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Abstract. As a result of the shallow depth of focus of the optical imaging system, the

use of standard filtered back projection in optical projection tomography causes space-

variant tangential blurring that increases with the distance to the rotation axis. We

present a novel optical tomographic image reconstruction technique that incorporates

the point spread function (PSF) of the imaging lens in an iterative reconstruction.

The technique is demonstrated using numerical simulations, tested on experimental

optical projection tomography data of single fluorescent beads, and applied to high-

resolution emission optical projection tomography imaging of an entire zebrafish larva.

Compared to filtered back projection our results show greatly reduced radial and

tangential blurring over the entire 5.2 × 5.2 mm2 field of view, and a significantly

improved signal to noise ratio.

Keywords: Image reconstruction techniques, Inverse problems, Tomographic image

processing

1. Introduction

Optical tomographic imaging techniques such as optical diffraction tomography

Wolf1969 and optical projection tomography (OPT) Sharp2002 are now among the

standard imaging modalities for the study of cells, tissues and small animals. In

OPT, light intensity projections of samples, such as zebrafish or (mouse) embryos, are

measured in transmission or emission (fluorescence). From these projections, images are

computed using tomographic reconstruction algorithms. OPT is used for in-vivo and

ex-vivo imaging, whereby for ex-vivo imaging optical clearing techniques are used to
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suppress light scattering.

In the quest for improved image resolution, high numerical aperture (NA) lenses are

used to image the transmission or emission of the sample onto the detector. However,

high NA lenses have a small depth of focus (DOF), which causes light that is emitted or

absorbed outside of the focal region to be heavily blurred in the detector plane, thereby

limiting the imaging depth. Moreover, standard reconstruction techniques, such as

filtered back projection (FBP), are generally based on a straight ray approximation and

ignore the diffraction of the light by the focusing lens. As a result, reconstructed OPT

images can suffer from severe image degradation, leading to tangential blurring that

increases with the distance to the rotation axis in the reconstructed image.

Hardware-based approaches to solve the depth of focus effect are either based on

off-center focusing Chen2013 or scanning the focal plane through the sample Miao2010.

Although, these techniques can reduce the depth of focus effect in the reconstructed

image, they are complex to apply and increase the acquisition time.

A sinogram filtering using the frequency distance relationship (FDR) was developed

by [XLE95], in which a space-variant inverse filter is applied to process the sinogram

in Fourier space. The physical PSF of an optical imaging system was used as a filter

in the FDR reconstruction of OPT data by [WSS07]. In this method the image is

reconstructed, after filtering the sinogram, using standard FBP. A weighted FBP for

quantitative fluorescence optical projection tomography was presented by [DMM+08].

They used a space-variant weighting in the FBP reconstruction to correct for defocus

related blur and isotropic emission of the fluorophores. However, this filter was only

applied in one direction, which resulted in an increased radial full width at half maximum

of the point spread function (PSF). To reduce the effect of the DOF both the radial

and tangential direction, various processing methods were developed, which include

the physical PSF in their approach. Deconvolution techniques with a space-variant PSF

have been applied to the reconstructed image Nagy1997, Ott2011,Chen2012, Horst2016.

However, the quality of this technique depends on the choice of many parameters of

the applied reconstruction algorithm. Furthermore, deconvolution techniques have the

disadvantage to amplify noise. To our knowledge, terahertz tomography is the only

technique, where the beam shape is included in the reconstruction algorithm Recur2012.

In this case an iterative approach was presented whereby the object is deconvolved with

a Gaussian PSF and subsequently the straight ray inverse Radon transform was applied

for reconstruction.

We present a PSF-based optical tomographic image reconstruction approach, in

which the PSF of the focusing by the lens is directly included in the tomographic

reconstruction instead of filtering the sinogram before, or the image after, reconstruction.

First, a theoretical framework is provided that describes the PSF-based reconstruction.

