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Goal of the Special Issue 

This special issue provides a justification and a proposed research direction for establishing a 

common benchmarking scheme for function representations that are developed and deployed 

throughout academia and practice with the ultimate goal of providing industry with practically usable 

function modelling tools and concepts.  Earlier work on function benchmarking was presented at the 

International Conference on Engineering Design (ICED) in 2013 (Joshua D. Summers, Eckert, & Goel, 

2013) and revisited in a companion paper of this special issue (Joshua David Summers, Eckert, & Goel, 

2017).  Despite decades of research into function descriptions (Albers, Thau, & Alink, 2008; Andreasen & 

Hein, 1987; Bracewell & Sharpe, 1996; Chandrasekaran, 2005; Collins, Hagan, & Bratt, 1976; Eastman, 

1969; Erden et al., 2008; Freeman & Newell, 1971; Gero & Kannengiesser, 2002; A. K. Goel, 1997; Hirtz, 

Stone, McAdams, Szykman, & Wood, 2002; Hubka & Eder, 1988; Kirschman & Fadel, 1998; Linz, 2011; 

Pahl et al., 2013; Qian & Gero, 1996; Rodenacker, 1971; Sasajima, Kitamura, Ikeda, & Mizoguchi, 1995; 

Schultz, Mathieson, Summers, & Caldwell, 2014; Sen, Summers, & Mocko, 2011; Srinivasan, Chakrabarti, 

& Lindemann, 2012; Ullman, Dietterich, & Stauffer, 1988; Umeda, Ishii, Yoshioka, Shimomura, & 

Tomiyama, 1996; V. Sembugamoorthy, B. Chandrasekaran, Sembugamoorthy, & Chandrasekaran, 1986; 

Vescovi, Iwasaki, Fikes, & Chandrasekaran, 1993; Yang, Patil, & Dutta, 2010), industry has not appeared 

to have practiced function modelling while professing a need to express product information beyond 

form (Arlitt, Stone, & Tumer, 2016; Eckert, 2013).  A possible reason contributing to industry’s resistance 

might be that there is no canonical definition of function, with various approaches to function modeling 

being grounded in different conceptualizations.  Research efforts have resulted in several distinct views 

of function in engineering design, such as (Crilly, 2010; Deng, 2002; Eckert, 2013; Ashok K. Goel, 

Rugaber, & Vattam, 2009; Pieter E Vermaas, 2013).  These perspectives have been formalized into 

different modeling approaches.  For example, several design textbooks talk about using function-flow 

networks to capture the sequence and dependencies for the desired function of a product or system 



(Buede, 2011; Haskins & Forsberg, 2011; Pahl et al., 2013; Shishko & Aster, 1995; Ullman, 2010; Ulrich & 

Eppinger, 2008).   

A preceding special issues in this journal in 2013 edited by Vermaas and Eckert had asked for 

research papers concerning how and for what purpose function models could be applied, based on 

position papers covering different notions of function (Pieter E Vermaas, 2013), a discussion of 

engineers working with different notions of function in practice (Eckert, 2013), and the evolution of an 

approach to function-structure-behavior over decades (Ashok K. Goel, 2013). The editorial concluded 

that there is still a culture that “…my function model is better than yours!” which ignores the fact that 

this ambiguity about what function modeling is and how it is done, is in itself a barrier to widespread 

adoption and use of function models and descriptions (Pieter E Vermaas & Eckert, 2013). One of the 

reasons for the plethora of different approaches is that different researchers are working on different 

aspects of the function modeling problem, at different scales, with the goal to support different types of 

reasoning, in different industry sectors, and most with varying research goals. 

In response to the disconnect among those researching functions, we assert that each approach has 

its own strengths and weaknesses, and each may be well suited to specific domains. Rather than 

developing a single, unified definition of function, we aim to foster a discussion on the usefulness and 

applicability for different reasoning applications and domains. Therefore, we are proposing a different 

approach to function research by developing a set of comparative benchmarks that can be explored 

with the different modeling approaches.  By utilizing benchmark problems the community can start to 

discern which approaches are more useful for different needs, and perhaps to discover which elements 

of the representations and vocabularies are most conducive for different elements of function thinking. 

