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Safe Nonlinear Trajectory Generation for Parallel
Autonomy with a Dynamic Vehicle Model

Wilko Schwarting1, Javier Alonso-Mora1,2, Liam Paull1,3, Sertac Karaman4, Daniela Rus1

Abstract—High-end vehicles are already equipped with safety
systems, such as assistive braking and automatic lane following,
enhancing vehicle safety. Yet, these current solutions can only
help in low-complexity driving situations. In this work, we
introduce a Parallel Autonomy, or shared control, framework
that computes safe trajectories for an automated vehicle, based on
human inputs. We minimize the deviation from the human inputs
while ensuring safety via a set of collision avoidance constraints.
Our method achieves safe motion even in complex driving
scenarios, such as those commonly encountered in an urban
setting. We introduce a receding horizon planner formulated
as Nonlinear Model Predictive Control (NMPC), which includes
analytic descriptions of road boundaries and the configuration
and future uncertainties of other road participants. The NMPC
operates over both steering and acceleration simultaneously.
We introduce a nonslip model suitable for handling complex
environments with dynamic obstacles, and a nonlinear combined
slip vehicle model including normal load transfer capable of
handling static environments. We validate the proposed approach
in two complex driving scenarios. First, in an urban environment
that includes a left-turn across traffic and passing on a busy
street. And second, under snow conditions on a race track with
sharp turns and under complex dynamic constraints. We evaluate
the performance of the method with various human driving styles.
We consequently observe that the method successfully avoids
collisions and generates motions with minimal intervention for
Parallel Autonomy. We note that the method can also be applied
to generate safe motion for fully autonomous vehicles.

Index Terms—Advanced Driver Assistance Systems (ADAS),
parallel autonomy, motion planning, collision avoidance, trajec-
tory generation, shared control, intelligent vehicles

I. INTRODUCTION

The article is a revised and extended version of the paper entitled ”Parallel
Autonomy in Automated Vehicles: Safe Motion Generation with Minimal
Intervention” IEEE ICRA 2017, Singapore, June 2017, [1]. The main exten-
sions are a combined-slip dynamical vehicle model including load transfer, the
motivation of computationally tractable probabilistic collision constraints for
general planning in dynamic and uncertain environments, the generalization
of the minimal intervention principle to any human control inputs, a thorough
technical discussion including caveats, and in-depth explanations of the
NMPC, minimal intervention and the combination thereof, derivations and
additional results including a general measure of intervention. The Associate
Editor for this paper was XXXXX
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Fig. 1. Parallel Autonomy in complex driving scenarios: Human driver
(red) tries to accelerate into an intersection, as shown by the red bar in the
lower left inset. However, given the future uncertainty of the other vehicles’
positions the Parallel Autonomy system prevents the vehicle from continuing
and potentially inhibits a collision.

GLOBALLY, over 3,000 human lives are lost every day
[2] in vehicle-related accidents and over one hundred

thousand are injured or disabled on average. Worse still is that
this number is continuing to increase [3]. In the United States,
11% of accidents are caused by driver distraction (such as cell
phone use), 31% involve an impaired driver due to alcohol
consumption, 28% involved speeding, and an additional 2.6%
were due to fatigue [4]. This troubling trend has resulted in
the continued development of advanced safety systems by
commercial car manufacturers.

For example, systems exist to automatically brake in the
case of unexpected obstacles [5], maintain a car in a lane at a
given speed, and alert users of pedestrians, signage, and other
vehicles on the roadway [6]. However, the scenarios that these
systems are able to deal with are relatively simple compared to
the diverse and complicated situations that we find ourselves
in as human drivers routinely. Human drivers are capable of
handling nearly all driving tasks well enough most of the time,
but are overwhelmed in key moments when quick and precise
actions are needed in fast and complex traffic scenarios. A deer
crossing the road, a preceding crash on the highway, a missed
blind spot, or driver tiredness are only some of the ubiquitous
challenges human drivers face in everyday traffic. To handle
these situations, an advanced autonomy system must leave the
driver in full control while ensuring safety when required.

In this work we propose a framework for advanced safety in
complex scenarios that we refer to as Parallel Autonomy. In
this framework we minimize the deviation from the human
input while ensuring safety. The design of the system has
two main objectives: (a) minimal intervention - we only apply
autonomous control when necessary, and (b) guaranteed safety
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- the collision free state of the vehicle is explicitly enforced
through constraints in the optimization.

There are three types of collaborative autonomy: (1) series
autonomy, in which the human driver orders the vehicle to
execute a function, similar to most self-driving approaches to
date; (2) interleaved autonomy, in which the human driver and
the autonomous system intermittently take turns in operation
of the vehicle; and (3) Parallel Autonomy, in which the
autonomous system functions as a guardian angel in the back-
ground to ensure safety while the human driver is operating
the vehicle. Whether drivers are distracted by smartphones,
searching in their glove box, operating the navigation system,
or are simply overwhelmed by the difficulty of driving in
challenging scenarios, the Parallel Autonomy principles offer
additional safety due to redundancy.

Human inputs

Road

Obstacles

Receding 
Horizon Planner Control inputs

Trajectory

Fig. 2. A receding horizon planner computes control inputs based on human
inputs and an environment consisting of the road, and static and dynamic
obstacles.

We provide a formulation and algorithmic solution to Paral-
lel Autonomy based on a Nonlinear Model Predictive Control
(NMPC) policy, under the assumption of known current con-
figuration of the ego vehicle and the road boundaries, cf. Fig.2.
Uncertain current and future configurations of other vehicles
are described in the form of a posterior distribution and we
parametrize them by their mean, the expected configuration,
and covariances. We assume this information to be available
from an inference framework. Specifically,

• we incorporate the time-varying uncertainty related to the
dynamic obstacle predictions explicitly in the optimiza-
tion,

• the vehicle can follow the road by contour tracking with
additional constraints for the road boundaries,

• and we simultaneously optimize over steering and accel-
eration while maintaining the ability to plan online over
long time horizons (∼ 9s),

The basic operation of the controller is shown in Fig. 1,
where the driver attempts to cut in front of oncoming traffic
to make a left turn, however the Parallel Autonomy system
prevents this action to avoid a collision with the incoming
vehicles.

This paper contributes the following:
• A formulation of Parallel Autonomy as a shared control

approach between humans and intelligent vehicles, which
adheres to the minimal intervention principle and is able
to handle complex driving scenarios

• The development of a real-time NMPC suitable for tra-
jectory generation in intelligent and autonomous vehicles,
which relies on a state of the art solver1

1We employ FORCES Pro by Embotech to autogenerate a fast NMPC
solver for our problem.

• Simulation of complex traffic scenarios with real human
inputs of different driving styles, such as a left-turn across
traffic and driving on a snowy race track

We will employ two motion models of different complexity:
• A dynamical nonlinear combined slip vehicle model

including load transfer for static environments
• A kinematic model for dynamic and complex environ-

ments
In Sec. II we summarize the related work in the field

whereas in Sec. III we present the Parallel Autonomy control
approach. In Sec. IV we provide a concrete instantiation of
the framework and present the NMPC approach to solve it.
Finally, we show detailed simulation results and conclusions
in Sec. V and Sec. VI respectively.

II. RELATED WORKS

In this section we provide an overview of the related work
in the areas of general safety, shared control for autonomous
vehicles, and Model Predictive Control (MPC).

