achieve a proof of principle for successful deterministic wave / vessel motion
prediction from non-coherent radar data, which has not been reported on in literature,
accuracy is considered to be the dominating criterion.

In this chapter the stored raw radar data obtained from the OWME campaign will
be used as input in similar simulations as presented in chapter 4. The LSQ approach is
applied to predict the Island Frontier’s motions, which will be compared to the recorded
motions.
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5.3. VESSEL AND TRIAL LOCATION
The vessel that hosted the OWME field experiments was the light-well intervention ves-
sel ’Island Frontier’, depicted in figure 5.1. The vessel was operating under DP during
trials at the Gullfaks oil field offshore the coast of Bergen where the water depth amounts
to 127 m. The experiments took place between 17 and 25 September 2008.

Figure 5.1: Island Frontier

Some vessel dimensions are given in table 5.1.

Vessel name Island Frontier
Owner / operator Island Offshore

Length over all 106.2 m
Width 21.0 m

Deadweight 4700 ton

Table 5.1: Vessel specs Island Frontier

The motion response functions (RAO’s and phase angles of the 6 DOF motions) were
provided by the owner and depicted in Appendix D, figure D.1.



5.4. USED SENSOR DATA

5

99

5.4. USED SENSOR DATA
During the OMWE trials, data was acquired over a period of 8 days. The amount of actu-
ally useful data resulting from the trials is rather limited though due to the fact that a few
criteria had to be satisfied simultaneously, which was the case for only a short period of
time. Examination of the available data resulted in the selection of 3 data sets considered
to sufficiently meet all criteria. These are listed in table 5.2. The criteria referred to are:

• radar operating at short pulse
Standard navigation radar systems have an adjustable pulse rate: short pulse gives
short range but high spatial resolution while long pulse provide a far range at the
price of lower spatial resolution. In general, the course spatial resolution associ-
ated with long pulse setting is insufficient for wave detection.

• sufficient radar data quality
Sufficient signal to noise ratio: at too low wind speed and/or too low wave height,
x-band navigation radar is known to give insufficient back scatter / modulation of
back scatter respectively, resulting in wave extraction from the data to fail.

• sufficient radar data quantity: minimal amount of data acquisition interruptions
The data acquisition was done by the WAMOS system. For various reasons it may
occur that data from one or several antenna rotations is not stored. Although the
3D FFT involved with detecting the 2D wave spectrum requires uninterrupted in-
put sequences, (small) data gaps are not necessarily a major problem for the pro-
posed deterministic prediction approaches. Time slots were selected with inter-
ruption intervals of at most 15 seconds. (All three selected time slots indeed con-
tained some interruption intervals of almost 15 seconds as can be seen in Figure
F.1 which shows the time intervals between subsequently acquired radar images
(referred to as d ti m) during the three selected data sets. The antenna rotation time
was 1.36 s.)

• availability of reference signal from the motion sensor
Motions of the vessel were recorded by the motion reference unit (MRU) mounted
at the heli deck. Data acquisition was interrupted multiple periods of time. Of the
selected data sets, only the 3rd one contains a MRU data gap of 27 seconds.

start data / time end data / time duration
data set 1 2008-09-22 04:00:00 2008-09-22 06:00:00 2 hours
data set 2 2008-09-22 20:00:00 2008-09-22 21:00:00 1 hour
data set 3 2008-09-25 17:00:00 2008-09-25 18:00:00 1 hour

Table 5.2: Selected data set for validation

5.4.1. RADAR DATA

RADAR SPECS ISLAND FRONTIER

The radar data used in this validation study was acquired from the vessel’s navigation
radar antenna by Ocean Waves’ WAMOS data acquisition system. Basically, the data
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acquisition system combines the analogue radar video signal, the corresponding trig-
ger pulse, the azimuth change pulse (ACP)and the azimuth reset pulse (ARP) in order
to create files containing radar back-scatter as a function of range and azimuth. These
mentioned files will be referred to as raw polar files and contain the most raw form of
the radar data. Besides these files contain ship’s position data, being GPS longitude and
latitude and the vessels heading obtained by the gyro compass. Some specs of the radar
system used onboard the Island Frontier are given in table 5.3.

Radar brand/type Furuno FR-2115
Antenna length 6.5 ft

Antenna height above free surface 25 m
Antenna specified beam width 1.23 deg

Radar repetition time (RPT) 1.36 s
Digitization rate 20 MHz
Range resolution 7.5 m

Samples per pulse 256
Dead/blind zone 120 m
Maximum range 2040 m

Pulse rate 1.188 kHz
Azimuth sample resolution 0.22 deg

Nr. of bits ADC 12

Table 5.3: Radar specs Island Frontier

THE EFFECT OF ANTENNA MOTIONS ON THE RECEIVED RADAR SIGNAL

Obviously, due to the ship motions, the antenna cannot be assumed to be positioned in a
perfectly constant location nor orientation. Concerning the location, the instantaneous
position can in theory be measured by a sufficiently accurate GPS location sensing sys-
tem. Using the available GPS systems on a vessel, knowing the relative position of the
GPS antenna and the radar antenna, together with the vessel heading obtained from the
gyro compass, the earth fixed horizontal location of the antenna can be found. For the
presented results in this chapter, this is indeed the followed approach.
This approach requires an additional synchronized measurement of the vessel’s roll and
pitch motions in case their effect on the horizontal position of the antenna is to be taken
into account as well. This has not been done in practice mainly because of the question-
able time synchronization of radar data and recorded vessel motions.
In order to assess the effects of the antenna orientation, let’s consider three possible ro-
tational modes of the antenna defined as: roll rotation around an axis parallel to the
instantaneous look direction in the horizontal plane, pitch rotation around an axis per-
pendicular to the instantaneous look direction in the horizontal plane and azimuth ro-
tation around a vertical axis. The azimuth rotation is taken into account by an exact
measurement, available through the so-called azimuth count pulse (ACP)signal which is
part of any scanning radar system.

