
 
 

Delft University of Technology

Experimental characterization of graphene by electrostatic resonance frequency tuning

Sajadi, Banafsheh; Alijani, Farbod; Davidovikj, Dejan; Goosen, Hans; Steeneken, Peter; van Keulen, Fred

DOI
10.1063/1.4999682
Publication date
2017
Document Version
Final published version
Published in
Journal of Applied Physics

Citation (APA)
Sajadi, B., Alijani, F., Davidovikj, D., Goosen, H., Steeneken, P., & van Keulen, F. (2017). Experimental
characterization of graphene by electrostatic resonance frequency tuning. Journal of Applied Physics,
122(23), Article 234302 . https://doi.org/10.1063/1.4999682

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1063/1.4999682
https://doi.org/10.1063/1.4999682


Experimental characterization of graphene by electrostatic resonance frequency tuning
Banafsheh Sajadi, Farbod Alijani, Dejan Davidovikj, Johannes (Hans) Goosen, Peter G. Steeneken, and Fred
van Keulen

Citation: Journal of Applied Physics 122, 234302 (2017);
View online: https://doi.org/10.1063/1.4999682
View Table of Contents: http://aip.scitation.org/toc/jap/122/23
Published by the American Institute of Physics

Articles you may be interested in
Graphene membrane dynamics provides a noncontact alternative for material characterization
Scilight 2017, 260003 (2017); 10.1063/1.5019686

Thermoreflectance microscopy measurements of the Joule heating characteristics of high-  superconducting
terahertz emitters
Journal of Applied Physics 122, 233902 (2017); 10.1063/1.5002743

Chaos: The speed limiting phenomenon in dynamic atomic force microscopy
Journal of Applied Physics 122, 224306 (2017); 10.1063/1.5000130

Wavefront modulation and controlling for Lamb waves using surface bonded slice lenses
Journal of Applied Physics 122, 234902 (2017); 10.1063/1.4999627

Perspective: Terahertz science and technology
Journal of Applied Physics 122, 230901 (2017); 10.1063/1.5007683

Determination of electrical properties of degraded mixed ionic conductors: Impedance studies with applied dc
voltage
Journal of Applied Physics 122, 244101 (2017); 10.1063/1.5006062

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/386502181/x01/AIP-PT/JAP_ArticleDL_092017/scilight717-1640x440.gif/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Sajadi%2C+Banafsheh
http://aip.scitation.org/author/Alijani%2C+Farbod
http://aip.scitation.org/author/Davidovikj%2C+Dejan
http://aip.scitation.org/author/Goosen%2C+Johannes+Hans
http://aip.scitation.org/author/Steeneken%2C+Peter+G
http://aip.scitation.org/author/van+Keulen%2C+Fred
http://aip.scitation.org/author/van+Keulen%2C+Fred
/loi/jap
https://doi.org/10.1063/1.4999682
http://aip.scitation.org/toc/jap/122/23
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.5019686
http://aip.scitation.org/doi/abs/10.1063/1.5002743
http://aip.scitation.org/doi/abs/10.1063/1.5002743
http://aip.scitation.org/doi/abs/10.1063/1.5000130
http://aip.scitation.org/doi/abs/10.1063/1.4999627
http://aip.scitation.org/doi/abs/10.1063/1.5007683
http://aip.scitation.org/doi/abs/10.1063/1.5006062
http://aip.scitation.org/doi/abs/10.1063/1.5006062


Experimental characterization of graphene by electrostatic resonance
frequency tuning

Banafsheh Sajadi,1 Farbod Alijani,1,a) Dejan Davidovikj,2 Johannes (Hans) Goosen,1

Peter G. Steeneken,1,2 and Fred van Keulen1

1Department of Precision and Microsystem Engineering, Delft University of Technology, 2628 CD Delft,
The Netherlands
2Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands

(Received 10 August 2017; accepted 11 November 2017; published online 19 December 2017)

In the last decade, graphene membranes have drawn tremendous attention due to their potential

application in Nano-Electro-Mechanical Systems. In this paper, we show that the frequency response

curves of graphene resonators are powerful tools for their dynamic characterization and for extracting

their equivalent Young’s modulus. For this purpose, vibrations of an electrostatically actuated circular

graphene membrane are studied both experimentally and numerically. The experiments reveal the

dependency of the linear and nonlinear resonance frequency of the nano-resonator on the driving DC

and AC voltages. A numerical model is proposed based on the nonlinear membrane theory, and by fit-

ting the numerically calculated change in resonance frequency due to the DC voltage to those of the

experimental observations, the Young’s modulus is determined. It is shown that by using the obtained

equivalent Young’s modulus, the numerical model can accurately describe the nonlinear dynamics of

the graphene membrane in other sets of measurements. Published by AIP Publishing.
https://doi.org/10.1063/1.4999682

I. INTRODUCTION

The exceptional mechanical properties of graphene have

made it a promising candidate for the next generation of two

dimensional (2D) nano-resonators. Potential applications of

these resonators are, among others, pressure, gas, and mass

sensors.1–5 In this class, electrostatically actuated 2D-

nano-resonators have a superior advantage for the potential

integration and packaging in commercial Nano-Electro-

Mechanical Systems (NEMS).6–10 In these devices, typically,

a parallel-plate capacitor is formed between a fixed bottom

electrode and a suspended flexible single or multi-layer

graphene membrane. When an alternating (AC) electric

potential is applied, a dynamic attractive electrostatic load is

induced between the electrodes, leading to the deformation

and high-frequency excitation of the membrane. In this

work, a methodology is outlined in which the dependency of

the resonance frequency on the DC voltage is used to deter-

mine the mechanical properties of the graphene membrane.