The application of the theory is demonstrated using numerical simulations of the

tomographic imaging process. Second, our algorithm is tested under well-controlled

experimental conditions. Finally, the technique is demonstrated on zebrafish larva

imaging.
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2. Image formation in optical projection tomography

In optical projection tomography (OPT), the goal is to determine the spatial distribu-

tion of absorption or emission strength of an object f(x, y, z) from its projections. In

emission OPT, the object is assumed to be homogeneously illuminated with light from

the excitation source resulting in an excitation rate that is constant over the object f .

A small fraction of the excitation light is absorbed and emitted isotropically. Hence, it

is assumed that variations in local emission strength are caused by variations in fluo-

rophore concentration only. The emitted radiation is imaged with an imaging system

onto the detector, see Fig. 1(a).

(a) (b)Object f(x,y,z)
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Figure 1. Schematic overview of the optical project tomography imaging system. (a)

Optical imaging system consisting of a single lens making a projection of the object

onto the camera. (b) OPT signal formation for diffractive optical beams (red dashed

and hatched). The rotation angle is denoted by θ, the shift of the object s, and f(x, z)

is a slice of the object.

Following [Gu00], and assuming a single emitter at location x, y, z, in the object

coordinate system, the intensity in the image space coordinate system is I(s, t, u) =

|h(x + Ms, y + Mt, z −M2u)|2, with h2 the incoherent PSF and M the magnification

of the imaging system. Given the geometry in Fig. 1 (a) with the detector fixed at

u = 0 and since the object can be considered as a sum of incoherent point sources, the

measured intensity is a convolution of the object emission distribution with the PSF

|h(x, y, z)|2. For an imaging system with M = −1 and u = 0 the measured intensity on

the detector is

I(s, t) =

∞∫
−∞

∫
f(x− s, y − t, z − u)|h(x, y, z)|2 dx dy dz|u=0. (1)

In the absence of diffraction, the PSF is |h(x, y, z)|2 = δ(x, y). Under these
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circumstances the convolution in Eq. 1 results in a line integral of the object

f(x, y, z), similar to the Radon transform at zero angle along the propagation direction

Radon1917a. In OPT, diffraction causes the PSF to be non-ideal. The emitted light,

originating along a straight path through the object, is (unsharply) imaged by a lens

onto the detector. The shape of the 3D PSF can be calculated by Fourier optics, more

in particular by Fresnel propagation of the emitted field through the lens onto the

detector Goodman1996,Gu2000.

Following the derivation by van der Horst et al. Horst2016 we assume an integration

on the detector in the t direction over the entire detector plane, which is a good

approximation for objects that have optical properties that vary slowly along the y-axis.

In this case the measured intensity in Eq. 1 becomes proportional to the convolution of

the object with a 2-D cross-section of the 3-D PSF. Since the image of a point emitter

by a lens results in a complex PSF, we describe it here through an analytical formula.

In this way we can quantitatively validate our approach using simulations and compare

our results with theory. We model the PSF |h(x, z)|2 as a Gaussian-shaped beam of the

wavelength λ and in focus beam waist w0 Siegman1986 as

|h(x, z)|2 =
1√

1 +
(

z
zR

)2 exp

− x2

w0

√
1 +

(
z
zR

)2
 , (2)

where zR = πw2
0/λ is the Rayleigh range (half the depth of focus). The numerical

aperture is given by NA = w0/zR in Eq. 1. The two-dimensional convolution of the

PSF over the object is indicated in Fig. 1(b).

In tomographic imaging, we obtain the projections of the emission as a function of

the lateral shift s and the rotation angle θ of the object. From Eq. 1, it can be derived

that the measured projection at the angle θ and shift s is

p(s, θ) =

∞∫
−∞

∫
f [(x−s) cos θ+z sin θ, (x−s) cos θ−z sin θ] |h(x, z)|2 dx dz ,(3)

with the angle θ ∈ [0, 2π]. The projections p(s, θ) are commonly visualized in a sinogram,

where the convolution in Eq. 3 describes the blurring in the sinogram due to the

tomographic imaging system.

The projection data p(s, θ) is not measured in a continuous way, as defined by Eq.