A. Safety of Autonomous Vehicles

In theory, safety can be guaranteed for deterministic systems
by computing the set of the states for which the vehicle will
inevitably have a collision and then ensuring that the vehicle
never enters that set. The set is referred to by different terms
in the literature, such as the capture set [7], [8], [9], [10], the
inevitable collision states (ICS) [11], [12], [13], the region
of inevitable collision (RIC) [14], and the target set [15].
However, without some assumptions or limiting the applica-
bility to relatively simplistic scenarios, this set is difficult to
compute analytically. [16] apply a control barrier function to
guarantee never entering the infeasible set upon moving into
an avoidable set constructed from a polar algorithm in slow
speeds to avoid pedestrians. These ICS-inspired methods tend
to only intervene when the system is at the boundary of the
capture set, which can cause undesirable behavior, and toggle
between either the autonomous system input or the human
input. We follow the idea of [7], [12], [13] and define a
set of probabilistic constraints for collision avoidance, which
produce a safe behavior. Yet, our method produces smooth
inputs for the vehicle, since it is always active, as a Parallel
Autonomy safety system.

B. Shared Control of Intelligent Vehicles

The most intuitive way of merging the human input with
the output of a safety system is by linear combination of the
two, as shown by [17] and [18], who proposed threat measures
based on the dynamic limitations of the vehicle. The human
input was overwritten by the trajectory based on the severity
of the threat. While they reasoned about the human drivers
intended homotopy class [17], their framework did not take
the human input directly into account. In a similar line, [19]
computed safety margins from sampled trajectories clustered
into homotopy classes, but do not share the control with the
human driver.
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In contrast, in this work we directly incorporate the hu-
man inputs into an optimization framework in a minimally
invasive manner and also add a soft nudging behavior to
guide the driver. Our approach minimizes the deviation of the
autonomous system’s plan from the driver’s intent - current
steering and acceleration inputs - and provides small feedback
to the driver shortly before situations become critical. This is
important to prevent startling the driver and to decrease the
likelihood of unnecessary high intervention later, thanks to
slight intervention early on.

Similar to our approach, several constrained optimization
approaches for shared control have been formulated. [20]
directly minimized the difference from the human predicted
control input necessary to achieve safe trajectories, and [21]
minimized the difference in steering wheel angle. [22] min-
imize the deviation from desired front wheel lateral force
with an additional discount factor with increasing time. We
apply a discount factor in a similar manner. [23] minimized
the deviation from human inputs, in this case orientation
and speed, via a convex constrained optimization to generate
safe motion of a wheelchair. In contrast, we present a more
general approach where we conduct the minimization jointly
in both steering and acceleration inputs, can blend in additional
trajectory-specific costs to provide a nudging behavior, model
the dynamical model of the vehicle, and strictly enforce safety
constraints.

C. Receding Horizon Control for Shared Control
We formulate the constrained optimization as a receding

horizon control problem, typically referred to as Model Pre-
dictive Control (MPC). Related to our work, [21] employed a
hierarchical MPC approach for avoidance of static obstacles
with motion primitives and path tracking, which switches con-
trol to and from the driver as a function of driver attentiveness.
Instead of planning paths first and computing velocity profiles
separately, we directly plan full trajectories that also avoid
dynamic obstacles. Similar approaches include: a constrained
pathless MPC that blends human and controller steering com-
mands only, proposed by [17], a shared control MPC for static
unstructured robot environments avoiding circular obstacles
[24], and robust NMPC [21] to avoid static obstacles while
tracking the roads center line over a very short horizon of
less than 1.5s. Alternatively, [22] defined vehicle-stability and
environmental envelopes to supply safe steering commands at
constant speed in a discretized environment.

In contrast, our approach does not require linearization - we
solve a Nonlinear MPC (NMPC) problem directly - and can
handle complex road scenarios with dynamic maneuvers and
dynamic obstacles, with steering and acceleration control over
long horizons (∼ 9s).

The methods developed by [25] and [22] construct corridors
consisting of multiple convex regions to describe the area that
the vehicle will drive through. Based on the corridors and
constant velocity, they apply constraints on the lateral position
of the vehicle to avoid colliding with obstacles yielding a
convex optimization problem with global optimality. Operating
over both steering and acceleration in a non-convex environ-
ment and solving our NMPC formulation inherits the general

limitations of non-convex optimization, such as uncertain
convergence and runtime, and lack of guarantee of optimality.
Nonetheless, braking is clearly an essential function in vehicle
safety.

We provide all costs and constraints to the solver in closed
form without pre-linearization, and we benefit from recent
advances in efficient Interior-Point solvers [26] to directly
solve the NMPC. To guide the planner along the road, we build
upon Model Predictive Contouring Control (MPCC) [27], [28],
[29], which approximates path progress inside a corridor, the
road in our application. By tracking the center of the lane
and remaining within the limits of the road our planner can
be employed for both Parallel Autonomy, where we minimize
the deviation from human input, and for fully autonomous
vehicles.

III. PROBLEM FORMULATION

The Parallel Autonomy problem is based on two overarch-
ing principles.
• Minimal intervention with respect to the human driver.

That is, the control inputs to the vehicle should be as
close as possible to those of the human driver.

• Safety. The probability of collision with respect to the
environment and other traffic participants is below a given
threshold.

A. Definitions

We use the discrete time shorthand k , tk, where tk = t0 +∑k
i=1 ∆ti, with t0 the current time and ∆ti the i-th timestep

of the planner. Vectors are bold.
1) Ego vehicle: We refer to the car driven by the human as

ego-vehicle. At time k, we denote the configuration of the ego-
vehicle, typically position pk = [xk, yk], heading φk, longitu-
dinal and lateral velocity vx,k, vy,k, yaw rate φ̇k and steering
angle δk, by the state zk = [pk, φk, δk, vx,k, vy,k] ∈ Z . Its
control input, typically steering velocity δ̇k and longitudinal
acceleration v̇x,k, is labeled uk = [δ̇uk , v̇

u
x,k] ∈ U .

The evolution of the state of a vehicle is then represented
by a general discrete dynamical system

zk+1 = f(zk,uk), (1)

described in Sec. III-C2. The arguably largest source of
uncertainty in the system operating over long time horizons
lies in the prediction of motions of other vehicles, which
dominates all other sources of uncertainty. The comparably
low uncertainty in the dynamic motions of the ego-vehicle
thus motivates the choice for a deterministic motion model.
The area occupied by the ego-vehicle at state zk is denoted by
B(zk) ⊂ R2. In particular, we model it as a union of circles
as shown in Sec. IV-E, Fig. 5.

2) Other traffic participants: Other traffic participants, such
as vehicles, pedestrians and bikes, are indexed by i =
{1, . . . , n}. Their configuration and control input are described
as zik ∈ Zi and uik ∈ Ui. To incorporate uncertainty, we
consider that an approximate posterior distribution describing
the current and future state of the other vehicles for up to m
timesteps is available, e.g. from an inference framework such
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as [30]. The distributions are parametrized by their expected
mean configuration [pi0:m, φ

i
0:m] and covariance Σi

0:m.
At a given state, each traffic participant occupies an area
Bi(zik,Σi

k, pε) ⊂ R2 with probability larger than pε. Here pε
is the accepted probability of collision. We model them as
ellipses that grow in size with uncertainty, as described in the
forthcoming Sec. IV-E to achieve a closed form description of
a probabilistic collision constraint and therefore computational
tractability.

3) Free space: We consider the workspace W = R2 and
an obstacle map O ⊂ W containing the static obstacles, such
as the limits of the road and areas not classified as road.
We define the environment E(k) as the state of the world
(obstacles, traffic participants) at a time instance k.

B. Parallel Autonomy Formulation

We formulate a general discrete time constrained optimiza-
tion with m timesteps and time horizon τ =

∑m
k=1 ∆tk.

We use the following notation for a set of states z0:m =
[z0, . . . , zm] ∈ Zm+1 and for a set of inputs u0:m−1 =
[u0, . . . ,um−1] ∈ Um.