In general for the mapping of the radar return time to range, the vertical elevation of
the antenna Λ above the surface is neglected introducing an error that is much smaller
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than then the range resolution. Let r ′ be the exact distance from the antenna and r its
projection in the horizontal plane of the free surface:

r ′ =
√
Λ2 + r 2 (5.1)

whereΛ is the elevation of the antenna above the free surface.
The difference between r ′ and r is presented in figure 5.2(a). For the case studies pre-
sented in this chapter, where a blind radius of r0 = 250 was assumed and the antenna
elevation Λ being 25 m, the largest range error due to neglecting the antenna elavation
(occuring at r = 250) is 1.25 m. This is indeed well within the radar’s range resolution of
7.5 m and very small with respect to the relevant wave lengths to be observed.
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(a) range error due to antenna elevation
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(b) transverse position error due to antenna roll

Figure 5.2: Position error due to antenna elevation and roll rotation

A roll rotation of the antenna would result in a shift of the illuminated sea surface
in transverse (y)direction, i.e. perpendicular to r . This is illustrated in figure 5.3(b) and
5.3(d) where bφ is the so-called azimuth beam-width. The positioning error y

′
0 − y0, de-

fined as the distance between the center of the beam when looking vertically down and
when looking under angle antenna roll angle φ can be expressed as:

y
′
0 − y0 =Λ tan

(
φ

)
(5.2)

Figure 5.2(b) presents this error as a function of antenna roll angle φ for various values
of antenna elevation Λ. The azimuth beam width bφ of a radar antenna depends on the
antenna beam and amounts to 1.2 deg for the radar system on board the Island Frontier,
resulting in a resolution in y-direction between 5.4 m at r = 250 m and 26.8 m at r = 1250
m, from which it is concluded that especially at larger ranges, the positioning error y

′
0−y0

due to antenna rotation is small.
For the effect of the pitch rotation it is important to understand the principle of remote
sensing with radar. See figure 5.3(a) which shows the antenna elevation beam-width bθ,
illuminating the surface between range r1 and r2. Figure 5.3(c) show the situation after
an antenna pitch rotation: the illuminated part has shifted. Since the range r of the
points within the shifted illuminated part is associated with the return time of the radar
signal, their values haven’t shifted. This means antenna pitch rotation only affects the
illuminated part, but doesn’t introduced a range ’error’.
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(a) no antenna pitch (b) no antenna roll

(c) antenna pitch θ (d) antenna roll φ

Figure 5.3: Antenna pitch and roll

RECEIVED RADAR SIGNAL AND OFFSET CORRECTION

This paragraph describes some aspects concerning the radar data that was recorded dur-
ing the OWME trials and how this data was pre-processed in order to enable the appli-
cation of the proposed analysis method in the previous chapter.

In chapter 4, it was considered how to obtain wave elevation from the NRCS σ0. In
practice, nautical radars do not provide the NRCS value itself but the amplified received
signal power Pr . The received signal power Pr can be formulated by the radar equation:

Pr = Pt Gt Aw
r−4

(4π)2 ·σ0 (5.3)

with Pt ,Gt ,Aw being transmitted power, gain factor and effective aperture respectively.
Additionally a logarithmic amplifier is used for nautical radar whose base is in general
not known. The recorded radar data can therefor be presented as:

I0 = b ln

(
Pt Gt Aw

r−4

(4π)2σ0

)
(5.4)

with b being the unknown base of the logarithmic amplifier. (Additionally, an ADC usu-
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ally converts the radar data into an unsigned integer value in order to safe storage disk
space and speed up I/O. In case of the Island Frontier, the radar video output from data
acquisition system was represented by 12 bit unsigned integers.)

Using the NRCS model from the previous chapter (paragraph 4.3), I0 can be related
to the wave steepness ηr : Substituting eq. 4.1, 4.12 and 4.9 in eq. 5.4 and applying a 1st
order Taylor expansion around δσ0 = 0 yields:

I0 =
ln

(
Pt Gt Aw

r−4

(4π)2

)
ln(b)

+ ln(σ̄0)

ln(b)
+ δσ0

ln(b) σ̄0
=

ln
(
Pt Gt Aw

r−4

(4π)2

)
ln(b)

+ ln(σ̄0B + c cos(Θ (r )))

ln(b)
+ c sin(Θ)

ln(b) (σ̄0B + c cos(Θ))
∂rη (5.5)

The first two terms in eq. 5.5 represent a range dependent constant. A pragmatic
approach to finally obtain ∂rη from the recorded I0, is to first eliminate this constant by
subtracting a range and azimuth dependent average of I0 obtained from a time history:
(The NRCS is considered to be azimuth dependent because of its probable wind direc-
tion dependency. Moreover, interaction of the transmitted radar waves with the ship’s
hull is very likely to introduce additional azimuth dependency.)

I
(
r,ϕ, t

)= I0
(
r,ϕ, t

)− I0,av = I0
(
r,ϕ, t

)− 1

Dh

t∫
t−Dh

I0
(
r,ϕ, t∗

)
d t∗ (5.6)

where Dh is the duration of the used time history and I represents now only the last term
in eq 5.5:

I
(
r,ϕ, t

)= c sin(Θ (r ))

ln(b) (σ̄0B + c cos(Θ (r )))
∂rη

(
r,ϕ, t

)
(5.7)

This approach however has an undesired side effect. Because of shadowing, only
parts of the wave field are visible as a result of which I0,av will be biased as compared to
the non shadowed situation. This is explained and illustrated in more detail in appendix
E by analyzing the visibility of a harmonic wave as was done by Wijaya and van Groesen
[2016]. No attempts were made in order to mitigate this bias effect.

Substituting in equation (5.7) the ’depression angle’ Ψ̃, being the angle between the
radar look direction in the vertical plane and the horizontal plane, Ψ̃= π

2 −Θ and assum-
ing it is small, we find:

I
(
r,ϕ, t

)= ∂rη
(
r,ϕ, t

)
ln(b)−1 cos

(
Ψ̃ (r )

)
σ̄0B c−1 + sin

(
Ψ̃ (r )

) ≈
∂rη

(
r,ϕ, t

)
ln(b)−1(σ̄0B c−1 + Ψ̃ (r )

)−1 ≈
∂rη

(
r,ϕ, t

)(
ln(b) σ̄0B c−1)−1 =

∂rη
(
r,ϕ, t

)
C−1 (5.8)
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where C is representing a scaling factor: C = ln(b) σ̄0B c−1

This means that the above approximations have lead to an interpretation of the re-
ceived radar data (first corrected for a range dependent offset) which is linear in ∂rη and
can be used as input for the LSQ procedure as outlined in chapter 4. The scaling fac-
tor C is unknown at the time of simulation but can be eliminated by using a reference
measurement as will be explained in paragraph 5.5.2.

5.4.2. MOTION SENSOR DATA
A motion reference unit (MRU) containing a 3-axis accelerometer and a 3-axis gyro was
installed during the trials from which the 3 DOF translational displacements (surge, sway
and heave) and the 3 DOF rotational displacements (roll, pitch, yaw) were derived. The
sensor was mounted below the deck of the heli-platform as depicted in figure 5.4.

