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System eqs:

States: pressures, saturations

Parameters: permeabilities, porosities

Inputs: well pressures/rates

Initial conditions:

Time interval:

Notation: time-discretized equations

 1, , ,k k k k g u x x m 0

0 0x x

1,2, ,k K 

TT T   x p s
TT T   m k φ

TT T
well well   u p q 
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Production optimization: objective function

• Simple Net Present Value (NPV)
• Ninj injectors, Nprod producers

• r = unit price or cost, b = discount factor,  = 365 days

• Flow rates qk functions of inputs uk or outputs (states) xk
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Production optimization: maximization problem

• Problem statement: subject to

• System equations:

• Initial conditions:

• Equality constraints:

• Inequality constraints:

 1:
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max K
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u
u
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• 3D reservoir

• High-permeability channels

• 8 injectors, rate-controlled

• 4 producers, BHP-controlled

• Production period of 10 years

• 12 wells x 10 x 12 time steps

=> 1440 optimization parameters

• Bound constraints on controls

• Optimization of monetary value (oil revenues minus water costs)

Van Essen et al., 2006

12-well example (1)
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12-well example (2)
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12-well example (3)
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• Real wells are sparse and far apart
• Real wells have more complicated constraints
• Field management is usually production-focused
• Long-term optimization may jeopardize short-term profit
• Production engineers don’t trust reservoir models anyway

• We do not know the reservoir!

Why this wouldn’t work
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2) “Robust” open-loop flooding optimization
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• 100 realizations
• Optimize expectation of objective function

Van Essen et al., 2006

 1:
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Robust optimization example
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3 control strategies applied to set of 100 realizations:
reactive control, nominal optimization, robust optimization

Van Essen et al., 2006

Robust optimization results
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• Global versus local
• Gradient-based versus gradient-free
• Constrained versus non-constrained
• ‘Classical’ versus ‘non-classical’

(simulated annealing, particle swarms, etc.)
• We use ‘optimal control theory’ or ‘adjoint-based’ 

optimization
• Has been proposed for history matching (Chen et al. 

1974, Chavent et al. 1975, Li, Reynolds and Oliver 2003) 
and for flooding optimization (Ramirez 1987, Asheim
1988, Virnovski 1991, Zakirov et al. 1996, Sudaryanto
and Yortsos, 2000, Brouwer and Jansen 2004, Sarma et 
al. 2004)

Optimization techniques
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• Gradient based optimization technique – local optimum
• Gradients of objective function with respect to controls 

obtained from ‘adjoint’ equation 
• Gradients can be used with steepest ascent, quasi Newton, 

or trust-region methods 
• Results in dynamic control strategy, i.e. controls change 

over time
• Computational effort independent of number of controls
• Output constraints not trivial; various techniques used
• Implementation is code-intrusive

Optimal control theory, summary
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Adjoint-Based Optimization

Part 1 - Theory
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Constrained optimization (elimination)
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second-order conditions more complex

Constrained optimization (Lagrange multipliers)
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Recall elimination:

What if u2 cannot be expressed in u1 or v.v.?

Consider the total differential:

But how do we compute            ?

Lagrange multipliers – interpretation (a)
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Consider constraint

Expressed in differential form:

Can be rewritten as

Implicit differentiation!

Lagrange multipliers – interpretation (b)

1 2
1 2

0c cu u
u u
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which, in an optimum, can also be written as              
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Lagrange multipliers – interpretation (c)
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Back to the real thing: Production optimization

• Problem statement: subject to

• System equations:

• Initial conditions:

• Equality constraints:

• Inequality constraints:

• As a first step: disregard constraints ck and dk

 1:
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max K

K

u
u


 1, ,k k k k g u x x 0

0 0 x x
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Gradient with implicit differentiation?
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• “Adjoin” constraints to objective function:

• Proceed as before: take first derivatives w.r.t. all 
independent variables and equate them to zero
(i.e. force optimality conditions)

• Note that we can write:                       (index shift)

Gradient with Lagrange multipliers
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Optimality conditions (1)
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(Just recovers the initial conditions and system equations)

• The optimality conditions form a joint set of equations for 
the unknowns 

• Can in theory be solved simultaneously (Wathen et al.) but 
are usually treated sequentially.    

Optimality conditions (2)
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Solving the resulting equations (1)

 0 0 0
T T  x x 0 x

 1 1:, ,T T
k k k k K  g u x x 0 x

Running
the simulator.

(Requires             )k k g x

0 λ

k λ

Initial guess!
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Solving the resulting equations (1)
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Solving the resulting equations (2)
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Solving the resulting equations (2)
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• Adjoint ~ implicit differentiation 
• Computational effort independent of number of controls
• Gradient-based optimization – local optimum
• Constraint handling: GRG, lumping, SQP, augmented 

Lagrangian, … ; not trivial
• Beautiful, but code-intrusive and requires lots of 

programming => automatic differentiation 
• Available in Eclipse (limited functionality), AD-GPRS, 

MRST, proprietary simulators
• Alternatives: ensemble methods (EnOpt, StoSAG), 

streamline-based methods, ‘non classical methods’
(particle swarm, etc.; often in combination with ‘proxies’ 
to reduce computational effort)

Summary adjoint-based optimization
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Adjoint-Based Optimization

Part 2 - Examples
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• 45 x 45 grid blocks

• 45 inj. & prod. segments

• pwf, qt at segments known

• 1 PV injected, qinj = qprod

• oil price ro = 80 $/m3

• water costs rw = 20 $/m3

• discount rate b = 0% 
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Brouwer and Jansen, 2004, SPEJ