3, but is sampled at discrete lateral positions for a finite set of angles. Hence, the inverse

solution cannot be determined analytically, but only through a search for the function

f(x, z) that optimizes an objective function. The projection of Eq. 3, p(s, θ), is limited to

a finite integration area D given by D ∈ [−l/2, l/2] for offsets s ∈ [−l/2, l/2] and l is the

size of the field of view. The projection is then represented by a matrix multiplication

with the object f discretized by sampling f(x, z) on a regular cell-centered grid, within

the square object domain D2 at locations xi, zj, with i = 1, 2, . . . , n, j = 1, 2, . . . , n

where n is the number of pixels in each direction of the object and equal to the number

of lateral pixels in the projection. This leads to an image matrix of f(xi, zi) ∈ Rn×n,
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which is stacked in a vector f ∈ Rn2
. The convolution of Eq. 3 is discretized into a

geometry matrix A ∈ Rm·n,n2
, with m the number of projection angles. A row of the

matrix A represents a the Gaussian PSF at lateral distance si and angle θk. The matrix

elements of A are

a(k−1)n+i,: = |h[(xi − si) cos θk + zi sin θk, (xi − si) cos θk − zi sin θk]|2. (4)

In this way, a shifted and rotated PSF is represented in a single row of the A matrix.

First, all shifts for one angle are addressed, which is subsequently repeated for all angles.

The acquisition domain of the measured projections are the set of samples (si, θk), with

k = 1, 2, . . . ,m. The discrete projections p(si, θk) ∈ Rn,m are stacked into a vector

p ∈ Rn·m,1.

After discretization, the object, f , can be reconstructed by finding a solution to the

optimization problem

argmin
f

1

2
‖A · f − p‖22 , (5)

where || · ||2 denotes the Euclidean norm. Equation 5 can be solved using a least squares

optimization method based on conjugate gradients.

3. Image reconstruction

Tomographic reconstructions are performed on a computer with Intel(R) Xeon(R) CPU

Processor (E5-1620 v3@3.50 GHz), 32 GB installed memory and a 64-bit operating sys-

tem. The data are processed using software written in the commercial software package

MATLAB (Mathworks, R2016a). Simulated sinograms are constructed using the dis-

cretized version of Eq. 3 for an initial object f . Following the data processing flow

chart in Fig. 2, an initial guess of the image is created by filtered back projection

(FBP) (input reconstruction). An improved estimate for the object is made by least-

squares optimization of Eq. 5 using the MATLAB function lsqr Paige1982, Barrett1994,

which uses a conjugate-gradient type iterative algorithm on the normal equations. It

takes as input the projection data, the initial guess of the image (created by FBP), the

maximum number of iterations to perform, the absolute tolerance, and the projection

matrix A. The absolute tolerance of the method is chosen to be 10−6.

Explicitly computing and storing the projection matrix A for a realistic image size

of 1000 by 1000 would cost around 8 terabytes of memory, which is infeasible. Instead

of requiring a precomputed version of A, the MATLAB function lsqr also allows pro-

viding a routine that evaluates multiplication by A and its transpose for every angle

individually. Here, multiplication by A corresponds to (PSF-based) forward projection

of an input image, and multiplication by the transpose of A corresponds to (PSF-based)

back projection of an input sinogram. We list the pseudo-code for calculating the for-

ward and backward projection in Algorithm 1. It uses the built-in MATLAB function

imrotate with bilinear interpolation to obtain the object at different angles. For every

individual angle, the PSF is translated laterally over the sample, so the forward model
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of the projection has the structure of a one-dimensional convolution in the translation

direction, followed by a sum in the direction orthogonal to that. We implement this by

a multiplication of the Fourier transform of the object and the Fourier transform of the

PSF for every column, followed by a sum for every row. To perform these operation

correctly we zero-pad the sinogram to twice its size in the scanning direction. The back

projection operator performs the adjoint/transpose variants of these steps in reverse

order.

We set the maximum number of lsqr iterations to different hand-picked numbers

depending on the convergence of the algorithm, which depends on the data that is to

be reconstructed. In the current implementation one iteration of the lsqr algorithm, for

one slice of 1000 by 1000 pixels, takes approximately two minutes.
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Figure 2. Schematic illustration of the data analysis algorithm for the PSF-based

reconstruction. The input reconstruction is only used in the first iteration.