The objective is to compute the optimal inputs u∗0:m−1

for the ego-vehicle which minimize a cost function
Ĵh(u0:m−1,uh0 ) + Ĵt(z0:m,u0:m−1), where
• Ĵh(u0:m−1,uh0 ) is a cost term that minimizes the devia-

tion from the currently observable human input uh0 .
• Ĵt(z0:m,u0:m−1) is a cost term that only depends on

intrinsic properties of the planned trajectory. It can in-
clude various optimization objectives such as energy
minimization, comfort, or following a lane.

The optimization is subject to a set of constraints, which
represent:
• the transition model of the ego-vehicle, zk+1 =
f(zk,uk),

• no collisions with static obstacles, B(zk) ∩ O = ∅, and
• no collisions with other traffic participants up to probabil-

ity pε described by B(zk)∩
⋃

i∈{1,...,n}
Bi(zik,Σi

k, pε) = ∅.

Given the estimated trajectories (zi0:m, Σi
0:m) for all traffic

participants i = 1, . . . , n and the initial state z0 of the ego-
vehicle, the optimal trajectory for the ego-vehicle is then given
by the following receding-horizon optimization,

u∗0:m−1 = arg min
u0:m−1

Ĵh(u0:m−1,uh0 ) + Ĵt(z0:m,u0:m−1)

s.t. zk+1 = f(zk,uk)

B(zk) ∩ O = ∅

B(zk) ∩
⋃

i∈{1,...,n}

Bi(zik,Σ
i
k, pε) = ∅,

∀k ∈ {0, . . . ,m}.

(2)

We describe the method in detail in Sec. IV.

C. Motion Models

Previous approaches utilized constant longitudinal speed
and small angle assumptions in selected static obstacle avoid-
ance scenarios along straight roads [17], [18], [22]. In contrast,

TABLE I
MAIN SYMBOLS.

z ∈ Z, u ∈ U Vehicle state and control input
Jh, Jt Minimal intervention, and trajectory cost
Bi(zik,Σ

i
k, pε) Probabilistic footprint of dynamic obstacles

B(zk) Ego-vehicle footprint
O, E,W Static obstacles, environment, workspace

we consider the impact of joint speed and steering control for
higher safety in dynamic, more general and more complex
traffic environments over longer time horizons.

We first introduce a kinematic motion model with con-
straints to ensure limited slip for complex and dynamic en-
vironments, and subsequently a more complex combined slip
dynamic model including load transfer. Our method applies to
both models.

1) Kinematic Model: The kinematic model is a simplified
car model with a fixed rear wheel and a steerable front wheel
with state z and controls u = [δ̇u, v̇ux ] with lateral velocity
vy = 0. The rear-wheel driven vehicle with inter-axle distance
L and continuous kinematic model

ẋ
ẏ

φ̇

δ̇
v̇x


︸ ︷︷ ︸

ż

=


vx cos(φ)
vx sin(φ)
vx
L tan(δ)

0
0

+


0 0
0 0
0 0
1 0
0 1


[
δ̇u

v̇ux

]
︸ ︷︷ ︸

u

, (3)

is described by a discrete time model by integration zk+1 =

zk +
∫ k+∆tk
k

ż dt = f(zk,uk). A fourth order Runge-Kutta
scheme ensures integration between timesteps k to sufficient
accuracy.

We limit steering angle, |δ| ≤ δmax, steering speed, |δ̇| ≤
δ̇max, longitudinal speed, vx ≤ vx,max, as well as extreme
breaking and accelerations v̇x,min ≤ v̇x ≤ v̇x,max to reasonable
values conforming to vehicle performance and the rules of the
road, e.g. speed limits.

We account for, and prohibit, unsafe driving modes such as
high cornering speeds by limiting the product of longitudinal
velocity and yaw-rate

|vxφ̇| ≤ (vxφ̇)max, (4)

which essentially poses a velocity dependent constraint on the
vehicle’s maximum allowed curvature. This model works well
for low speeds or less aggressive driving behaviors.

Fig. 3. Dynamical half-car model.
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2) Combined Slip Model with Load Transfer: Combined
breaking and steering is one of the most essential aspects of
vehicle safety and motivates our choice for a combined slip
model [31]. Specifically, we allow load transfer between the
front and rear tires - a technique often used by rally racing
drivers to control the yaw dynamics [32]. For simplicity, we
neglect suspension and wheel dynamics, and assume that only
the front wheel is steerable. The motion model is a dynamical
half-car model with mass m, and yaw moment of inertia Iz .
The distances of front and rear wheel from the center of gravity
(cog) are lf and lr respectively. h is the height of the cog. The
position of the cog in inertial frame is given by p = [x, y], the
heading by φ, and vx, vy denote the longitudinal and lateral
velocities in the car-body fixed axis system, and Fαβ , α ∈
{f, r}, β ∈ {x, y}, the tire force components, cf. Fig. 3. The
equations of motion of the dynamical half-car model are then
given by

ṗ =

[
ẋ
ẏ

]
=

[
cosφ − sinφ
sinφ cosφ

] [
vx
vy

]
, (5) mv̇xmv̇y

Izφ̈

 =

 Ffx cos δ − Ffy sin δ + Frx +mvyφ̇

Ffx sin δ + Ffy cos δ + Fry −mvxφ̇
lf (Ffx sin δ + Ffy cos δ)− lrFry

 ; (6)

and are described by a discrete time model by integration in
the same way as for the kinematic model.

We denote the state as z = [p, φ, δ, vx, vy], control the
vehicle by steering velocity δ̇, and longitudinal slip control
s, such that u = [δ̇u, su]. su defines the longitudinal slips as
sfx = γ(su)su, srx = (1− γ(su)) su, with γ(su) ∈ [0, 1]
specifying the longitudinal slip distribution among front and
rear tire. This enables us to model both front and rear wheel
driven vehicles as well as arbitrary all-wheel drive configura-
tions.

The lateral slips for front and rear tire are

sfy =
(vy + lf φ̇) cos δ − vx sin δ

vx cos δ + (vy + lf φ̇) sin δ
, sry =

vy − lrφ̇
vx

, (7)

and the total tire slips sα =
√
s2
αx + s2

αy, α ∈ {f, r}. We can
compute the tire forces as

Fαβ = µαβFαz, α ∈ {f, r}, β ∈ {x, y} (8)

with normal loads on front and rear tires

Ffz =
mg(lr − µrxh)

lf + lr + h(µfx cos δ − µfy sin δ − µrx)
, (9)

Frz = mg − Ffz. (10)

The corresponding friction coefficients are given by Pacejka’s
simplified magic formula [33]

µαβ = −(sαβ/sα)µα, α ∈ {f, r}, β ∈ {x, y} (11)

with

µα = Dα sin (Cα arctan(Bαsα)) , α ∈ {f, r}. (12)

We limit the total friction forces for both front and rear tires
by

Fα =
√
F 2
αx + F 2

αy ≤ µα,maxFαz, α ∈ {f, r}, (13)

to ensure operation in a safe driving envelope. µα,max is the
maximum allowed friction coefficient. The constraint essen-
tially limits the yaw rate dependent on the state z, prohibiting
unsafe driving modes suitable even for race-car driving under
significant amounts of slip [31].

The constraints on steering speed |δ̇| ≤ δ̇max, steering angle
|δ| ≤ δmax, longitudinal speed, vx ≤ vx,max, remain the same
with an additional constraint on the lateral velocity |vy| ≤
vy,max .

IV. METHOD

In this section we describe the method to solve the general
problem of Eq. (2) in a specific setting.

A. Overview

We formulate a NMPC to compute a safe trajectory for the
predefined time horizon. The constrained optimization consists
of the following costs and constraints.

1) Cost: To maintain generality of the problem formulation
while easing the understanding of the specifics of the instanti-
ation, the notation of Ĵh, Ĵt, cf. Eq. (2), will be slightly altered
to Jh, Jt, cf. Eq. (44).

