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Strong and tunable couplings in flux-mediated optomechanics

Olga Shevchuk, Gary A. Steele, and Ya. M. Blanter
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

(Received 21 November 2016; revised manuscript received 19 April 2017; published 11 July 2017)

We investigate a superconducting interference device (SQUID) with two asymmetric Josephson junctions
coupled to a mechanical resonator embedded in the loop of the SQUID. We quantize this system in the case
when the frequency of the mechanical resonator is much lower than the cavity frequency of the SQUID and in
the case when they are comparable. In the first case, the radiation pressure and the cross-Kerr type interactions
arise and are modified by the asymmetry. The cross-Kerr type coupling is the leading term at the extremum
points where the radiation pressure is zero. In the second case, the main interaction is the single-photon beam
splitter, which exists only at a finite asymmetry. Another interaction in this regime is of cross-Kerr type, which
exists at all asymmetries, but is generally much weaker than the beam splitter interaction. Increasing magnetic
field can substantially enhance the optomechanical couplings strength with a potential for the radiation pressure
coupling to reach the single-photon strong coupling regime, even the ultrastrong coupling regime, in which the
single-photon coupling rate exceeds the mechanical frequency.

DOI: 10.1103/PhysRevB.96.014508

I. INTRODUCTION

The progress in optomechanical systems, where optical or
microwave cavities are coupled to mechanical resonators, has
been impressive in recent years [1]. The accomplishments in
optomechanics include cooling a mechanical resonator to its
quantum ground state [2,3], prediction [4], and observation [5]
of the optomechanically induced transparency, squeezing of
the cavity [6,7] and the mechanical [8–10] modes, and coherent
state transfer [11,12]. Many of these experiments have been
realized using superconducting circuits, which enables us to
view microwave cavities with mechanical elements as possible
building blocks for quantum information processing [13].

The coupling between a cavity and a mechanical resonator
plays a central role in optomechanics. In optomechanical
systems, the origin of the coupling is the radiation pressure
exerted by light on a mechanical resonator. This interaction
is proportional to the number of photons in the cavity
and thus is quadratic in the amplitude of the cavity field.
It is also proportional to the mechanical displacement. In
the published experiments, this intrinsically weak radiation
pressure coupling was amplified by increasing the drive power
of the cavity, which linearizes the effective optomechanical
interaction of the system. This linearized interaction is known
in optics as the beam splitter coupling. Such coupling would
always turn Gaussian states of the cavity into Gaussian states
of the mechanical resonator and vice versa. To create more
general states for quantum information applications and to
achieve, for instance, states with negative Wigner function, one
needs to use either single-photon sources and photodetectors
[14] or nonlinear effects, of which nonlinear optomechanical
interaction is the most common one. The quantum effects
in mechanical motion are thus best implemented in the
so-called single-photon strong coupling regime, when the
coupling strength exceeds the cavity decay rate [1]. In some
configurations, the cavity is coupled to the position squared of
the mechanical resonator [15], in which case strong coupling
is needed as well. If, furthermore, the strength of the single-
photon radiation pressure coupling can be made of the order of
the mechanical frequency and larger than the cavity decay rate,
the system is in the ultrastrong coupling regime, and photon

blockade can be observed [16]. Single-photon strong coupling
has never been achieved so far in optomechanical systems
operating with optical light.

Along with ultracold atoms [17], superconducting circuits
are promising candidates to reach strong and ultimately
ultrastrong coupling. Recently, the idea of using the Josephson
effect to enhance optomechanical couplings has been re-
searched theoretically [18–21] and experimentally [22]. Many
of those proposals involve using a superconducting quantum
interference device (SQUID) with two Josephson junctions,
which makes the cavity intrinsically nonlinear due to the
Josephson effect. From the viewpoint of using optomechanical
devices for quantum information transfer Josephson-based
microwave optomechanical cavities thus have a double ad-
vantage: They provide additional nonlinearity to facilitate the
creation of nonclassical states of a mechanical resonator, and
the coupling between the cavity and the mechanical resonator
can be strongly enhanced.

In this article, we concentrate on the form and the magnitude
of optomechanical coupling. We consider a SQUID with
two symmetric or asymmetric Josephson junctions and an
embedded mechanical resonator and show that it by itself can
produce ultrastrong optomechanical coupling. Originally, a dc
SQUID with embedded mechanical oscillator was studied as a
sensitive displacement detector [23–27]. It is well established
that the coupling in such a SQUID cavity in the leading order is
still the radiation pressure term, which depends on the applied
flux and vanishes when the total flux through the SQUID equals
to a half of the flux quantum �0. For this value of the total flux,
the next term, which is proportional to the numbers of both
phonons and photons in the system, the so-called cross-Kerr
coupling, becomes significant. However, the asymmetry of
the junctions so far was not at the focus of attention of the
literature, and theoretical proposals are routinely assuming that
the two junctions of the SQUID are almost identical, whereas
a certain asymmetry is always present in the experiment.
We demonstrate that this asymmetry significantly affects the
coupling strength and even leads in a new type of coupling
not present in a symmetric SQUID cavity, single-photon beam
splitter coupling, which becomes significant in the resonant
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regime. In addition, we perform numerical simulations of
the coupling rates for realistic experimental geometries. In
doing so we find that this platform indeed has the potential
to reach both the single-photon strong coupling, a regime
of strong quadratic coupling of the motion to the cavity,
and potentially the ultrastrong coupling regime where the
single-photon coupling rate exceeds the mechanical frequency.

