
 
 

Delft University of Technology

A numerical study of unsteady cavitation on a hydrofoil by les and URANS method

Li, Zi Ru; Zhang, Guang Ming; He, Wei Dong; Van Terwisga, Tom

DOI
10.1088/1742-6596/656/1/012157
Publication date
2015
Document Version
Final published version
Published in
Proceedings 9th International Symposium on Cavitation (CAV2015)

Citation (APA)
Li, Z. R., Zhang, G. M., He, W. D., & Van Terwisga, T. (2015). A numerical study of unsteady cavitation on a
hydrofoil by les and URANS method. In M. Farhat, & A. Müller (Eds.), Proceedings 9th International
Symposium on Cavitation (CAV2015) Article 012157 (Journal of Physics: Conference Series; Vol. 656, No.
1). IOP Publishing. https://doi.org/10.1088/1742-6596/656/1/012157
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/656/1/012157
https://doi.org/10.1088/1742-6596/656/1/012157


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

A numerical study of unsteady cavitation on a
hydrofoil by LES and URANS method
To cite this article: Zi-ru Li et al 2015 J. Phys.: Conf. Ser. 656 012157

 

View the article online for updates and enhancements.

Related content
Research on the characteristics of quasi-
steady cavitation in a centrifugal pump
J X Lu, S Q Yuan, X J Li et al.

-

Generation of a wall jet to control unsteady
cavitation over a 2D hydrofoil: visualization
and hydroacoustic signal analysis
Mikhail V Timoshevskiy and Ivan I
Zapryagaev

-

A new nonlinear turbulence model based
on Partially-Averaged Navier-Stokes
Equations
J T Liu, Y L Wu, C Cai et al.

-

Recent citations
Cavitation modeling for steady-state CFD
simulations
L. Hanimann et al

-

This content was downloaded from IP address 131.180.131.242 on 23/11/2017 at 13:51

https://doi.org/10.1088/1742-6596/656/1/012157
http://iopscience.iop.org/article/10.1088/1757-899X/72/3/032017
http://iopscience.iop.org/article/10.1088/1757-899X/72/3/032017
http://iopscience.iop.org/article/10.1088/1742-6596/899/3/032021
http://iopscience.iop.org/article/10.1088/1742-6596/899/3/032021
http://iopscience.iop.org/article/10.1088/1742-6596/899/3/032021
http://iopscience.iop.org/article/10.1088/1757-899X/52/2/022029
http://iopscience.iop.org/article/10.1088/1757-899X/52/2/022029
http://iopscience.iop.org/article/10.1088/1757-899X/52/2/022029
http://iopscience.iop.org/1755-1315/49/9/092005
http://iopscience.iop.org/1755-1315/49/9/092005


 
 
 
 
 
 

A numerical study of unsteady cavitation on a hydrofoil by 
LES and URANS method 

Zi-ru Li1  Guang-ming Zhang1 Wei He1 and Tom van Terwisga2,3  
1 Wuhan University of Technology, 430063, Wuhan, Hubei, China 
2 Delft University of Technology, Delft 2628 CD, The Netherlands 
3 Maritime Research Institute Netherlands, Wageningen 6700 AA, The Netherlands  
 

Email: liziru@whut.edu.cn 

Abstract. In this paper, the unsteady cavitation phenomena on a NACA0015 hydrofoil is 
numerically simulated by unsteady Reynolds-Averaged Navier-Stokes (URANS) method and  
Large Eddy Simulation (LES) in single-fluid approaches to multiphase modelling, respectively.  
It is observed that the large-scale structures and characteristic periodic shedding predicted by 
the URANS with the modified SST k-ω turbulence model show a good qualitative match with 
the experimental observations but with quantitative discrepancies, such as a different cavity 
length and volume, and a different location of shedding. Compared to the URANS results, the 
LES results reproduce more details of unsteady dynamics with an improved quantitative 
agreement.  

1.  Introduction 
Cavitation is a complex physical phenomenon of phase change from liquid to vapor at almost constant 
temperature in regions where the pressure is lower than a certain critical pressure. It commonly occurs 
in marine propulsion systems and other hydraulic machinery. Due to the possible limitations imposed 
on the attainable propulsor thrust and propulsion efficiency by cavitation, it is essential to predict 
cavitation phenomena and make an assessment of cavitation nuisance in an early design stage.  