To enable a qualitative comparison of the reconstructed images, the FBP

reconstruction is scaled in the following way. The reconstructed FBP image is forward

projected to obtain its sinogram. The scaling factor αopt is then given by

αopt = argmin
α

‖αAf1 −Af2‖22, (6)

where f1 is the FBP reconstructed image and f2 the PSF-based reconstructed image.

The scaling factor αopt is then given in closed-form by

αopt =
(Af1)

T(Af2)

||Af1||22
. (7)
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Subsequently, the FBP reconstruction is scaled with αopt to obtain an image intensity

distribution in the reconstruction that corresponds to equal projection data. ‡

Algorithm 1 Calculate p = Af or f = ATp

Require: f ,mode, beam parameters

1: Notation: Denote by (I)FTC taking an (inverse) 1D Fourier transform of every

column of an image, by (I)FT1 taking the (inverse) 1D Fourier transform, by SumR

taking the sum of every row of an image, and by pi the i-th row of a sinogram p.

2: Pre-compute the 2D beam shape of a horizontal beam and FTC(Beam)

3: if mode = ’not transposed’, then . Forward operator, p = Af

4: for i = 1 : anglecount do

5: fr = f rotated by the current angle

6: pi = IFT1(SumR(FTC(fr) · FTC(Beam)))

7: else . Backward operator, f = ATp

8: f = the zero image

9: for i = 1 : anglecount do

10: t = Multiply each column of FTC(Beam) by FT1(p
i)

11: u = IFTC(t) rotated by the reverse angle

12: f = f + u

13: return p or f

4. Results

4.1. OPT Simulations

The original object for the simulation is given in Fig. 3 (a). The object, with a size of

15× 15 mm2 (100× 100 pixels), consists of isolated point sources, with a peak emission

strength of 100 in the center pixel of the source and an emission strength set to 50 for

the eight pixels around the center of the source. The object is blurred by convolving it

with a Gaussian PSF for an emission wavelength of 514 nm with a waist w0 = 10 µm,

DOF= 1.2 mm, NA= 0.016, see Fig. 3 (b). Figure 3 (c) shows the same simulation for

w0 = 100 µm, DOF=122 mm, NA= 0.0016. The object data is processed following the

flowchart in Fig. 2. The maximum number of iterations is set to 200.

The reconstruction results using filtered back projection (MATLAB function

iradon) and the proposed method are depicted in Fig. 3. Figure 3 (d) and (e) show

the FBP reconstructed images, which is based on straight parallel rays, for the two

Gaussian PSFs. In Fig. 3 (d) it is clearly visible that, compared to the original object,

the emission contrast is much lower due to the small DOF. Moreover, the reconstructed

image shows that the emitters are strongly blurred in the tangential direction due to

the strong divergence of the Gaussian PSF, as shown in Fig. 3(b). The tangential

‡ Our code to perform these calculations can be made available on request.
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resolution deteriorates with increasing distance to the center of rotation whereas the

radial resolution is slightly deteriorated, but does not depend on the distance from the

center of rotation. The insets show this in more detail for two emitters. For a PSF with

a larger beam waist, modeling a low NA, large DOF, imaging system, Fig. 3 (e) shows

that there is some blurring in the reconstructed image. However, for this larger beam

waist this effect depend very weakly on the distance to the center of rotation since the

Gaussian PSF has much lower divergence, as shown in Fig. 3(c). Figure 3 (f) and (g)

show our PSF-based reconstruction. In Fig. 3 (f) the contrast is completely restored,

the strong tangential blurring is absent, and the reconstructed image is identical to the

input image. Figure 3 (g) shows that also for a larger beam waist, the blurring of the

emitter is fully corrected for by our PSF-based reconstruction method.
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Figure 3. Simulation of the FBP and PSF-based image reconstruction. (a) Input

image, (b) Gaussian PSF for w0 = 10 µm. (c) Gaussian PSF for w0 = 100 µm. (d, e)