The cost term Jt(z0:m,u0:m−1) defined in Sec. IV-C con-
sists of terms responsible for giving feedback to the driver in
the form of slightly nudging the driver back into the correct
direction without strong intervention, if diverted too far from
the road’s center (Sec. IV-B), or if high future control inputs
are necessary to maintain safety (Sec. IV-C). This is to avoid
unnecessary high future intervention by small intervention
early on.

The cost term Jh penalizes the deviation of the system from
the current acceleration and steering angle specified by the
human driver. This term and its generalization to higher order
states is described in Sec. IV-F.

We define the time-dependent weighted combination of Jh
and Jt to avoid the necessity of prediction of future human
inputs in Sec. IV-G.

2) Constraints: The optimization is subject to a set of
constraints: (1) to respect the transition model of the system,
including kinematic and dynamic constraints, described in
Sec. III-C2, (2) to maintain the vehicle within the limits
of the road, indicated in Sec. IV-D and (3) to avoid other
traffic participants in the sense of guaranteeing a probability
of collision below pε, as given in Sec. IV-E.

3) Constrained Optimization: The resulting NMPC, which
solves Eq. (2), is then described in Sec. IV-H.

B. Lane tracking

In this section we build on the MPCC method of [27],
[28], [29] and apply it to our problem setting. The control
framework combines path generation and path tracking into
one problem. The MPCC essentially plans a progress-optimal
path by taking into account the (nonlinear) projection of the
vehicles position onto the center line. This is different from
tracking controllers in that the controller has more freedom
to determine the state trajectories to follow the given path,
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for example to schedule the velocity, which in tracking is
defined by the reference trajectory. The resulting controller
is able to plan and to follow a path inside a specified corridor
which is similar to time-optimal paths in race tracks when the
horizon is chosen long enough. We are able to apply the MPCC
control framework to our problem formulation by including
additional cost terms into the optimization such as the minimal
intervention cost, cf. Sec. IV-F. We use the center line as a
reference path, but employ it merely as a measure of progress
by selecting appropriate weights in the optimization.

The MPCC approach is a suitable choice for our Parallel
Autonomy formulation since it can (a) ensure safety by staying
within the contour of the road, (b) can integrate slight nudging
by penalizing deviation from the center line, and (c) integrate
the driver’s intention of achieving progress along the road.

Before posing the adapted MPCC problem and integrating it
into our approach, we introduce several preliminaries, includ-
ing the parametrization of the reference path (for which we
will use the center line of the driving lane), and the definition
of useful error measures due to an approximated path progress.

1) Progress on reference path: The vehicle at position
pk = (xk, yk) at time k tracks a continuously differen-
tiable and bounded two-dimensional geometric reference path
(xp(θ), yp(θ)) of path parameter θ with

t(θ) =

[
∂xP (θ)

∂θ
∂yP (θ)

∂θ

]
, n(θ) =

[
−∂yP (θ)

∂θ
∂xP (θ)

∂θ

]
(14)

the tangential and normal vectors. The direction of the path is
given by

φp(θ) = arctan

(
∂yp(θ)

∂xp(θ)

)
, (15)

and we will refer to ∆φ = φ − φp(θ) as the deviation of
the vehicle’s heading to the path. The path is parametrized by
the arc-length r, such that ∂θ/∂r = 1, which allows us to
estimate the progress of the vehicle along the reference path
with the vehicle’s actually driven longitudinal velocity vx,k
and distance r =

∫
vx dt, for small ∆φ. While parametrization

of curves by the arc-length is not trivial, if the distance
between knots is small in relation to their curvature, spline
parametrization is close to the arc-length. Since the ego-
vehicle will follow a given road with sufficiently low deviation
from the reference, enforced by the road’s boundary, we can
assume that

∆θ ≈ ∆r = vx∆t (16)

holds. This additional assumption yields an approximated
progress along the path parameter

θk+1 = θk + vx,k∆tk (17)

where vx,k∆tk describes the approximated progress at time
step k. Ideally, we want to compute the path parameter
θP (xk, yk) of the closest point on the reference path to the
ego-vehicle’s current position pk = (xk, yk) to evaluate the
associated path costs and constraints.

Finding θP (xk, yk) analytically from the projection operator
involves embedding the optimization

θp(xk, yk) = argmin
θ′
k

(
xk − xP (θ′k)

)2
+
(
yk − yP (θ′k)

)2

(18)
which is computationally expensive in the general case and
renders the direct projection operator unsuitable for fast opti-
mization. Therefore, we approximate θP (xk, yk) by Eq. (17).

2) Longitudinal Error: The approximation of the curvi-
linear abscissa θP (xk, yk) by θk introduces two errors (cf.
Fig. 4) if the vehicle’s actual path deviates from the reference
path: a longitudinal (lag) error along the path and a lateral
(countouring) error normal to the path. The longitudinal error
is

ẽl(zk, θk) =
t(θk)T

||t(θk)||

[
xk − xP (θk)
yk − yP (θk)

]
(19)

= − cosφP (θk)
(
xk − xP (θk)

)
(20)

− sinφP (θk)
(
yk − yP (θk)

)
(21)

projecting the position error of the vehicle with respect to the
path’s abscissa θk along the path’s tangent t(θk), see Fig. 5.

For sufficiently small ẽl(zk, θk) the approximated path
progress is close to the actual curvilinear abscissa (Eq. (16)),
and θk ≈ θP (xk, yk). The longitudinal error ẽl(zk, θk) needs
to be penalized in the MPCC optimization to keep the error
of the approximated evolution θk along the path sufficiently
small, as suggested in [28].

3) Contouring Error: The contouring error

ẽc(zk, θk) =
n(θk)T

||n(θk)||

[
xk − xP (θk)
yk − yP (θk)

]
(22)

= sinφP (θk)
(
xk − xP (θk)

)
(23)

− cosφP (θk)
(
yk − yP (θk)

)
(24)

describes the deviation of the vehicle’s actual position from
the estimated position projected onto the path’s normal. It is
thus a good measure of how far the vehicle deviates from a
given reference path in lateral direction.

Fig. 4. Approximation of actual path abscissa θP by virtual integrator θk ,
and therefore approximation of the true projection (xP (θP ), yP (θP ) by
(xP (θk), y

P (θk). The path projection estimation causes the longitudinal er-
ror elk approximated by ẽl(zk, θk), and contouring error eck approximated by
ẽc(zk, θk). The contouring error ẽc(zk, θk) is also used for an approximation
of the lateral distance of the vehicle to the reference path.
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The MPCC cost function

JMPCC(zk, θk) = eTkQek − ρvx,k (25)

with path error vector, formed from approximated longitudinal
and contouring error

ek =

[
ẽl(zk, θk)
ẽc(zk, θk)

]
, (26)

balances the trade-off between contouring error, longitudinal
error, and approximated path progress vk. Tuning the param-
eters Q ∈ S2++ and ρ ∈ R+ yields the direct opportunity to
encode the previously discussed nudging if the vehicle diverts
too far from the reference path, and the driver’s anticipated
intention to make progress along the road. Since each stage
k in the complete cost function will be scaled with ∆tk, see
(44) in Sec. IV-H, vx,k is not multiplied with ∆tk but still
represents the approximate progress along the path.

C. Trajectory Cost

The trajectory cost contains the MPCC cost, cf. Eq. (25),
and additionally penalizes strong control inputs and yaw rate,
a measure of driving comfort

Jt(zk, uk, θk) = JMPCC(zk, θk) + uT
kRuk + φ̇kαφ̇k. (27)

Weights R ∈ S++ and α ∈ R+ allow for different prioriti-
zation. JMPCC readily encodes the penalization of large devi-
ation from the reference path and simultaneously encourages
progress along the road which aligns with the driver’s goal of
progressing towards a destination.