As one of the remarkable catastrophic consequences, cavitation erosion is a great challenge to be 
assessed since it involves multi-scale hydrodynamic processes in combination with the response of 
solid material exposed to various cavitation regimes. Although much is known about the behavior of 
individual bubble cavitation and the material reaction, the establishment of a reliable general-purpose 
model for cavitation erosion assessment is still a big challenge and remains a major concern for the 
industry[1-4]. From a number of experimental studies, it is confirmed that a crucial phase in the 
process leading to cavitation erosion is the break-up of the macroscopic sheet cavity into cloudy 
cavities [5-7]. As a result, the capture of characteristic unsteady dynamics of sheet/cloud cavitation 
becomes an essential phenomenon in the assessment of the cavitation erosion risk based on 
computational fluid dynamic (CFD) tools and experimental observations.  

Additional difficulties arise in the numerical modelling of unsteady cavitation phenomena due to 
the complex mechanism involving turbulent fluctuations over a wide range of length and time scales. 
It is noted that suitable turbulence modelling is of significant importance due to the presence of high 
Reynolds number and strong unsteady dynamics, such as the formation of the re-entrant jet, and the 
periodic shedding and collapse of cloudy cavitation [8]. This paper firstly carries out numerical 

9th International Symposium on Cavitation (CAV2015) IOP Publishing
Journal of Physics: Conference Series 656 (2015) 012157 doi:10.1088/1742-6596/656/1/012157

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

simulation of the cavitating flow around the NACA0015 hydrofoil through the URANS method using 
a modified SST k-ω turbulence model. Subsequently, the capability of an alternative methodology for 
turbulent flow predictions, the LES approach, to reproduce unsteady cavitation phenomena is explored. 
A quasi-2D run with the 3D LES code is adopted here. It is supposed to overcome the shortcoming of 
the RANS method in a poor resolution of dynamic flow structures of multiple length and time scales 
and an over-prediction of eddy viscosity production in regions of higher vapor volume fraction. The 
LES results are then compared with URANS results for verification of refined resolution of transient 
unsteady dynamics and also improved quantitative agreement with experimental observations.  

2.  Numerical Modelling 
The governing equations for the liquid/vapor two-phase flow are based on a single-fluid approach. The 
flow field is solved by the mixture continuity and momentum equations, which are obtained by 
averaging or filtering of the original Navier-Stokes equations, corresponding to URANS method and 
LES approach, respectively. The cavitation model developed by Schnerr and Sauer[9] has been used 
for the mass transfer between the vapor and liquid phases in cavitation.  

For the numerical simulation conducted by URANS method, the SST k-ω turbulence model 
developed by Menter [10] with a modification of the turbulent viscosity is applied following the idea 
of Reboud et al. [11] for better simulation of the unsteady dynamics. For the LES approach, subgrid-
scale (SGS) terms resulting from the filtering of the Navier-Stokes equations are modeled by the 
Smagorinsky-Lilly model[12]. 

3.  Case description 
The test geometry is a NACA0015 hydrofoil at 8 degree angle of attack with a chord length C=60mm. 
The computational domain is obtained by extending 3.0 chord lengths ahead of the leading edge and 
5.5 chord lengths behind the trailing edge of the hydrofoil. A coarse grid with 264 edges are set on the 
hydrofoil for the URANS method, and a finer grid with 528 edges on the hydrofoil has been used for 
the LES computation, ensuring the near-wall mesh resolution along the hydrofoil surface is y+<1. 

A velocity inlet condition is applied at the upstream flow. A pressure outlet condition is used at the 
outlet boundary, where the specified pressure at the outlet can be derived from the cavitation number 
under consideration, σ=2.2, which is characterized by typical unsteady cavitation. The top and bottom 
boundaries are taken as no-slip walls. The experiments to be compared with the numerical simulations 
are performed by MARIN in cooperation with Lloyd’s Register [7,13].  

4.  Numerical results 

4.1.  Unsteady shedding and collapse 
As shown in figure 1-(b), the observed essential features can be characterized as follows: A sheet 
cavity is initiated and growing from the leading edge after the detachment of last cloudy cavities; The 
sheet cavity grows to a certain extent and becomes unstable, simultaneously the cloudy cavities travels 
with the main flow towards downstream and finally collapses near the trailing edge of the hydrofoil; 
Re-entrant flow forms and moves upstream towards to the leading edge until it breaks the main sheet 
cavity into a bubbly cloud, which is shed periodically at a frequency around 210 Hz.  