In the first part of the article, we investigate in details the
effect of asymmetry in the SQUID with two junctions and
embedded mechanical resonator. As a first step we look at
the most common experimental situation of the mechanical
frequency being much smaller than the cavity frequency [28].
We quantize the asymmetric system to obtain the radiation
pressure interaction and the cross-Kerr type interaction, and to
relate the coupling strengths to the parameters of the system.
We show that for experimentally feasible parameters the radia-
tion pressure coupling can reach single-photon strong coupling
regime and for stronger magnetic fields even the ultrastrong
coupling regime. The cross-Kerr coupling is usually much
weaker than the radiation pressure coupling, but it is the
leading coupling at the extremum points of the flux where the
radiation pressure is zero. Such strong coupling could enable a
quantum nondemolition measurement of a phonon number in
the mechanical resonator [29] or the cavity’s photon number.

As the second step, we study the case when the mechanical
and cavity frequencies are of the same order. Since the SQUID
cavity frequency is in the range of GHz, the same range
would be required for the mechanical oscillator. Currently,
carbon nanotube (CNT) resonators can reach GHz frequency
[30] and, consequently, the realizations of the SQUID with
suspended CNT junctions [31,32] could reach this regime. In
this case, there are two leading interactions: the cross-Kerr
and the single-photon beam splitter terms. The single-photon
beam splitter exists only at the finite asymmetry. The radiation
pressure term in this regime is oscillating too fast and
can be, therefore, disregarded. In contrast to the standard
optomechanical setups [1], where the beam splitter interaction
is produced by the linearization of the radiation pressure term,
in the SQUID cavity this is a separate term which is not
related to the radiation pressure. The beam splitter is used in
many experimental setups, and the Hamiltonian with the beam
splitter interaction is easily diagonalized and solved. When
the single-photon beam splitter term is in the strong coupling
regime, one can observe, e.g., optomechanical normal-mode
splitting [1]. The considerations and conclusions of this part
also apply to the situation when the mechanical frequency is
much lower than the SQUID cavity frequency, but the cavity
is operated far from the resonance, at low frequencies, like it
was the case with the dc experiments of Refs. [26–28].

The remainder of the article is organized as follows.
In Sec. II we find the current and the cavity frequency
of the SQUID with asymmetric Josephson junctions and
an embedded mechanical resonator. In Sec. III we derive
the effective Hamiltonian of this system for two cases. In
the first case, the cavity frequency of the SQUID is taken to
be much larger than the mechanical frequency, which results
in the radiation pressure and the cross-Kerr interactions. In the
second case, the cavity frequency is considered to be of the
order of the mechanical frequency providing the single-photon
beam splitter and the cross-Kerr interactions. In Sec. IV we

draw the potential map and discuss optomechanical couplings.
Finally, we provide the discussion of our results in Sec. V.

II. CURRENT OF THE ASYMMETRIC SQUID

In this section, we follow the standard textbook treatment
of the current through an asymmetric SQUID, adding a
coupled mechanical resonator. We consider two Josephson
junctions with different values of critical current, I 0

1 and I 0
2 ,

connected in a loop together with an embedded mechanical
resonator, as shown in Fig. 1(a). The energy scales for such
SQUID are described by the average Josephson energy EJ =
h̄(I 0

1 + I 0
2 )/4e and the charging energy Ec = (2e)2/2C � EJ

with C being the shunting capacitance of each junction. The
SQUID has a loop area A with the suspended arm of a
length l. Oscillations of the mechanical resonator modulate
the total flux of the SQUID loop. Then, the SQUID with
the embedded mechanical resonator can be viewed as an LC
circuit, in which the Josephson inductance of the SQUID LJ ,

FIG. 1. (a) A schematic overview of the SQUID, which contains
two Josephson junctions with different critical currents. The mechan-
ical resonator is embedded into the SQUID loop. The magnetic field
B is applied under certain angle to the loop, such the displacement
X of the mechanical resonator results in a nonzero modulation of
the magnetic flux through the loop. (b) The mechanical resonator
couples inductively to the SQUID cavity via the total flux �. Here
and below the color indicates the symmetry; 50% means αI = 0.5. (c)
The critical current and (d) cavity frequency are plotted as a function
of renormalized bias flux of the symmetric and asymmetric SQUID.
The cavity frequency of the symmetric SQUID is cut at realistic value
of 2.5 GHz.
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which for symmetric junctions I 0
1 = I 0