(a) position MRU Island Frontier (b) detailed position MRU Island Fron-
tier

Figure 5.4: Mounting position of MRU sensor onboard Island Frontier

The motion sensor used is a 6 degree of freedom medium accuracy sensor with spec-
ifications given in Appendix G.

The translations of and rotations around the center of gravity (COG) of the vessel,
referred to as surge, sway, heave and roll, pitch yaw respectively were derived from the
recorded motions of the motions sensor, linearizing for small rotation angles: x1,MRU

x2,MRU

x3,MRU

=
 x1,S

x2,S

x3,S

−
 0 −x6,S x5,S

x6,S 0 −x4,S

−x5,S x4,S 0

 xS

yS

zS

 (5.9)

where x1,MRU , x2,MRU and x3,MRU refer to the vessel’s measured surge, sway and heave
motion respectively . x1,S , x2,S and x3,S refer to the longitudinal, transverse and vertical
motion of the motion sensor respectively. x4,S , x5,S and x6,S refer to the sensor’s rotations
around the longitudinal, transverse and vertical axis respectively. Sensor’s axes coincide
with the vessel’s axes which results in:
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 x4,MRU

x5,MRU

x6,MRU

=
 x4,S

x5,S

x6,S

 (5.10)

where x4,MRU , x5,MRU and x6,MRU refer to the vessel’s measured roll, pitch and yaw mo-
tion respectively.



5

106 5. APPLICATION AND VALIDATION WITH FIELD DATA

5.5. SIMULATIONS
As described in chapter 4, the applied analysis method that finally leads to the individ-
ual amplitudes and phases of the frequency and wave number dependent wave compo-
nents, exists of two phases:

1. A conventional 3DFFT and dispersion filtering is applied to subsequent sets of im-
ages, in order to detect the directional wave spectrum and surface current.

2. The phase resolved solving of the wave components using LSQ

For real time application, these two processes would need to run in parallel (with
possibly different update rates). For the proof of concept that is pursued on this chapter,
they two steps were carried out in separate simulations where spectrum updates from
the first step were saved to be used later in the second step.
Having solved the individual wave components in step 2, these are propagated, multi-
plied by the vessel motion transfer functions and summed to yield the predicted time
traces of vessel motions.
In the next paragraphs, some more details are given of the computational procedure
summarized above, finally leading to the results of the ship motion prediction to be pre-
sented later in this chapter.

5.5.1. PROCEDURE AND SETTINGS OF SPECTRUM AND CURRENT DETEC-
TION

As explained in chapter 4 LSQ only solves relevant wave modes in order to reduce the
computational effort. The selection of these relevant modes is done based on the direc-
tional wave spectrum, which is derived from the radar images by means of the procedure
described in paragraph 4.4.1.

The values of the parameters used for this procedure as explained in paragraph 4.4.1
are given in table 5.4. The procedure is applied to the averaging buffer, which is a running
buffer existing of the most recent Nav (120) series of Nt (128) images which is updated
with every 16th newly acquired image.

parameter symbol unit value
blind radius r0 [m] 250
max. observation radius rmax [m] 1800
Nr. of observation points in x direction Nx [-] 512
Nr. of observation points in y direction Ny [-] 512
Nr. of images used per 3DFFT Nt [-] 128
spatial resolution in x direction d x [m] 7.5
spatial resolution in y direction d y [m] 7.5
update rate [-] 16
averaging buffer length Nav [-] 120
dispersion filter width w f [-] 5

Table 5.4: Parameters of 3DFFT spectrum detection
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Surface current velocity was not solved but assumed to be 0. For the 3 investigated
data sets, the directional spectra obtained from the above described procedure, averaged
over the duration of the considered data set is presented in figure H.1. Some obtained
wave characteristics are presented together with the vessel’s heading in table 5.5. As can
be seen all three investigated cases concern a uni modal wave wave condition with a
peak wave direction close to Eastward. For all cases the vessel was positioned such that
it experienced approximately bow-quartering waves.

data set Tp [s] θp [deg] Ψ [deg] µ [deg]
peak period peak dir. ship’s gyro peak wave dir.

rel. to East rel. to ship
1 10,7 8,1 196 114,1
2 12,2 -9,4 226 126,6
3 11,12 -3,6 231 137,4

Table 5.5: Wave field parameters found from spectrum estimation and vessel heading

5.5.2. PROCEDURE AND SETTINGS LSQ
UPDATING AND VESSEL MOTIONS

In order to calculate the phase resolved wave components, the LSQ approach as out-
lined in 4.4.3 was used. At each update step, the elements of the observation vector b in
equation 4.27 are taken from the most recent series of acquired radar images. The length
of this series of images used as input for each computation update step was maximized
with regard to the memory size of the graphical processing unit (GPU) that was used
to solve the system of equations (eq. 4.27) and corresponds to minimum 5 and maxi-
mum 10 images per update for the presented cases. (The number of radar images from
which the observation data for a certain update is not fixed, since the amount of shad-
owing may vary per image and per wave condition.) Updates are computed every 5th
antenna rotation. After having solved the phase resolved wave component amplitudes
a, the wave elevation at any given location x and time t can be obtained by substituting
these amplitudes in equation 4.22. Here, for each individual update, x is relative to the
axes system used for solving the minimization problem of equation 4.27 whose origin is
located at the vessel’s antenna position corresponding to the first recorded image of the
entire considered data set. The x- and y- axis of the used earth-fixed coordinate system
are pointing Eastward and Northward respectively. For each uth individual update, tu

is associated with the time of recording the first beam of the last image of the series of
images from which the observations were taken.
In the proceeding, results will be presented concerning the so-called ’nowcast’ of wave
elevation or vessel motions. Time traces of the nowcast (or forecast) are created in a
similar way as explained in the beginning of paragraph 4.5.3 by concatenating the val-
ues of subsequent updates: In paragraph 4.5.3, updates of the wave elevation predic-
tion at the antenna position as a function of prediction time τ were given by P0 (t ,τ) =
P0 (tu ,τ+m ·d t ), with m ∈ {0,1,2,3,4} in case of a solution update rate of 5d t (5 antenna
revolutions).
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Now, let xi be the equivalent of P0 for vessel motion mode i , i referring to the 6 possible
motion modes. So e.g. x3 (t ,τ= 0) represents the time trace of the heave motion nowcast
obtained by the above mentioned concatenation. Again, for u yields {u ∈Z|umin <= u}
where umi n corresponds to the time at which all (including the shortest) waves have
crossed the blind zone with radius r0. The actual vessel motion prediction update u is
computed in a similar way as was done for the the wave prediction update P0 in equation
(4.35):

xi (tu ,τ) = Re

(
N∑

n=1
Hi (Ω (kn) ,θn −Ψ (τ)) au (kn)e i (kn∆x−Ω(kn )(tu+τ))

)
(5.11)

Comparing to equation (4.35) there are a few changes:

• Hi has been substituted which is the transfer function of the considered motion as
a function of wave frequencyΩ and wave direction relative to the vessel. The wave
direction relative to the vessel equals θ−Ψ, withΨ being the vessel’s heading with
respect to the coordinate system’s x-axis (i.e. with respect to East). τ represents the
prediction time.