The conventional method for determining the mechani-

cal properties of suspended 2D-materials is Atomic Force

Microscopy (AFM).11 Based on AFM measurements, a large

range of elastic moduli (0.1–1.1 TPa) has been reported for

suspended graphene ribbons and drums.12–14 AFM requires

mechanical contact between a sharp tip and the membrane,

which might potentially lead to large stresses and adhesion

effects near the tip, causing possible membrane fracture.15

However, a non-contact tool for the estimation of the elastic

properties of 2D-materials, such as that presented in this

work, can avoid these problems.

In principle, the contact between the sharp tip of

AFM cantilever with the membrane could be avoided if a

non-contact load (e.g., electrostatic load) is employed to

induce the deflection in the suspended graphene membrane.

In this regard, the static load-deflection curves of an electro-

statically loaded graphene membrane have been utilized to

extract its Young’s modulus.12,16 In this method, the pressure

is distributed over the surface, and hence, the membrane is

not in contact with a sharp tip applying non-uniform stress.

Another non-contact method for extracting the mechanical

properties of graphene membrane is an identification based

on nonlinear resonances of the system.17 Generally, nano-

scaled resonators easily reach the nonlinear vibration

regime.18–20 In particular, for graphene, Duffing-type nonlin-

ear responses have been regularly observed.6,8,21 Moreover,

in electrostatically actuated nano-resonators, the electrostatic

load is also nonlinearly dependent on the deflection.22 These

sources of nonlinearities, which in practice emerge as hard-

ening or softening effects in the frequency response of the

system, are potentially beneficial for identification of the

stiffness. In this regard, in a recent study, we have introduced

a method for determining the effective Young’s modulus of

2D-materials by fitting the forced nonlinear Duffing response

of large amplitude vibrations to experimental data.17

In the present paper, an alternative approach for charac-

terization of suspended graphene membranes is proposed

which is based on their voltage dependent resonance frequen-

cies. In this approach, low amplitude vibrations are employed

for material characterization. The natural frequency of an

unloaded stretched graphene membrane is a function of its

pretension only.23 However, when the membrane is subjected

to a DC electrostatic load, it will deform, and this deforma-

tion, being a function of the Young’s modulus, induces geo-

metrical stiffness in the membrane that consequently leads to

a shift in the resonance frequency. Hence, the resonancea)Electronic mail: F.Alijani@tudelft.nl
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frequency of the membrane around its deformed configura-

tion will be a function of both Young’s modulus and DC volt-

age. By tracking the change in the resonance frequency as a

function of DC voltage, one can obtain the Young’s modulus.

For this purpose, the vibrations of a circular graphene

resonator, electrostatically actuated around its first reso-

nance, are studied both experimentally and theoretically.

First, in order to unveil the dynamic characteristics of a gra-

phene resonator, we perform a series of measurements on a

graphene membrane subjected to simultaneous DC and AC

electrostatic loads. Based on these experiments, the stretch-

ing of the graphene resonator due to high DC voltage and the

shift in the resonance frequency are investigated.

Next, the vibration of graphene is modeled using an

equivalent continuous membrane. The numerical model is

based on a Lagrangian approach. In the model, both the non-

linear stretching of the membrane and the non-uniformity of

electrostatic load due to deflection of the membrane are

incorporated. To the best of the authors’ knowledge, despite

earlier experimental and theoretical studies on the dynamics

of electrostatically actuated graphene resonators,2,17,24,25

there is no model which accounts for in-plane degrees of

freedom, geometric and electrostatic nonlinearity in a nano-

drum, and yet verified with experiments.

Finally, the equivalent elastic modulus is determined by

fitting the theoretically calculated shift in the resonance fre-

quency due to DC voltage to the experimental results. In this

way, (i) the Young modulus is obtained in a non-contact man-

ner, (ii) only the resonance frequency of the system is traced,

and (iii) the inaccuracy in the calibration of the amplitude

around a deformed configuration will be non-influential. The

validity of the proposed method is evaluated by comparing

the numerical results with the experiments with high ampli-

tude vibrations.

II. EXPERIMENTS AND DEVICE FABRICATION

To create a platform for the electrostatic 2D-nano-

resonator, we start with a silicon wafer with a 285 nm thick

layer of thermal silicon dioxide (SiO2). The schematic of the

fabrication process is shown in Fig. 1. Electrical contacts,

circular cavities, and bonding pads are patterned on the

wafer using e-beam lithography. The electrical contacts con-

sist of a layer of Ti/AuPd, which is physically deposited (via

evaporation) providing contact to the graphene membrane,

together with a Cr layer, which is used as a hard mask for the

subsequent etching step (RIE). After etching, the Cr layer is

removed using a wet etchant, resulting in cavities with a final

depth of d¼ 385 nm and a radius of R¼ 2.5 lm.