2 = I0 is well known to
be �0/[4πI0 cos(π�/�0)], is modulated by the total flux �

threading though the loop. Consequently, the cavity frequency
is modulated by the flux, which results in the inductive
coupling of the mechanical resonator and the SQUID, see
Fig. 1(b). For simplicity, we assume that the mechanical
resonator moves in its single mode. The dynamics of the
mechanical resonator is described by the displacement X from
its equilibrium position. The dynamics of the SQUID itself is
described by the sum of the gauge-invariant phase differences
across each junction (φ1 and φ2), ϕ+ = (φ1 + φ2)/2, which is
referred to as the overall phase of the SQUID. Moreover, the
difference of the phases is bound by the total flux threading
the loop

ϕ− = (φ1 − φ2)/2 = π�/�0 + πn , (1)

where n is an integer and �0 = h/2e is the flux quantum. Note
that the value of n does not affect the results of the article.

Assuming the magnetic field is applied under certain angle
to the SQUID loop the total flux can be separated to two
contributions. The first contribution is the bias flux �b, which
is added to the SQUID loop in its fixed position, say for X = 0.
The second contribution comes from the flux threaded the area
swept by the oscillations of mechanical resonator. Since it
is more convenient to work with the phase difference rather
than the flux itself we define the renormalized bias flux φb =
π�b/�0 and renormalized flux shift provided by the resonator
ξX = πβ0BlX/�0 with the average geometric constant β0,
which takes into account the direction of the magnetic field
and the geometry of the mechanical resonator [26]. Then, the
phase difference is given by

ϕ− = φb + ξX + πn. (2)

Here, we study the situation when the circuit has a negligible
self-inductance.

Now we write the total current flowing through the
asymmetric SQUID. For this purpose we introduce the average
critical current I0 = (I 0

1 + I 0
2 )/2. The critical currents of the

first and the second junctions are defined as I 0
1 = I0(1 −

αI ) and I 0
2 = I0(1 + αI ), respectively, with the asymmetry

parameter αI . Therefore, the total current I through both
junctions is separated into two terms: one is the same as in
the case of equal critical currents and the second one, which
is responsible for the influence of asymmetry

I = I 0
1 sin(φ1) + I 0

2 sin(φ2)

= 2I0 cos(ϕ−) sin(ϕ+) − 2I0αI sin(ϕ−) cos(ϕ+). (3)

To find the critical current of the asymmetric SQUID, we shift
the position of the overall phase ϕ+ of the SQUID by the phase
ϕ0 which satisfies the relation: tan(ϕ0) = αI tan(ϕ−). Then, the
total current is simplified to [33]

I = 2I0S(ϕ−) sin(ϕ+ − ϕ0), (4)

where S(ϕ−) =
√

cos2(ϕ−) + α2
I sin2(ϕ−) is a flux-dependent

function, which turns to the absolute value of cosine at
zero asymmetry, and the total current becomes the well-
known expression for the symmetric SQUID. Then, when the
mechanical resonator is at rest, we can define the maximum
current and, hence, the critical current of the asymmetric

SQUID as well as the cavity frequency

I (X = 0) = Ic = 2I0S0 and ωc(0) =
√

2πIc

C�0
. (5)

Here we use S0 =
√

cos2(φb) + α2
I sin2(φb).

In Fig. 1(c) we show the behavior of the critical current
for symmetric case (αI = 0) and for αI = 0.5. For identical
junctions the current varies between 0 and 2I0, but in the
presence of the asymmetry the current never reaches zero
value. Even at the half flux quantum when the critical current
for the symmetric case is zero, the critical current of the
asymmetric SQUID is at minimum Ic(φb = π/2) = 2I0αI .
Nevertheless, the maximum, which occurs at the odd integer
flux quantum, is not affected by the asymmetry. The cavity
frequency is proportional to

√
Ic and portrays the same

behavior of the critical current as shown in Fig. 1(d). For
parameters of the critical current of the Josephson junction
I0 = 500 nA and capacitance C = 30 pF the maximum cavity
frequency is 10 GHz. At half flux quantum and αI = 0.5, the
cavity frequency reaches its minimum of 4.5 GHz.

III. QUANTIZATION

In the following, we quantize the system by starting with the
classical Hamiltonian, which consists of the simple harmonic
oscillator, kinetic energy, and the potential energy of the
SQUID [34],

H = mrẊ
2

2
+ mrω

2
mX2

2
+ C�2

0

2(2π )2
ϕ̇2

+ + E(ϕ+,X), (6)

where mr and ωm are the mass and the frequency of the
mechanical resonator. The potential energy of the SQUID E

is derived from the total current �0I/2π = ∂E/∂ϕ+ found in
Sec. II,

E(ϕ+,X) = −2EJ S(ϕ−) cos [ϕ+ − arctan(αI | tan ϕ−|)]. (7)

The minimum of the potential is shifted by a flux-dependent
parameter, which also depends on the displacement of the
mechanical resonator. Depending on the difference between
the cavity frequency and the mechanical frequency one can
assume quasistatic regime or has to take into account the
displacement dependent shift.