By not only minimizing the intervention Jh but also in-
cluding the trajectory costs Jt into the total cost function we
achieve the following:

1) Continuous increase in intervention: Potentially startling
and confusing the driver by abrupt intervention may result
in increased risk of degenerated driver performance. Instead
of suddenly taking over control in a thrashing manner to
enforce safety constraints we achieve a continuous increase
in intervention by including the trajectory cost. Therefore, it
is possible to provide feedback to the driver by inducing a
slight nudging behavior, potentially increasing driver alertness
and preparation, while continuously increasing the level of
intervention the closer the system moves towards meeting
safety constraints.

2) Prevent unnecessary high intervention by small early
intervention: Early and small intervention resulting in nudging
the driver into beneficial directions also reduces the risk of
large intervention in the future. Additionally to this direct
effect some hazardous situations may be completely avoided
due to potentially increased awareness and early feedback to
the driver. Therefore Jt also aligns with our goal to minimize
the occurrence of extreme intervention.

3) Guide the optimizer: Finally, introducing the trajectory
cost improves convergence of the optimizer by providing
gradients towards optimality.

D. Road Representation and Static Obstacle Constraints

The ego vehicle’s reference path is parametrized by C1-
continuous clothoids following the road network through pre-
specified points. We approximate the clothoids by cubic-
splines of closely spaced knots parameterizing the spline by
the arc-length to sufficient accuracy. Whereas evaluation of
clothoids is computationally expensive, cubic splines provide
an analytical parametrization of the reference path, boundaries
of the road, and their derivatives needed for solving the non-
linear optimization.

The signed lateral distance d(zk, θ) of the ego vehicle’s
position pk to the reference path is given by the projection
along the normal of the reference path at the actual curvilinear
abscissa θP , again approximated by θk such that d(zk, θk) =
ẽc(zk, θk).

The free and drivable space of the ego vehicle at the path
abscissa θk is limited by both the left road boundary bl(θk)
and the right road boundary br(θk), cf. Fig. 5, which are
parametrized by cubic splines to enable analytic evaluation and
derivation. The boundaries may enclose all static obstacles O,
such as the limits of the road but also other static obstacles
such as construction zones or potentially dangerous objects.

To ensure that the ego vehicle stays clear of all static
obstacles the allowed lateral offset to the path is limited by

bl(θk) + w(∆φk) ≤ d(zk, θk) ≤ br(θk)− w(∆φk), (28)

where w(∆φk) = w/2 cos(∆φk) + max(lf , lr) sin(|∆φk|) is
the projection of the vehicle’s outline onto the reference path’s
normal. w(∆φk) is larger than half the vehicle’s width, since
the ego vehicle’s relative orientation to the path needs to be
accounted for, e.g. in turns. Simply taking the vehicle’s length
as upper bound turns out to be too conservative for navigating
in narrow road segments and would severely limit the host
vehicle’s capability to utilize the road to its full extent to e.g.
avoid another vehicle. We constrain the difference between the
ego vehicle’s heading φk and the path’s heading φP (θk)

|φk − φP (θk)| ≤ ∆φmax (29)

to maintain validity of a less conservative w(∆φk) as an upper
bound on lateral projection of the ego-vehicle’s occupancy
B(zk).

Fig. 5. Ego vehicle (red) approximated by circles of radius rdisc and other
vehicle (blue) with shape- and uncertainty-ellipse corresponding to minimum
occupancy probability pε. Road boundaries bl(θ) on the left and right br(θ)
of reference path (xP (θ), yP (θ)).
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E. Avoidance of Dynamic Traffic Participants

For brevity we will refer to all traffic participants, such as
vehicles, pedestrians, bicyclists, as vehicles. The ego-vehicle
needs to plan its motion in dynamic, uncertain environments
(DUE). Successful and efficient operation of autonomous
systems in such environments requires reasoning about the
future evolution and uncertainties of the states of the moving
agents and obstacles. The evolution of trajectories of other
vehicles can be reasonably predicted for a short time (typically
less than a second) by just considering physical quantities
such as vehicles estimated velocities, directions, and yaw rates,
and estimating the growth of uncertainty by Gaussian noise
over the inputs, e.g. in a LQG framework. The evolution
over several seconds on the other hand is much stronger
influenced by the intentions, motivations and goals of all traffic
participants within the specific driving environment and thus a
different representation is more suitable. While we will choose
to carefully model the mean propagation based on vehicles
following lanes and propagate the uncertainty accordingly,
this should be seen as a means of providing inputs to our
method. More elaborate estimation of posterior propagation
and estimation is beyond the scope of this paper.

The stochastic dynamic programming problem that is as-
sociated with DUE planning [34], accounting for chance
constraints that arise from the uncertain locations of the
dynamic obstacles is computationally challenging for real-time
applications. We will motivate the approximations necessary to
render solving the DUE tractable in real-time in the following
section.

We can check for collisions with chance constraints

P (C|zk, zik) < pε, (30)

where the general probability of collision is given by

P (C|zk, zik) =

∫
B(zk)

∫
Bi(zik)

IC(zk, zik)p(zk, zik) dzk dzik,

(31)
with the ego-vehicle’s and vehicle i’s states zk, zik, and
footprints B(zk), B(zik) respectively, and indicator function

IC(zk, zik) :=

{
1, if pk = pik
0, otherwise.

(32)

For the general case, including rectangular objects and general
orientations, the probability of collision can only be estimated
by Monte Carlo sampling which makes it unsuitable for use
in real-time optimization.

Assuming conditional independence between vehicles, un-
certainty only for the other vehicles, and no uncertainty over
the host vehicle, simplifies Eq. (31) and yields the following
constraint for encoding the chance constraint of Eq. (30):

B(zk) ∩ Bi(zik,Σ
i
k, pε) = ∅ (33)

Where B(zk) is the host vehicle’s footprint and Bi(zik,Σi
k, pε)

the other vehicle’s footprint with probability of more than pε.
We will derive a closed form approximation for this constraint
in the following.

For brevity, index i will be omitted in the further part
of this section. The shapes of other traffic participants, such

as vehicles, pedestrians, and bikes are approximated by a
footprint encompassing ellipse E(ashape, bshape) of orientation
φ with semi-major axes ashape and bshape in longitudinal and
lateral direction of the obstacle respectively, see Fig. 5. We
take advantage of the availability of an analytic description
of their occupied area to derive collision states that can
be described in closed analytic form. The evolution of the
obstacles’ future trajectories are assumed to be known up
to some uncertainty in the form of posterior distributions
parameterized by mean trajectories z0:m and uncertainty Σ0:m.
For our instantiation we supply a model of the growth of
uncertainty

Σk+1 = min (Σk + Σ∆tk,Σmax) , (34)

of the vehicle’s position with uncertainty Σk =
diag[(σak)2, (σbk)2] at time k. The growth of uncertainty
is determined by Σ = diag[(σa)2, (σb)2]. The uncertainty,
i.e. covariance, in the vehicle’s position is approximated to
be aligned with the vehicle’s heading and thus the principle
axis of the encompassing ellipse (cf. Fig. 5). The uncertainty
growth is bounded by Σmax, especially in the lateral direction,
to take the high likelihood of vehicles staying in their current
lanes into account. While we have chosen this model of
propagation of uncertainty for simplicity, other more complex
models or learned estimates are feasible in this framework as
well as long as the uncertainty can be approximately aligned
with the vehicle’s axis.

The level-set lines of the Gaussian N (0,Σk) describing the
position uncertainty of the other traffic participants at the level
of pε form ellipses L(aΣk

, bΣk
) with coefficients[

aΣk

bΣk

]
=

[
σak
σbk

] (
−2 log(pε2πσ

a
kσ

b
k)
)1/2

. (35)

The Minkowski-sum ⊕ of the axis aligned uncertainty
ellipse L(aΣk

, bΣk
) and the shape ellipse L(ashape, bshape) now

allows us to receive an ellipse

Bi(zik,Σ
i
k, pε) ⊂ L(aΣk

, bΣk
)⊕ L(ashape, bshape)

⊂ L(aΣk
+ ashape, bΣk

+ bshape),
(36)

conservatively inscribing the vehicle’s footprint up to an
uncertainty pε at time k.