Benchmarking is used in other fields routinely to enable comparative insights, but it has not been 

used previously in research on engineering design. Therefore, this special issue is also an exploration of 

benchmarking and related techniques to understand the strengths and weaknesses of different 

modeling approaches or representations. For example, we could see different process modeling 

approaches or creativity methods being benchmarked. To assist the contributors of this special issue to 

explore and advance the possibility of benchmarking function modeling approaches, two texts were 

distributed:  a brief sketch of benchmarking written by Pieter Vermaas and an abridged version of the 

paper (Joshua David Summers et al., 2017), which was attended by of many of the contributors. The 

next section contains this sketch of benchmarking.  

Discussion on Benchmarking 

This section, authored by Pieter Vermaas, starts by introducing two different forms of function 

model benchmarking approaches. The first form aims at improving a specific function modeling 

approach by analyzing other approaches. The second form aims at comparing function modeling 

approaches used for similar tasks. Next, a precondition is analyzed that is relevant for specifically the 

second form of benchmarking. The precondition is that function modeling approaches can be 

categorized by classes of approach that are similar. The final section considers benchmarking problems 

for function modeling approaches and their role in the two forms of benchmarking.  



Two forms of benchmarking function modeling approaches 

When taking for a moment distance from function modeling and focusing on benchmarking in 

general one can distinguish two main forms of benchmarking (see (Stapenhurst, 2009) for a richer and 

more detailed discussion).  In the first form, producers of a product analyze other products for 

determining how they can improve their own product.  This may be seen as producer-driven 

benchmarking. In the second form of benchmarking users analyze a set of similar products for 

comparing them.  Here, this shall be called user-driven benchmarking. 

In producer-driven benchmarking it is the producers of the product who have an active role. They 

decide to evaluate and improve their product, decide which aspect of the product should be evaluated 

and improved, and decide what other products are to be analyzed for the evaluation and improvement.  

Producer-driven benchmarking is moreover primarily serving the interests of the producer. The product 

to be evaluated and improved is not necessarily compared with similar, rival products (say, for 

improving seating procedure in a theatre, one can compare the theatre with a plane), the outcomes of 

the comparison are not meant for or made public to users of the product, and, if all goes well, the 

producer benefits by acquiring the means to improve their product. 

In user-driven benchmarking it is the users of a product, or a representative of the users, who have 

an active role.  The users decide to evaluate the product in comparison to a set of similar products, and 

the users decide which aspects of the product are included in the comparison.  User-driven 

benchmarking serves primarily the interests of the users.  The products are compared with rival 

products (say, a set of mobile phones are compared), and the outcomes of the comparison are made 

public to the users such that these users can determine which of the compared products serve their 

interests best.  The producers of a compared product have a passive role of providing their product, and 

may hope that things go well, and that their product fares well in the comparison. User-driven 

benchmarking may, however, also serve the interests of producers in the long run, since it informs 

producers what aspects do users value in products. 

For function modeling approaches, the producers are the modelers of functions in design research 

and the users are taken to be industry. Producer-driving benchmarking of function modeling approaches 

may therefore be called modeler-driven benchmarking, and user-driving benchmarking may be called 

industry-driven benchmarking. 

Modeler-driven benchmarking thus means that modelers improve some aspect A of their function 

modeling approach M by analyzing other approaches M', M'' … . Modeler-driven benchmarking involves 

evaluation for it implies determining how the other function modeling approaches score well on the 

aspect A. Yet this evaluation is not meant as judgmental; the other function modeling approaches M', 

M'' …, that are evaluated may not even be meant for supporting the task for which the approach M is 

meant to support.  For instance, M can be meant for ideation in conceptual design, whereas M' is for 

reverse engineering. 

Industry-driven benchmarking is, in contrast, judgmental.  It involves comparing a series of function 

modeling approaches M, M', M'' … that support the same engineering task by measuring them against a 



number of aspects A, A', A'' … that industry values in using function modeling approaches for the task.  