A. Dispersive regime

In the typical case when the mechanical frequency is much
smaller than cavity frequency, the shift by the flux can be
assumed static on the timescales related to the SQUID. Then,
we can write the potential energy in terms of the shifted
phase ϕ = ϕ+ − arctan(αI | tan(φb)|). The kinetic energy of
the SQUID is not affected by the constant shift, and thus the
phase ϕ+ can be replaced by ϕ.

To quantize the phase and the position, the potential energy
is expanded in terms of the phase up to the second order.
This means that we consider SQUID as a linear harmonic
oscillator, and the nonlinear effects are weak, having the
amplitude smaller than the linewidth of the cavity and the
cavity frequency. The term which is independent of the phase,
shifts the equilibrium position of the mechanical resonator and
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modifies the mechanical frequency

ω′
m =

√
ω2

m + 4EJ ξ 2
(
1 − α2

I

)[
cos4(φb) − α2

I sin4(φb)
]

mrS
3
0

. (8)

For the phase-dependent terms we introduce creation and
annihilation operators(

a†

a

)
= 1√

2h̄mϕωc

(mϕωcϕ ∓ ipϕ), (9)

with the momentum pϕ = C�2
0/(2π )2ϕ̇ ≡ mϕϕ̇, where mϕ is

the mass of the phase, and the displacement dependent cavity
frequency is

ωc(ϕ−) =
√

4πI0S(ϕ−)

C�0
. (10)

This expression can also be retrieved from Eq. (5) for the
mechanical resonator at rest by changing φb to ϕ−. Therefore,
the displacement dependent cavity frequency as a function of
ϕ− has the same behavior as shown in Fig. 1(c).

Now our Hamiltonian has the form similar to that of the
Hamiltonian with symmetric Josephson junctions except for
the modified cavity frequency

H = mrẊ
2

2
+ mrω

2
mX2

2
+ h̄ωc(ϕ−)a†a. (11)

The position of the mechanical resonator is quantized by
introducing the position operator, X = xZPF(b† + b), where
b and b† are creation and annihilation operators and xZPF =√

h̄/2mrωm is the amplitude of zero point fluctuations of
the displacement X. Then, the uncoupled Hamiltonian of the
mechanical resonator is h̄ωmb†b.

The interaction terms are obtained by expanding the dis-
placement dependent cavity frequency to the second order in
displacement. Then, the interaction Hamiltonian after applying
the rotation-wave approximation becomes

Hint = h̄g1
RP a†a(b† + b) + h̄g2

Qa†ab†b, (12)

where the radiation pressure coupling and the cross-Kerr
coupling between the cavity and the mechanical resonator are,
respectively,

g1
RP = xZPF

∂ωc

∂X

∣∣∣∣
X=0

= xZPF ξ
∂ωc

∂ϕ−

∣∣∣∣
X=0

= xZPF

(
1 − α2

I

)
ξ sin(2φb)ωc(0)

4S2
0

, (13)

g2
Q = x2

ZPF

∂2ωc

∂X2

∣∣∣∣
X=0

= x2
ZPF ξ 2 ∂2ωc

∂ϕ2−

∣∣∣∣
X=0

= 2xZPF ξg1
RP cot(2φb) − 3

(
g1

RP

)2

ωc(0)
. (14)

The first term is the usual radiation pressure interaction
which is expected in an optomechanical cavity, where photons
produce a force acting on a mechanical resonator. The only
difference with our situation is that photons are in the
microwave range. This term vanishes at φb = π/2. The second
term (cross-Kerr) is due to nonlinearity of the cavity and is
normally much weaker than the radiation pressure. However,

when g1
RP = 0, the first term in Eq. (14) stays finite because

sin(2φb) in the radiation pressure coupling is multiplied with
the infinite factor cot(2φb). Thus, close to φb = π/2, the
cross-Kerr term can become dominant.

Let us now briefly discuss the physical interpretation of
Eq. (12). We note that Josephson effect is not essential for
creation of the force. For example, if we have a microwave LC

circuit, which in its simplest realization is a loop threaded by
magnetic flux and capacitively coupled to a nearby electrode,
it has the inductive energy, LI 2, where L is the inductance
of the loop, and I is the current through the loop. The
inductance depends on the geometric size of the loop, and
thus, if the loop is deformed by mechanical motion, e.g.,
if its part is suspended, the inductive energy depends on
the position x of the mechanical resonator embedded in the
loop, thereby providing a mechanical force. This force is
F = −(dL/dx)I 2, dL/dx can be approximated by a constant,
and after quantization of the current the interaction becomes
formally of the same functional form as the radiation pressure
force. For a SQUID loop, physics is the same, however, the
inductive-like energy is stored in the Josephson junctions,
and the coupling is much stronger and oscillates strongly
as a function of the external magnetic field. Furthermore, at
certain values of the flux the coupling, proportional to dL/dx,
vanishes, and one needs to expand the inductance to the order
x2. This procedure provides the cross-Kerr coupling.