Reconstruction using FBP for the two Gaussian PSFs. (f, g) Reconstruction using the

PSF-based approach for the two Gaussian PSFs.
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4.2. Fluorescent bead OPT imaging

The PSF-based reconstruction method is tested with experimental OPT imaging of

a sample with fluorescent bead emitters embedded in an agarose emulsion. The

experimental set-up is described in more detail in Horst2016, the main parameters of

importance are briefly discussed. The experimentally determined Gaussian PSF has a

beam waist in focus of w0 = 6 µm with the measured beam shape used in the PSF-based

reconstruction. Emission from the center of the object is focused onto the camera plane

by the imaging lens. The field of view of the experimental data is 5.2 × 5.2 mm2. In

the lateral direction, the detector has 1344 pixels per projection and 360 projections are

acquired over 360 degrees with a one degree spacing. The total dataset consist of 1024

sinograms covering a length of 4 mm along the rotation axis .

The measured data is pre-processed as follows. First, photo bleaching is corrected

with a characteristic e−1 timescale of 798 seconds. Second, a constant background

emission is removed from the sinogram. Third, the center of mass for each projection is

estimated from the ratio of the integral of the projection times its transverse coordinate

to the integral of the projection. Fourth, the center of rotation is determined from

the centers of mass for all acquisition angles. Fifth, the center of rotation of the

object is aligned with the center of the detector rows by shifting the data along the

lateral dimensionAzevedo1990. Subsequently, the 1024 sinograms are combined into 32

averaged sinograms. The averaged sinograms are further pre-processed. The noise is

reduced by applying a non-local means de-noising algorithm as described by Buades

et al. Buades2004. The half size for the de-noising window is chosen to be 9 pixels.

The width of the Gaussian filter relative to its maximum intensity is set to 0.5, the

search width is set to 10 pixels and the limited number of dimensions for the principal

component analysis is 20. Prior to the reconstruction, the sinograms are scaled to achieve

a quantitative comparison of the image quality of the two methods. Subsequently, PSF-

based reconstruction of the data is performed over 4000 iterations.

Figure 4(a) shows the reconstruction of an averaged sinogram of the experimental

data using FBP. Similar to the simulations, the single point emitters appear blurred

in the FBP reconstruction. In Fig. 4 (b) this is more clearly demonstrated by the

zoom-in on the individual beads and the normalized cross-sections of the emitters. The

cross sections show that the emission profiles in the reconstruction are broad and have

a Gaussian-shape. Figure 4 (c) shows the same emitters, but reconstructed with our

PSF-based approach. The emitters are brighter in comparison to the background and an

improvement of the resolution is visible compared to the reconstruction using FBP. The

quality of the reconstruction is analyzed by estimating the full width at half maximum

(FWHM) of the Gaussian function fitted to each peak and is summarized Table 1. Our

PSF-based reconstruction shows a significant reduction of the FWHM in both axial and

tangential direction.
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Figure 4. Comparison of the FBP and PSF-based reconstruction for a single averaged

sinogram. (a) FBP image reconstruction of fluorescent bead data. The circle denotes

the center of rotation. (b) Zoom in on reconstructed points of (a). (c) PSF-based

reconstruction of the same points as in (b).

Table 1. FWHM resolution (µm) in axial and tangential direction for the FBP and

the PSF-based reconstruction for four fluorescent beads. Each row corresponds to the

beads indicated in Fig. 4. The errors indicate 95 % confidence intervals.

Method FBP PSF-based

Bead # Radial FWHM Tangential FWHM Radial FWHM Tangential FWHM

1 22.3± 0.6 50.1± 1.3 16.2± 0.6 30.0± 1.0

2 9.6± 0.3 18.0± 0.5 7.1± 0.3 10.0± 0.4

3 10.7± 0.13 42.1± 0.6 8.3± 0.2 24.9± 0.5

4 8.3± 0.2 34.9± 0.9 6.3± 0.2 24.0± 0.6

4.3. Zebrafish larva OPT imaging

The proposed PSF-based reconstruction is applied to an OPT scan of a 10 days old

transgenic zebrafish larva to illustrate the performance on biological samples. The

zebrafish cellular membranes are labeled with green fluorescent protein. The zebrafish

larva is euthanized in ice water at the Erasmus Medical Center, Rotterdam according

to animal welfare regulations. Animal experiments are approved by the Animal

Experimentation Committee of the Erasmus MC, Rotterdam.