The outcomes of the comparison are then used by industry to select the approaches that best serve the 

task. 

Categories of function modeling approaches 

User-driven benchmarking has, as said, the goal of comparing a set of similar products on various 

aspects relevant to users of the product.  A precondition to this form of benchmarking is therefore that 

products can be categorized in classes that are similar, where similarity may mean a variety of things 

with more or with less specificity.  For instance, users can be interested in benchmarking products that 

realize a broad goal, as for instance, travelling from Clemson, South Carolina in the USA, to Milton 

Keynes in the UK.  Multiple different combinations of trips with a variety of means as planes, trains, cars 

and boats may then be categorized as similar and surface as such in the comparison.  Or users can be 

interested in a more specific goal, as a laptop with particular technical characteristics and with a 

particular prize, in which case only a few products make up the category of similar products that are 

compared. 

In the case of function modeling approaches this categorization warrants attention since it is by far 

clear whether these approaches can be taken as similar.  Design research has created many function 

modeling approaches (see the 2013 AIEDAM special issue on function modeling; (Pieter E Vermaas & 

Eckert, 2013)).  This variety may be understood as preliminary to the stage that design researchers find 

consensus about the best or most tenable approach.  Unconditionally, benchmarking the current 

approaches (in both forms of benchmarking) may then be seen as speeding up the process to find this 

ultimate function modeling approach.  An alternative understanding is that the variety of function 

modeling approaches is due to the different tasks for which function modeling is used, as say, 

supporting ideation in conceptual design, supporting archiving of existing products, or enabling 

incremental changes in electromechanical engineering (e.g., (Pieter E Vermaas, 2013)).  On this second 

understanding, specific industry-driven benchmarking should take into account that function modeling 

approaches can only be taken as similar if they are meant to support the same engineering task. 

Ignoring this task dependency of function modeling can lead to unnecessary negative judgments. 

Consider for instance a function modeling approach M that is developed for the task of supporting 

incremental changes in electromechanical products, and does a good job for this task. Industry-driven 

benchmarking of function modeling approaches for task (T) can then reveal that M scores good on all 

aspects A, A' … that are relevant to task (T). This function modeling approach M may now also be of use 

for another task T' as, say, supporting failure mode analysis in products. If now this additional use is 

presented as proof that M is a versatile approach that has also T' as its goal, then M can also be included 

in industry-driven benchmarking of function modeling approaches for task T'. This second industry-

driven benchmarking effort judges M on other aspects A''', A'''' … relevant to T', and M may now end up 

as a relative mediocre function modeling approach. 

For modeler-driven benchmarking determining the tasks for which the function modeling 

approaches are meant is less necessary, although informative. When modelers want to improve their 



function modeling approach on aspect A, they should look at function modeling approaches that are 

doing well on that aspect, and knowing the tasks for which other approaches are meant may provide 

information on which function modeling approaches are doing well on aspect A. 

When function modeling approaches are simply characterized by means of a number of features, 

the tasks T, T', T'' … for which the approaches are meant and the aspects A, A' A'' … by which they are 

evaluated are not specified. The distinction between modeler-driven and industry-driven benchmarking 

is then suppressed, making the characterization somewhat ambiguous. In (Joshua David Summers et al., 

2017) more than 20 dimensions are introduced for characterizing function modeling approaches. These 

dimensions include, for instance, 

● scope of an approach: the domain for which the approach is intended; 

● flexibility: the ability to modify and adapt the representation of functions by an approach to address 

new problems; 

● closeness of mapping: what modeling conventions needs to be learned to apply the approach? How 

intuitive are the resulting models?; 

● error-proneness: does the notation used in an approach induce ‘careless mistakes’?; 

● interpretability: how consistent and precise is the interpretation of the function models across 

different individuals, domain, and expertise?; and 

● change propagation: does the representation of functions support discovery about the effects of 

perturbations in a system? 