The axis alignment of the uncertainty ellipses to the car
enables us to directly add the coefficients to the semi-major
axes to find the obstacle’s ellipse B(zik,Σik, pε) with occupancy
probability above the pε threshold.

The rectangular shape of the ego car is approximated by a
set of 4 discs Rj(zk), j ∈ {1, . . . , 4}, of radius rego

B(zk)⊂
 ⋃
j∈{1,...,4}

Rj(zk)

 (37)

chosen in a conservative manner, cf. Fig. 5, to completely
enclose the vehicle.

It is necessary to employ discs instead of ellipses for the
ego-vehicle, since the ego-vehicle and the other vehicles are
not necessarily axis aligned and the Minkowski sum can not
be easily derived for non-axis aligned ellipses in closed form.
The Minkowski sum of the ego-car’s discs and an ellipse on
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the other hand has a closed form description. The collision
constraint (33) can therefore be transformed to ⋃

j∈{1,...,4}

Rj(zk)

⋂L(aΣk
+ ashape, bΣk

+ bshape) = ∅,

(38)
and we can apply the Minkowski sum on the ego car’s j-th
discs Rj(zk) and the previously derived occupancy-ellipse to
form analytic collision constraints

cobst.,i
k (zk) =[

∆xj
∆yj

]T
R(φ)T

[
1
a2 0
0 1

b2

]
R(φ)

[
∆xj
∆yj

]∣∣∣∣∣
k,i

> 1,

∀j ∈ {1, . . . , 4} (39)

where ∆xj , ∆yj are the distance of the ego vehicle’s j-th disc
to the center of the obstacle i at time k. R(φ) is the rotation
matrix corresponding to the obstacle’s heading, and[

a
b

]
=

[
ashape + aΣk

+ rdisc
bshape + bΣk

+ rdisc

]
(40)

the semi-major axis of the resulting constraint-ellipse. We now
have an analytic closed form constraint prohibiting collisions
of probability higher than pε with other vehicles fulfilling the
collision constraints Eq. (33) and Eq. (30) up to a conservative
approximation.

For more elaborate methods of uncertainty propagation with
necessity of e.g. sigma point transformations or Monte Carlo
sampling, a conservative approximation of a Gaussian with
principle axis aligned to the expected vehicle orientation,
with new uncertainty ellipse coefficients aΣk

, bΣk
, can be

computed. The uncertainty propagation needs to be completed
only once pre-optimization and as a result does not affect
optimization run-time as much. The only restriction lies in
the alignment of the covariance along the vehicle’s ellipse’s
semi-major axis. More generally, if the occupancy up to pε of
other vehicles can be described by an ellipse the remainder
of the method remains applicable without the need of the
aforementioned restrictions such as axis alignment.

F. Minimal Intervention

It is our goal to follow the human input very closely and
intervene only when deemed necessary. In the general case the
intervention cost

Jh(zk,uk,uhk) =
[
{uk, zk} − uhk

]T
K
[
{uk, zk} − uhk

]
(41)

with weights K ∈ S++ penalizes the deviation of the system’s
state or input from the human driver’s predicted desired input
uhk . The function is adapted depending on which corresponding
states zk and control inputs uk are observable from human
inputs uhk .

Instead of predicting future driver inputs uh0 from a driver
model like Shia et al. [20], we hold the human input constant
uhk = uh0∀k and only account for the difference to the
current human input. As we will see in the forthcoming
section, Sec. IV-G, the impact of Jh(zk,uk,uh0 ) dominates
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Fig. 6. Comparison of magnitude of minimal intervention cost Jh amplifica-
tion (βw(tk)), red, and trajectory cost Jh amplification (1− w(tk)), blue.

the optimization in the short term but drops off quickly such
that a prediction becomes irrelevant. The optimization plans
trajectories sufficiently close to the short term intentions of the
human driver, and subsequently follows the long-term goals
with increasing time progress.

In our experimental setup we can only observe the driver’s
desired steering angle δh and acceleration v̇hx , but not the
steering speed δ̇h. The minimal intervention cost accounting
only for the deviation from the current human driver input
uh0 = [δh0 , v̇

h
x,0]T becomes

Jh(zk,uk,uh0 ) =

[
v̇ux,k − v̇hx,0
δk − δh0

]T
K

[
v̇ux,k − v̇hx,0
δk − δh0

]
. (42)

Nonetheless, the framework is general enough to take hu-
man input predictions, as well as other states such as steering
velocity, acceleration or torque as human input into account,
if observable.

G. Merging of Minimal Intervention and Trajectory Costs

We propose a linear, time-dependent combination of the cost
of intervention Jh Eq. (42) and trajectory cost Jt Eq. (27)

J(zk,uk, θk,uh0 ) =

βω(tk)Jh(zk,uk,uh0 ) + (1− ω(tk)) Jt(zk,uk, θk), (43)

with the goal of decreasing dependence on accurate prediction
of future driver commands uh0:m and instead only relying on
the current human input uh0 .

Weights β ∈ R+ and an exponential decay function
w(tk) = exp(−αtk), α ∈ R+, are chosen to increase the
impact of the human input in the short-term, cf. Fig 6. w(tk),
the relative weight of Jh is chosen to drop off to 10% of
it’s initial value after only 0.5s. Therefore, and because of
a large β, the optimization is dominated by the minimal
intervention cost Jh in the short term to make the system very
responsive to current human inputs. With increasing time it
will more and more rely on Jt, while Jh becomes increasingly
more irrelevant. While the system’s output trajectory further
in the future might arguably not coincide with the human
driver’s anticipated trajectory, it will eventually snap into the
correct human long term intention with progression of time. A
deviation of the system will only become noticeable if safety
constraints are active and the system will be perceived as
inactive to the human driver otherwise. A study on driving in
shared safety systems [25] underlines the importance: Human
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drivers approved of a surprisingly high amount of intervention
if their own high-level goals were achieved. The authors in
[25] argue that intervention is not perceived as such if it does
not follow adversary goals.

Since only the trajectory cost affects the long-term, all ben-
efits noted in Sec. IV-B, especially guidance for the optimizer,
become more prevalent for future planning steps.

NMPC

Environment

Ego VehicleHuman
Driver

Fig. 7. Control scheme of the NMPC

H. Optimization

We formulate the optimization problem with the afore-
mentioned state-, dynamics-, path-, and obstacle constraints
and form the following constrained nonlinear optimization
problem:

u∗
0:m−1 = argmin

u0:m−1

m∑
k=0

J(zk, uk, θk, uh
0 )∆tk (44)

s.t. zk+1 = f(zk,uk) (45)
θk+1 = θk + vk∆tk (17)
zmin < zk < zmax (46)
umin < uk < umax (47)

|φk − φP (θk)| < ∆φmax (29)

|vxφ̇k| < (vxφ̇)max (4)

Fα =
√
F 2
αx + F 2

αy ≤ µα,maxFαz, α ∈ {f, r} (13)

bl(θk) + w(∆φk) ≤ d(zk, θk) ≤ br(θk)− w(∆φk)
(28)

cobstacle,i
k (zk) > 1, i = {1, . . . , n} (39)

∀k ∈ {0, . . . ,m}.