Next, flakes of graphene are exfoliated from natural crys-

tals and are transferred on the top of the cavities using a dry

transfer method.26 The thickness of the graphene flakes is

determined by AFM measurement and is equal to h¼ 5 nm,

which is approximately equivalent to 15 layers of graphene.

The sample is then mounted to a vacuum chamber. The sche-

matics of the sample and the measurement set-up are illus-

trated in Fig. 2(a).

In order to actuate the membrane, a combination of AC

and DC voltage is applied to the bonding pads using a bias-

tee (BT), and the silicon substrate is grounded. The drum’s

motion is probed by a helium-neon laser. The intensity varia-

tions caused by the interfering reflections from the moving

membrane and the fixed silicon substrate underneath are

detected by a Newport 1801 photodiode8 (with a responsivity

FIG. 1. The schematic of the fabrica-

tion process of the electrical contacts,

circular cavities, and bonding pads.

FIG. 2. Schematics of (a) device description and measurement set-up with

an interferometric laser set-up to read out the motion of the membrane, and

(b) the circular multilayer graphene membrane suspended above a grounded

silicon substrate.
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of 0.35 A/W). The detection is done in a homodyne scheme,

using a Vector Network Analyser (VNA) that outputs the

AC voltage in a combination with a DC voltage source. All

measurements were performed using a low laser power (<1

mW) to reduce heating effects that would influence the

mechanical properties of the drum.

To relate the measured amplitude to the actual motion

of the membrane, a calibration measurement of the drum’s

Brownian motion is performed.6 Therefore, the calibration is

the most accurate around the un-deformed configuration

(i.e., at small voltages). The absolute amount of static deflec-

tion of the graphene membrane when subjected to a DC volt-

age can be measured with the same principle. However, due

to high noise floor at low frequencies, the obtained static

deflection is not very accurate.

III. THEORETICAL FORMULATION

In this section, we propose a model for the harmonic

response of the electrostatically actuated membrane, at its

first resonance. Since the scaling effect on the dynamics of

graphene membranes appears at much smaller membrane

radii, we use classical continuum to obtain our model.27

Moreover, the bending energy of the graphene membrane is

orders of magnitude smaller than the energy from in-plane

strain.11 Hence, the graphene can be modeled as a mem-

brane, without bending stiffness. This membrane is assumed

to be isotropic and homogeneous.21

The radius of the membrane is R and its thickness is h.

The Young’s modulus, Poisson ratio, and the mass density of

the membrane are E, �, and l, respectively. The membrane

is suspended over a grounded electrode, and the initial gap

between the two electrodes is d. The schematic model of this

system is shown in Fig. 2(b). An electric potential V consist-

ing of a DC bias voltage (VDC) and an alternating AC voltage

(VAC) is applied to the membrane.

The alternating electrostatic field induces an alternating

electrostatic load, which causes a dynamic motion in the

membrane. Considering that the electrostatic load is symmet-

ric, and the membrane is excited around its fundamental fre-

quency, the non-axisymmetric modes will not be excited. In

fact, even if the non-axisymmetric modes are accidentally

excited, they will decay with time due to the presence of

damping.28 For the axisymmetric modes, the only relevant

displacement components are the radial (u) and transverse

(w) components. We use a reduced-order model and a

Lagrangian approach to obtain the equations of motion for

such a system. In this approach, the displacement compo-

nents are approximated by a superposition of a finite number

of suitably chosen basis functions

wðq; tÞ ¼
XN

i¼1

qiðtÞdUiðqÞ; (1a)

uðq; tÞ ¼ n0Rqþ
Xn

i¼1

qiþNðtÞRWiðqÞ; (1b)

where q ¼ r=R is the normalized radial coordinate, and qiðtÞ
are dimensionless generalized coordinates. The parameter n0

models the initial strain due to the pretension N0 in the

membrane

n0 ¼
N0ð1� �Þ

Eh
: (2)

The functions UiðqÞ and WiðqÞ are basis-functions satisfying

the boundary conditions. Here, axisymmetric linear mode

shapes of a clamped membrane are utilized as the transverse

basis-functions

UiðqÞ ¼ JmðkmiqÞ; i ¼ 1…N; (3)

where Jm is the mth order Bessel function of the first kind. In

fact, m is the number of nodal circles, and kmi is the ith posi-

tive root of Jm. Figure 3 shows the first three associated

mode-shapes. The in-plane basis-functions (Wi), satisfying

continuity and symmetry at q¼ 0, are

WiðqÞ ¼ qið1� qÞ; i ¼ 1…n: (4)

Next, the strain components of the membrane are calculated

as follows:

er ¼
1

R

@u

@q
þ 1

2R2

@w

@q

� �2

; (5a)

eh ¼
1

R

u

q
; (5b)

erh ¼ 0: (5c)

The total potential energy of the system consists of two

terms: the electrostatic potential (Ue) and the potential asso-

ciated with elastic deformation due to the stretching (Us) of

the membrane

U ¼ Us þ Ue: (6)

The elastic potential (Us) can be approximated by29

Us ¼
EhR2

2ð1� �2Þ

ð2p

0

ð1

0

e2
r þ e2

h þ 2�ereh þ
1� �

2
e2

rh

� �
qdqdh;

(7)

and the electrostatic potential, assuming parallel-plate capac-

itor theory, can be evaluated as30

Ue ¼ �ð1� aÞ 1
2
�V2R2

ð2p

0

ð1

0

q
d þ w

dqdh: (8)

The constant � is the electric permittivity of the dielectric

between the electrodes and V is the applied voltage. Moreover,

a provides a global correction for the electrostatic load and is

FIG. 3. The first three axi-symmetric mode-shapes of a membrane with

clamped contour, indexed by i and m.
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the ratio between the actual load applied to the membrane and

that of the ideal parallel plate capacitor. This factor is domi-

nated by the fringing field effects which in our set-up are

mainly due to the electrostatic field between the silicon sub-

strate and the side edge of Ti/AuPd layer in the cavity.