A characterization of function modeling approaches along these dimensions can however be turned 

into modeler-driven or industry-driven benchmarking. For modeler-driven benchmarking, the 

characterization of function modeling approaches along the various dimensions gives modelers 

information about which approaches to analyze for improving their own function modeling approach on 

a specific aspect A. If, for instance, a modeler is interested in reducing the error-proneness of his 

approach, the characterization gives rapid information about which other function modeling approaches 

score low on this aspect/dimension. For industry-driven benchmarking something similar can be done by 

taking some of the dimensions as fixing the task T that singles out the category of function modeling 

approaches that are compared, and by taking other dimensions as the aspects A, A' … that drive the 

comparison. If, for instance, this industry-driven benchmarking concerns function modeling approaches 

for supporting the analysis of changes in product-services systems, then the characterizations by scope 

and change propagation fix the approaches that are compared. And if an aspect A on which the 

approaches are compared is consistency among the function modelers, the characterization along the 

interpretability dimension determines the judgment of which approach is the best. 

Benchmarking problems for function modeling approaches 

Setting a benchmarking problem for function modeling approaches also introduces ambiguity 

between modeler-driven and industry-driven benchmarking. In general, benchmarking problems can be 

defined by producers for making to themselves differences explicit between their products and for 

creating a threshold the producers want to pass. Competitions between solar-propelled cars count as 

such challenges, and then the goal of the producers is to create cars that can do it and that can do it 



better than others. In this special issue, reverse engineering a glue gun is the benchmarking problem for 

function modeling approaches, and when taking it as modeler-driven benchmarking, taking up this 

problem means attempting to get the function structure of the glue gun right and show others how it 

can be done with different approaches.  

Benchmarking problems can also be set by users, with examples including competitions between 

producers to win a contract. Proposals by the producers are then evaluated by the users for judging 

which proposal is best and gets the contract. From this perspective the challenge of reverse engineering 

a glue gun becomes industry-driven benchmarking for showing to industry which approach is best in 

capturing the function structure of the glue gun. 

Explanation of the three “themes” 

In this special issue, the glue gun challenge is to be seen as a modeler-driven benchmarking problem 

for developing within design research the language and practice of comparing function modeling 

approaches.  To this end, we invited special contributions in three specific areas: 

1. papers that present a function model created within the author’s representation of choice, 

applied against the glue gun example challenge problem, and a detailed critique of the approach 

explaining its capabilities and limitations using the function model(s) for the problem.  These are 

used to demonstrate how a single benchmark problem can be used to compare multiple 

different modeling approaches.  

2. papers that present a suite of benchmark challenge problems. To this end, papers that illustrate 

design problems for function modeling that can be used to compare function modeling 

approaches were sought.  The problems should be fully detailed in terms of scope, size, and 

domain, and clearly illustrate the criteria of comparing modeling approaches for which this 

problem can be used as a benchmark. 

3. papers presenting empirical studies comparing performance of multiple function modeling 

approaches with respect to select benchmark dimensions of the authors’ choice.  This might 

include studies comparing the performance of two approaches to support: (1) ease of modeling, 

(2) human interpretability of models, (3) teachability of modeling approaches, (4) ability to 

support innovative ideation, (5) physics-based reasoning using the models, or (6) any other 

dimension(s) of authors’ choice. 

Many papers were received, reviewed, and evaluated for appropriateness for inclusion in this 

special issue.  The selected papers presented as a collection for this special issue are primarily 

addressing the first theme in which researchers applied their models against a common benchmark 

product, the glue gun.  While the goal of the special issue was also to include proposals for new 

benchmark challenge problems, the community did not respond with offers of problems.  This might 

suggest that our research community is still evolving in thinking about the research challenges from a 

more coordinated and distributed point of view.  For the editors, this suggests an opportunity to address 

the gap in the literature through creative and innovative means in the future.  Finally, a few papers were 

received that presented findings for direct comparisons between different models.  Again, this suggests 



that the community has not yet reached a maturity level where peer function modeling approaches are 

understood well enough to be directly benchmarked/compared against each other. 