To visualize the resulting couplings, to the chosen ca-
pacitance C and critical current I0 we add the following
set of parameters: ω′

m = 10 MHz, A = 200 μm × 150 μm,
l = 150 μm, and mr = 200 pg. The flux bias varies from
φb = 2πn to φb = 2πn + π , where n = 72534 corresponds
to chosen value of magnetic field.

In Fig. 2(a), we plot the radiation pressure coupling. For the
perfectly symmetric Josephson junctions, the absolute value of
the radiation pressure infinitely increases while getting closer
to the half-integer flux quantum. It suggests that if in the
experiment one can tune bias flux very close to the half flux
quantum the radiation pressure will be maximum. However,
because of the asymmetry of the SQUID the maximum of the
radiation pressure coupling shifts to the value of the flux given

by tan(φb) = ±
√

1 − α2
I +

√
1 + 14α2

I + α4
I /2αI . Beyond this

value, the radiation pressure monotonically decreases to zero
at the half-integer flux quantum. The maximum of the radiation
pressure even at αI = 0.5 and magnetic field of 10 mT can
reach single-photon strong coupling regime, considering a
typical cavity decay rate of 80 kHz.

The divergence of the radiation pressure coupling, here and
below, for a symmetric SQUID (αI = 0) in the limit of φb =
π/2 is due to the behavior of the cavity frequency as ωc(ϕ−) ∝
| cos ϕ−|1/2. However, our treatment is not valid strictly in
this limit since it is based on the assumption that the cavity
frequency shift is small compared to the cavity frequency itself.
If a symmetric SQUID is biased exactly at φb = π/2, due to the
mechanical motion the phase φ− oscillates between π/2 ± ξX,
and the divergences will be smeared for π/2 − ξX < φb <

π/2 + ξX. To consider this regime, one needs to go beyond
the Taylor expansion of the cavity frequency. In addition, close
to φb = π/2 the cavity, even in the asymmetric case, can not be
considered as linear. This also creates a limitation on how close
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FIG. 2. Light-matter couplings of symmetric and asymmetric
SQUID for magnetic field B = 10 mT: (a) radiation pressure, (b)
cross-Kerr coupling. The maximum of radiation pressure for αI = 0.5
is g1

RP = 77 kHz. The flux bias is shifted by πBA/�0 = 2π72534.
We see that the radiation pressure coupling diverges at αI = 0 and
φb = π/2; this divergence is in reality smeared as discussed in the
text.

we can approach this bias point. We discuss this limitation in
Sec. IV.

Since the radiation pressure can also be written in terms of
the cavity frequency derivative, we can analyze this coupling
looking at Fig. 1(c) by changing φb to ϕ− as mentioned above.
For the asymmetric case the slope of the frequency increases
and then decreases while varying the flux from 0 to π/2. After
crossing π/2 to π it changes the sign of the slope, which
leads to the negative radiation pressure. Also, for asymmetric
junctions the slope at the integer and the half-integer flux
quantum is zero.

The cross-Kerr coupling is shown in Fig. 2(b). For the
symmetric case the coupling is infinitely strong approaching
the half-integer flux quantum, which is the same behavior
as found for the radiation pressure, but in contrast to the
latter it does not change the sign while crossing π/2. Looking
at Fig. 1(c) we expect that for the asymmetric SQUID the
cross-Kerr coupling, which is the second derivative of the
cavity frequency over the displacement, changes the sign
between 0 to π/2 and then from π/2 to π and this is indeed
the result observed here. The maximum of the coupling for the
asymmetric case is achieved at the half-integer flux quantum.
We also notice that even at the flux equal to the integer
number of flux quanta the value of the cross-Kerr coupling
(for the chosen parameters) is 0.66 Hz. In the experiment with
the membrane inside the cavity [15] the value of the second
derivative of the cavity frequency was ω′′

c (x)/2π = 108 kHz
nm−2. Then to improve this value multiple modes of the cavity
were coupled to the single mode of the mechanical resonator

FIG. 3. The maximum value of the (a) radiation pressure and (b)
cross-Kerr coupling as a function of the magnetic field at αI = 0.5.
The flux bias is fixed and corresponds to the sweet spot (maximum)
of each coupling, respectively. The field dependence is linear in (a)
and quadratic in (b), and thus both couplings can be significantly
enhanced by magnetic field. For our chosen parameters, at 1 T the
radiation pressure coupling becomes comparable with the mechanical
frequency.