However, it can also account for the nano-scale effects that

can change the capacitance of the system.31,32 This factor can

vary for different set-ups between 0 and 1, depending on the

configuration of the capacitor, and hence, it should be cali-

brated for each experimental set-up, separately. In this study,

we have obtained this parameter using the experimental results

in the low amplitude vibrations. For simplicity, we assume that

a does not depend on the deflection of the membrane.

Notice that in formulating the electrostatic potential

(Ue), the local distance between the electrodes (dþw) is

used, where w can be expressed as in (1a). When the mem-

brane is excited around the first resonance, the dominant

shape of the motion can be mimicked with the first mode

shape, and therefore, the effect of higher modes in the elec-

trostatic load can be neglected. Hence, the electrostatic

potential is simplified to

Ue ¼ �ð1� aÞp�V2R2

ð1

0

qdq
d þ dq1ðtÞU1ðqÞ

: (9)

To calculate the energy associated with the electrostatic

potential, the function inside the integral in Eq. (9) is written

as a Taylor series expansion in terms of q1ðtÞ around the

undeformed configuration (q1ðtÞ ¼ 0). The electric potential

V(t) in Eqs. (8) and (9) consists of a DC bias voltage VDC,

and an alternating AC voltage with a root-mean-square

(RMS) of VAC and excitation frequency X; thus

V ¼ VDC þ
ffiffiffi
2
p

VAC sin ðXtÞ: (10)

Next, the kinetic energy of the system can be expressed as

T ¼ plR2h

ð1

0

ð _w2 þ _u2Þqdq; (11)

where the overdot indicates differentiation with respect to

time. Employing the relations given in Eqs. (1a)–(11), the

Lagrangian of the system L ¼ T � U can be expressed as a

nonlinear function of generalized coordinates Lðqi; _qi ; tÞ.
Then, the Lagrange equations can be employed to obtain the

equations of motion

@L

@qi
¼ d

dt

@L

@ _qi

� �
: (12)

As a result, Nþ n nonlinear equations governing the motion of

the nano-membrane will be obtained. It should be noted here

that, in practice, the system will possess some kind of energy

dissipation or damping. Assuming modal damping, Eq. (12)

gives a system of nonlinear ordinary differential equations,

��M €q þ ��C _q þ ��KðN0Þ þ ��N2ðqÞ þ ��N3ðq; qÞ
h i

q ¼ �FðqÞ; (13)

where ��M is the mass matrix, and ��C is the damping matrix

which is added to the equations of motion to describe

dissipation. ��K is the stiffness matrix and is a function of the

pretension,23 and it determines, together with the mass of the

membrane, the natural frequency of the unloaded configura-

tion. ��N2 and ��N3 are matrices which are linear and quadratic

functions of the generalized coordinates, respectively, and

when multiplied by q, they cause quadratic and cubic

(Duffing) nonlinearities in the equations. These matrices are

functions of the Young’s modulus of the membrane, as well,

and are a consequence of adopting nonlinear (von K�arm�an)

membrane theory. Moreover, �F is the nonlinear generalized

electrostatic force vector whose components are expressed as

FiðtÞ ¼ �
1

2
�V2ð1� aÞpR2

d2
zðq1Þ i ¼ 1;

FiðtÞ ¼ 0 i > 1:

(14)

The function zðq1Þ is a polynomial which captures the

nonlinearity of the electrostatic load and its nonuniform

distribution on the deflected membrane. The accuracy of the

function zðq1Þ depends on the truncation of the Taylor series

employed for approximating the integral in Eq. (9). Figure 4

shows different approximations of function z and it indi-

cates that by using a Taylor series of fifth order, good con-

vergence will be achieved.

In order to perform numerical integration, Eq. (13) is

multiplied by the inverse of the mass matrix and then recast

into first-order ordinary differential equations by introducing

the dummy vector y, as follows:

_q ¼ y;

_y ¼ � ��M
�1 ��Cy� ��M

�1½ ��KðN0Þ þ ��N2ðqÞ þ ��N3ðq; qÞ�q

þ ��M
�1 �FðtÞ; (15)

where ��M
�1 ��C is the dissipation term, which is assumed to be

diagonal based on the assumption of modal damping, and is

expressed as

��M
�1 ��C

� �
ij ¼ 2xini i ¼ j

��M
�1 ��C

� �
ij ¼ 0 i 6¼ j:

(16)

FIG. 4. The nonlinear electrostatic potential is approximated by a polyno-

mial function with different orders. The approximated electrostatic load con-

verges when a 5th order polynomial is employed.
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In Eq. (16), xi are the natural frequencies obtained from the

characteristic equation of the system (i.e., det½x2
i

��M � ��K�
¼ 0), and ni are the corresponding modal damping ratios of

each generalized coordinate.