Theme 1 (Model demonstration with glue gun) 

Yildrim et al. have developed System State Flow Diagram (SSFD), a framework that can assist 

modelling solution-neutral functions of multidisciplinary systems at various levels of complexity 

(Yildirim, Campean, & Williams, 2017). This framework is intended to support designing, modeling and 

analysis of products and systems. The SSFD originates from fault analysis in automotive engineering. The 

analysis starts with the definition of input and output states of the operand, conceptualized as an 

object, in terms of the measurable attributes or properties that describe the states. The function is 

defined in relation to the transformation needed to change the values of attributes from the initial input 

to the final output state. The SSFD model is developed by decomposing the function through 

identification of intermediate states of the flow between the input state and the output state. The 

function model of a product or system is represented as a chain of state transitions, including the 

transitions in the main flow, connecting flows and branching flows. Further, to this function model, 

conditional fork node heuristics are added to describe the distinct, multiple modes of operation 

corresponding to various use cases in a complex, multidisciplinary system. While SSFD has been applied 

successfully in automotive companies as it supports modeling across multiple domains, this paper 

presents a rigorous academic basis and guidelines to the application of the method. Similar to work 

proposed by others (Otto & Wood, 2001), the SSFD offers guidelines for how to construct flow models. 

The paper sets SSFD in the context of other function modeling approaches. Like other function modeling 

approaches, the SSFD supports abstract top-down decomposition, but it also allows modeling multiple 

modes of operations that are adopted in a complex system over its lifecycle through branching points in 

the model which describe different modes of operation. The SSFD framework has been used in industry, 

and its several features are illustrated by applying it to develop function models of a glue-gun and the 

powertrain of an electric vehicle. 

The paper, entitled “The Integrated Function Modelling Framework and its Relation to Function 

Structures” by Gericke and Eisenbart proposes a novel approach to function modeling called Integrated 

Function Modeling (IFM) framework, which combines multiple viewpoint on functions in a single model 

(Gericke & Eisenbart, 2017). Building on work by (P E Vermaas, 2009; Pieter E Vermaas, 2013; Pieter E 

Vermaas & Eckert, 2013) and others, the IFM incorporates a behavior-related notion, an outcome-

related notion and task or goal-related notion of function into a single model, as the authors see an 

inherent lack of function modeling approaches to provide guidance in linking between different 

contents and viewpoints in particularly across design disciplines such as mechanical engineering, 

electrical engineering and software, which have to come together in most complex contemporary 

systems.  The IFM uses a Design Structure Matrix to combine a state view, a use case view, an actor 

view, an effect view and an interaction view centered on a process flow view, which presents a view of 

the qualitative flow of different types of processes and represents a behavioral view of the product 

showing causal link between transformations. It assumes that a team would select the views that are 

beneficial to their specific tasks rather than always work with a comprehensive model. The approach 



starts with a hierarchical decomposition of the overall function, the main functions and the auxiliary 

functions and the assumption they incorporate using an abstract verb-noun representation stating its 

inputs and outputs. These are combined into a final model, which breaks the function steps down as 

transformations of energy, matter and information. The paper shows the different views for the glue 

gun as well as the resulting combined matrix. The IFM models are compared to the Function Structures 

approach (Pahl et al., 2013). The authors argue that the two modeling approaches complement each 

other, but that IFM provides a richer and therefore, potentially more useful representation as it centers 

multiple representations around a function model. 

In another offering, Lucero, Adams, and Turner, first observe that function models of electro-

mechanical products commonly practiced and taught in design education—such as those stored in the 

Oregon State Design Repository—do not include satisfactory modeling protocol for signal flows, despite 

signal being one of the three major flow types in function literature alongside material and energy 

(Lucero, Adams, & Turner, 2017).  The authors suspect that this gap could be the result of a lack of 

formalism for modeling signals as non-conserved flows that are carried by material or energy flows.  To 

address this gap, the authors further observe that currently existing formalism of modeling control 

systems as chains of block and arrows already provide sufficient formalism to address this gap.  The 

authors then propose a formalism based on controls theory, using four similarities between controls 

engineering and functions, such as (1) schematic similarity, (2) similarity of control variables with non-

dimensional flows in function models, (3) similarity of the differential equations of transfer functions 

with the bond graph representation of functions, and (4) isomorphic matching.  The authors then apply 

these ideas to three design models, including the benchmark model of a glue gun, to illustrate their 

approach.  The paper demonstrates that the key performance parameters of a mechanical system could 

be computed through function modeling using dimensional analysis techniques, such as Buckingham-Pi.  