The zebrafish is mounted in agarose in our OPT system. The same experimental

parameters are used as for the fluorescent bead data, but for the zebrafish imaging a total

of 1791 sinograms are acquired covering a distance of 6.9 mm along the rotation axis. For

all 1791 slices, the tomographic image is reconstructed using FBP and the PSF-based

approach (no slice averaging). Prior to the reconstruction, the sinograms are scaled to

achieve a better quantitative comparison of the two methods. The number of iterations
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for every reconstruction is set to two for which good convergence of the reconstruction

is observed. The reconstruction of the zebrafish larva is depicted in Fig. 5. Figure 5(a)

shows the reconstruction of a single transverse slice of the data using FBP. Although the

zebrafish structure is visible, the reconstruction is corrupted by radial streak artifacts,

shows significant blurring, and has limited image contrast. Figure 5 (b) shows our

PSF-based reconstruction of the same transverse slice. Figure 5 (c) shows the anatomy

of an optical cleared zebrafish larva, of similar age, in transverse view obtained from

transmission OPT from the Zebrafish Anatomy Portal Zebrafish2016 and is used for

anatomical reference. The quality of the reconstructed image is significantly improved

in terms of contrast, artifact removal, and resolution. Figures 5 (d,e) show two cross

sections through the data that illustrate the large improvement in image contrast and

resolution. In our PSF-based reconstructed image the major anatomical parts are much

better resolved compared to the reconstruction using FBP (see Fig. 5 (a) and (b)).

Similar effects are visible in Figure 6, which shows a coronal cross-section through the

same data. Figure 6 (a) and (b) show the reconstruction using FBP and the PSF-based

reconstruction. Figure 6 (c) shows a transmission OPT image of the anatomy of a 7-13

days old, optically cleared, zebrafish larva in coronal view Zebrafish2016. An even better

view on the obtained image improvement achieved by our PSF-based reconstruction can

be seen in a video (Visualization 1), which shows a side by side comparison of transverse,

coronal, and sagittal planes of the zebrafish using both reconstruction techniques.

5. Discussion and conclusion

We present a reconstruction algorithm routine, where the physical PSF is included in

the reconstruction. Our PSF-based image reconstruction approach shows a significant

improvement in OPT image quality compared to standard FBP reconstruction. In

contrast to other approaches, our method incorporates the imaging geometry in

the tomographic image reconstruction. As such we do not rely on filtering or

deconvolution methods applied in the sinogram or image domain. A quantitative

comparison of the quality of our image reconstruction algorithm with other state-of-the-

art image reconstruction techniques is currently in progress Trull2017b. The presented

reconstruction method employs a 2-D reconstruction, processing the data volume slice

by slice. Despite this simplification, excellent image quality is obtained. We attribute

this to the fact that the zebrafish has structures that, in general, vary slowly along the

length of the zebrafish. In principle our PSF-based approach could be extended to three

dimensions, however, this would significantly increase the memory requirements of the

routine that performs the multiplication with the system matrix and its transpose, as

well as the computation time. For the full image size of 1344 by 1024 pixels, this 3D

implementation is currently not feasible.