To study the periodic solutions and the frequency response

of the system, a pseudo arc-length continuation and collocation

scheme have been used.33 In particular, a continuation is car-

ried out in three steps: (i) The continuation starts at a trivial

steady state solution, zero AC and DC voltages, with a small

excitation frequency much below the resonance. (ii) In the sec-

ond step, the load parameter VDC is chosen as the continuation

parameter. Once the desired parameter value is reached, VAC is

introduced as the continuation parameter, until the desired

value is reached. Unstable solution branches are avoided in

this step. (iii) The rest of the analysis is performed by consider-

ing the excitation frequency X as the continuation parameter.

In this step, the continuation is performed around the first reso-

nance of the system and the stability of the solution branches

is determined using the Floquet theory.34

IV. EXTRACTING THE EQUIVALENT YOUNG’S
MODULUS FROM THE RESONANCE FREQUENCY

In this section, we demonstrate the concept of extracting

Young’s modulus from the fundamental frequency of a pre-

tensioned membrane subjected to a high DC voltage and low

AC. For this reason, we obtain the static deflection of the

membrane due to the applied DC voltage and linearize the

equation of motion [i.e., Eq. (13)] around this configuration.

While solving Eq. (13), the force vector can be split into

static and dynamic components

�F ¼ �Fs þ �Fd; (17)

where if VAC � VDC, the dynamic force is much smaller

than the static force. Similarly, the solution can be split into

two parts,

q ¼ qs þ qd; (18)

where qs and qd are the static and dynamic solutions, respec-

tively. The static deflection, qs, can be estimated by letting
�Fd ¼ 0 and €q ¼ _q ¼ 0, leading to

��KðN0Þ þ ��N2ðqsÞ þ ��N3ðqs; qsÞ
h i

qs ¼ �Fs: (19)

The solution of this algebraic set of equations provides qs as

a function of DC voltage and elastic modulus. A relatively

small AC voltage will lead to a linear vibration around this

static configuration. The dynamic analysis in such a configu-

ration shall be performed for determining the final state of

vibration by adding an incremental dynamic solution qd to

the static solution qs. By subtracting Eq. (19) from (13), and

neglecting the higher order terms in qd, the following system

of linear ordinary differential equations is obtained:

��M €qd þ ��C _qd þ ��KðN0Þ þ ��N
0
2ðqsÞ þ ��N

0
3ðqs; qsÞ

h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��K0 ðqs;E;N0Þ

qd ¼ �Fd:

(20)

In this equation, ��N
0
2 and ��N

0
3 are associated with nonlinearities

in qs. Equation (20) describes the linear vibrations of the

membrane subjected to a relatively small AC voltage around

a static configuration (qs). The resonance frequencies (x0)
can be obtained from the characteristic equation of this new

dynamic system as a function of the static deflection qs, pre-

tension N0, and the Young’s modulus

jx02 ��M � ��K0 ðqs;E;N0Þj ¼ 0; (21)

where the static deflection qs has been obtained as a function

of DC voltage from (19). An example of the application of Eq.

(21), for the case in which one transverse and two in-plane

degrees-of-freedom are retained, is given in A. With Eq. (21),

the experimental value of x0 can be used to determine the

equivalent Young’s modulus E, if N0 and qs are known.

In order to extract the equivalent Young’s modulus from

the experimental data, four fundamental steps are taken:

(I) The pretension (N0) is determined by matching the fun-

damental frequency of the system in the unloaded con-

figuration (VDC¼ 0) to that of experimental results (x0)

jx2
0

��M � ��KðN0Þj ¼ 0: (22)

(II) The damping ratio of the first resonance frequency

(n1) is obtained by fitting the low amplitude response

curves.35

(III) The force correction factor (a) is determined by

matching the numerical amplitude of the system (A0)

in low-amplitude vibrations, to the calibrated experi-

mental data.6 For small DC and AC voltages, one can

simply ignore the geometric and electrostatic nonline-

arity, and assume harmonic oscillations. Therefore,36

A0 ¼ ð1� aÞzð0Þ �pR2

d2

VACVDC

2n1
��K11

: (23)

(IV) Using the obtained pretension and force correction

factor, the fundamental frequency (x0) of the system

is obtained numerically for a range of nonzero DC

voltages. The resonance frequency can be obtained

from the approximation in Eq. (21) or from the results

of full model as explained in Sec. III, which will cap-

ture the electrostatic softening as well. The equivalent

Young’s modulus of the membrane is then achieved

by fitting the voltage dependent shift in resonance fre-
quency (x0) to the experimental results.

V. RESULTS AND DISCUSSION

In this section, the results of the experiments and theoretical

studies are reported, and the suitability of the proposed numeri-

cal model as a tool for characterization of the graphene mem-

brane and analyzing its nonlinear vibrations is investigated.