It also shows that the functions in the Function Basis vocabulary could be modeled as transfer functions 

of control systems, using bond graphs, because the five basic elements of bond graphs (resistive, 

capacitive, inductive, transformer, and gyrator) are analogous to basic mechanical functions.   

Next, Mokhtarian, Coatanea, and Paris present the Dimensional Analysis Conceptual Modeling 

framework (DACM) of function modeling, which is an approach to use a physics-based representation of 

functions that combines dimensional analysis, bond graphs, cause-and-effect, and a TRIZ-like 

representation (Hossein, Coatanea, & Henri, 2017).  The framework is shown to facilitate (1) physics-

based reasoning, (2) the exploration of design options, and (3) generating ideas for design variants, 

within the context of reverse engineering or incremental design.  The DACM framework is used through 

eight steps.  These steps are: system and boundary definition, function modeling using the bond graph 

vocabulary as functions, identifying the variable list, assigning variables to the function model, applying 

causal reasoning rules to the function model, generating the causal model/graph, computing the 

behavioral laws of the model, and finally, using the model for analysis and design reasoning.  The glue 

gun example is used to illustrate the ideas of the paper.  The method can detect TRIZ-like contradictions 

such as the simultaneous need to both increase and decrease the glue stick diameter in order to 

maximize glue flow rate.   



Theme 2 (Exemplar Problems) 

While this theme was presented for the potential authors in this edition, no papers were received 

that specifically addressed this topic. 

Theme 3 (Comparative Studies) 

In “Transforming Function Models to Critical Chain Models vs Expert Knowledge and Automatic 

Parsing Rules for Design Analogy Identification”, Agyemang et al. seek to determine if pruning rules are 

a viable method to transform a complex function model into a model that only illustrates critical 

functions and critical flows (Agyemang, Turner, & Linsey, 2017).  The authors use as a benchmark a set 

of expertly (manually) derived function models and compare those to models derived using pruning or 

parsing rules.  Finally, the authors use the manually and automatically generated critical chain models 

as input to a design analogy system.  Their work shows promise that pruning rules are approaching a 

capability of replacing the daunting task of manually creating critical chain function models. 

Peruzzini, et al. demonstrate how function and other product models can be leveraged to support 

innovation (Peruzzini, Raffaeli, Malatesta, & Germani, 2017).  Specifically, they present an approach for 

using function in the generation of new product variants. The authors’ work goes beyond current 

function-based concept generation approaches by adding several layers of models and interactions, 

specifically modular and structural levels.  Most notably the authors use a rule based component 

configuration system to help assemble the “new” design.  Finally, the authors present a case study done 

in partnership with Electrolux to demonstrate the systems capabilities by designing a new kitchen range 

variant.   

Unlike the previous two papers, Tomko et al. demonstrate how different function modeling 

approaches impact student learning and their ability to think in terms of systems in (Tomko, Nelson, 

Nagel, Bohm, & Linsey, 2017). To test this empirically, two groups of students, constituting the Modeling 

and Enumerating groups, are asked to generate functions for different products and their responses 

compared using the following criteria: correctness and abstraction levels of functions. Prior to this 

experiment, the students in the Modeling group are taught systems abstraction, function enumeration 

and function modeling, but the students in the Enumeration group are only taught systems abstraction 

and function enumeration. The correctness of functions is categorized into correct, partially correct and 

incorrect functions. Correct and partially correct functions are further categorized into: high-level, low-

level, interface and ambiguous. Tomko et al. observed that the students in the Modeling group 

generated more low-level, interface and ambiguous functions, but lesser high-level functions than the 

students in the Enumerating group. In addition, the students in the Modeling group also generated less 

incorrect functions than the students in the Enumerating group. These results signify that the students 

in the Modeling group can comprehend functions better at various levels of abstraction and therefore, 

have better holistic systems thinking ability than the students in the Enumerating group. 