The reconstruction time for one slice using the PSF-based algorithm is currently

about two minutes for one iteration. This potentially can be reduced by converting the

presented algorithm from MATLAB to another programming language, such as C++,
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Figure 5. Transversal slice through the OPT reconstruction of a zebrafish

larva. (a) FBP reconstruction with anatomical structures indicated. (b) PSF-

based reconstruction.(c) Anatomy of a 7-13 days old optical cleared zebrafish larva

Zebrafish2016, with anatomical features: (1) myotome, (2) spinal cord, (3) precaudal

vertebra, (4) pectoral fin, (5) anterior chamber swim bladder, (6) pancreas, (7)

intestinal bulb and (8) liver. (d) Cross-section in horizontal direction at line indicated

in (a, b). (e) Cross-section in vertical direction at line indicated in (a, b). In (d, e) the

green dashed line indicates the FBP and the blue solid line indicates the PSF-based

approach.

or using a GPU. Moreover, for a slice-based reconstruction of three-dimensional objects,

the reconstruction of different slices can be parallelized. A speed-up by a factor of 200

has been observed by Leeser et al. for parallel slice processing Leeser2014. Finally, since

the PSF is varying slowly over many of the grid-points, relatively few grid points sample

the beam at its narrow waist in the focal area. Hence, by representing the reconstruction

problem in a different set of basis functions, potentially the size of the reconstruction

problem can be reduced while obtaining the same reconstruction result.

In the reconstructions we observed that the convergence of the algorithm is strongly

related to the noise level in the projections. The presented fluorophore bead data had

an SNR, averaged over all the sinograms, of 31± 3 dB, whereas the zebrafish data had

an average SNR of 67 ± 10 dB. Moreover, the zebrafish data is non-sparse compared

to the bead data, which promotes convergence. As a result, the reconstruction of the
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Figure 6. Coronal slice through the OPT reconstruction of a zebrafish larva (excluding

the tail). (a) FBP reconstruction with anatomical structures indicated. (b) PSF-

based reconstruction. (c) Anatomy of a 7-13 days old optical cleared zebrafish larva

Zebrafish2016, with anatomical features: (1) intermandibularis, (2) ceratohyal, (3)

opercular cavity, (4) opercle, (5) pectorial fin, (6) liver and (7) intestinal bulb.

fluorophore beads needed 4000 iterations, whereas the reconstruction of the zebrafish

needed only 2 iterations to convergence.

In its current implementation, the PSF-based reconstruction is without including

any prior information or regularization. Improvement of the convergence of the

optimization possibly can be achieved by masking the data or by applying regularization

methods. For example, for the sparse bead sample reconstruction, sparsity promoting `1
norm regularization, can aid in the reconstruction accuracy as well as in the convergence

rate as was shown by [KKL+07].

The proposed reconstruction technique can be extended to even higher NAs,

potentially further improving the image resolution. Besides the significantly improved

image quality, our PSF-based reconstruction has the advantage that arbitrary beam

shapes can be incorporated in the reconstruction. In addition, other physical processes,

such as refraction or scattering, can be included in the PSF-based reconstruction. The

presented PSF-based reconstruction is useful in other fields of optical tomographic

imaging where beam propagation deviates from the ideal straight ray such as in optical

diffraction tomography, transmission OPT, electron tomography, terahertz tomography,

and (phase-contrast) X-ray tomography.

Acknowledgments

The authors would like to thank Dr Robert Bryson-Richardson of the School of Biological

Sciences, Monash University, Australia for the use of the transmission OPT images. This

research is supported by the Dutch Technology Foundation STW, which is part of the

Netherlands Organization for Scientific Research (NWO), and which is partly funded

by the Ministry of Economic Affairs.
[ASFM90] Stephen G. Azevedo, Daniel F. Schneberk, J. Patrick Fitch, and Harry E. Martz.

Calculation of the rotational centers in computed tomography sinogram. IEEE Trans.

Nucl. Sci., 37(4):1525–1540, 1990.



Point spread function based image reconstruction in optical projection tomography 14

[BBC+94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. Van der Vors. Templates for the solution of linear systems:

Building blocks for iterative methods. SIAM, 1994.

[BCM04] Antoni Buades, Bartomeu Coll, and Jean Michel Morel. On image denoising methods.

Technical report, Technical Note, CMLA (Centre de Mathematiques et de Leurs

Applications), 2004.

[CAK+13] L. Chen, N. Andrews, S. Kumar, P. Frankel, J. McGinty, and P. M. French. Simultaneous

angular multiplexing optical projection tomography at shifted focal planes. Opt. Lett.,

pages 851–853, 2013.