[35] to get ω′′
c (x)/2π = 8.7 MHz nm−2, which is still lower

than our calculated value at the flux equal to the integer number
of flux quanta, which is ω′′

c (x)/2π = 4 GHz nm−2.
The maximum value of the asymmetric couplings increases

with magnetic field, as shown in Fig. 3. Increasing magnetic
field to 1 T is experimentally feasible [32] and increases
chances of getting stronger couplings. The radiation pressure
coupling is linearly dependent on B and the cross-Kerr
coupling is quadratically dependent on B. At αI = 0.5 and
magnetic field of 1 T the radiation pressure can reach the
ulrastrong coupling regime (g1

RP ∼ ωm), which also means
that at lower asymmetry the value on the sweet spot can even
be greater. The cross-Kerr coupling can reach values of 80 kHz.
It can be stronger for the lower asymmetry, but the window
to catch the sweet spot becomes more narrow for the lower
asymmetry.

B. Resonant frequencies

Here, we consider the regime in which the mechanical
resonator and the cavity operate at comparable frequencies.
This is relevant for the case when the mechanical frequency
and the cavity frequency have the same order, and also
for the case when the cavity frequency operates in the dc
regime or far off resonance, like it was in the experiments
Refs. [26–28].

Now, the minimum of the potential is shifted by a position-
dependent parameter, see Eq. (7). However, the displacement
is now one of the dynamical variables of the system, separate
from the overall phase. If we shift the phase by a displacement-
dependent parameter then the kinetic energy acquires the
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shifted phase as well as extra terms in the form of ϕ̇+Ẋ

with the original phase. Therefore, it is simpler to expand the
arctangent in the potential energy to the first order in X, which
is sufficient since the amplitude of the mechanical resonator is
usually small in such devices. The expanded potential energy
depends on both the displacement and the phase ϕ, which do
not combine into a single variable

E(ϕ,X) = −2EJ S(ϕ−) cos

(
αI ξ

S2
0

X

)

− 2EJ S(ϕ−) sin

(
αI ξ

S2
0

X

)
ϕ

+EJ S(ϕ−) cos

(
αI ξ

S2
0

X

)
ϕ2. (15)

Similarly to the previous case, the first term shifts the
equilibrium position of the mechanical resonator and the
mechanical frequency

ω′
m =

√√√√
ω2

m +
2EJ ξ 2

√
2
[
1 + α2

I + (
1 − α2

I

)
cos(2φb)

]
mr

.

(16)

Next, we quantize the phase introducing the operators a†, a.
The momentum variable pϕ = mϕϕ̇ stays the same as in the
previous case, however, the displacement-dependent cavity
frequency is different from Eq. (10),

ωc(X) =

√√√√4πI0S(ϕ−) cos
(

αI ξ

S2
0
X

)
C�0

. (17)

Then, the Hamiltonian in terms of the cavity operators has the
following form:

H = mrẊ
2

2
+ mrω

′
m

2
X2

2
+ h̄ωc(X)a†a, (18)

− 2h̄I0S(ϕ−)√
2h̄Cωc(X)

sin

(
αI ξ

S2
0

X

)
(a† + a). (19)

We expand the full Hamiltonian to the second order in the
displacement and use the creation and annihilation operators
b†, b of the mechanical resonator. This procedure yields the
uncoupled cavity Hamiltonian h̄ωc(0)a†a and the uncoupled
mechanical resonator Hamiltonian h̄ω′

mb†b. Applying the
rotating-wave approximation results in the interaction Hamil-
tonian of the following form:

Hint = h̄g2r
Q a†ab†b − h̄g1r

BS(a†b + b†a), (20)

where the cross-Kerr and the single-photon beam splitter
couplings, respectively, are

g2r
Q = x2

ZPF

∂2ωr
c

∂X2

∣∣∣∣
X=0

= g2
Q − α2

I ξ
2

2S4
0

ωc(0), (21)

g1r
BS = xZPF

αI ξ
√

ωc(0)EJ√
h̄S3

0

. (22)

The cross-Kerr coupling has the same meaning as in the
dispersive regime, Eq. (12). However, instead of the radiation

FIG. 4. Interaction couplings for symmetric and asymmetric
SQUID in the case of ωc(0) ∼ ω′

m and magnetic field B = 10 mT:
(a) cross-Kerr coupling, (b) single-photon beam splitter coupling.
The flux bias is shifted by 12πBA/�0 = 2π · 18. Similarly to the
dispersive case, the cross-Kerr coupling diverges close to φb = π/2
for a symmetric SQUID cavity. This divergence is cutoff in the same
manner as we discussed for the dispersive regime. In contrast, the
single-photon beam splitter coupling is finite and vanishes for a
symmetric SQUID cavity.