Finally, an approach to comparing the inferencing capabilities of function representations is 

presented in (Gill, Summers, & Turner, 2017).  In this comparison paper, several different 

representations of function models generated using different grammar and vocabulary restrictions are 



used to predict the market price for test products.  This approach to evaluating the value or benefit of a 

representation to draw inferences is one approach that ca be used to compare different 

representations.  It was found that the unpruned representations were able to more accurately predict 

the market prices, while previous work had found that the pruned representations were able to support 

human interpretation better (Caldwell, Thomas, Sen, Mocko, & Summers, 2012).  Where others directly 

compared representations with respect to student learning, concept generation, or transformation, this 

approach for benchmarking focused on quantitatively measuring the reasoning support of a 

representation. 

The Next Steps 

This special issue contains four papers with models of the glue gun. The next logical step is to 

analyze the strengths and weakness of the models and provide the results of the benchmarking exercise. 

The editors of the special issue are planning to engage in this as a next step based on the final papers in 

this special issue and intend to submit a follow-on stand-alone article summarizing the findings. In the 

spirit of benchmarking we also invite others to create their own comparisons and benchmarking 

problems and protocols. The benchmarking exercise will have two distinct audiences, common-sense 

suggestions for practitioners and a theoretical reflection over the merits of benchmarking for the 

academic community.  

This special issue has shown there is still a lively interest in function modeling in the engineering 

design research community as a new generation of authors has embraced the issue. While they have 

made huge strides to engage with the work of previous generations, we have also seen that older work 

has been somewhat ignored and the old questions, such as “should function be solution neutral” are 

nowhere near to being resolved. With the exception of (Yildirim et al., 2017), in general the papers have 

again started from a theoretical perspective rather than embrace the challenges that industry is facing.  

However (Gericke & Eisenbart, 2017) and (Yildirim et al., 2017) have been embracing the challenges of 

using function modeling to bridge across the different disciplines, as products become more complex 

and initiatives like Industry 4.0 or the Internet of Things push companies to bring hardware, electronics 

and software closer together. We can still look forward to decades of interesting research on functions. 

The editors collectively agree that while this issue shows great strides in the applicability and 

usefulness of function modeling, a majority of the papers submitted are an extension of the authors’ 

previous works. However the call for benchmarking has led to a more thorough validation and 

illustration of the modeling approaches and yield a set of models of the same object, the glue gun. The 

papers presented here do address the original calls of the special edition, but none particularly address 

the issue of benchmarking problems.  Thus, the editors believe that more discussion regarding 

benchmarking as well as model validation and verification must occur.  The formal and mathematically 

rigorous approach of classifying formal languages in computing theory, such as the Chomsky hierarchy, 

could be used as a reference point for this discussion and to illustrate an equivalent gap in function 

research.  It is because of this formalism, that all computing problems within a given problem-class of 

the hierarchy, such as the context-sensitive languages or recursively enumerable problems, could be 

shown to be computationally equivalent to each other, and a newly described problem could be 



formally classified within the hierarchy.  As a result, newly proposed algorithms could be ‘tested’ against 

these classes to evaluate their ‘goodness’.  For example, the travelling salesmen problem is often used 

as a representative of the class of NP-complete problems, and as a test bed for novel algorithms that 

attempt to address that class.  While classifying design problems is, by nature, a different type of 

challenge than classifying computing problems, this comparison goes to show that function research in 

engineering design does still not have a metric or a yardstick to describe how well a particular solution 

approach lends itself to a particular problem. Computer scientists can easily evaluate the effectiveness 

of their algorithms by assessing run-time/complexity/Big-O, however those who investigate function still 

lack the basic assessment or benchmarking techniques to evaluate the effectiveness of their approaches 

in specific domains.  The editors plan to further develop a suite of benchmarking problems and ask that 

the engineering design community also contribute to this cause. The long-term goal is to introduce 

benchmarking to the cannon of methods used regularly in engineering design to present tools, methods 

and modeling approaches together with a description of their scope and the area of application to which 

they are most useful.  
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