A. Experiments

Figure 5 shows a set of experimental forced vibration

responses around the fundamental frequency while varying
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the driving DC and AC voltages. The deflection was mea-

sured at the center of the membrane, where the fundamental

mode shape presents the largest amplitude. In the first set,

the AC voltage is kept fixed (with a low RMS value of

4.5 mV) and the change in the linear resonance of the system

is traced by varying the DC voltage. The natural frequency

(i.e., when VDC¼ 0 V) was obtained to be 13.4 MHz. This

frequency has been used to obtain the pretension in the mem-

brane. The resonance frequency slightly decreases when a

small DC voltage is applied to the system, e.g., at VDC

¼ 0.5 V, the resonance occurs at 13.36 MHz. The frequency

response of the system at this configuration is used to obtain

the force correction factor. When a higher DC voltage is

applied, the resonance frequency increases [see Fig. 5(a)].

This change in resonance frequency is due to electrostatic

(softening) and then the geometrical (hardening) nonlinear-

ity. However, the frequency response function of the mem-

brane remains linear.

It should be noticed that the maximum amplitude of the

vibrations at the resonance varies with the applied DC volt-

age, as well. As a matter of fact, the maximum amplitude is

defined by the stiffness of the system and the dynamic load,

both of which depend on the DC voltage. This dependence

causes the maximum amplitude to increase with the DC

voltage due to a larger dynamic load, and later decrease due

to higher geometrical stiffness induced in the membrane and

higher damping.

Figure 5(b) shows the experimental frequency response

curves obtained by keeping the DC voltage constant at 3 V

and varying the AC voltage from 0.001 V to 0.013 V. As can

be observed, at AC voltages above 0.004 V, the system

exhibits nonlinear hardening behavior. At VAC¼ 0.013 V, the

system shows a clear instability and therefore a jump right

after the resonance.

B. Validation of the numerical model

The procedure outlined in Sec. III has been applied to

a membrane with the following properties: �¼ 0.165,

l¼ 2.2388 g/cm3, h¼ 5 nm, R¼ 2.5 lm and d¼ 385 nm.

Moreover, a relatively low damping ratio (ni¼ 0.002) is con-

sidered in the following numerical results. In the validation

of the numerical model, the effect of force correction factor

is ignored (a¼ 0).

In the Lagrangian approach, basis functions are

employed to approximate the exact solution of the problem,

and therefore, a convergence analysis is required to confirm

the accuracy of the described deflection. In order to find the

minimum number of degrees of freedoms required to accu-

rately model the motion of the membrane (N and n), two

convergence analyses (static and dynamic) have been per-

formed. In both analyses, the Young’s modulus of pristine

graphene [i.e., E¼ 1150 GPa (Ref. 37)] is considered. The

static deflection of the membrane as a function of the applied

DC voltage, when considering different numbers of degrees

of freedom, is shown in Fig. 6. The DC voltage is varied

from 0 to 10 V in the absence of VAC. As can be observed,

the static solution converges when 5 degrees of freedom are

used in the numerical model (with two transverse and three

in-plane basis functions).

In the dynamic convergence analysis, the membrane is

assumed to be subjected to a DC voltage of VDC¼ 1 V and a

high AC voltage with the root-mean-square (RMS) of 0.025 V.

The steady state solution of the membrane is calculated in a

frequency range around the first resonance. Figure 7 shows the

nonlinear frequency responses of the membrane when consid-

ering different numbers of degrees of freedom. In particular,

Fig. 7(a) shows the effect of additional in-plane basis functions

on the nonlinear dynamic response and Fig. 7(b) shows the

effect of additional transverse basis functions. It can be

observed that the dynamic solution also converges with five

degrees of freedom (with two transverse and three in-plane

mode-shapes). Therefore, all the following numerical results

are obtained by using a model including these five degrees of

FIG. 5. The measured amplitude of the motion as a function of excitation

frequency, (a) with a small AC voltage of VAC¼ 4.5 mV, and different DC

voltages, and (b) with different AC voltages and a DC voltage of VDC¼ 3 V.

The measurements are taken at the center of the drum.

FIG. 6. Deflection of the membrane when E¼ 1150 GPa, N0¼ 0.085 N/m,

VAC (RMS)¼ 0 V, calculated with different numbers of degrees of freedom.

The solution converges at 5 degrees of freedom (N¼ 2 and n¼ 3).
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freedom. In calculating the electrostatic potential in Eq. (9),

the contribution of higher modes was neglected assuming

q1 � qi for i> 1. In order to check the validity of this

assumption, the time response and phase portrait of the first

two transverse modes of the system, right before the nonlin-

ear resonance (15.6 MHz), are shown in Fig. 8. The graphs in

this figure are obtained using the same parameter values as in

Figs. 6 and 7. As can be noticed, the maximum amplitude

and time derivative of the second mode are an order of mag-

nitude smaller than the amplitude and time derivative of the

first mode.

Finally, to verify the efficiency of the proposed model,

an eigen-frequency analysis has been performed for a 3D

finite element model built in COMSOL Multiphysics and

compared with the present model. In the COMSOL model,

the membrane is modeled with the same characteristics as in

the convergence analysis and is discretized with fine mesh

consisting of shell elements. The surface of the membrane is

loaded with a nonlinear electrostatic load similar to the ana-

lytical formulation (i.e., �
�V2

dc

2ðdþwÞ2), where Vdc is a parameter

representing the DC voltage. The eigen-frequency of the

deflected system for a range of Vdc is obtained while incorpo-

rating the geometrical stiffness.