• r = 0 is substituted

• spatial shift ∆x is added in order to take into account the horizontal position of
the ship’s center of gravity (with respect to which the motion transfer functions are
defined) and the radar antenna. Besides, ∆x can represent a horizontal position
offset of the ship relative to the chosen spatial origin.

In case of the field data simulations presented here, again an update rate of 5d t was cho-
sen. Due to the radar data gaps (Figure F.1) this time between subsequent updates can
be longer meaning that m which was ideally not larger than 4, can be larger occasionally.
The main simulation parameters involved with the LSQ approach applied to the field
data are given in table 5.6.

parameter symbol unit value
blind radius r0 [m] 250
max. observation radius rmax [m] 1250
Nr. of observation points in x direction M [-] 360
Nr. of observation points in y direction N [-] 360
spatial resolution in x direction d x [m] 7.5
spatial resolution in y direction d y [m] 7.5
time history length for scaling factors [min] 15
solution update rate [dt] 5
number of solved wave modes [-] 1000

Table 5.6: Parameters of wave prediction simulations from radar data
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SCALING

The result of the vessel motion from equation 5.11 is still an ’unscaled’ value: The obser-
vation vector b in equation 4.27 was taken from I (eq. 5.6) whose interpretation (eq. 5.5)
still includes an unknown scaling factor C . This scaling factor is determined by compar-
ing the recorded ship motions by the MRU and the nowcast of the vessel motions. In fact,
since 6 different motion modes are predicted and recorded, 6 scaling factors can be de-
termined: At each update step, the variance of both the recorded shipmotion for mode i
and the nowcast is determined over the recent history of both quantities. With x∗

i being
the history of the nowcast (τ = 0) of the vessel motion and xi ,MRU being the history of
the recorded motion by the MRU, the scaling factor C is determined as follows:

Ci =

√√√√√σ2
xi ,MRU

σ2
x∗

i

(5.12)

where σ2 refers to variance.
For the length of the used history over which the variances were determined at each
update, 15 minutes was taken.
Ideally, under the assumption that Ci is frequency independent, Ci would be equal for
all 6 motion modes i , at least if there is some overlap between the frequency band con-
taining wave energy and the frequency band with non-zero motion transfer function
amplitudes. Using a motion mode dependent scaling factor however, possibly partly
solves the issue of inaccurate motion transfer functions.

5.6. RESULTS AND DISCUSSION
The procedures described in paragraph 5.5.2 and 5.5.1 have been applied to the 3 field
data sets. The results will be presented in this section.

5.6.1. 15 MINUTES SPECTRA AND SCALING FACTORS
For all six DOF, unscaled nowcast time traces of the motions were constructed. At ev-
ery update, the scaling factors Ci for each DOF (i ∈ [1,6]) were obtained using the most
recent 15 minutes history of the constructed nowcast. The variances used in equation
5.12 were obtained by integrating the spectra obtained over these 15 minutes histories.
As an example, normalized versions of the nowcast and MRU-recorded heave motion
spectra from data set 2 are presented in figure 5.5. The scaling factor (C3) is associated
with the right hand side axis in figure 5.5. As can be seen, the spectral shape of now-
cast and recorded spectrum match fairly well. It should be kept in mind that the vessel’s
RAO’s have the effect of a low-pass filter and the result could be less good if it were the
wave elevation that would be compared. However, the result justifies the choice of us-
ing a frequency independent scaling factor. (Borge et al. [2004] illustrated the need of
a frequency dependent scaling factor to match the 1D wave spectrum obtained from
3DFFT applied to radar data with that obtained from a buoy measurement. A logical
explanation could be the fact that tilt modulation was not modeled. (However, earlier
work (Borge and Soares [2000]) did show a good match throughout the entire frequency
range without modeling tilt modulation and without a frequency dependent scaling fac-
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tor obtained from a reference measurement.) The scaling factor C is associated with the
right hand side axis in figure 5.5. For all 3 data sets, figures such as 5.5 are presented in
Appendix I for all six DOF. Overall a good agreement is observed between the normal-
ized measured and nowcast spectra and the scaling factors Ci have fairly similar values
for the different DOF’s. An exception to these statements however, is the roll motion.
A likely explanation for this is the fact that no attempts were made to model any of the
non-linearities that are known to be involved with the roll motion: roll motion was cal-
culated like the 5 other motion modes by the linear transfer function approach. Besides,
the vessel was known to be using various anti-roll devices. It was not possible to verify
how well their effect is reflected by the available transfer functions, which were provided
by the vessel owner.
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Figure 5.5: Example of 15 minutes spectrum of nowcast (Sx∗1
) and measurement (Sx1 ,MRU ) of surge motion

from data set 2 and derived scaling factor C1

5.6.2. NOWCAST ACCURACY
After having constructed the time trace of the nowcast of all 6 motions, a comparison
could be made with the motions as recorded by the MRU.

First of all, in order to detect a possible time lag between nowcast from radar data and
measured motions, a cross correlation was determined between each of the two signals,
defined as follows:

ρxi
∗,xi ,MRU

(τcc ) = D−1
t

D t∫
0

xi
∗ (t )−xi

∗

σxi
∗

· xi ,MRU (t +τcc )−xi ,mr u

σxi ,mr u
d t (5.13)

Here, xi
∗ and xi ,MRU again indicate the nowcast and measurement of motion i respec-

tively. The upper bar denotes the mean and σ denotes the standard deviation. τcc de-
notes the applied time shift between the two signals. The correlations are taken over the
data set duration, denoted by D t . An example is shown in figure 5.6, showing the corre-
lation between the nowcast and the recorded surge motion as a function of the applied
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time shift τcc from data set 2. Although it is very well possible that these two data sources
were not perfectly synced, such asynchronization is not necessarily the only explanation
for the time shift at which maximum correlation occurs. A time shift could also be ex-
plained by an imperfection in the interpretation of the radar data: the assumption that it
is the pure tilt that is observed would in the theoretical case of an harmonic wave result
in a time difference of a quarter of the wave period compared to the assumption that
we would observe the elevation. Possibly, neither of these assumptions represents a per-
fect representation. However, assuming that a quarter of the period of a single harmonic
wave is more or less equivalent to a quarter of the peak wave period for the considered
cases, only approximately 3 seconds of the found time shift could be explained by a pos-
sible misinterpretation associated with the used modeling.
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ρ(τcc = 8.6) = −0.91993