pressure coupling present in Eq. (12) we have now the linear
beam splitter coupling. Note that it is remarkably different
from the standard optomechanics case [1]. In optomechanics,
the beam-splitter coupling is obtained by linearization of the
radiation pressure coupling at large number of photons in the
cavity N , is enhanced by the factor of

√
N , and is therefore

referred to as multiphoton beam-splitter coupling. In contrast,
in our case the beam-splitter coupling naturally appears in the
Hamiltonian and does not contain

√
N as a prefactor, therefore

it is single-photon beam-splitter coupling. The origin of this
coupling is the Lorentz force [28]. Since we have charges
moving in the external magnetic field, the mechanical Lorentz
force acting on a suspended junction is proportional to the
current through the junction, and the current is proportional
to the superconducting phase at low phase differences, which
gives Eq. (20).

To plot these couplings, we use the following set of
parameters for the nanoSQUID with CNT junctions [31]: I0 =
15 nA, C = 90pF, A = 800 nm × 800 nm, l = 200 nm, and
mr = 5 ag. The cavity frequency for these values is 1 GHz.
The mechanical frequency is taken to be ω′

m = 1 GHz, which
is possible to reach with a suspended CNT. The flux bias varies
from φb = 2πn to φb = 2πn + π , where n = 18.

In Fig. 4(a), we plot the cross-Kerr coupling as a function
of the magnetic flux. The coupling g2

Q is overall weaker than
the one we found in Fig. 2(b). For the symmetric case, the
behavior is the same as we have seen in the dispersive regime.
However, for finite asymmetry the behavior is qualitatively
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FIG. 5. The maximum of (a) the cross-Kerr coupling and (b) the
single-photon beam splitter coupling at αI = 0.5 as a function of
the magnetic field corresponding to Fig. 4. The flux bias is fixed
to the sweet spot of each coupling. Similarly to the dispersive case,
the beam splitter coupling is linear in magnetic field, whereas the
cross-Ker coupling is quadratic.

different since the coupling is negative and does not change
sign from negative to positive. Also, there is a peak in the
coupling close to π/2 and at exactly the half flux quantum
there is a minimum. This happens because of the second term
in Eq. (21), which arises due to the modified cavity frequency.
For lower asymmetry the minimum is getting closer to zero
while the maximum is increasing.

Figure 4(b) shows the single-photon beam splitter coupling.
For ωc(0) 	 ω′

m this coupling is negligible because the
corresponding term in the Hamiltonian is a quickly oscillating
function of time. In or near the resonant regime, this coupling
is significant but only exists at a finite asymmetry. The single-
photon beam splitter coupling is slowly increasing while the
flux rises from 0 to π/2 and reaches its maximum at the half
flux quantum and then passing this point decreases again. For
a lower asymmetry the peak is higher, but the window to
reach higher value is narrower, since the higher asymmetry
corresponds to a higher value of the coupling except for close
to half-integer flux quantum.

In Fig. 5 we show the maximum value of both couplings at
αI = 0.5 while increasing magnetic field to 1 T. The cross-Kerr
coupling for our chosen parameters reaches 1 kHz, while the
single-photon beam splitter coupling has the value of up to
10 MHz. This means that both couplings stay well below the
mechanical frequency, so that the ultrastrong coupling regime
is not reached, but depending on the cavity decay rate it can
operate in the strong-coupling regime. Note again that g2r

BS has
intrinsically a beam splitter character even at the single-photon
level, and does not originate from linearization of the radiation
pressure coupling. At very low asymmetry and strong magnetic
fields the cross-Kerr coupling can be larger than beam-splitter
interaction.

IV. DISCUSSION

To gain an intuition about the couplings and to better
understand the role of the asymmetry we plot the potential
energy of the SQUID cavity as a function of flux (ϕ−) and
phase (ϕ+) in Fig. 6. For the symmetric junctions the potential
is symmetric along the dashed line. At the bottom of the
potential, the radiation pressure is zero, and the cross-Kerr
coupling is finite. For the asymmetric case, the potential has
an elliptical form and is asymmetric. One can further study the
figures on the bottom corresponding to the cross-section of the
energy map for different flux. The cross-sections are chosen by
moving the horizontal dashed line up. In the symmetric case
the minimum of the potential energy always stays at the same
position. In contrast, for the asymmetric junctions the position
of the minimum shifts, which is also described by Eq. (7). In
the case of dispersive frequencies, this shift is constant, and the
minimum is redefined at each bias flux, which represents the
same physics as for the symmetric case. However, the elliptical
form alters the radiation pressure and the cross-Kerr couplings
and changes their dependence of magnetic flux as previously
appeared in Fig. 2 around half-integer flux quantum where
there is a merge between elliptical forms.

For the case of resonant frequencies and an asymmetric
SQUID, the minimum of the potential energy is shifted
by the displacement dependent flux. The oscillations of the
mechanical resonator correspond to the motion from one curve
in Fig. 6 to another one. The force that triggers the motion
between the minima of these curves is just like the Lorentz
force, which explains the appearance of the single-photon
beam splitter and the extra term picked up by cross-Kerr
coupling as compared to the dispersive regime.