The URANS results basically capture the features of the unsteady cavitation, such as the break-up 
of the sheet cavity and the detachment of the cloudy cavities from the sheet cavity and its collapse. It 
shows a good qualitative match with the experimental observations but with a much smaller cavity 
length and volume, and different locations of the prominent shedding and collapses of the bubbly 
cloud, as shown in figure 1-(a). A shedding frequency of 280 Hz has been predicted. 

 In figure 1-(c), the LES results show a better agreement in the prediction of the cavitation behavior 
than the URANS results. It reproduces the unsteady shedding and collapses with larger cavity extent 
and closer locations of shed bubbly clouds at a lower frequency of roughly 170 Hz. This would 
emphasize the possible improvement by a LES approach in the assessment of cavitation erosion.  
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    (a)                              (b)                                      (c) 

Figure 1. Time sequences of contours of vapor volume fraction obtained by (a) URANS method; (b) 
Experimental observations and (c) LES approach.  

However, both approaches failed to capture the exact location where the re-entrant jet clearly cuts 
off the main sheet cavity just alike the experimental observations, which is almost at the leading edge, 
as indicated by red arrow in figure 1-(a)- ⑤. It is suggested that the numerical simulations conducted 
here in the 2D domain would miss the three-dimensionality effect of the flow, thus decreasing the 
thickness of the re-entrant jet in a weaker jet. This hypothesis has been confirmed by comparing 2D 
URANS results with the results from a 3D URANS computation, where the cut-off appears close to 
the leading edge and also clear horse-shoe shaped cloudy cavities can be reproduced[13,14].   

By investigation of the characteristic shedding behavior predicted by LES approach, it is observed 
that the detachment of cloudy cavities is dominant by both reversed flow travels towards upstream, 
which will cut off cloudy cavities, and rotational motion of vortex structures, which will forms 
cavitating vortices at its center when the pressure falls below the vapor pressure. It confirms the 
statement from Hoekstra that the motion of the widely accepted re-entrant jet mechanism is a visual 
illusion because the motion of the cavity-liquid interface is not necessarily the same as the motion of  
the fluid particles[15]. In figure 2, the red arrows represent the main direction of the reversed liquid 
flow, and the black arrows indicate the vortex structures. 

 
(a)                                                                 (b) 

Figure 2. The velocity vectors colored by the vapor fraction corresponding to typical instants 
predicted by LES approach: (a) instant ⑤; (b) instant ⑥.  

4.2.  Lift and drag 
The lift and drag acting on the hydrofoil is greatly affected by the unsteady behavior of the cavitating 
flow, which will result in fluctuating forces with sudden peaks or drops that indicates high impact may 
occur. For time-histories of lift and drag coefficients obtained by URANS and LES computations, 
periodic lift and drag signals are predicted to reveal the regularly repeated unsteady dynamics, as 
shown in figure 3. It is noted that more unstable fluctuating force signals have been predicted by the 
LES computation in combination with remarkable peaks and troughs, interpreted for a higher averaged 
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lift and drag. The largest peak during one cycle can be correlated to  the collapse of the cloudy cavities 
near the trailing edge, as indicated a moment between the instant ③ and  ④ in figure 1-(c). 

 
(a)                                                          (b) 

Figure 3. Time histories of (a) lift and (b) drag coefficients by URANS and LES computations. 

5.  Conclusions 
The following conclusions can be drawn from this study: 

• The LES results show better quantitative agreement with the experimental observations than 
the URANS computations, displaying a larger cavity extent and better prediction of the  
locations of the prominent shedding and collapses of the bubbly cloud.  

• The inability to predict the exact location where the re-entrant jet clearly cuts off the main 
sheet for both approaches can be attributed to  loss of three-dimensionality, which weakens 
the strength of the re-entrant jet.   

• The break-off of the main sheet cavity and the shedding of cloudy cavities are associated with 
two typical mechanisms: the reversed flow travels upstream and cuts off cloudy cavities, and 
the inertia driven rotational motion of the flow at the closure of the sheet cavity causes 
shedding of vortex cavities. 
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