Figure 5.6: Cross correlation between nowcast (x∗1 ) and measurement (x1,MRU ) of surge motion, data set 2

Appendix J presents cross correlations for the three data sets for all 6 motions. Maxi-
mum and minimum values of the cross correlations for all motion modes for the 3 data
sets are also listed in table 5.7 in which τcc,max and τcc,mi n refer to the time shifts asso-
ciated with the maximum and minimum correlation values respectively and ρ denotes
the correlation values. As can be observed in Appendix J and table 5.7, in quite some
cases the absolute value of the minimum cross correlation is significantly larger than
the maximum cross correlation. (This is also the case in the example shown in figure
5.6.) A possible explanation for this could be a reversed orientation of the motion sen-
sor. However, the results show to be inconsistent over the 3 data sets and among the
motion modes: for data set 1 the maximum correlation peaks have higher absolute val-
ues than the minimum troughs. For data set 2 and 3 however it is the other way around,
except for pitch motion in data set 2. A fully consistent explanation for the higher ab-
solute correlation trough values could not be established. In the proceeding, the time
shifts associated with the positive correlation peaks were used for further analysis.

Having determined the time shift τcc resulting in maximum correlation between
MRU recording and nowcast, time traces were plotted taking into account this shift. A
sample of a comparison for the surge motion for data set 2 is presented in figure 5.7.
As can be seen a good phase resolved match is obtained and time windows (groups) of
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(a) Data set 1

τcc,max ρ
(
τcc,max

)
τcc,mi n ρ

(
τcc,mi n

)
surge 12.90 0.71 7.75 -0.67
sway 13.00 0.76 7.75 -0.73
heave 12.90 0.77 7.85 -0.73

roll 11.85 0.64 6.40 -0.61
pitch 13.10 0.58 17.55 -0.53
yaw 13.00 0.59 17.55 -0.52

(b) Data set 2

τcc,max ρ
(
τcc,max

)
τcc,mi n ρ

(
τcc,mi n

)
surge 14.60 0.85 8.60 -0.92
sway 14.15 0.83 8.45 -0.86
heave 14.05 0.86 8.60 -0.87

roll 1.95 0.69 8.35 -0.71
pitch 14.30 0.85 9.30 -0.76
yaw 14.25 0.81 9.00 -0.82

(c) Data set 3

τcc,max ρ
(
τcc,max

)
τcc,mi n ρ

(
τcc,mi n

)
surge 13.30 0.83 7.45 -0.89
sway 12.95 0.72 7.25 -0.78
heave 12.85 0.79 7.30 -0.86

roll 1.25 0.41 7.20 -0.38
pitch 12.75 0.82 7.80 -0.86
yaw 12.85 0.77 7.60 -0.83

Table 5.7: Minimum and maximum nowcast cross correlations
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low and high motions in both signals are matching very accurately. Appendix K presents
sample time traces of the nowcast for the 3 data sets for all motion modes.
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Figure 5.7: Sample time trace of nowcast and MRU measurement of surge motion, data set 2

In general it can be stated that a very significant correlation between nowcasted and
measured motions was found, again with the exception of the roll motion. The nowcast
accuracy was not consistent over the the different data sets however: data set 1 resulted
in significantly lower accuracy. Data set 2 yielded the best results. A sound explanation
for the differences in accuracy between the 3 data sets is not provided here. What can be
said is that the condition during data set 2 involved the highest waves (significant double
amplitudes of the heave motion amounted to 2.6, 3.1 and 2.4 m for data set 1, 2 and 3
respectively). From examining time traces of now cast and measured motion (Appendix
K) it can be observed that the accuracy is higher during periods with high motions than
during periods with lower motions, which at least partly ’explains’ the best accuracy for
data set 2. Also data set 2 involved the longest waves, and data set 1 the shortest. (see
table 5.5). In the investigations in chapter 4 LSQ was indeed shown to perform better at
longer waves, at least for short prediction times. Differences between the encountered
wave periods during the 3 data sets are small however. However, many other factors can
affect the accuracy of ship motion predictions from radar back scatter, an important one
of which is assumed to be the radar back scatter ’quality’ (sufficient surface roughness,
mostly affected by local wind). Also motion transfer function accuracy (and its sensitivity
to the wave direction) are likely to have a significant effect. A thorough investigation to
reveal the reason for the found differences in nowcast (and forecast) accuracy among the
3 data set is left as a recommendation.

5.6.3. PREDICTION ACCURACY

Knowing the time shift associated with maximum nowcast cross correlation, τcc,max ,
from the analysis presented in the previous paragraph, pr edi ct i on time traces were
compared to measured motions as well and correlation of the motion prediction as a
function of the prediction time τwas considered. This correlation cor rxi (τ) is computed
as:



5

114 5. APPLICATION AND VALIDATION WITH FIELD DATA

cor rxi (τ) = D−1
t

D t∫
0

xi (t ,τ)−xi (t ,τ)

σxi (τ)
· xi ,MRU

(
t +τcc,max

)−xi ,mr u

σxi ,mr u
d t (5.14)

Figure 5.8 shows the correlation of the surge motion prediction as a function of pre-
diction time τ from data set 2, together with the wave predictability indicator P.I .(τ), the
latter being associated with the right hand side vertical axes. Appendix L, shows similar
figures for all motion modes and for the remaining data sets.

0 20 40 60 80 100 120
0

0.5

1

P
.I
.
[-
]

0 20 40 60 80 100 120
τ [s]

0

0.5

1

C
o
r
r
x
1
[-
]

Corrx1
[-]

(P.I.) [-]

Figure 5.8: Correlation of prediction of surge motion, data set 2

(The prediction correlation for τ = 0 is what was referred to as the ’nowcast’ and its
values were listed in table 5.7.) As can be seen figure 5.8 and all figures in Appendix L, the
correlation of the prediction stays fairly constant approximately upto the value of τ= 80
where P.I . starts to decrease. Again P.I . is shown to be a reasonably good indicator for
the maximum prediction horizon.