Classic example; smart horizontal wells



IPAM 2017 - Computational Issues in Oil Field Applications 41

0 100 200 300 400 500 600 700
0

200

400

600

800

ra
te

s 
[m

3/
d]

cum time [d]

water, oil and liquid production rates (m3/d) as function of time

0 100 200 300 400 500 600 700
0

1

2

3

4

5
x 105

cu
m

. p
ro

du
ct

io
n 

[m
3]

cum time [d]

cumulative water, oil and liquid production (m3) as function of time

ref wat
ref liq
ref oil
opt wat
opt wat
opt oil

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

Equal pressures in all injector/producer segments

Results; conventional production



IPAM 2017 - Computational Issues in Oil Field Applications 42

Conventional (equal pressure in all segments, no control)
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NPV
+60%

Production
+ 41% cum oil
- 45% cum water
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• Limited energy available 
• Total injection/production rate dependent on number of 

active wells

Pressure-constrained operation
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• Bang-bang (on-off) solution
• Necessary condition: linear controls, linear constraints
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Optimum valve-settings (2)
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All the action is around the heterogeneities
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sw at 2 days sw at 12 days sw at 129 days sw at 199 days

sw at 272 days sw at 386 days sw at 603 days

Optimum valve settings (3)

Streaks act as well 
extensions

Presence of 
heterogeneities 

essential for 
optimization
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Optimum valve-settings (4)
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St. Joseph field re-development case

Objective: to determine the value of down-hole control 
in planned water injectors, in terms of incremental 
cumulative oil production
• Maximum number of ICVs: 5
• Water injection rate: 10,000 bbl/d per well
• Trajectory of water injector fixed
• Optimum number of ICVs?
• Optimum configuration of perforation zones? 
• Optimum operation of the ICVs?

Van Essen et al., 2010, SPEREE
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Pilot study on sector model

• Strongly layered structure 
• Very limited vertical communication
• Dips approximately 20º
• 21,909 active grid blocks
• Dimensions 1600m x 500m x 450m
• No aquifer support
• 1 gas injection well
• 1 (planned) water injection well
• 7 production wells in sector
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Smart water injection well
Properties
• Fixed flow rate of 10,000 bbl/d
• Fixed location and trajectory
• Horizontal section perforated
• Lift table captures pressure drop

Variables
• Number of ICVs
• Length of the perforation zones
• Operation of ICVs

• Controls: kdh multipliers
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Base case

• No control
– All kdh multipliers in 102 layers equal to 1

• Water injection into each layer result of permeability, 
pressure difference, etc.
– Performance quantified in terms of cumulative oil production

• Also water injection rate into
each zone is determined
– Zones B, C, D and E
– No injection in A

A     B   C   D   E
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Base case results

• Cumulative oil production: 11.47 MMstb
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Full 102 zone control (‘technical limit’)

• Cumulative oil production: 12.82 MMstb
• Increase of 11.7% (1.35 MMstb)
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Standard 4-group control (geological insight)

• Cumulative oil production: 12.40 MMstb
• Increase of 8.1% (0.93 MMstb)
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Alternative 4-group control (optimal grouping)

• Cumulative oil production: 12.62 MMstb
• Increase of 10.0% (1.15 MMstb)
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Data
assimilation
algorithms

Noise OutputInput NoiseSystem 
(reservoir, wells

& facilities)

Optimization
algorithms Sensors 

System models

Predicted output Measured output

Controllable
input

Geology, seismics,
well logs, well tests,
fluid properties, etc.

Link with short-term optimization
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Life-cycle optimization vs. reactive control (1)
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Life-cycle optimization vs. reactive control (2)
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• Life-cycle optimization attractive for reservoir engineers
– Increased NPV due to improved sweep efficiency

• Not so attractive from production engineering point of view
– Decreased short term production
– Erratic behavior of optimal operational strategy
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• Take production objectives into account by 
incorporating them as additional optimization criteria:

• Formal solution:
– Order objectives according to importance
– Optimize objectives sequentially
– Optimality of upper objective constrains optimization of 

lower one

• Only possible if there are redundant degrees of 
freedom in input parameters after meeting primary 
objective

Hierarchical optimization
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Objective function with ridges
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• 3D reservoir
• 8 injection / 4 production wells
• Period of 10 years 
• Producers at constant BHP
• Rates in injectors optimized

• Primary objective: undiscounted
NPV over the life of the field 
•Secondary objective: NPV with very high discount factor
(25%) to emphasize importance of short term production

Example: Hierarchical optimization using null-
space approach (1)
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Controlability of a dynamic system is the ability to influence 
the states through manipulation of the inputs.

Observability of a dynamic system is the ability to determine 
the states through observation of the outputs.

Identifiability of a dynamic system is the ability to determine 
the parameters from the input-output behavior.  

All very limited for reservoir simulation models!
Zandvliet, M. et al., 2008: Computational Geosciences 12 (4) 808-822.

Van Doren, J.F.M., et al. 2013: Computational Geosciences 17 (5) 773-788.

System model

state (p,S)
parameters (k,φ,…)

output (pwf ,qw ,qo)input (pwf ,qt)

Observability, controlability, identifiability
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Model based optimization – conclusions
‘Well control’ optimization :
• Adjoint-based techniques work well; constraints, regularization, 

storage, efficiency, still to be improved
• Alternatives: gradient-free, particle swarms, EnOpt, StoSAG
• Controllability very limited. Increased by heterogeneities

Well location optimization (not discussed):
• Gradient-free seems to work best
• Combination with well control optimization

Field implementation:
• Well control optimization: none reported
• Acceptance will require combi with short-term optimization
• Computer-assisted history matching: thriving!
• Well location/trajectory optimization: up and coming!
• Advisory mode – tools for discussion 
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