Constraint (4) is active for the kinematic model only, while
(13) is only active for the dynamical model. At initialization
the path (xP (θ), yP (θ)) and boundaries bl(θ) and br(θ) are
given by the road and static obstacles, cf. Fig. 7 and Alg. 1.
The boundaries are updated once new information about roads
or static obstacles become available. At the beginning of each
control loop the initial states z0, θ0, human control input
uh
0 , and predictions of other traffic participants mean zi0:m

and uncertainties Σi
0:m are provided to the NMPC and the

corresponding constraint ellipses are computed. Subsequently
Eq. (44) is solved and the resulting optimal control u∗

0 is
executed by the system. The system consequently returns
to the beginning of the loop, see Fig. 7 and Alg. 1. The
optimization problem Eq. (44) is solved by a Primal-Dual
Interior Point solver generated by FORCES Pro [26].

Algorithm 1 Summary of NMPC control flow
1: Sense environment E including static obstacles O and

dynamic obstacles zi0, aishape, b
i
shape, i ∈ {1, . . . , n};

2: Initialize (xP (θ), yP (θ)), the path spline of the ego vehi-
cle from the road network;

3: Compute bl(θ), br(θ), the path-boundary splines including
road constraints and static obstacles O;

4: loop
5: Sense env. E , i.e. O, zi0, aishape, b

i
shape, i ∈ {1, . . . , n};

6: if Static environment changed then
7: Update

(
xP (θ), yP (θ)

)
;

8: Compute bl(θ), br(θ);
9: end if

10: for i ∈ {1, . . . , n} do;
11: Predict zi1:m;
12: Propagate Σi

0:m; � Eq. (34)
13: Compute (ai0:m, bi0:m); � Eq. (40)
14: end for
15: Find θ0, ego vehicle path abscissa; � Eq. (18)
16: Measure z0, the current ego state;
17: Measure uh

0 , the current human driver input;
18: Compute u∗

0; � Eq. (44)
19: Apply u∗

0 to system;
20: end loop

I. Technical Discussion

The described method guarantees dynamic collision avoid-
ance while staying within the limits of the road up to the
time horizon, under the conditions that (a) the solver is able
to find a solution, and (b) knowledge of the road, static
obstacles, dynamic obstacles on the road, and a prediction
of the mean states of the dynamic obstacles up to a sufficient
uncertainty are available. Since this work does not address
recursive feasibility (a) can not always be guaranteed.

1) Quality of the trajectory: The optimization problem is
non-convex and, e.g. in the event of deciding to overtake
a vehicle on the left or right, can become of combinatorial
nature. Although the Primal-Dual Interior Point method solves
for a local solution, we have achieved good results even for
poor initialization for four reasons:

1) The local solution trajectory will snap into the human’s
desired trajectory eventually as time progresses. Only the
current control u0 is executed and since the current hu-
man inputs uh

0 dominate the cost function, as discussed
in Sec. IV-G, it is acceptable to currently execute a local
solution.

2) Any local solution is safe. While not necessarily optimal
in the sense of minimal intervention it will abide by the
safety constraints.

3) Increased static and dynamic regularization parameters
yield robust optimization in practice.

4) The JMPCC cost term shapes the trajectory optimization
process closer to convex by encouraging progress along
the path and creating a cost-basin by penalizing large
lateral offsets to the path.

Executing the NMPC, including solving a nonlinear non-
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TABLE II
COST WEIGHTS

Function Parameter Value
MPCC Q = diag(qlong, qlat) diag(1.0, 1.0)
Progress ρ 5.0
Control R = diag(racc, rδ̇) diag(1.0, 1.0)
Yaw rate α 0.1
Minimal intervention K = diag(kv̇ , kδ) diag(1.0, 2.0)
Scaling of intervention β 500

convex optimization problem, has a number of general draw-
backs such as uncertain convergence, potentially unbounded
runtime, and the lack of guarantees of optimality. In future
work a high-level trajectory planner, solving the combinatorial
problem, could be applied to yield a meaningful initialization
to ensure global optimization.

2) Number of Variables: Per stage 1 state originates from
the path integrator θk, 2 inputs, and 5 (7) states zk for the
kinematic (dynamical) model, thus 8 (10) variables exist. The
NMPC plans over 50 stages, including 8 (10) variables per
stage, and thus 394 (492) variables in total excluding the initial
states for the kinematic (dynamical) model are needed.

3) Number of Constraints: Including the system dynamics
and path progress evolution in total 6 (8) equality constraints
need to be respected. 14 (16) inequality constraints result from
state, input, velocity-yaw-rate, (friction), heading-deviation,
and road boundary constraints. 4n additional inequality con-
straints originate from n dynamic obstacles in the environ-
ment and the 4 circle approximation of the ego vehicle. In
total 20 (24) + 4n constraints are specified per stage, while
depending on the solver only a subset of those are active.

V. RESULTS

We evaluate the capabilities of our approach in a variety
of simulated scenarios. The human driver controls a physical
steering wheel and pedals, see Fig. 8, which generate the
desired inputs uh0 = [δh0 , v̇

h
x,0], i.e. steering angle δh0 and

acceleration v̇hx,0. The human inputs are then processed in the
NMPC formulation to guarantee safe motion. The reference
path and the road boundaries bl and br are designed to fit
the road network. We adopt a variable step size approach
in all scenarios, and for all motion models, to increase the
time horizon of the planner without sacrificing computation
cost. During the first 10 steps we employ ∆tk = 0.1s
and ∆tk = 0.2s for the remaining 40 steps, resulting in a
planning horizon of nearly 9s. During all experiments the cost
function’s weights remained unchanged and are displayed in
Tab. II.

A. Left Turn Across Traffic, Merging, and Overtaking

In this challenging left turn cross traffic scenario, see Fig. 1
and Fig. 9, the ego-vehicle intends to merge into the oncoming
traffic while avoiding collisions with cross traffic. Afterwards,
the driver attempts to overtake a vehicle while traffic obstructs
the maneuver. For this challenging scenario with multiple dy-
namic obstacles and a decision-making component the simpler
kinematic model was employed.

Fig. 8. Virtual driving setup with steering wheel and pedals.

We have evaluated the method in a set of 100 randomly
generated scenarios. In these scenarios the initial positions,
trajectories including acceleration and velocity profiles, of
all other traffic participants were randomly generated. The
Parallel Autonomy system was able to ensure safety at all
times, although we purposefully caused unsafe human driver
inputs which would have resulted in crashes without the
proposed system.

In the following we will present two representative examples
for two different human driving styles, i.e. an aggressive and
a calm driver. We define the total intervention as a direct
measure to compare the NMPC’s behavior subject to different
scenarios and driving styles:

Intervention :=
100

2

(
|v̇x,0 − v̇hx,0|

2v̇x,max
+
|δ0 − δh0 |

2δmax

)
[%].

(48)
We measure the amount of total intervention as the sum of
deviation from the human input normalized with the maximum
possible inputs scaled to % .

1) Aggressive Driver: In the first case, cf. Fig. 9, an
aggressive driver nearly collides with the right road boundary
even before entering the intersection 1 , which is prevented
by counter-steering of the autonomous system since the right
road boundary constraint becomes active. Then, the driver tries
to accelerate into the intersection 2 , although other vehicles
are just passing by, resulting in a near collision. Our system
brings the ego vehicle to a full stop, lets the other vehicles
pass and then proceeds by letting the driver merge into the
traffic when a large enough gap appears. Here the dynamic
obstacle constraints prevented a collision and influenced the
merging behavior. To achieve this high-level of reasoning and
scheduling both a long planning horizon as well as low-level
control on a trajectory basis combined with high replanning
frequency to quickly account for changes in the environment
are necessary.