It can be argued that for many practical offshore operations, it would not necessar-
ily be the exact phase resolved deterministic motion behavior that is anticipated on for
the timing of motion critical phases of the operation, but rather the ’group’ behavior:
a critical phase is postponed until a sufficiently long time window with sufficiently low
motions occurs. Whether the exact phasing of the prediction within such a period is ac-
curate, is less relevant. With this in mind, the accuracy of the predicted motion groups
was quantified. This was done by computing the correlation of the envelopes of the mo-
tion, defined as the absolute value of the Hilbert transform:

x̃i (t ,τ) = |H(xi (t ,τ)) (t )| (5.15)

where x̃i denotes the envelope of motion xi (for a fixed chosen prediction time τ) and H
denotes the Hilbert transform.

The correlation of the envelope of the prediction is significantly higher than the cor-
relation of the prediction itself. This is illustrated by figure 5.9: it shows the correlation
of the heave prediction and its envelope. As can be seen, the heave prediction envelope
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Figure 5.9: Correlation of prediction and envelope prediction of heave motion, data set 1

shows a high correlation while, as for all motion modes in data set 1, the correlation of
the heave prediction itself is rather low. Results for all other motion modes and all data
sets can be found in Appendix M.

5.7. CONCLUSIONS
From the presented investigations using the OWME field data, the following conclusions
can be drawn:

• Vessel motions, predicted from a linear wave field representation with component
amplitudes solved by the LSQ approach as proposed in chapter 4, show a very
significant correlation with recorded motions.

• Prediction accuracy is fairly constant upto prediction horizons that do not exceed
the predictability limits associated with the considered sea state (as defined by the
predictability indicator P.I ).

• As can be expected, the linear approximation is not adequate to obtain a roll mo-
tion accuracy that matches the other motions: a non linear approach for roll is
recommended.

• The accuracy, expressed by the correlation coefficient, of the predicted motion en-
velope is significantly higher than that of the predicted motion itself.
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In this final chapter, the main conclusions and recommendations for further work
based on this study will be presented.

• From the investigations into the relation between the spatio-temporal observa-
tion domain and the related prediction horizon, it could be concluded that the
maximum forecast horizon for phase-resolved wave prediction is governed by the
group velocity of the waves.

• Although being an established technique to reveal the directional wave spectrum
and surface current from radar images, 3D FFT combined with dispersion filtering
is not suitable for deterministic wave prediction: From a wave field decomposi-
tion obtained by 3DFFT no accurate phase resolved wave prediction outside the
observation domain can be obtained.

• It was shown that dynamically averaging of subsequent prediction updates leads
to a prediction accuracy that is significantly higher than the accuracy of the obser-
vation of the waves itself.

• For the decomposition of the waves into a linear representation by a set of direc-
tional wave modes, both an approach using 2D FFT and one based on least squares
minimization (LSQ) have proven successful from simulations with synthetic input
data. For the latter, a convincing proof of concept has been obtained from a vali-
dation study with actual field data.

For the decomposition into wave modes, the proposed LSQ approach has been
shown to be potentially superior to the investigated alternatives in a wide range of con-
ditions, its main advantages being that it can deal with counter propagating waves that
can occur in multi-model sea states and that it has been shown to be a feasible approach
at low antenna speed. The reason why the word ’potentially’ still has to be included
in this statement is related to some remaining issues that are recommended here to be
addressed:

• The computational burden involved with the LSQ approach currently prevents its
real time application. A fast solver for the LSQ problem and efficient implementa-
tion, probably involving the use of GPU are needed to develop this technique from
its current state of proof of principle to an operational tool.

• In order to either reduce the computational burden or increase the accuracy, it is
recommended to improve the selection of the wave modes to be solved: especially
for wave conditions whose energy is widely spread over the wave number space
(having a large ’footprint’), reducing the resolution in the wave number space is
expected give large improvements. Research into automatic optimization of the
condition specific trade-off between resolution and covered footprint in the wave
number space is recommended.

• Under the restriction of the size of the minimization problem solved with the LSQ
approach in terms of input observations, choices concerning spatial and temporal
resolution will affect the accuracy as was illustrated in paragraph 4.5.3. Deeper
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investigations into this phenomenon could lead to an automated optimization of
the chosen input, thus optimizing the prediction accuracy due to this aspect.

As concluded, the presented proof of concept from the application of the developed
LSQ approach on field data can be considered to be convincing in general. Nevertheless,
significant differences in the accuracy were observed between results for different data
sets in chapter 5, despite the fact that they all concern the same ship with the same radar
system at the same location: thorough investigations into what affects the performance
of the approach are recommended in order to increase its robustness.

It was observed from the validation with the field data in chapter 5 that the accuracy
of roll motion predictions was significantly lower than that of the remaining 5 motion
modes. This doesn’t come as a surprise since mainly due to the possibly quite non-linear
damping, computation of roll-motion is notoriously more inaccurately approximated by
a linear transfer function approach than the remaining motion modes. At the same time,
from an operational point of view its effect on workability can be a decisive factor. It is
therefore recommended to investigate ways to improve the accuracy of the roll motion
response that meet the requirement of real time applicability involved with the opera-
tional (real-time on-board) application of deterministic wave and motion prediction.

A final recommendation concerns definition of the prediction accuracy. Throughout
this study, the correlation of the wave elevation and the motion response was used to
quantify the accuracy. A slightly more pragmatic accuracy quantifier was already intro-
duced by considering the envelopes of predicted properties. From an operational point
of view, it can be argued that a more meaningful quantification of the accuracy should
be related to the specific operational criteria: e.g. the statistics of erroneously predicted
workable time windows (and/or erroneously predicted exceeding of operational limits)
would probably be more useful in order to decide whether or not to rely on the determin-
istic prediction for operational decision support. In practice, with many factors affect-
ing the prediction accuracy, it will be challenging to obtain such an operational accuracy
quantification with sufficient statistical reliability. Nevertheless, for the acceptance by
potential users of decision support based on deterministic prediction, this aspect is im-
portant enough for further investigations.
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Depending on the magnitude of ∆t , the realizations constructed as shown in figure 2.5
will be dependent, thus the ensemble size required for convergence may be larger than
for independent realizations.

In order to assess the required ensemble size for independent realizations, we have
synthesized an ensemble of size 700 according to the spectrum of the TUD data men-
tioned in table 2. We have studied the convergence of the practical prediction error Err
at an arbitrary point in the sloped part of the predictable zone.

Figure A.1 shows the average prediction error against the number of realizations for
independent realizations. It is anticipated from this figure that the result is sufficiently
converged after approximately 600 realizations. Additional examinations at other loca-
tions within the spatio-temporal prediction zone led to the same conclusion.