Figure 9 shows the obtained linear resonance frequency,

as a function of the applied voltage. For comparison, the

graphs obtained by the proposed model, finite element

model, and also the approximate model proposed by Ref. 25

are shown. As can be observed, the proposed model is per-

fectly matching the results of the FEM solution, while the

single degree of freedom model of Ref. 25 diverges from

these two solutions. This figure demonstrates the accuracy of

the proposed method in capturing the effect of DC voltage

on the resonance frequency of the membrane.

C. Extracting the equivalent Young’s modulus

In order to find the accurate equivalent Young’s modulus,

we compare the experimentally observed change in the reso-

nance frequency with the numerical results. Based on the

experimental results, a pretension of N0¼ 0.0857 N/m matches

the natural frequency at zero DC voltage to the experiments

and a force correction factor of 1� a ¼ 0:75 matches the

maximum amplitude of low-amplitude vibrations. Moreover, a

range of damping ratios (n1 ¼ 0:0038–0.0040), monotonically

FIG. 7. Root-mean-square amplitude of the membrane when E¼ 1150 GPa,

N0¼ 0.085 N/m, n¼ 0.002, VAC (RMS)¼ 0.02 V, and VDC¼ 1 V, numeri-

cally calculated with (a) different numbers of in-plane degrees of freedom

and (b) transverse degrees of freedom. The solution around the first reso-

nance converges with 5 degrees of freedom (N¼ 2 and n¼ 3).

FIG. 8. Time response of (a) the deflection at the center of the membrane

and (b) the first two mode shapes, and a two-dimensional projection of the

phase portrait of (c) first, and (d) second modes, slightly before the reso-

nance (X¼ 16.5 GHz), using E¼ 1150 GPa, N0¼ 0.085 N/m, n¼ 0.002, VAC

(RMS)¼ 0.02 V, and VDC¼ 1 V.

FIG. 9. The numerical resonance frequency of the excited membrane as a

function of the applied DC voltage obtained by different models, using

E¼ 1150 GPa, N0¼ 0.085 N/m, n¼ 0.002, and VAC (RMS)¼ 4.5 mV.
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increasing with DC voltage, is obtained from the experiments.

In the model, we have employed the same damping ratio for

the other modes of vibrations.

Figure 10 shows the obtained resonance frequency as a

function of the applied DC voltage. For illustrating the effect

of employing different elastic moduli, the numerical results

for E¼ 210 GPa, E¼ 560 GPa, and that of pristine graphene

[E¼ 1150 GPa (Ref. 37)], are shown. It can be observed that

the numerical results for E¼ 560 GPa are in good agreement

with the experimental observations. In other words, the pro-

posed model with this Young’s modulus is able to capture

the nonlinear hardening of the electrostatically actuated

graphene membrane.

In order to verify the accuracy of the obtained Young’s

modulus, the trend of nonlinearity by varying the AC voltage

is compared with the associated experimental data.17 Figure

11 presents the amplitude of vibration at the center of the

graphene membrane for a constant DC voltage (3 V) and

different AC voltages, as expressed in Eq. (13). As can be

observed, a very good agreement is found between the experi-

mental and numerical results for different applied dynamic

loads. The numerical results in Fig. 11 show that there are two

bifurcation points associated with jump up and down in the

vibration amplitude. However, the jump up bifurcation point

is not evident from the experimental data, because the experi-

ments were performed by forward frequency sweeps only.

It is worth mentioning that the nonlinear hardening

observed in the frequency response of the excited membrane

is induced by the quadratic and cubic terms in Eq. (13),

which appear in ��N2;
��N3, and ��FðqÞ. Therefore, not only the

Young’s modulus, but also the applied DC voltage has an

influence on the nonlinearity, which if neglected, might be

mistaken with Duffing type nonlinearity.

The nonlinear resonance frequency of the system (the

peaks in Fig. 11) varies with the applied AC voltage. This

change is illustrated more specifically in Fig. 12. Due to the

presence of the static DC voltage, the resonance frequency

of the system has a shift with respect to the free-vibration

fundamental frequency (13.6 MHz), and by increasing the

FIG. 10. The measured resonance frequency of the excited membrane as a

function of the applied DC voltage, while VAC(RMS)¼ 4.5 mV, and the cor-

responding curve obtained numerically using E¼ 210 GPa, E¼ 560 GPa,

and E¼ 1150 GPa when N0¼ 0.0857 N/m and a¼ 0.25.

FIG. 11. Measured traces (black scatter plot) and the corresponding curves

obtained numerically (solid curves) using E¼ 560 GPa, and a modal damp-

ing ratio of n ¼ 0:004 while VDC¼ 3 V.

FIG. 12. The measured resonance frequency of the excited membrane as a

function of the applied AC voltage, while VDC¼ 3 V, and the corresponding

curve obtained analytically using E¼ 560 GPa.

FIG. 13. (a) The matching Young’s modulus as a function of the force cor-

rection factor (1� a), and (b) measured traces (black scatter plot) and the

corresponding curves obtained numerically with different force correction

factors, while VDC¼ 3 V and VAC¼ 17.8 mV.
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dynamic load (AC voltage), the system exhibits a nonlinear

hardening and the resonance frequency increases further.