[CMT+12] Lingling Chen, James McGinty, Harriet B. Taylor, Laurence Bugeon, Jonathan R. Lamb,

Margaret J. Dallman, and Paul M. W. French. Incorporation of an experimentally

determined MTF for spatial frequency filtering and deconvolution during optical

projection tomography reconstruction. Opt. Express, 20(7):7323–7337, Mar 2012.

[DMM+08] A Darrell, H Meyer, K Marias, M Brady, and J Ripoll. Weighted filtered backprojection

for quantitative fluorescence optical projection tomography. Phys. Med. Biol.,

53:38633881, 2008.

[Goo96] J.W. Goodmann. Introduction to Fourier Optics. MaGraw-Hill, 2nd edition, 1996.

[Gu00] Min Gu. Advanced Optical Imaging Theory. Springer, 2000.

[KKL+07] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method for

large-scale l1-regularized least squares. IEEE J. Sel. Topics Signal Process, pages 606

– 617, 2007.

[LMB14] M. Leeser, S. Mukherjee, and J. Brock. Fast reconstruction of 3D volumes from 2D CT

projection data with GPUs. BMC Research Notes, 2014.

[MHM+10] Q. Miao, J. Hayenga, M. G. Meyer, T. Neumann, A. C. Nelson, and E. J. Seibel.

Resolution improvement in optical projection tomography by the focal scanning

method. Opt. Lett., 35:3363–3365, 2010.

[NO97] James G. Nagy and Dianne P. O’Leary. Fast iterative image restoration with a spatially-

varying PSF. Proc. SPIE 3162, Advanced Signal Processing: Algorithms, Architectures,

and Implementations VII, page 884, 1997.

[PS82] C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and

sparse least squares. ACM, 1982.

[RGMH+12] B. Recur, J. P. Guillet, I. Manek-Hönninger, J. C. Delagnes, W. Benharbone,

P. Desbarats, J. P. Domenger, L. Canioni, and P. Mounaix. Propagation beam

consideration for 3D THz computed tomography. Opt. Express, 20(6):5817 – 5829,

2012.

[RP86] Johann Radon and P.C. Parks. On the determination of functions from their integral

values along certain manifolds. IEEE Trans. Med. Imaging, 4:170176, 1986. Translation

of the original paper by Johann Radon 1917.

[SAP+02] J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and

D. Davidson. Optical projection tomography as a tool for 3D microscopy and gene

expression studies. Science, pages 541–545, 2002.

[Sie86] Anthony E. Siegman. Lasers. University Science Books, 1986.

[SMCBR12] David Salgadob, Christophe Marcelleb, Peter D. Currieb, and Robert J. Bryson-

Richardson. The zebrafish anatomy portal a novel integrated resource to facilitate

zebrafish research. Developmental Biology, 372(372):1–4, 2012.

[TORN+11] M. Temerinac-Ott, O. Ronneberger, R. Nitschke, W. Driever, and H. Burkhardt. Spatially

variant Lucy Richardson deconvolution for multiview fusion of microscopal 3D images.

IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pages

899 – 904, 2011.

[Tru17] A.K. Trull. Comparison of image reconstruction techniques in optical projection

tomography. Manuscript in preparation, 2017.



Point spread function based image reconstruction in optical projection tomography 15

[vdHK16] Jelle van der Horst and Jeroen Kalkman. Image resolution and deconvolution in optical

tomography. Opt. Express, 24(21):24460–24472, Oct 2016.

[Wol69] E. Wolf. Three-dimensional structure determination of semi-transparent objects from

holographic data. Optics Communications, pages 153 – 156, 1969.

[WSS07] Johnathon R Walls, John G. Sled, and James Sharp. Resolution improvement in emission

optical projection tomography. Phys Med Biol., 52(10):2775–90., 2007.

[XLE95] W. Xia, R. M. Lewitt, and P. R. Edholm. Fourier correction for spatially variant

collimator blurring in SPECT. IEEE Trans. Med. Imaging, 14(14):100–115, 1995.