Figure A.2 shows the convergence in the case of partly overlapping sections of one
time trace of synthetic data generated as described in the previous paragraph. The
dashed lines in figure A.1 and A.2 indicate the value from the entire ensemble of inde-
pendent realizations in figure A.1. Figure A.2(b) shows results for increased values of ∆t .
Considering some additional results for other times / locations, it was concluded that
the gain in the level of convergence from ∆t = 0.25 compared to ∆t = 2.5 is so limited
that it justifies the pragmatic approach of using ∆t = 2.5, resulting in an ensemble size
of 500. This level of convergence was considered to be sufficient in order to draw the
conclusions within the scope of the presented paper.

Figure A.2 shows the convergence in the case of partly overlapping time traces of the
experimental data. The dashed lines indicates the value obtained from averaging over
the entire ensemble obtained by using ∆t = 0.25 s, i.e. the last point of figure A.3(a).
It is seen that using a ∆t of 10 samples (corresponding to 2.5 s) and with 400 overlap-
ping time traces, the same result is obtained as when using a ∆t of 1 sample (0.25 s)
using roughly 4000 overlapping time traces. We therefore conclude that with the avail-
able experimental data, there is no gain in convergence from using a smaller ∆t than 10
samples (2.5 s). For∆t of 15 or 20 samples (corresponding to 3.75 s or 5.0 s, respectively),
small deviations from the optimally converged result can be observed. Again, for sev-
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eral points in the spatio-temporal prediction zone similar investigations were done all of
which showed a reasonable level of convergence.
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condition 1-3
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Consider figure 3.2 again, a 2D (space and time) representation of spatio temporal pre-
dictability. B indicates the the location of the radar antenna. Distance OB can be con-
sidered to be the above mentioned radius R of a circular observation domain. The line
connecting (0,O) with (τ2,B) has a slope equal to the group velocity of the longest wave
components in a sea state representing ’significant’ energy. At any point (τ, x) below/at
the right hand side of this line, some long wave components being part of the spatial ob-
servation at OB have passed the considered prediction location x at time τ already. So
τ2 is in this case the maximum prediction horizon at the antenna location B . Choosing a
criterion for what is considered ’significant’, the required observation distance for a given
prediction horizon can be determined. Suppose those low frequency wave components
together representing a fraction of the total spectral wave energy of less than α are con-
sidered to be ’insignificant’. The frequency of the longest ’significant’ wave component,
ωl and α are then related as follows:

α= 1−

2π∫
0

∞∫
ωl

S
(
ω,µ

)
dωdµ

2π∫
0

∞∫
0

S
(
ω,µ

)
dωdµ

(C.1)

Let the group velocity associated with ωl be given by cg l . The minimum observation
distance rmi n required for a chosen prediction time τ is then given by:

rmi n = τcg l (C.2)

For deep water, a chosenα value of 0.005 and a range of sea states defined by the spectral
shape of the Jonswap formulation, peak period Tp and peakedness factor γ, the mini-
mum required observation distance rmi n is plotted against prediction horizon τ in fig-
ure C.1(a). Figure C.1(b) presents a similar plot with the equivalent non-dimensional
properties on the axes.
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Figure C.1: minimum observation distance against prediction horizon

For deep water equation C.2 can be approximated by:

Rmin = τcg l ≈ τ0.5
λl

Tl
(C.3)

From this it follows that:
Rmin

λp
= 0.5

Tl

Tp

τ

Tp
(C.4)

From the fact that the lines for the different Tp values in figure C.1(b) coincide, it can be

concluded that Tl
Tp

is independent of Tp . It is found that:

Tl
Tp

≈ 1.406 for γ= 3.3
Tl
Tp

≈ 1.436 for γ= 1.0
(C.5)

So using λ≈ 1.56T 2, as a deep water approximation for rmi n we find:

Rmin ≈ 1.09Tpτ for γ= 3.3
Rmin ≈ 1.12Tpτ for γ= 1.0

(C.6)
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Figure D.1: polar representation of vessel RAO’s as a function of wave direction relative to vessel [deg] and wave
frequency [rad/s] (wave direction defined relative to vessel x-axis pointing to the bow, such that )
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This Appendix aims to illustrate that the standard deviation of synthetic radar backscat-
ter will include a range dependent effect, when this standard deviation is obtained from
a shadowed observation, even though the synthetic unshadowed backscatter itself does
not contain any range dependency.
For the sake of simplicity:

• Synthetic backscatter is here modeled as ∂rη without any offset or factor and
therefor the standard deviation of the backscatter modeled this way is range in-
dependent.

• The backscatter from a regular wave is considered. Clearly, shadowing is a non-
linear phenomenon to which no superposition principle can be applied. However,
as a qualitative investigation, considering a harmonic wave profile is an adequate
approach.

Let the wave surface be observed at horizontal distance r0 from an antenna posi-
tioned at height Λ above the mean surface and let’s consider over what part of its length
it will be visible. The harmonic wave profile is written as:

η (r ) = A cos(k (r − r0 +ξ)) (E.1)

Here ξ is a horizontal shift (to the left) of the harmonic wave profile.
Obviously, when the angle π/2−Θ of the line of sight from the antenna to the sur-

face at r0 with the horizontal is more than the maximum wave steepness, the wave will
be visible over its entire length. This is the case when r0 < Λ

Ak . See figure E.1(a). Let ξl

be the shift that the wave profile can make until the part where r > r0 becomes shad-
owed. Equating the slope of η (r ) at r = r0 with the gradient of the antenna’s line of sight
(− tan(π/2−Θ)) yields:

kr0 sin(kξl ) = Λ
A
−cos(kξl ) (E.2)
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(a) ξl

(b) ξr

Figure E.1: illustration ξl and ξr
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Shifting the wave profile further to the left, there comes a point, after shifting over
length ξ = λ− ξr , where the wave becomes visible again. This will occur when the line
of sight towards the surface at r0 will ’touch’ the wave profile at only one point r = r0 −
λ+ξr +ξ0 where the gradient of the line of sight equals the wave steepness: See figure
E.1(b).
This leads to the following two coupled equations for ξ0 and ξr :

−k sin(kξ0) = cos(kξr )−cos(kξ0)

λ−ξr −ξ
(E.3)

−k sin(kξ0) = cos(kξr )− Λ
Ak

r0
(E.4)
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Figure E.2: ξl and ξr against dimensionless range

Solutions for non-dimensionalized ξl and ξr are presented against non-dimensional
range r0 in figure E.2 for three different antenna altitude over wave amplitude rations.
Knowing the boundaries of the visible part of the wave profile, the mean and non-
dimensional standard deviation over this visible part, η̄r,vi s andσηr ,vi s= respectively, can
be determined:

η̄r,vi s = 1

ξl +ξr

 ξl∫
0

(
∂rη

)
dr +

λ∫
λ−ξr

(
∂rη

)
dr

 (E.5)

σηr ,vi s=
1

k A 1
2

p
2

 1

ξl +ξr

 ξl∫
0

(
∂rη

)2dr +
λ∫

λ−ξr

(
∂rη

)2dr




0.5

(E.6)
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(It should be noted that σ is used to indicate standard deviation here, it is not related to
its earlier use for (N)RCS.)
In order to consider the effect of shadowing when eliminating the offset of the signal by
subtracting a running average (as proposed in eq. 5.6), σ∗

ηr ,vi s is defined as:

σ∗
ηr ,vi s =

1

k A 1
2

p
2

 1

ξl +ξr

 ξl∫
0

(
∂rη− η̄r,vi s

)2dr +
λ∫

λ−ξr

(
∂rη− η̄r,vi s

)2dr




0.5

(E.7)

Figure E.3 presents both σηr ,vi s and σ∗
ηr ,vi s . The shadowing results in a decrease of

σηr ,vi s with r and this decrease is even more drastic for σ∗
ηr ,vi s . The latter is undesired

since it means that correcting for an unknown mean offset of the backscatter, by obtain-
ing this unknown mean offset from the observation and subtracting it from the data (as
given by eq. E.7), will finally result in an underestimation of the wave elevation for large
r .

r0/λ
0 2 4 6 8 10 12 14 16 18 20

σ
∗ η
r
,v
is
,
σ
η
r
,v
is

0

0.2

0.4

0.6

0.8

1

1.2

σηr ,vis,
Λ

A
=10

σ∗

ηr ,vis
, Λ

A
=10

σηr ,vis,
Λ

A
=20

σ∗

ηr ,vis
, Λ

A
=20

σηr ,vis,
Λ

A
=30

σ∗

ηr ,vis
, Λ

A
=30

Figure E.3: σηr ,vi s and σ∗
ηr ,vi s against dimensionless range

The conclusion from figure E.3 is obvious: shadowing leads to a decreased standard
deviation obtained from only the visible part of the observed signal, σηr ,vi s . Correct-
ing the signal for its mean, again determined over its visible part only, will lead to an
underestimation of the quantity that we want to derive from the signal (being ηr ), an
underestimation that increases with increased distance from the antenna.
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Figure F.1: Subsequent time intervals between acquired radar images
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Figure G.1: Specifications of motion sensor Island Frontier
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Figure H.1: Unscaled directional wave spectra obtained by 3D FFT and dispersion filtering
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Figure I.1: Example of 15 minutes spectra of now-cast and MRU measurement (left axes) and scaling factors
(right axes), data set 1
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Figure I.2: Example of 15 minutes spectra of now-cast and MRU measurement (left axes) and scaling factors
(right axes), data set 2
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Figure I.3: Example of 15 minutes spectra of now-cast and MRU measurement (left axes) and scaling factors
(right axes), data set 3
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Figure J.1: Cross correlations between motion nowcast and measurement, data set 1 8109
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Figure K.1: Sample time traces of motion nowcast, data set 1
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Figure K.2: Sample time traces of motion nowcast, data set 2
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Figure K.3: Sample time traces of motion nowcast, data set 3
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Figure L.1: Prediction correlation data set 1
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Figure L.2: Prediction correlation data set 2
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Figure L.3: Prediction correlation data set 3
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Figure M.1: Envelope prediction correlation data set 1
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Figure M.2: Envelope prediction correlation data set 2
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Figure M.3: Envelope prediction correlation data set 3



CURRICULUM VITÆ

Peter NAAIJEN

26-12-1975 Born in Giessen, the Netherlands.

EDUCATION
1994–1998 B.Eng degree in ’Scheepsbouwkunde’

Rotterdam University of Applied Sciences, the Netherlands
Technische Hogeschool Rotterdam (HR&O) , the Netherlands

1998–2002 M.Sc. degree in Maritime Technology
Delft University of Technology

EMPLOYMENT RECORD
2000 Data analyst

MARIN, the Netherlands

2003–present Assistant Professor
Delft University of Technology
Dept. of Maritime and TransportTechnology

2016–present Co-founder
Next Ocean BV

AWARDS
2011 Best Teacher Award of faculty 3ME, Delft University of Technology

167


	Summary
	Samenvatting
	Introduction
	Operability: statistical vs deterministic approach
	Research into Deterministic Prediction of Ship Motions Using Remote Wave Sensing
	Objective of the research
	Outline of the Thesis

	Limits to the extent of the spatio-temporal domain for deterministic wave prediction
	Summary
	Introduction
	Approach
	A linear model for propagation of long-crested waves
	Predictability
	Predictable zone
	Method of stationary phase

	Simulations
	Procedure
	Simulations using synthetic waves data
	Simulations using experimental wave data

	Prediction horizon and optimal prediction distance in practical application of deterministic wave prediction
	Conclusion
	Acknowledgments

	Dynamic Averaging and Evolution
	summary
	Introduction
	A brief history of wave observation and prediction using non-coherent nautical radar
	Wave model initialization using inaccurate observation data: data assimilation

	Approach
	Observation data and domain
	Technical approach

	Synthetic data
	Synthetic surface elevation
	Synthetic Images

	Dynamic Averaging-Evolution Scenario
	Spatial reconstruction from synthetic images
	Evolution of a single image
	Updates from dynamic averaging
	Evolution, prediction and predictability 

	3DFFT
	Case studies
	Parameters of the studied cases
	Simulation Results
	Prediction

	Discussion of results
	Reconstruction method
	Predictability
	DAES vs 3D FFT
	Scaling
	MED and bimodal sea state

	Conclusions and recommendations

	Modeling and inversion of Normalized Radar Cross Section
	Summary
	Introduction
	Modeling imaging of surface waves by non coherent radar
	Inversion methods for radar clutter
	detection of directional wave spectrum and current
	2D FFT preceded by beam-wise spectral integration ('2DFFT')
	Least squares approach

	Simulations with synthetic data
	Wave conditions and synthetic radar data
	Simulation settings
	Results and discussion deterministic prediction
	Results and discussion wave spectrum estimation

	Conclusions and recommendations

	Application and validation with field data
	Summary
	Introduction
	Vessel and trial location
	Used sensor data
	Radar data
	Motion sensor data

	Simulations
	Procedure and settings of spectrum and current detection
	Procedure and settings LSQ

	Results and discussion
	15 minutes spectra and scaling factors
	Nowcast accuracy
	Prediction accuracy

	Conclusions

	Conclusions and recommendations
	References
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Curriculum Vitæ