At 3 the driver approaches a preceding vehicle with
high relative speed and tries to collide by accelerating even
further. Our system brakes the ego vehicle, first with gradually
increasing effort and then with maximum acceleration amax,
and allows an overtaking maneuver once the oncoming traffic
has passed. At 4 the driver erratically tries to break through
the right road boundary, which is prohibited by our system
and the ego vehicle is able to continue driving on the road
in a safe manner. In all these cases the system can guard the
human driver from actually causing any harm to himself and
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Fig. 9. Aggressive left turn with traffic: The system’s steering angle and acceleration are displayed in blue, the human input in red. Snapshots of the current
scenes at specific time-stamps are displayed above the acceleration and steering plots: The ego vehicle in red, the MPC planned path in blue. All other
vehicles in black. An aggressive driver causes multiple critical situations where the system is forced to intervene to large amounts to keep the vehicle in a
safe state. Large deviation from the driver’s desired acceleration and steering wheel angle to the actual system output are observable. E.g. collision at time
(2) is prohibited by strong braking.
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Fig. 10. Normal left turn with traffic: System output stays close to the desired human acceleration and steering wheel angle. An exception appears at (4)
where the driver is not counter steering enough to prohibit a predicted collision with the left road boundary.

others.

Due to the severity of the scenario a maximum intervention
of 71% and 23% on average was necessary to assure safety.

2) Calm Driver: The opposite spectrum of how our method
reacts is shown in Fig. 10: A fairly good driver experiences the
same previous scenario. We observe that if the inputs from the

human driver are deemed safe, barely any difference between
human and system inputs occurs. The system thus minimizes
intervention if no critical situations occur. Since steering the
vehicle with steering wheel and pedals in simulation is not
an easy task, due to the lack of feedback, the human driver
did not break sufficiently at 2 and misses to counter steer
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Fig. 11. Comparison of NMPC plans with uncertainty estimate (top) and
without (bottom) shown by the ellipses representing their occupancy proba-
bility threshold. Predicted future states are shown in fading colors 0.4s apart
over a horizon of 9s.

during a lane change maneuver 4 . Here the system applied
the slight nudging behavior to carefully guide the driver away
from the imminent collision with the left road boundary. Even
in this situation the maximum intervention did not exceed
16% and was only 3% on average for the whole scenario,
which underlines the functionality of the minimal intervention
principle.

B. Impact of Uncertainty

Taking the uncertainty in the prediction of other vehicles
into account is important, since future states can deviate
substantially from the expectation. In the case of neglecting
uncertainties the planned behavior can be more aggressive and
is given larger leeway in the constraints. See Fig. 11-bottom,
where the vehicle is allowed to merge into the lane in front of
a second vehicle. Taking future obstacles’ uncertainty growth
into account, cf. Fig. 11-top, results in more conservative
behavior and the ego vehicle is prohibited from merging in
front of the oncoming vehicle. We discussed here the planned
behavior of the NMPC, not the actually observed behavior.
Since the control loop runs at more than 10Hz, frequently
updating the planned trajectory, the actually executed controls
will be less conservative since they adapt to new observations.
It will be possible to actually observe the true positions and
velocities of the other vehicles over time and thus replan with
lower uncertainty. Nonetheless, we have shown the impact of
uncertainty aware planning by including chance constraints
into the optimization.

C. Snow Race Track

TABLE III
VEHICLE SPECIFICATIONS

Parameter Value
lf , lr , w, h 1.2, 1.5, 1.76, 0.9 (m)
m, Iz 1400kg, 3000kg/m2

Bα, Cα, Dα (snow) 5, 2, 0.3

In the following scenarios we will showcase the capabilities
of the dynamical vehicle model on a snow surface in fast turns
and static obstacle avoidance on a race track. Vehicle and tire
specifications are stated in Table. III.

1) Sharp turn: In this scenario, cf. Fig. 12(a), the vehicle
enters a sharp left turn on a race track. The current human
inputs would cause the vehicle to quickly leave the road at
high speed. The controller brakes the vehicle to a safe speed
complying with the friction constraints, see Fig. 12(b), then
accelerates at the exit of the turn to maximize progress while
always respecting the road’s limits. The planned trajectory

(a) NMPC plan of vehicle, where vehicle poses are 0.2s apart for a horizon
of 9s.
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(b) The friction constraints for both tires are visualized as normalized
components Fαβ,normalized = Fαβ/(µα,maxFαz).

Fig. 12. Sharp turn: Output of NMPC plans to decelerate into the sharp
corner to comply with friction constraints.

shows similarities to a racing line during high-speed cornering.
This behavior shows the advantage of longitudinal and lateral
control; without deceleration the vehicle would not have been
able to complete the turn, cf. Fig. 12(a). The plan maintains
a smooth acceleration profile during the turn and maximizes
the use of available forces, cf. Fig. 12(b), while abiding by
the friction constraint.

2) Sudden appearance of obstacle: A suddenly appearing
static obstacle represented by an ellipse in the driving-path
of the vehicle, e.g. a stationary deer, needs to be avoided,
cf. 13(a). After replanning a new trajectory the vehicle is able
to swerve to the left side of the road to avoid the static obstacle
in its previous driving path. The optimization does not have
any incentive to slow down in the vicinity of obstacles and
thus continues to accelerate to increase progress along the road
until it brakes for the imminent left corner.

D. Computation Time

The NMPC solve times collected during several runs on a
single core CPU are displayed in Fig. 14. For the kinematic
model we observed a strong influence of the complexity of the
scenario on the computation time. In the case of no dynamic
obstacles we observed solve-times of less than 20ms even for
a challenging race track with many tight turns, forcing the
NMPC to intervene and decelerate due to velocity-yaw-rate



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. XX, NO. XX, OCTOBER 2017 14

(a) NMPC plan of vehicle avoiding suddenly appearing obsta-
cle, where vehicle poses are 0.2s apart for a horizon of 9s.
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(b) The friction constraints remain valid during the avoidance maneuver.

Fig. 13. Sudden appearance of obstacle: The vehicle is able to successfully
avoid the suddenly appearing obstacle.

Fig. 14. Computation times for the different human in the loop scenarios
and varying number of other traffic participants, and high uncertainty. Finally
the case of AI only, without the human in the loop. On the far right is the
dynamic vehicle model in a static environment. Results were computed on a
single core of an AMD Ryzen 7 1700X @3.4Ghz.

constraints. In cases where the system needs to nudge into
tight gaps while simultaneously deciding whether a subsequent
overtaking maneuver is feasible, computation times can reach
up to 50ms in exceptional cases.

The dynamical vehicle model is surprisingly fast on average
but exhibits worst case run-times of nearly 75ms. While we
achieved robust performance and convergence for all tests in
static environments, for some cases in dynamic environments
no optimizer could be found and we therefore exclude the
dynamical model from those use cases.

In summary, our system was able to reach the goal replan-
ning frequency of 10Hz at all times for the kinematic vehicle
model in complex dynamic environments, and the dynamical
model in simpler and static environments.

VI. CONCLUSION

In this work we presented a NMPC that minimizes deviation
from the human input while ensuring safety according to our
proposed general Parallel Autonomy control framework. We
have shown the increased functionality compared to other
approaches in complex and more realistic driving scenarios.
The approach is capable of reasoning over long time horizons
of more than 9s in real-time, i.e. more than 10Hz, while
maintaining close to the human input without a necessary
prediction layer for human intention.

We have shown our method to work with a kinematic model
in challenging and highly complex dynamic environments, and
a dynamical model in static environments.

Future work will try to reduce general limitations of NMPC,
such as uncertain convergence and lack of a guarantee of
optimality by initialization in a correct homotopy class, or by
exploring strategies on how to deal with failure cases where
no solution can be found, or to extend the presented method
to achieve provable safety beyond the planning horizon by
ensuring recursive feasibility. Additional tests will also enclose
an inference framework to gain more elaborate predictions of
other traffic participants, future trajectories and their uncer-
tainty propagation.

Instead of nudging the driver in the correct direction, it
is possible to not intervene at all if the driver is doing
well. The impact of the different methodologies on human
drivers will be studied in the future. Furthermore, the proposed
receding horizon planner also applies to fully autonomous
vehicles if the minimal intervention cost is excluded and future
experiments will show the functionality.
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