The overall trend of the hardening of the system obtained

numerically with E¼ 560 GPa is in good agreement with the

experiments, which confirms the accuracy of the obtained

Young’s modulus.

Finally, we shall stress that the correct evaluation of the

force correction factor employed in Eq. (8) is a crucial aspect

in characterization of the Young’s modulus. Figure 13(a)

shows the obtained Young’s modulus which matches the

voltage dependent frequency shift as a function of this factor.

As can be observed, an inaccurate estimation of this factor

can result in incorrect characterization of the Young’s modu-

lus. If this correction factor is neglected, the corresponding

elastic modulus will be obtained as 310 GPa. As shown in

Fig. 13(b), if an inaccurate correction factor is employed to

obtain the Young’s modulus, the numerical results will not

match the high amplitude vibrations.

VI. CONCLUSIONS

Resonance frequency tuning of an electrostatically actu-

ated multi-layer graphene membrane with a DC voltage has

been introduced as a tool for the evaluation of its equivalent

Young’s modulus. For this purpose, using an energy

approach based on a Lagrange formulation, the equations of

motion were derived and solved numerically. The proposed

model extends the earlier work on electrostatically actuated

graphene membranes,25 by including not only transverse, but

also radial displacements of the graphene. Moreover, based

on a comparison with a detailed finite elements solution, it

has been shown that the proposed model can capture the

effect of DC voltage on the frequency response accurately.

In this study, experiments were performed to explore the

linear and nonlinear vibrations of an electrostatically actu-

ated graphene membrane. As a result, the shift in resonance

frequency and nonlinear hardening and softening behavior,

due to geometrical and electrostatic nonlinearities, have been

investigated. It was shown that by comparing the model with

experimental data, the pretension, the force correction factor,

and the Young’s modulus of the graphene can be determined.

The obtained Young’s modulus also closely matched the

nonlinear dynamics of the membrane, providing evidence for

suitability of this method for extracting the Young’s modulus

of the 2D-nano-resonators.

Moreover, it was found that the accurate estimation of the

electrostatic load is one of the most crucial factors in this

method of characterization of the Young’s modulus. For a par-

allel plate capacitor, the fringing fields effects can be calculated

theoretically. However, the fringing field, although probably

the most dominant, is one out of many other factors influencing

the electrostatic load.31,32 Therefore, it is most efficient to

extract this factor directly from the experimental results.

It should be mentioned that the obtained value of the

Young’s modulus (E¼ 560 GPa) is lower than the reported

value in the literature for pristine graphene. This difference,

which has been repeatedly reported in other experimental

studies,38 is hypothesized to be the result of wrinkles, rip-

ples, or defects in the graphene. Defects such as wrinkles

and ripples,12,14 or grained size of the polycrystalline,38,39

may affect the elasticity of the graphene to a large extent.

The proposed method for extracting the Young’s modu-

lus is non-contact and non-destructive, and it does not

require calibration of the amplitude of vibrations in high DC

voltages. In addition, this method is simple to implement and

is computationally efficient.
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APPENDIX A: VOLTAGE DEPENDENT FUNDAMENTAL
FREQUENCY OF THE GRAPHENE MEMBRANE

To simplify the equations, the in-plane inertia is

neglected and the Poisson ratio is assumed as � ¼ 0:17.

Using one transverse and two in-plane degrees of freedom

(N¼ 1 and n¼ 2), Eq. (13) simplifies to

m€q þ 2n

ffiffiffiffiffi
k1

m

r
_q þ k1qþ k3q3 ¼ � 1

2
�V2ð1� aÞpR2

d2
zðqÞ;

(A1)

where q is the transverse deflection of the nano-membrane

normalized with respect to the gap size d. The other parame-

ters are defined as

m ¼ 0:269pR2hld;

k1 ¼ p1:558dN0;

k3 ¼
p0:913Eh

R2
d3: (A2)

Moreover, the function zðqÞ which captures the nonlinearity

of the electrostatic load and its nonuniform distribution on

the deflected membrane can be expressed as

zðqÞ ¼�0:6352q5 þ 0:625q4 � 0:609q3

þ0:584q2 � 0:539qþ 0:432: (A3)

Consequently, the static equilibrium due to a DC voltage

[i.e., Eq. (19)] can be obtained by solving the following alge-

braic equation:

k1qs þ k3q3
s ¼ �

1

2
�V2

DCð1� aÞpR2

d2
zðqÞ: (A4)

The linearized equation of motion at this configuration can

be obtained as

m€qd þ 2n

ffiffiffiffiffi
k1

m

r
_qd þ k1 þ 3k3q2

s

� �
qd ¼ Fd: (A5)

Therefore, the linear resonance frequency of graphene

membrane when subjected to a DC voltage can be

expressed by

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ 3k3q2

s

m

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:78N0

hlR2
þ 10:20Ed2q2

s

lR4

s
: (A6)
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The Young’s modulus E can be extracted by matching Eq.

(A6) to the experimental data. This few degrees of freedom

can describe the motion of the graphene membrane in low

DC voltages and if the dynamic motion around the static

deflection remains linear (see Figs. 6 and 7).
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