We now discuss the mechanical frequency shifts due to
the Josephson term in Eqs. (8) and (16). In the parameter
regime we have chosen this shift can be disregarded. However,

FIG. 6. Potential energy of the SQUID cavity as a function of the
phase and flux at αI = 0 (left) and αI = 0.5 (right). The minimum
is shown in black and maximum in yellow. The corresponding cross
sections of energy map for the different values of the flux are displayed
on the bottom. See the text for the discussion.
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for higher values of Josephson energy increasing magnetic
field to 1 T can create a large shift, which should be taken
into account. The mechanical zero-point fluctuation in such
a situation becomes smaller, subsequently the values of the
couplings decrease, but we do not expect the change in the
overall behavior of the optomechanical couplings.

Generally, the SQUID is an intrinsically nonlinear cavity.
Close to the half-integer flux quantum, an extra nonlinear Kerr-
type term �a†aaa† appears in the Hamiltonian of Eqs. (11)
and (19), where the Kerr nonlinearity is � = h̄π2/(4C�2

0).
This term results from the expansion of the potential energy to
the fourth order in the overall phase ϕ. Thus, a cavity can be
considered linear as long as � is less than the cavity linewidth
and ωc(0) 	 �, which gives a finite condition for the flux
bias close to the half integer flux quantum. Close to the half
flux quantum the Kerr-type term and the cross-Kerr term are
always present in this system. From the fourth-order expansion
of the potential energy there are also other nonlinear interaction
terms such as a†a†aab†b in the dispersive case or a†a†ab in
the resonant case, which are always small.

V. CONCLUSION

We provided a quantum analysis of the SQUID with
asymmetric Josephson junctions and embedded mechanical
resonator for the two cases of dispersive and resonant regimes
of cavity and mechanical frequencies. We demonstrated that
such a SQUID acts as an optomechanical microwave cavity.
Our findings are relevant for the experimental setup where
asymmetry cannot be avoided. For dispersive coupling, where
the mechanical frequency is much lower than the SQUID
cavity frequency, and the cavity is operated close to the
resonance, we found that the radiation pressure coupling of the
type a†a(b† + b) dominates. However, in contrast to standard
optomechanical cavities, the coupling strength depends on the
magnetic flux through the SQUID. In a symmetric cavity,
the coupling is the strongest close to the point where the
half flux quantum is applied to the cavity, however, for any
asymmetry the coupling vanishes exactly at this point. Away
from this point, the coupling is really strong, even at αI = 0.5
and weak magnetic field, and the amplitude is proportional
to the applied magnetic field. For high magnetic fields, the
ultrastrong coupling regime of the radiation pressure can
be achieved, which is currently a great challenge in cavity

optomechanics. There is also the cross-Kerr coupling, a†ab†b,
originating from the nonlinearity of the SQUID cavity. This
coupling is much weaker than the radiation pressure, but at the
half flux quantum it becomes the dominant coupling term since
the radiation pressure amplitude is zero. For the symmetric
case, the cross-Kerr coupling is always negative. For the
asymmetric case, the cross-Kerr coupling has maximum at
the half-integer flux quantum and changes sign from negative
to positive while reaching a maximum.

In the resonant case, when the SQUID cavity is operated
at low frequencies, compared to the mechanical frequency,
we find qualitatively different results—the radiation pressure
coupling does not play any role since it oscillates with a high
frequency, and the dominant coupling term is the single-photon
beam-splitter interaction ab† + a†b. This coupling is absent in
the symmetric case at any magnetic field. The maximum of
the beam-splitter coupling strength is at the half flux quantum.
The cross-Kerr coupling is present as well but never dominates
except for an ideally symmetric SQUID, αI = 0.

We explained the origin of different couplings using the
potential energy map as well as compared the maps for
the symmetric and the asymmetric cases. Concerning the
strong radiation-pressure coupling in the dispersive regime, we
expect it to be possible to realize with existing experimental
parameters. The biggest challenge to experimentally realize
the strong single-photon beam splitter coupling is the condition
on the mechanical frequency, which should be comparable
to the cavity frequency. It does not look realistic with
existing setup, though using carbon nanotubes as a mechanical
resonator coupled to the Josephson circuit one can potentially
solve the high mechanical frequency issue. The workaround is
to operate a SQUID cavity at low frequencies, resonantly with
the mechanical resonator, such as it was done in Refs. [26–28].

Achieving strong or ultrastrong radiation pressure coupling
would enable the SQUID-based optomechanics to perform
experiments which are currently much sought by but not yet
available for cavity optomechanics, mainly on quantum control
of states of mechanical resonator and using it as a quantum
transducer between different quantum media, for example,
between optical and microwave light.
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